1
|
Jiang Z, Zhai C, Tang G. Novel Antihypertensive Medications to Target the Renin-Angiotensin System: Mechanisms and Research. Rev Cardiovasc Med 2025; 26:27963. [PMID: 40351692 PMCID: PMC12059749 DOI: 10.31083/rcm27963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/30/2024] [Accepted: 02/10/2025] [Indexed: 05/14/2025] Open
Abstract
An estimated 1.28 billion individuals in the global population suffer from hypertension. Importantly, uncontrolled hypertension is strongly linked to various cardiovascular and cerebrovascular diseases. The role of the renin-angiotensin system (RAS) is widely acknowledged in the development and progression of hypertension. This system comprises angiotensinogen, the renin/(pro)renin/(pro)renin receptor (PRR) axis, the renin/angiotensin-converting enzyme/angiotensin (Ang) II/Ang II type I receptor (AT1R) axis, the renin/angiotensin-converting enzyme (ACE) 2/Ang (1-7)/Mas receptor (MasR) axis, the alamandine/Mas-related G protein-coupled D (MrgD) receptor axis, and the renin/ACE/Ang II/Ang II type II receptor (AT2R) axis. Additionally, brain Ang III plays a vital role in regulating central blood pressure. The current overview presents the latest research findings on the mechanisms through which novel anti-hypertensive medications target the RAS. These include zilebesiran (targeting angiotensinogen), PRO20 (targeting the renin/(pro)renin/PRR axis), sacubitril/valsartan (targeting the renin/ACE/Ang II/AT1R axis), GSK2586881, Ang (1-7) and AVE0991 (targeting the renin/ACE2/Ang (1-7)/MasR axis), alamandine (targeting the alamandine/MrgD receptor axis), C21 and β-Pro7-Ang III (targeting the renin/ACE/Ang II/AT2R axis), EC33, and firibastat and NI956 (targeting brain Ang III).
Collapse
Affiliation(s)
- Zhe Jiang
- Department of Cardiology, Jiaxing University Master Degree Cultivation Base, Zhejiang Chinese Medical University, 310053 Hangzhou, Zhejiang, China
| | - Changlin Zhai
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, 314001 Jiaxing, Zhejiang, China
| | - Guanmin Tang
- Department of Cardiology, The Affiliated Hospital of Jiaxing University, 314001 Jiaxing, Zhejiang, China
| |
Collapse
|
2
|
West J, Talati M, Carrier E, Rathinasabapathy A, Gaidarov I, Vigl B, Cai Y, Jia H, Blackwell T, Gladson S, Moore C, Shay S, Sevier E, Hemnes A. Mas1 Receptor Activation is Necessary and Sufficient to Transduce ACE2 Effect in PAH, But Ang(1-7) Alone is Insufficient. Pulm Circ 2025; 15:e70083. [PMID: 40248213 PMCID: PMC12005592 DOI: 10.1002/pul2.70083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 04/02/2025] [Accepted: 04/07/2025] [Indexed: 04/19/2025] Open
Abstract
ACE2 has shown effectiveness in treating pulmonary hypertension in multiple animal models and has some promise in early human trials. The key barrier to translation is that enzymatically active ACE2 is difficult to manufacture and exhibits a short half-life in humans, making chronic administration challenging. Understanding the mechanism of effect is thus key to finding ways to bypass ACE2 while still reproducing therapeutic effects. In this study, we test the hypotheses that ACE2 produces its therapeutic effect through increased Mas1 signaling and that Ang(1-7) is sufficient as the Mas1 ligand. We found that the ACE2 effect is blocked in Mas1 knockout mice and that the Mas1 agonist AR234960 reproduces the ACE2 effect, indicating that Mas1 activation is necessary and sufficient for the ACE2 therapeutic effect. However, neither AlbudAb-stabilized Ang(1-7) nor Ang(1-7) stabilized through the use of protease inhibitors were capable of reproducing ACE2 effectiveness, indicating that Ang(1-7) alone does not activate Mas1 in this context. RNA-seq suggests that the key mechanisms downstream of Mas1 responsible for the therapeutic effect of ACE2 and AR234960 are the rescue of cytoskeletal and microtubule defects. Together, these findings indicate that direct activation of Mas1 will likely be effective in treating pulmonary arterial hypertension, but raise the question of the identity of the endogenous ligand(s).
Collapse
Affiliation(s)
- James West
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Megha Talati
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Erica Carrier
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | | | | | | | - Ying Cai
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Hongpeng Jia
- Division of Pediatric SurgeryJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Tom Blackwell
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Santhi Gladson
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Christie Moore
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Sheila Shay
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Ethan Sevier
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| | - Anna Hemnes
- Division of Allergy, Pulmonary, and Critical Care MedicineVanderbilt University Medical CenterNashvilleTennesseeUSA
| |
Collapse
|
3
|
Batlle D, Hassler L, Wysocki J. ACE2, From the Kidney to SARS-CoV-2: Donald Seldin Award Lecture 2023. Hypertension 2025; 82:166-180. [PMID: 39624896 DOI: 10.1161/hypertensionaha.124.22064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
ACE2 (angiotensin-converting enzyme 2) is a monocarboxypeptidase that cleaves Ang II (angiotensin II) among other substrates. ACE2 is present in the cell membrane of many organs, most abundantly in epithelial cells of kidney proximal tubules and the small intestine, and also exists in soluble forms in plasma and body fluids. Membrane-bound ACE2 exerts a renoprotective action by metabolizing Ang II and therefore attenuating the undesirable actions of excess Ang II. Therefore, soluble ACE2, by downregulating this peptide, may exert a therapeutic action. Our laboratory has designed ACE2 truncates that pass the glomerular filtration barrier to target the kidney renin-angiotensin system directly and, therefore, compensate for loss of kidney membrane-bound ACE2. Membrane-bound ACE2 is also the essential receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Soluble ACE2 proteins have been studied as a way to intercept SARS-CoV-2 from binding to membrane-bound ACE2 and prevent cell entry of SARS-CoV-2 altogether. We bioengineered a soluble ACE2 protein, termed ACE2 618-DDC-ABD, with increased binding affinity for SARS-CoV-2 and prolonged duration of action, which, when administered intranasally, provides near-complete protection from lethality in k18hACE2 mice infected with different SARS-CoV-2 variants. The main advantage of soluble ACE2 proteins for the neutralization of SARS-CoV-2 is their immediate onset of action and universality for current and future emerging SARS-CoV-2 variants. It is notable that ACE2 is critically involved in 2 dissimilar functions: as a receptor for cell entry of many coronaviruses and as an enzyme in the metabolism of Ang II, and yet in both cases, it is a therapeutic target.
Collapse
Affiliation(s)
- Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
4
|
Kaur M, Sandhu R, Aggarwal A. Recombinant ACE2 - Opportunities and Challenges in COVID-19 Treatment. Infect Disord Drug Targets 2025; 25:e180424229061. [PMID: 38639270 DOI: 10.2174/0118715265298816240321045741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 04/20/2024]
Abstract
It was in 2019 that the world experienced the devastation caused by SARS-CoV-2, contributing to a large number of deaths. This contagious virus not only challenged the health care system but has also hit the economy very badly. There has been a lot of research on effective vaccine development, and there has been some success in the same, but no effective antiviral drugs are available in the market. No doubt vaccination can prevent the disease, but it doesn't have the potential to cure an infected person, for which there is a dire need to develop some effective drug. Angiotensin convertase enzyme 2 (ACE2) played a substantial role in SARS-CoV-2 pathogenesis and thus has gained much attention during the pandemic. Moreover, it has opened up new avenues for the cure of COVID-19.
Collapse
Affiliation(s)
- Mandeep Kaur
- Government Medical College, Patiala, Punjab, India
| | - Rahul Sandhu
- Department of General Surgery, Armed Forces Medical College, Pune, Maharashtra, 411040, India
| | - Akriti Aggarwal
- Department of Microbiology, Senior Resident, AIIMS Bathinda, Bathinda, India
| |
Collapse
|
5
|
Arthur G, Ahmed N, Nichols K, Poupeau A, Collins K, Lindner V, Loria A. Obesity Human Soluble Prorenin Receptor Expressed in Adipose Tissue Improves Insulin Sensitivity and Endothelial Function in Obese Female Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.12.575451. [PMID: 38260688 PMCID: PMC10802596 DOI: 10.1101/2024.01.12.575451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Soluble prorenin receptor (sPRR) is a component of the renin-angiotensin system (RAS) identified as a plasma biomarker for human metabolic disease. However, what tissue source of sPRR is implicated in the modulation of metabolic function remains unclear. This study investigated the contribution of human sPRR (HsPRR) produced in the adipose tissue (Adi) on the metabolic and cardiovascular function of lean and obese male and female mice. Adi-HsPRR mice, generated by crossing human sPRR-Myc-tag and Adiponectin/Cre mice, were fed a low-fat or high-fat diet (10% and 60% kCal from fat, respectively) for 20 weeks. Obese Adi-HsPRR mice showed elevated sPRR levels in adipose tissue without affecting adipocyte size or fat depot weight. Despite plasma sPRR being similar between obese Adi-HsPRR and control female mice, a positive correlation between plasma sPRR and adiposity was present only in controls. Obese Adi-HsPRR male mice showed elevated plasma sPRR compared with controls, but no correlation with adiposity was found in either group. Nevertheless, Adi-HsPRR expression improved insulin sensitivity and endothelial function, reduced adipogenic genes mRNA abundance (PPARg, SEBP1C and CD36), and increased plasma Angiotensin 1-7 levels only in obese HsPPR female mice. Taken together, elevated HsPRR in adipose tissue improved metabolic and vascular function in obese female mice despite normal circulating levels of sPRR, whereas increased local and circulating levels of HsPRR did not influence metabolic and cardiovascular function in obese male mice. Our data suggest that increased plasma sPRR associated with metabolic disease could be produced by other tissues rather than adipocytes.
Collapse
Affiliation(s)
| | - Nermin Ahmed
- Department of Pharmacology and Nutritional Sciences
| | | | | | - Katelyn Collins
- School of Medical Sciences, University of Kentucky, Lexington, KY
| | | | - Analia Loria
- Department of Pharmacology and Nutritional Sciences
- SAHA Cardiovascular Center, University of Kentucky, Lexington, KY
| |
Collapse
|
6
|
Hashemi ZS, Khalili S, Barough MS, Sarrami Forooshani R, Sanati H, Sarafrazi Esfandabadi F, Rasaee MJ, Nasirmoghadas P. Characterization of an engineered ACE2 protein for its improved biological features and its transduction into MSCs: A novel approach to combat COVID-19 infection. Int J Biol Macromol 2024; 277:134066. [PMID: 39059530 DOI: 10.1016/j.ijbiomac.2024.134066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/06/2024] [Accepted: 07/19/2024] [Indexed: 07/28/2024]
Abstract
Transduced MSCs that express engineered ACE2 could be highly beneficial to combat COVID-19. Engineered ACE2 can act as decoy targets for the virus, preventing its entry into healthy lung cells. To this end, genetic engineering techniques were used to integrate the ACE2 gene into the MSCs genome. The MSCs were evaluated for proper expression and functionality. The mutated form of ACE2 was characterized using various techniques such as protein expression analysis, binding affinity against spike protein, thermal stability assessment, and enzymatic activity assays. The functionality of the mACE2 was assessed on SARS-CoV-2 using the virus-neutralizing test. The obtained results indicated that by introducing specific mutations in the ACE2 gene, the resulting mutant ACE2 had enhanced interaction with viral spike protein, its thermal stability was increased, and its enzymatic function was inhibited as a decoy receptor. Moreover, the mACE2 protein showed higher efficacy in the neutralization of the SARS-CoV-2. In conclusion, this study proposes a novel approach with potential benefits such as targeted drug delivery and reduced side effects on healthy tissues. These transduced MSCs can also be used in combination with other anti-COVID-19 treatments. Design of similar engineered biomolecules with desired properties could also be used to target other diseases.
Collapse
Affiliation(s)
- Zahra Sadat Hashemi
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran, Iran.
| | | | | | - Hassan Sanati
- ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | | | - Mohammad Javad Rasaee
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Pourya Nasirmoghadas
- Department of Medical Biotechnology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
7
|
Skeeters S, Bagale K, Stepanyuk G, Thieker D, Aguhob A, Chan KK, Dutzar B, Shalygin S, Shajahan A, Yang X, DaRosa PA, Frazier E, Sauer MM, Bogatzki L, Byrnes-Blake KA, Song Y, Azadi P, Tarcha E, Zhang L, Procko E. Modulation of the pharmacokinetics of soluble ACE2 decoy receptors through glycosylation. Mol Ther Methods Clin Dev 2024; 32:101301. [PMID: 39185275 PMCID: PMC11342882 DOI: 10.1016/j.omtm.2024.101301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 07/16/2024] [Indexed: 08/27/2024]
Abstract
The Spike of SARS-CoV-2 recognizes a transmembrane protease, angiotensin-converting enzyme 2 (ACE2), on host cells to initiate infection. Soluble derivatives of ACE2, in which Spike affinity is enhanced and the protein is fused to Fc of an immunoglobulin, are potent decoy receptors that reduce disease in animal models of COVID-19. Mutations were introduced into an ACE2 decoy receptor, including adding custom N-glycosylation sites and a cavity-filling substitution together with Fc modifications, which increased the decoy's catalytic activity and provided small to moderate enhancements of pharmacokinetics following intravenous and subcutaneous administration in humanized FcRn mice. Most prominently, sialylation of native glycans increases exposures by orders of magnitude, and the optimized decoy is therapeutically efficacious in a mouse COVID-19 model. Ultimately, an engineered and highly sialylated decoy receptor produced using methods suitable for manufacture of representative drug substance has high exposure with a 5- to 9-day half-life. Finally, peptide epitopes at mutated sites in the decoys generally have low binding to common HLA class II alleles and the predicted immunogenicity risk is low. Overall, glycosylation is a critical molecular attribute of ACE2 decoy receptors and modifications that combine tighter blocking of Spike with enhanced pharmacokinetics elevate this class of molecules as viable drug candidates.
Collapse
Affiliation(s)
| | - Kamal Bagale
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | | | | | | | | | | | - Sergei Shalygin
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Asif Shajahan
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | - Xu Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | | | | | | | | | - Yifan Song
- Cyrus Biotechnology, Seattle, WA 98121, USA
| | - Parastoo Azadi
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA 30602, USA
| | | | - Lianghui Zhang
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Vascular Medicine Institute, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Center for Vaccine Research, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erik Procko
- Cyrus Biotechnology, Seattle, WA 98121, USA
- Department of Biochemistry, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
8
|
Corrie L, Singh H, Gulati M, Vishwas S, Chellappan DK, Gupta G, Paiva-Santos AC, Veiga F, Alotaibi F, Alam A, Eri RD, Prasher P, Adams J, Paudel KR, Dua K, Singh SK. Polysaccharide-fecal microbiota-based colon-targeted self-nanoemulsifying drug delivery system of curcumin for treating polycystic ovarian syndrome. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6721-6743. [PMID: 38507103 DOI: 10.1007/s00210-024-03029-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
The gut microbiome is involved in the pathogenesis of many diseases including polycystic ovarian syndrome (PCOS). Modulating the gut microbiome can lead to eubiosis and treatment of various metabolic conditions. However, there is no proper study assessing the delivery of microbial technology for the treatment of such conditions. The present study involves the development of guar gum-pectin-based solid self-nanoemulsifying drug delivery system (S-SNEDDS) containing curcumin (CCM) and fecal microbiota extract (FME) for the treatment of PCOS. The optimized S-SNEDDS containing FME and CCM was prepared by dissolving CCM (25 mg) in an isotropic mixture consisting of Labrafil M 1944 CS, Transcutol P, and Tween-80 and solidified using lactose monohydrate, aerosil-200, guar gum, and pectin (colon-targeted CCM solid self-nanoemulsifying drug delivery system [CCM-CT-S-SNEDDS]). Pharmacokinetic and pharmacodynamic evaluation was carried out on letrozole-induced female Wistar rats. The results of pharmacokinetic studies indicated about 13.11 and 23.48-fold increase in AUC of CCM-loaded colon-targeted S-SNEDDS without FME (CCM-CT-S-SNEDDS (WFME)) and CCM-loaded colon-targeted S-SNEDDS with FME [(CCM-CT-S-SNEDDS (FME)) as compared to unprocessed CCM. The pharmacodynamic study indicated excellent recovery/reversal in the rats treated with CCM-CT-S-SNEDDS low and high dose containing FME (group 13 and group 14) in a dose-dependent manner. The developed formulation showcasing its improved bioavailability, targeted action, and therapeutic activity in ameliorating PCOS can be utilized as an adjuvant therapy for developing a dosage form, scale-up, and technology transfer.
Collapse
Affiliation(s)
- Leander Corrie
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Hardeep Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Sukriti Vishwas
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Bukit Jalil, 57000, Kuala Lumpur, Malaysia
| | - Gaurav Gupta
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Francisco Veiga
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal
- REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, Coimbra, Portugal
| | - Faisal Alotaibi
- Department of Pharmacology, College of Pharmacy (Al-Duwadimi Campus), Shaqra University, Shaqra, Saudi Arabia
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, 11942, Al Kharj, Saudi Arabia
| | - Rajaraman D Eri
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3001, Australia
| | - Parteek Prasher
- Department of Chemistry, University of Petroleum & Energy Studies, Energy Acres, Dehradun, 248007, India
| | - Jon Adams
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Keshav Raj Paudel
- Centre of Inflammation, Faculty of Science, School of Life Sciences, Centenary Institute and University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
9
|
Bayraktar C, Kayabolen A, Odabas A, Durgun A, Kok I, Sevinc K, Supramaniam A, Idris A, Bagci-Onder T. ACE2-Decorated Virus-Like Particles Effectively Block SARS-CoV-2 Infection. Int J Nanomedicine 2024; 19:6931-6943. [PMID: 39005960 PMCID: PMC11246629 DOI: 10.2147/ijn.s446093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 05/02/2024] [Indexed: 07/16/2024] Open
Abstract
Purpose Over the past three years, extensive research has been dedicated to understanding and combating COVID-19. Targeting the interaction between the SARS-CoV-2 Spike protein and the ACE2 receptor has emerged as a promising therapeutic strategy against SARS-CoV-2. This study aimed to develop ACE2-coated virus-like particles (ACE2-VLPs), which can be utilized to prevent viral entry into host cells and efficiently neutralize the virus. Methods Virus-like particles were generated through the utilization of a packaging plasmid in conjunction with a plasmid containing the ACE2 envelope sequence. Subsequently, ACE2-VLPs and ACE2-EVs were purified via ultracentrifugation. The quantification of VLPs was validated through multiple methods, including Nanosight 3000, TEM imaging, and Western blot analysis. Various packaging systems were explored to optimize the ACE2-VLP configuration for enhanced neutralization capabilities. The evaluation of neutralization effectiveness was conducted using pseudoviruses bearing different spike protein variants. Furthermore, the study assessed the neutralization potential against the Omicron BA.1 variant in Vero E6 cells. Results ACE2-VLPs showed a high neutralization capacity even at low doses and demonstrated superior efficacy in in vitro pseudoviral assays compared to extracellular vesicles carrying ACE2. ACE2-VLPs remained stable under various environmental temperatures and effectively blocked all tested variants of concern in vitro. Notably, they exhibited significant neutralization against Omicron BA.1 variant in Vero E6 cells. Given their superior efficacy compared to extracellular vesicles and proven success against live virus, ACE2-VLPs stand out as crucial candidates for treating SARS-CoV-2 infections. Conclusion This novel therapeutic approach of coating VLPs with receptor particles provides a proof-of-concept for designing effective neutralization strategies for other viral diseases in the future.
Collapse
Affiliation(s)
- Canan Bayraktar
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Alisan Kayabolen
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Arda Odabas
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Aysegul Durgun
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Ipek Kok
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Kenan Sevinc
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| | - Aroon Supramaniam
- Menzies Health Institute Queensland, School of Medical Science Griffith University, Gold Coast Campus, Brisbane, QLD, Australia
| | - Adi Idris
- Menzies Health Institute Queensland, School of Medical Science Griffith University, Gold Coast Campus, Brisbane, QLD, Australia
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Tugba Bagci-Onder
- Koç University Research Center for Translational Medicine (KUTTAM), Koç University, Istanbul, Turkey
| |
Collapse
|
10
|
Kober DL, Caballero Van Dyke MC, Eitson JL, Boys IN, McDougal MB, Rosenbaum DM, Schoggins JW. Development of a mutant aerosolized ACE2 that neutralizes SARS-CoV-2 in vivo. mBio 2024; 15:e0076824. [PMID: 38771062 PMCID: PMC11237572 DOI: 10.1128/mbio.00768-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 04/17/2024] [Indexed: 05/22/2024] Open
Abstract
The rapid evolution of SARS-CoV-2 variants highlights the need for new therapies to prevent disease spread. SARS-CoV-2, like SARS-CoV-1, uses the human cell surface protein angiotensin-converting enzyme 2 (ACE2) as its native receptor. Here, we design and characterize a mutant ACE2 that enables rapid affinity purification of a dimeric protein by altering the active site to prevent autoproteolytic digestion of a C-terminal His10 epitope tag. In cultured cells, mutant ACE2 competitively inhibits lentiviral vectors pseudotyped with spikes from multiple SARS-CoV-2 variants and infectious SARS-CoV-2. Moreover, the protein can be nebulized and retains virus-binding properties. We developed a system for the delivery of aerosolized ACE2 to K18-hACE2 mice and demonstrated protection by our modified ACE2 when delivered as a prophylactic agent. These results show proof-of-concept for an aerosolized delivery method to evaluate anti-SARS-CoV-2 agents in vivo and suggest a new tool in the ongoing fight against SARS-CoV-2 and other ACE2-dependent viruses. IMPORTANCE The rapid evolution of SARS-CoV-2 variants poses a challenge for immune recognition and antibody therapies. However, the virus is constrained by the requirement that it recognizes a human host receptor protein. A recombinant ACE2 could protect against SARS-CoV-2 infection by functioning as a soluble decoy receptor. We designed a mutant version of ACE2 with impaired catalytic activity to enable the purification of the protein using a single affinity purification step. This protein can be nebulized and retains the ability to bind the relevant domains from SARS-CoV-1 and SARS-CoV-2. Moreover, this protein inhibits viral infection against a panel of coronaviruses in cells. Finally, we developed an aerosolized delivery system for animal studies and show the modified ACE2 offers protection in an animal model of COVID-19. These results show proof-of-concept for an aerosolized delivery method to evaluate anti-SARS-CoV-2 agents in vivo and suggest a new tool in the ongoing fight against SARS-CoV-2.
Collapse
Affiliation(s)
- Daniel L. Kober
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Jennifer L. Eitson
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Ian N. Boys
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Matthew B. McDougal
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Daniel M. Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John W. Schoggins
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
11
|
Hwang J, Kim BK, Moon S, Park W, Kim KW, Yoon JH, Oh H, Jung S, Park Y, Kim S, Kim M, Kim S, Jung Y, Park M, Kim JH, Jung ST, Kim SJ, Kim YS, Chung WJ, Song MS, Kweon DH. Conversion of Host Cell Receptor into Virus Destructor by Immunodisc to Neutralize Diverse SARS-CoV-2 Variants. Adv Healthc Mater 2024; 13:e2302803. [PMID: 38329411 DOI: 10.1002/adhm.202302803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/29/2023] [Indexed: 02/09/2024]
Abstract
The decreasing efficacy of antiviral drugs due to viral mutations highlights the challenge of developing a single agent targeting multiple strains. Using host cell viral receptors as competitive inhibitors is promising, but their low potency and membrane-bound nature have limited this strategy. In this study, the authors show that angiotensin-converting enzyme 2 (ACE2) in a planar membrane patch can effectively neutralize all tested severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants that emerged during the COVID-19 pandemic. The ACE2-incorporated membrane patch implemented using nanodiscs replicated the spike-mediated membrane fusion process outside the host cell, resulting in virus lysis, extracellular RNA release, and potent antiviral activity. While neutralizing antibodies became ineffective as the SARS-CoV-2 evolved to better penetrate host cells the ACE2-incorporated nanodiscs became more potent, highlighting the advantages of using receptor-incorporated nanodiscs for antiviral purposes. ACE2-incorporated immunodisc, an Fc fusion nanodisc developed in this study, completely protected humanized mice infected with SARS-CoV-2 after prolonged retention in the airways. This study demonstrates that the incorporation of viral receptors into immunodisc transforms the entry gate into a potent virucide for all current and future variants, a concept that can be extended to different viruses.
Collapse
Affiliation(s)
- Jaehyeon Hwang
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Beom Kyu Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Seokoh Moon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Wonbeom Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Kyeong Won Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jeong Hyeon Yoon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Hyunseok Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Research Center, Mvrix Inc., Anyang, 14058, Republic of Korea
| | - Sangwon Jung
- Research Center, Mvrix Inc., Anyang, 14058, Republic of Korea
| | - Youngseo Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Suhyun Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Misoo Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Soomin Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Younghun Jung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Myungseo Park
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Jun-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Jick Kim
- Synthetic Biology and Bioengineering Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, 34141, Republic of Korea
| | - Yong-Sung Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, 16499, Republic of Korea
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, Cheongju, 28644, Republic of Korea
| | - Dae-Hyuk Kweon
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Research Center, Mvrix Inc., Anyang, 14058, Republic of Korea
| |
Collapse
|
12
|
Souza-Silva IM, Peluso AA, Elsaafien K, Nazarova AL, Assersen KB, Rodrigues-Ribeiro L, Mohammed M, Rodrigues AF, Nawrocki A, Jakobsen LA, Jensen P, de Kloet AD, Krause EG, Borgo MD, Maslov I, Widdop R, Santos RA, Bader M, Larsen M, Verano-Braga T, Katritch V, Sumners C, Steckelings UM. Angiotensin-(1-5) is a Potent Endogenous Angiotensin AT 2 -Receptor Agonist. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.05.588367. [PMID: 38948791 PMCID: PMC11213140 DOI: 10.1101/2024.04.05.588367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Background The renin-angiotensin system involves many more enzymes, receptors and biologically active peptides than originally thought. With this study, we investigated whether angiotensin-(1-5) [Ang-(1-5)], a 5-amino acid fragment of angiotensin II, has biological activity, and through which receptor it elicits effects. Methods The effect of Ang-(1-5) (1µM) on nitric oxide release was measured by DAF-FM staining in human aortic endothelial cells (HAEC), or Chinese Hamster Ovary (CHO) cells stably transfected with the angiotensin AT 2 -receptor (AT 2 R) or the receptor Mas. A potential vasodilatory effect of Ang-(1-5) was tested in mouse mesenteric and human renal arteries by wire myography; the effect on blood pressure was evaluated in normotensive C57BL/6 mice by Millar catheter. These experiments were performed in the presence or absence of a range of antagonists or inhibitors or in AT 2 R-knockout mice. Binding of Ang-(1-5) to the AT 2 R was confirmed and the preferred conformations determined by in silico docking simulations. The signaling network of Ang-(1-5) was mapped by quantitative phosphoproteomics. Results Key findings included: (1) Ang-(1-5) induced activation of eNOS by changes in phosphorylation at Ser1177 eNOS and Tyr657 eNOS and thereby (2) increased NO release from HAEC and AT 2 R-transfected CHO cells, but not from Mas-transfected or non-transfected CHO cells. (3) Ang-(1-5) induced relaxation of preconstricted mouse mesenteric and human renal arteries and (4) lowered blood pressure in normotensive mice - effects which were respectively absent in arteries from AT 2 R-KO or in PD123319-treated mice and which were more potent than effects of the established AT 2 R-agonist C21. (5) According to in silico modelling, Ang-(1-5) binds to the AT 2 R in two preferred conformations, one differing substantially from where the first five amino acids within angiotensin II bind to the AT 2 R. (6) Ang-(1-5) modifies signaling pathways in a protective RAS-typical way and with relevance for endothelial cell physiology and disease. Conclusions Ang-(1-5) is a potent, endogenous AT 2 R-agonist.
Collapse
|
13
|
Teng F, Gang O, Freimuth P. Overexpression of human ACE2 protein in mouse fibroblasts stably transfected with the intact ACE2 gene. Virology 2024; 592:109988. [PMID: 38244322 DOI: 10.1016/j.virol.2024.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 12/04/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024]
Abstract
Infection by SARS-CoV-2 is dependent on binding of the viral spike protein to angiotensin converting enzyme 2 (ACE2), a membrane glycoprotein expressed on epithelial cells in the human upper respiratory tract. Recombinant ACE2 protein has potential application for anti-viral therapy. Here we co-transfected mouse fibroblasts (A9 cells) with a cloned fragment of human genomic DNA containing the intact ACE2 gene and an unlinked neomycin phosphotransferase gene, and then selected stable neomycin-resistant transfectants. Transfectant clones expressed ACE2 protein at levels that were generally proportional to the number of ACE2 gene copies integrated in the cell genome, ranging up to approximately 50 times the level of ACE2 present of Vero-E6 cells. Cells overexpressing ACE2 were hypersensitive to infection by spike-pseudotyped vesicular stomatitis virus (VSV-S), and adsorption of VSV-S to these cells occurred at an accelerated rate compared to Vero-E6 cells. The transfectant cell clones described here therefore have favorable attributes as feedstocks for large-scale production of recombinant human ACE2 protein.
Collapse
Affiliation(s)
- Feiyue Teng
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Oleg Gang
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY, 11973, USA; Department of Chemical Engineering and Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, 10027, USA
| | - Paul Freimuth
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA.
| |
Collapse
|
14
|
Arthur G, Poupeau A, Biel K, Osborn JL, Gong M, Hinds TD, Lindner V, Loria AS. Human soluble prorenin receptor expressed in mouse renal collecting duct shows sex-specific effect on cardiorenal function. Am J Physiol Renal Physiol 2024; 326:F611-F621. [PMID: 38385173 PMCID: PMC11208026 DOI: 10.1152/ajprenal.00375.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/23/2024] [Accepted: 02/08/2024] [Indexed: 02/23/2024] Open
Abstract
Soluble prorenin receptor (sPRR), a component of the renin-angiotensin system (RAS), has been identified as a plasma biomarker for hypertension and cardiovascular diseases in humans. Despite studies showing that sPRR in the kidney is produced by tubular cells in the renal collecting duct (CD), its biological actions modulating cardiorenal function in physiological conditions remain unknown. Therefore, the objective of our study was to investigate whether CD-derived human sPRR (HsPRR) expression influences cardiorenal function and examine sex and circadian differences. Thus, we investigated the status of the intrarenal RAS, water and electrolyte balance, renal filtration capacity, and blood pressure (BP) regulation in CD-HsPRR and control (CTL) mice. CD-HsPRR mice were generated by breeding human sPRR-Myc-tag mice with Hoxb7/Cre mice. Renal sPRR expression increased in CD-HsPRR mice, but circulating sPRR and RAS levels were unchanged compared with CTL mice. Only female littermates expressing CD-HsPRR showed 1) increased 24-h BP, 2) an impaired BP response to an acute dose of losartan and attenuated angiotensin II (ANG II)-induced hypertension, 3) reduced angiotensin-converting enzyme activity and ANG II content in the renal cortex, and 4) decreased glomerular filtration rate, with no changes in natriuresis and kaliuresis despite upregulation of the β-subunit of the epithelial Na+ channel in the renal cortex. These cardiorenal alterations were displayed only during the active phase of the day. Taken together, these data suggest that HsPRR could interact with ANG II type 1 receptors mediating sex-specific, ANG II-independent renal dysfunction and a prohypertensive phenotype in a sex-specific manner.NEW & NOTEWORTHY We successfully generated a humanized mouse model that expresses human sPRR in the collecting duct. Collecting duct-derived human sPRR did not change circulating sPRR and RAS levels but increased daytime BP in female mice while showing an attenuated angiotensin II-dependent pressor response. These findings may aid in elucidating the mechanisms by which women show uncontrolled BP in response to antihypertensive treatments targeting the RAS, improving approaches to reduce uncontrolled BP and chronic kidney disease incidences in women.
Collapse
Affiliation(s)
- Gertrude Arthur
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Audrey Poupeau
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Katherine Biel
- Department of Nutrition and Dietetics, University of Kentucky, Lexington, Kentucky, United States
| | - Jeffrey L Osborn
- Department of Pathophysiology, Arkansas Colleges of Health Education, Fort Smith, Arkansas, United States
| | - Ming Gong
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States
| | - Terry D Hinds
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
| | - Volkhard Lindner
- MaineHealth Institute for Research, Scarborough, Maine, United States
| | - Analia S Loria
- Department of Pharmacology and Nutritional Sciences, University of Kentucky, Lexington, Kentucky, United States
- SAHA Cardiovascular Center, University of Kentucky, Lexington, Kentucky, United States
| |
Collapse
|
15
|
Yathindranath V, Safa N, Tomczyk MM, Dolinsky V, Miller DW. Lipid Nanoparticle-Based Inhibitors for SARS-CoV-2 Host Cell Infection. Int J Nanomedicine 2024; 19:3087-3108. [PMID: 38562613 PMCID: PMC10984206 DOI: 10.2147/ijn.s448005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/19/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose The global pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the lingering threat to public health has fueled the search for effective therapeutics to treat SARS-CoV-2. This study aimed to develop lipid nanoparticle (LNP) inhibitors of SARS-CoV-2 entry to reduce viral infection in the nose and upper airway. Methods Two types of LNP formulations were prepared following a microfluidic mixing method. The LNP-Trap consisted of DOPC, DSPC, cholesterol, and DSPE-PEG-COOH modified with various spike protein binding ligands, including ACE2 peptide, recombinant human ACE2 (rhACE2) or monoclonal antibody to spike protein (mAb). The LNP-Trim consisted of ionizing cationic DLin-MC3-DMA, DSPC, cholesterol, and DMG-PEG lipids encapsulating siACE2 or siTMPRSS2. Both formulations were assayed for biocompatibility and cell uptake in airway epithelial cells (Calu-3). Functional assessment of activity was performed using SARS-CoV-2 spike protein binding assays (LNP-Trap), host receptor knockdown (LNP-Trim), and SARS-CoV-2 pseudovirus neutralization assay (LNP-Trap and LNP-Trim). Localization and tissue distribution of fluorescently labeled LNP formulations were assessed in mice following intranasal administration. Results Both LNP formulations were biocompatible based on cell impedance and MTT cytotoxicity studies in Calu-3 cells at concentrations as high as 1 mg/mL. LNP-Trap formulations were able to bind spike protein and inhibit pseudovirus infection by 90% in Calu-3 cells. LNP-Trim formulations reduced ACE2 and TMPRSS2 at the mRNA (70% reduction) and protein level (50% reduction). The suppression of host targets in Calu-3 cells treated with LNP-Trim resulted in over 90% inhibition of pseudovirus infection. In vivo studies demonstrated substantial retention of LNP-Trap and LNP-Trim in the nasal cavity following nasal administration with minimal systemic exposure. Conclusion Both LNP-Trap and LNP-Trim formulations were able to safely and effectively inhibit SARS-CoV-2 pseudoviral infection in airway epithelial cells. These studies provide proof-of-principle for a localized treatment approach for SARS-CoV-2 in the upper airway.
Collapse
Affiliation(s)
- Vinith Yathindranath
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Research Centre, Health Science Centre, Winnipeg, MB, Canada
| | - Nura Safa
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Research Centre, Health Science Centre, Winnipeg, MB, Canada
| | - Mateusz Marek Tomczyk
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute Manitoba, Health Science Centre, Winnipeg, MB, Canada
| | - Vernon Dolinsky
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- Children’s Hospital Research Institute Manitoba, Health Science Centre, Winnipeg, MB, Canada
| | - Donald W Miller
- Department of Pharmacology and Therapeutics, University of Manitoba, Winnipeg, MB, Canada
- PrairieNeuro Research Centre, Health Science Centre, Winnipeg, MB, Canada
| |
Collapse
|
16
|
Feng H, Yang L, Yang H, Cheng D, Li M, Song E, Xu T. A cardiotoxicity-eliminated ACE2 variant as a pan-inhibitor against coronavirus cell invasion. Mol Ther 2024; 32:218-226. [PMID: 37974399 PMCID: PMC10787150 DOI: 10.1016/j.ymthe.2023.11.019] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 09/26/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023] Open
Abstract
Human recombinant ACE2 (hrACE2) has been highly anticipated as a successful COVID-19 treatment; however, its potential to cause cardiac side effects has given rise to many concerns. Here, we developed a cardiotoxicity-eliminated hrACE2 variant, which had four mutation sites within hrACE2 (H345L, H374L, H378L, H505L) and was named as hrACE2-4mu. hrACE2-4mu has a consistent binding affinity with the variant SARS-CoV-2 spike proteins (SPs) and an efficient ability to block SP-induced SARS-CoV-2 entry into cells. In golden hamsters, injection of purified wild-type (WT) hrACE2 rescues the early stages of pneumonia caused by the SPs of the WT, delta, and omicron variants with reduced inflammatory cell infiltration. However, long-term injection of WT hrACE2 induces undesired cardiac fibrosis, as demonstrated by upregulated fibronectin and collagen expression. Our newly developed hrACE2-4mu showed similar protective abilities against a series of coronavirus cell invasions as WT hrACE2, meanwhile it did not cause apparent cardiac side effects. Thus, we generated a cardiotoxicity-eliminated variant of hrACE2 as a pan-inhibitor against coronavirus cell invasion, providing a potential novel strategy for the treatment of COVID-19 and other coronaviruses.
Collapse
Affiliation(s)
- Han Feng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Linpu Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Hang Yang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dongwan Cheng
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Min Li
- Guangzhou Laboratory, Guangzhou 510005, China
| | - Eli Song
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Tao Xu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Guangzhou Laboratory, Guangzhou 510005, China; Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan 250117, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
17
|
Dalmasso C, Ahmed NS, Ghuneim S, Cincinelli C, Leachman JR, Giani JF, Cassis L, Loria AS. Obese Male Mice Exposed to Early Life Stress Display Sympathetic Activation and Hypertension Independent of Circulating Angiotensin II. J Am Heart Assoc 2024; 13:e029511. [PMID: 38156515 PMCID: PMC10863837 DOI: 10.1161/jaha.123.029511] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 11/03/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND We have previously reported that male mice exposed to maternal separation and early weaning (MSEW), a model of early life stress, show sympathetic activation and increased blood pressure in response to a chronic high-fat diet. The goal of this study was to investigate the contribution of the renin-angiotensin-aldosterone system to the mechanism by which MSEW increases blood pressure and vasomotor sympathetic tone in obese male mice. METHODS AND RESULTS Mice were exposed to MSEW during postnatal life. Undisturbed litters served as controls. At weaning, both control and MSEW offspring were placed on a low-fat diet or a high-fat diet for 20 weeks. Angiotensin peptides in serum were similar in control and MSEW mice regardless of the diet. However, a high-fat diet induced a similar increase in angiotensinogen levels in serum, renal cortex, liver, and fat in both control and MSEW mice. No evidence of renin-angiotensin system activation was found in adipose tissue and renal cortex. After chronic treatment with enalapril (2.5 mg/kg per day, drinking water, 7 days), an angiotensin-converting enzyme inhibitor that does not cross the blood-brain barrier, induced a similar reduction in blood pressure in both groups, while the vasomotor sympathetic tone remained increased in obese MSEW mice. In addition, acute boluses of angiotensin II (1, 10, 50 μg/kg s.c.) exerted a similar pressor response in MSEW and control mice before and after enalapril treatment. CONCLUSIONS Overall, elevated blood pressure and vasomotor sympathetic tone remained exacerbated in MSEW mice compared with controls after the peripheral inhibition of angiotensin-converting enzyme, suggesting a mechanism independent of angiotensin II.
Collapse
Affiliation(s)
- Carolina Dalmasso
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Nermin S. Ahmed
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Sundus Ghuneim
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Cole Cincinelli
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Jaqueline R. Leachman
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Jorge F. Giani
- Department of Biomedical SciencesCedars‐Sinai Medical CenterLos AngelesCAUSA
| | - Lisa Cassis
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| | - Analia S. Loria
- Department of Pharmacology and Nutritional SciencesUniversity of KentuckyLexingtonKYUSA
| |
Collapse
|
18
|
Chêne A, Desrames A, Tomlinson A, Ruffié C, Tangy F, Gamain B. An ACE2-Based Bimodular Fusion Protein Enables Reorientation of Endogenous Anti-Epstein-Barr Virus Antibodies Toward SARS-CoV-2 Spike. J Infect Dis 2023; 228:1675-1679. [PMID: 37562051 DOI: 10.1093/infdis/jiad329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/27/2023] [Accepted: 08/09/2023] [Indexed: 08/12/2023] Open
Abstract
The use of soluble recombinant angiotensin-converting enzyme 2 (rACE2) as a decoy capable of blocking SARS-CoV-2 entry into cells has been envisaged as a therapeutic strategy to reduce viral loads in patients with severe COVID-19. We engineered a novel form of rACE2, fused to the Epstein-Barr virus antigen P18F3 (rACE2-P18F3), to reorient a preexisting humoral response toward Epstein-Barr virus against SARS-CoV-2 particles. Recombinant ACE2-P18F3 was able to bind to the SARS-CoV-2 spike protein, neutralize viral entry into cells, and promote the phagocytosis of spheres coated with different spike variants by monocytic cells. The results position rACE2-P18F3 as a promising therapeutic candidate to universally block coronavirus cell entry and clear viral particles.
Collapse
Affiliation(s)
- Arnaud Chêne
- INSERM, BIGR, Université Paris Cité, and Université des Antilles
| | | | - Alice Tomlinson
- INSERM, BIGR, Université Paris Cité, and Université des Antilles
| | - Claude Ruffié
- Innovation Lab: Vaccines, Institut Pasteur, Université Paris Cité, Paris, France
| | - Frédéric Tangy
- Innovation Lab: Vaccines, Institut Pasteur, Université Paris Cité, Paris, France
| | - Benoît Gamain
- INSERM, BIGR, Université Paris Cité, and Université des Antilles
| |
Collapse
|
19
|
Benjakul S, Anthi AK, Kolderup A, Vaysburd M, Lode HE, Mallery D, Fossum E, Vikse EL, Albecka A, Ianevski A, Kainov D, Karlsen KF, Sakya SA, Nyquist-Andersen M, Gjølberg TT, Moe MC, Bjørås M, Sandlie I, James LC, Andersen JT. A pan-SARS-CoV-2-specific soluble angiotensin-converting enzyme 2-albumin fusion engineered for enhanced plasma half-life and needle-free mucosal delivery. PNAS NEXUS 2023; 2:pgad403. [PMID: 38077689 PMCID: PMC10703496 DOI: 10.1093/pnasnexus/pgad403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/13/2023] [Indexed: 02/29/2024]
Abstract
Immunocompromised patients often fail to raise protective vaccine-induced immunity against the global emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants. Although monoclonal antibodies have been authorized for clinical use, most have lost their ability to potently neutralize the evolving Omicron subvariants. Thus, there is an urgent need for treatment strategies that can provide protection against these and emerging SARS-CoV-2 variants to prevent the development of severe coronavirus disease 2019. Here, we report on the design and characterization of a long-acting viral entry-blocking angiotensin-converting enzyme 2 (ACE2) dimeric fusion molecule. Specifically, a soluble truncated human dimeric ACE2 variant, engineered for improved binding to the receptor-binding domain of SARS-CoV-2, was fused with human albumin tailored for favorable engagement of the neonatal fragment crystallizable receptor (FcRn), which resulted in enhanced plasma half-life and allowed for needle-free transmucosal delivery upon nasal administration in human FcRn-expressing transgenic mice. Importantly, the dimeric ACE2-fused albumin demonstrated potent neutralization of SARS-CoV-2 immune escape variants.
Collapse
Affiliation(s)
- Sopisa Benjakul
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Aina Karen Anthi
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Anette Kolderup
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Marina Vaysburd
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Heidrun Elisabeth Lode
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Donna Mallery
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Even Fossum
- Department of Virology, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Elisabeth Lea Vikse
- Department of Virology, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Anna Albecka
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Aleksandr Ianevski
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Denis Kainov
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
- Institute of Technology, University of Tartu, Tartu 50411, Estonia
- Institute for Molecular Medicine Finland, University of Helsinki, Helsinki 00290, Finland
| | - Karine Flem Karlsen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
| | - Siri Aastedatter Sakya
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Mari Nyquist-Andersen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| | - Torleif Tollefsrud Gjølberg
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Morten C Moe
- Department of Ophthalmology, Oslo University Hospital and University of Oslo, Oslo 0450, Norway
| | - Magnar Bjørås
- Department of Virology, Norwegian Institute of Public Health, Oslo 0213, Norway
| | - Inger Sandlie
- Department of Biosciences, University of Oslo, Oslo 0371, Norway
| | - Leo C James
- Protein and Nucleic Acid Chemistry Division, Medical Research Council, Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Jan Terje Andersen
- Department of Pharmacology, Institute of Clinical Medicine, University of Oslo, Oslo 0372, Norway
- Department of Immunology, Oslo University Hospital Rikshospitalet, Oslo 0372, Norway
- Precision Immunotherapy Alliance (PRIMA), University of Oslo, Oslo 0372, Norway
| |
Collapse
|
20
|
Xiao Y, Chang L, Ji H, Sun H, Song S, Feng K, Nuermaimaiti A, Halemubieke S, Mei L, Lu Z, Yan Y, Wang L. Posttranslational modifications of ACE2 protein: Implications for SARS-CoV-2 infection and beyond. J Med Virol 2023; 95:e29304. [PMID: 38063421 DOI: 10.1002/jmv.29304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 10/21/2023] [Accepted: 11/26/2023] [Indexed: 12/18/2023]
Abstract
The present worldwide pandemic of coronavirus disease 2019 (COVID-19) has highlighted the important function of angiotensin-converting enzyme 2 (ACE2) as a receptor for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry. A deeper understanding of ACE2 could offer insights into the mechanisms of SARS-CoV-2 infection. While ACE2 is subject to regulation by various factors in vivo, current research in this area is insufficient to fully elucidate the corresponding pathways of control. Posttranslational modification (PTM) is a powerful tool for broadening the variety of proteins. The PTM study of ACE2 will help us to make up for the deficiency in the regulation of protein synthesis and translation. However, research on PTM-related aspects of ACE2 remains limited, mostly focused on glycosylation. Accordingly, a comprehensive review of ACE2 PTMs could help us better understand the infection process and provide a basis for the treatment of COVID-19 and beyond.
Collapse
Affiliation(s)
- Yingzi Xiao
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Le Chang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Huimin Ji
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Huizhen Sun
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Shi Song
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Kaihao Feng
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Abudulimutailipu Nuermaimaiti
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Shana Halemubieke
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Ling Mei
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Zhuoqun Lu
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Ying Yan
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Lunan Wang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, Beijing, People's Republic of China
- National Center for Clinical Laboratories, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| |
Collapse
|
21
|
Guo H, Cho B, Hinton PR, He S, Yu Y, Ramesh AK, Sivaccumar JP, Ku Z, Campo K, Holland S, Sachdeva S, Mensch C, Dawod M, Whitaker A, Eisenhauer P, Falcone A, Honce R, Botten JW, Carroll SF, Keyt BA, Womack AW, Strohl WR, Xu K, Zhang N, An Z, Ha S, Shiver JW, Fu TM. An ACE2 decamer viral trap as a durable intervention solution for current and future SARS-CoV. Emerg Microbes Infect 2023; 12:2275598. [PMID: 38078382 PMCID: PMC10768737 DOI: 10.1080/22221751.2023.2275598] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 10/19/2023] [Indexed: 12/18/2023]
Abstract
The capacity of SARS-CoV-2 to evolve poses challenges to conventional prevention and treatment options such as vaccination and monoclonal antibodies, as they rely on viral receptor binding domain (RBD) sequences from previous strains. Additionally, animal CoVs, especially those of the SARS family, are now appreciated as a constant pandemic threat. We present here a new antiviral approach featuring inhalation delivery of a recombinant viral trap composed of ten copies of angiotensin-converting enzyme 2 (ACE2) fused to the IgM Fc. This ACE2 decamer viral trap is designed to inhibit SARS-CoV-2 entry function, regardless of viral RBD sequence variations as shown by its high neutralization potency against all known SARS-CoV-2 variants, including Omicron BQ.1, BQ.1.1, XBB.1 and XBB.1.5. In addition, it demonstrates potency against SARS-CoV-1, human NL63, as well as bat and pangolin CoVs. The multivalent trap is effective in both prophylactic and therapeutic settings since a single intranasal dosing confers protection in human ACE2 transgenic mice against viral challenges. Lastly, this molecule is stable at ambient temperature for more than twelve weeks and can sustain physical stress from aerosolization. These results demonstrate the potential of a decameric ACE2 viral trap as an inhalation solution for ACE2-dependent coronaviruses of current and future pandemic concerns.
Collapse
Affiliation(s)
| | | | | | - Sijia He
- IGM Biosciences, Mountain View, CA, USA
| | | | - Ashwin Kumar Ramesh
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jwala Priyadarsini Sivaccumar
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhiqiang Ku
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | | | | | | | | | | | - Annalis Whitaker
- Cellular, Molecular, and Biomedical Sciences Graduate Program, University of Vermont, Burlington, VT, USA
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, VT, USA
| | - Philip Eisenhauer
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, VT, USA
| | - Allison Falcone
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, VT, USA
| | - Rebekah Honce
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, VT, USA
| | - Jason W. Botten
- Department of Medicine, Division of Pulmonary Disease and Critical Care Medicine, University of Vermont, Burlington, VT, USA
- Department of Microbiology and Molecular Genetics, Robert Larner, M.D. College of Medicine, University of Vermont, Burlington, VT, USA
| | | | | | | | | | - Kai Xu
- Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, USA
| | - Ningyan Zhang
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Zhiqiang An
- Texas Therapeutics Institute, Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Sha Ha
- IGM Biosciences, Mountain View, CA, USA
| | | | | |
Collapse
|
22
|
O’Keeffe M, Oterhals Å, Vikøren LAS, Drotningsvik A, Mellgren G, Halstensen A, Gudbrandsen OA. Dietary fish intake increased the concentration of soluble ACE2 in rats: can fish consumption reduce the risk of COVID-19 infection through interception of SARS-CoV-2 by soluble ACE2? Br J Nutr 2023; 130:1712-1719. [PMID: 36946006 PMCID: PMC10587383 DOI: 10.1017/s0007114523000776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 03/23/2023]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) enters the cells after binding to the membrane-bound receptor angiotensin-converting enzyme 2 (ACE2), but this may be prevented through interception by soluble ACE2 (sACE2) or by inhibition of the ACE2 receptor, thus obstructing cell entry and replication. The main objective of this study was to investigate if fish intake affected the concentration of sACE2 in rats. The secondary aim was to evaluate the in vitro ACE2-inhibiting activity of fish proteins. Rats were fed cod muscle as 25 % of dietary protein, and blood was collected after 4 weeks of intervention. Muscle, backbone, skin, head, stomach, stomach content, intestine and swim bladder from haddock, saithe, cod and redfish were hydrolysed with trypsin before ACE2-inhibiting activity was measured in vitro. In vivo data were compared using unpaired Student's t test, and in vitro data were compared using one-way ANOVA followed by the Tukey HSD post hoc test. The mean sACE2 concentration was 47 % higher in rats fed cod when compared with control rats (P 0·034), whereas serum concentrations of angiotensin II and TNF-α were similar between the two experimental groups. Muscle, backbone, skin and head from all four fish species inhibited ACE2 activity in vitro, whereas the remaining fractions had no effect. To conclude, our novel data demonstrate that fish intake increased the sACE2 concentration in rats and that the hydrolysed fish proteins inhibited ACE2 activity in vitro.
Collapse
Affiliation(s)
- Maria O’Keeffe
- Dietary Protein Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen5021, Norway
| | | | - Linn Anja Slåke Vikøren
- Dietary Protein Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen5021, Norway
| | - Aslaug Drotningsvik
- Dietary Protein Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen5021, Norway
| | - Gunnar Mellgren
- Mohn Nutrition Research Laboratory, Department of Clinical Science, University of Bergen, Bergen5021, Norway
- Hormone Laboratory, Department of Medical Biochemistry and Pharmacology, Haukeland University Hospital, Bergen5021, Norway
| | - Alfred Halstensen
- Department of Clinical Science, University of Bergen, 5021 Bergen, Norway
- K. Halstensen AS, P.O. Box 103, Bekkjarvik5399, Norway
| | - Oddrun Anita Gudbrandsen
- Dietary Protein Research Group, Centre for Nutrition, Department of Clinical Medicine, University of Bergen, Bergen5021, Norway
| |
Collapse
|
23
|
Kushwaha ND, Mohan J, Kushwaha B, Ghazi T, Nwabuife JC, Koorbanally N, Chuturgoon AA. A comprehensive review on the global efforts on vaccines and repurposed drugs for combating COVID-19. Eur J Med Chem 2023; 260:115719. [PMID: 37597435 DOI: 10.1016/j.ejmech.2023.115719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/31/2023] [Accepted: 08/09/2023] [Indexed: 08/21/2023]
Abstract
The recently discovered coronavirus, known as SARS-CoV-2, is a highly contagious and potentially lethal viral infection that was declared a pandemic by the World Health Organization on March 11, 2020. Since the beginning of the pandemic, an unprecedented number of COVID-19 vaccine candidates have been investigated for their potential to manage the pandemic. Herein, we reviewed vaccine development and the associated research effort, both traditional and forward-looking, to demonstrate the advantages and disadvantages of their technology, in addition to their efficacy limitations against mutant SARS-CoV-2. Moreover, we report repurposed drug discovery, which mainly focuses on virus-based and host-based targets, as well as their inhibitors. SARS-CoV-2 targets include the main protease (Mpro), and RNA-dependent RNA-polymerase (RdRp), which are the most well-studied and conserved across coronaviruses, enabling the development of broad-spectrum inhibitors of these enzymes.
Collapse
Affiliation(s)
- Narva Deshwar Kushwaha
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa; Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, 48201, USA.
| | - Jivanka Mohan
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Babita Kushwaha
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Terisha Ghazi
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Joshua C Nwabuife
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Neil Koorbanally
- School of Chemistry, College of Agriculture, Engineering and Science, University of KwaZulu-Natal, Durban, 4000, South Africa
| | - Anil A Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.
| |
Collapse
|
24
|
Kober DL, Caballero Van Dyke MC, Eitson JL, Boys IN, McDougal MB, Rosenbaum DM, Schoggins JW. Development of a mutant aerosolized ACE2 that neutralizes SARS-CoV-2 in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.26.559550. [PMID: 37808801 PMCID: PMC10557691 DOI: 10.1101/2023.09.26.559550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
The rapid evolution of SARS-CoV-2 variants highlights the need for new therapies to prevent disease spread. SARS-CoV-2, like SARS-CoV-1, uses the human cell surface protein angiotensin-converting enzyme 2 (ACE2) as its native receptor. Here, we design and characterize a mutant ACE2 that enables rapid affinity purification of a dimeric protein by altering the active site to prevent autoproteolytic digestion of a C-terminal His10 epitope tag. In cultured cells, mutant ACE2 competitively inhibits lentiviral vectors pseudotyped with spike from multiple SARS-CoV-2 variants, and infectious SARS-CoV-2. Moreover, the protein can be nebulized and retains virus-binding properties. We developed a system for delivery of aerosolized ACE2 to K18-hACE2 mice and demonstrate protection by our modified ACE2 when delivered as a prophylactic agent. These results show proof-of-concept for an aerosolized delivery method to evaluate anti-SARS-CoV-2 agents in vivo and suggest a new tool in the ongoing fight against SARS-CoV-2 and other ACE2-dependent viruses.
Collapse
Affiliation(s)
- Daniel L. Kober
- Department of Biochemistry, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Jennifer L. Eitson
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ian N. Boys
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Matthew B. McDougal
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Daniel M. Rosenbaum
- Department of Biophysics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - John W. Schoggins
- Department of Microbiology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
25
|
Kanbay M, Copur S, Tanriover C, Ucku D, Laffin L. Future treatments in hypertension: Can we meet the unmet needs of patients? Eur J Intern Med 2023; 115:18-28. [PMID: 37330317 DOI: 10.1016/j.ejim.2023.06.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/17/2023] [Accepted: 06/12/2023] [Indexed: 06/19/2023]
Abstract
The prevalence of arterial hypertension is approximately 47% in the United States and 55% in Europe. Multiple different medical therapies are used to treat hypertension including diuretics, beta blockers, calcium channel blockers, angiotensin receptor blockers, angiotensin converting enzyme inhibitors, alpha blockers, central acting alpha receptor agonists, neprilysin inhibitors and vasodilators. However, despite the numerous number of medications, the prevalence of hypertension is on the rise, a considerable proportion of the hypertensive population is resistant to these therapeutic modalities and a definitive cure is not possible with the current treatment approaches. Therefore, there is a need for novel therapeutic strategies to provide better treatment and control of hypertension. In this review, our aim is to describe the latest developments in the treatment of hypertension including novel medication classes, gene therapies and RNA-based modalities.
Collapse
Affiliation(s)
- Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey.
| | - Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Cem Tanriover
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Duygu Ucku
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Luke Laffin
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, Cleveland, OH, USA
| |
Collapse
|
26
|
Onodera Y, Liang J, Li Y, Griffin B, Thanabalasingam T, Lu C, Zhu J, Liu M, Moraes T, Zheng W, Khateeb J, Khang J, Huang Y, Jerkic M, Nakane M, Baker A, Orser B, Chen YW, Wirnsberger G, Penninger JM, Rotstein OD, Slutsky AS, Li Y, Mubareka S, Zhang H. Inhalation of ACE2 as a therapeutic target on sex-bias differences in SARS-CoV-2 infection and variant of concern. iScience 2023; 26:107470. [PMID: 37609639 PMCID: PMC10440513 DOI: 10.1016/j.isci.2023.107470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/02/2023] [Accepted: 07/21/2023] [Indexed: 08/24/2023] Open
Abstract
Despite similar infection rates, COVID-19 has resulted in more deaths in men than women. To understand the underlying mechanisms behind this sex-biased difference in disease severity, we infected K18-human angiotensin converting enzyme 2 (ACE2) mice of both sexes with SARS-CoV-2. Our study revealed a unique protein expression profile in the lung microenvironment of female mice. As a result, they were less vulnerable to severe infection, with higher ACE2 expression and a higher estrogen receptor α (ERα)/androgen receptor (AR) ratio that led to increased antiviral factor levels. In male mice, inhaling recombinant ACE2 neutralized the virus and maintained the ERα/AR ratio, thereby protecting the lungs. Our findings suggest that inhaling recombinant ACE2 could serve as a decoy receptor against SARS-CoV-2 and protect male mice by offsetting ERα-associated protective mechanisms. Additionally, our study supports the potential effectiveness of recombinant ACE2 therapy in human lung organoids infected with the Delta variant.
Collapse
Affiliation(s)
- Yu Onodera
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Jady Liang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Yuchong Li
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Bryan Griffin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medical Microbiology and Infectious Disease, Sunnybrook Health Science Centre, Toronto, ON, Canada
| | - Thenuka Thanabalasingam
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Cong Lu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - JiaYi Zhu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Mingyao Liu
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Theo Moraes
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | - Wenhua Zheng
- Faculty of Health Science, University of Macau, Macau, China
| | - Jasmin Khateeb
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Internal Medicine D, Rambam Health Care Campus, Haifa, Israel
| | - Julie Khang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Yongbo Huang
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mirjana Jerkic
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
| | - Masaki Nakane
- Department of Emergency and Critical Care Medicine, Faculty of Medicine, Yamagata University, Yamagata, Japan
| | - Andrew Baker
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Beverley Orser
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
| | - Ya-Wen Chen
- Black Family Stem Cell Institute, Department of Cell, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York city, NY, USA
| | | | - Josef M. Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences, Vienna, Austria
- Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | - Ori D. Rotstein
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Arthur S. Slutsky
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| | - Yimin Li
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Samira Mubareka
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Department of Medical Microbiology and Infectious Disease, Sunnybrook Health Science Centre, Toronto, ON, Canada
| | - Haibo Zhang
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
- The State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
- Department of Anesthesiology and Pain Medicine, University of Toronto, Toronto, ON, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Lu M, Yao W, Li Y, Ma D, Zhang Z, Wang H, Tang X, Wang Y, Li C, Cheng D, Lin H, Yin Y, Zhao J, Zhong G. Broadly Effective ACE2 Decoy Proteins Protect Mice from Lethal SARS-CoV-2 Infection. Microbiol Spectr 2023; 11:e0110023. [PMID: 37395664 PMCID: PMC10434153 DOI: 10.1128/spectrum.01100-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/06/2023] [Indexed: 07/04/2023] Open
Abstract
As severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants have been causing increasingly serious drug resistance problem, development of broadly effective and hard-to-escape anti-SARS-CoV-2 agents is an urgent need. Here, we describe further development and characterization of two SARS-CoV-2 receptor decoy proteins, ACE2-Ig-95 and ACE2-Ig-105/106. We found that both proteins had potent and robust in vitro neutralization activities against diverse SARS-CoV-2 variants, including BQ.1 and XBB.1, that are resistant to most clinically used monoclonal antibodies. In a stringent lethal SARS-CoV-2 infection mouse model, both proteins lowered the lung viral load by up to ~1,000-fold, prevented the emergence of clinical signs in >75% animals, and increased the animal survival rate from 0% (untreated) to >87.5% (treated). These results demonstrate that both proteins are good drug candidates for protecting animals from severe COVID-19. In a head-to-head comparison of these two proteins with five previously described ACE2-Ig constructs, we found that two constructs, each carrying five surface mutations in the ACE2 region, had partial loss of neutralization potency against three SARS-CoV-2 variants. These data suggest that extensively mutating ACE2 residues near the receptor binding domain (RBD)-binding interface should be avoided or performed with extra caution. Furthermore, we found that both ACE2-Ig-95 and ACE2-Ig-105/106 could be produced to the level of grams per liter, demonstrating the developability of them as biologic drug candidates. Stress condition stability testing of them further suggests that more studies are required in the future to improve the stability of these proteins. These studies provide useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses. IMPORTANCE Engineering soluble ACE2 proteins that function as a receptor decoy to block SARS-CoV-2 infection is a very attractive approach to creating broadly effective and hard-to-escape anti-SARS-CoV-2 agents. This article describes development of two antibody-like soluble ACE2 proteins that broadly block diverse SARS-CoV-2 variants, including Omicron. In a stringent COVID-19 mouse model, both proteins successfully protected >87.5% animals from lethal SARS-CoV-2 infection. In addition, a head-to-head comparison of the two constructs developed in this study with five previously described ACE2 decoy constructs was performed here. Two previously described constructs with relatively more ACE2 surface mutations were found with less robust neutralization activities against diverse SARS-CoV-2 variants. Furthermore, the developability of the two proteins as biologic drug candidates was also assessed here. This study provides two broad anti-SARS-CoV-2 drug candidates and useful insight into critical factors for engineering and preclinical development of ACE2 decoys as broadly effective therapeutics against diverse ACE2-utilizing coronaviruses.
Collapse
Affiliation(s)
- Mengjia Lu
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Weitong Yao
- Hubei JiangXia Laboratory, Wuhan, Hubei, China
| | - Yujun Li
- Shenzhen University School of Medicine, Shenzhen, Guangdong, China
| | - Danting Ma
- Tianjin Medical University Chu Hsien-I Memorial Hospital, Tianjin, China
| | - Zhaoyong Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haimin Wang
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Xiaojuan Tang
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Yanqun Wang
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chao Li
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Dechun Cheng
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Hua Lin
- Biomedical Research Center of South China, Fujian Normal University, Fuzhou, Fujian, China
| | - Yandong Yin
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| | - Jincun Zhao
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Health, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guocai Zhong
- State Key Laboratory of Chemical Oncogenomics, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen, Guangdong, China
- Shenzhen Bay Laboratory, Shenzhen, Guangdong, China
| |
Collapse
|
28
|
Shoemaker R, Poglitsch M, Huang H, Vignes K, Srinivasan A, Cockerham C, Schadler A, Bauer JA, O’Brien JM. Activation of the Renin-Angiotensin-Aldosterone System Is Attenuated in Hypertensive Compared with Normotensive Pregnancy. Int J Mol Sci 2023; 24:12728. [PMID: 37628909 PMCID: PMC10454898 DOI: 10.3390/ijms241612728] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023] Open
Abstract
Hypertension during pregnancy increases the risk of adverse maternal and fetal outcomes, but the mechanisms of pregnancy hypertension are not precisely understood. Elevated plasma renin activity and aldosterone concentrations play an important role in the normal physiologic adaptation to pregnancy. These effectors are reduced in patients with pregnancy hypertension, creating an opportunity to define the features of the renin-angiotensin-aldosterone system (RAAS) that are characteristic of this disorder. In the current study, we used a novel LC-MS/MS-based methodology to develop comprehensive profiles of RAAS peptides and effectors over gestation in a cohort of 74 pregnant women followed prospectively for the development of gestational hypertension and pre-eclampsia (HYP, 27 patients) versus those remaining normotensive (NT, 47 patients). In NT pregnancy, the plasma renin activity surrogate, (PRA-S, calculated from the sum of Angiotensin I + Angiotensin II) and aldosterone concentrations significantly increased from the first to the third trimester, accompanied by a modest increase in the concentrations of angiotensin peptide metabolites. In contrast, in HYP pregnancies, PRA-S and angiotensin peptides were largely unchanged over gestation, and third-trimester aldosterone concentrations were significantly lower compared with those in NT pregnancies. The results indicated that the predominant features of pregnancies that develop HYP are stalled or waning activation of the RAAS in the second half of pregnancy (accompanied by unchanging levels of angiotensin peptides) and the attenuated secretion of aldosterone.
Collapse
Affiliation(s)
- Robin Shoemaker
- Department of Dietetics and Human Nutrition, University of Kentucky, Lexington, KY 40506, USA
| | | | - Hong Huang
- Department of Pediatrics, University of Kentucky, Lexington, KY 40536, USA
| | - Katherine Vignes
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40506, USA
| | - Aarthi Srinivasan
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40506, USA
| | - Cynthia Cockerham
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40506, USA
| | - Aric Schadler
- Department of Pediatrics, University of Kentucky, Lexington, KY 40536, USA
| | - John A. Bauer
- Department of Pediatrics, University of Kentucky, Lexington, KY 40536, USA
| | - John M. O’Brien
- Division of Maternal Fetal Medicine, Department of Obstetrics and Gynecology, University of Kentucky, Lexington, KY 40506, USA
| |
Collapse
|
29
|
Hassler L, Wysocki J, Ahrendsen JT, Ye M, Gelarden I, Nicolaescu V, Tomatsidou A, Gula H, Cianfarini C, Forster P, Khurram N, Singer BD, Randall G, Missiakas D, Henkin J, Batlle D. Intranasal soluble ACE2 improves survival and prevents brain SARS-CoV-2 infection. Life Sci Alliance 2023; 6:e202301969. [PMID: 37041017 PMCID: PMC10098141 DOI: 10.26508/lsa.202301969] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
A soluble ACE2 protein bioengineered for long duration of action and high affinity to SARS-CoV-2 was administered either intranasally (IN) or intraperitoneally (IP) to SARS-CoV-2-inoculated k18hACE2 mice. This decoy protein (ACE2 618-DDC-ABD) was given either IN or IP, pre- and post-inoculation, or IN, IP, or IN + IP but only post-inoculation. Survival by day 5 was 0% in untreated mice, 40% in the IP-pre, and 90% in the IN-pre group. In the IN-pre group, brain histopathology was essentially normal and lung histopathology significantly improved. Consistent with this, brain SARS-CoV-2 titers were undetectable and lung titers reduced in the IN-pre group. When ACE2 618-DDC-ABD was administered only post-inoculation, survival was 30% in the IN + IP, 20% in the IN, and 20% in the IP group. We conclude that ACE2 618-DDC-ABD results in markedly improved survival and provides organ protection when given intranasally as compared with when given either systemically or after viral inoculation, and that lowering brain titers is a critical determinant of survival and organ protection.
Collapse
Affiliation(s)
- Luise Hassler
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Jan Wysocki
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Jared T Ahrendsen
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Minghao Ye
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Ian Gelarden
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Vlad Nicolaescu
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Anastasia Tomatsidou
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Haley Gula
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Cosimo Cianfarini
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Peter Forster
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Nigar Khurram
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Glenn Randall
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Dominique Missiakas
- Department of Microbiology, University of Chicago, Chicago, IL, USA
- Ricketts Regional Biocontainment Laboratory, University of Chicago, Lemont, IL, USA
| | - Jack Henkin
- Center for Developmental Therapeutics, Northwestern University, Evanston, IL, USA
| | - Daniel Batlle
- Division of Nephrology/Hypertension, Department of Medicine, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
30
|
Kegler A, Drewitz L, Arndt C, Daglar C, Rodrigues Loureiro L, Mitwasi N, Neuber C, González Soto KE, Bartsch T, Baraban L, Ziehr H, Heine M, Nieter A, Moreira-Soto A, Kühne A, Drexler JF, Seliger B, Laube M, Máthé D, Pályi B, Hajdrik P, Forgách L, Kis Z, Szigeti K, Bergmann R, Feldmann A, Bachmann M. A novel ACE2 decoy for both neutralization of SARS-CoV-2 variants and killing of infected cells. Front Immunol 2023; 14:1204543. [PMID: 37383226 PMCID: PMC10293748 DOI: 10.3389/fimmu.2023.1204543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) led to millions of infections and deaths worldwide. As this virus evolves rapidly, there is a high need for treatment options that can win the race against new emerging variants of concern. Here, we describe a novel immunotherapeutic drug based on the SARS-CoV-2 entry receptor ACE2 and provide experimental evidence that it cannot only be used for (i) neutralization of SARS-CoV-2 in vitro and in SARS-CoV-2-infected animal models but also for (ii) clearance of virus-infected cells. For the latter purpose, we equipped the ACE2 decoy with an epitope tag. Thereby, we converted it to an adapter molecule, which we successfully applied in the modular platforms UniMAB and UniCAR for retargeting of either unmodified or universal chimeric antigen receptor-modified immune effector cells. Our results pave the way for a clinical application of this novel ACE2 decoy, which will clearly improve COVID-19 treatment.
Collapse
Affiliation(s)
- Alexandra Kegler
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Laura Drewitz
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Claudia Arndt
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Mildred Scheel Early Career Center, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
| | - Cansu Daglar
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Liliana Rodrigues Loureiro
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Nicola Mitwasi
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Christin Neuber
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Karla Elizabeth González Soto
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Tabea Bartsch
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Larysa Baraban
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Holger Ziehr
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Braunschweig, Germany
| | - Markus Heine
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Braunschweig, Germany
| | - Annabel Nieter
- Department of Pharmaceutical Biotechnology, Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Braunschweig, Germany
| | - Andres Moreira-Soto
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Arne Kühne
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jan Felix Drexler
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Barbara Seliger
- Medical Faculty, Martin-Luther-University Halle-Wittenberg, Halle, Germany
- Institute of Translational Immunology, Medical High School, Brandenburg an der Havel, Germany
| | - Markus Laube
- Department of Radiopharmaceutical and Chemical Biology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
| | - Domokos Máthé
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
- Hungarian Centre of Excellence for Molecular Medicine, In Vivo Imaging Advanced Core Facility, Szeged, Hungary
- CROmed Translational Research Ltd., Budapest, Hungary
| | - Bernadett Pályi
- National Biosafety Laboratory, Division of Microbiological Reference Laboratories, National Public Health Center, Budapest, Hungary
| | - Polett Hajdrik
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - László Forgách
- Semmelweis University School of Pharmacy, Semmelweis University, Budapest, Hungary
| | - Zoltán Kis
- National Biosafety Laboratory, Division of Microbiological Reference Laboratories, National Public Health Center, Budapest, Hungary
| | - Krisztián Szigeti
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ralf Bergmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- Department of Biophysics and Radiation Biology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Anja Feldmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Bachmann
- Department of Radioimmunology, Institute of Radiopharmaceutical Cancer Research, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- National Center for Tumor Diseases Dresden (NCT), German Cancer Research Center (DKFZ), Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Helmholtz-Zentrum Dresden-Rossendorf (HZDR), Dresden, Germany
- German Cancer Consortium (DKTK), Partner Site Dresden and German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
31
|
Ahmed N, Kassis A, Malone J, Yang J, Zamzami E, Lin AH, Gordon SM, Gong M, Bardo M, Dalmasso C, Loria AS. Prenatal Morphine Exposure Increases Cardiovascular Disease Risk and Programs Neurogenic Hypertension in the Adult Offspring. Hypertension 2023; 80:1283-1296. [PMID: 37042247 PMCID: PMC10274123 DOI: 10.1161/hypertensionaha.122.20262] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 03/20/2023] [Indexed: 04/13/2023]
Abstract
BACKGROUND The opioid overdose and opioid use disorder epidemics are concomitant with increased metabolic and CVD risk. Although opioid use disorder causes adverse pregnancy outcomes, the offspring's cardiovascular health is understudied. We hypothesized that offspring exposed to in utero morphine exposure (IUME) would show increased CVD risk factors and endogenous opioid system dysregulation. METHODS Sprague Dawley dams were treated with saline (vehicle, n=10) or escalating doses of morphine (5-20 mg/kg per day, SC, n=10) during gestation. Cardiovascular and metabolic parameters were assessed in adult offspring. RESULTS Litter size and pups' birth weight were not different in response to IUME. Female and male IUME offspring showed reduced body length at birth (P<0.05) and body weight from weeks 1 to 3 of life (P<0.05), followed by a catch-up growth effect. By week 16, female and male IUME rats showed reduced tibia length (P<0.05) and fat mass. IUME increases the mean arterial pressure and the depressor response to mecamylamine (5 mg/kg per day, IP) induced by IUME were abolished by a chronic treatment with an alpha-adrenergic receptor blocker (prazosin; 1 mg/kg per day, IP). Although circulating levels of angiotensin peptides were similar between groups, IUME exacerbated maximal ex vivo Ang (angiotensin) II-induced vasoconstriction (P<0.05) and induced endothelial dysfunction in a sex-specific manner (P<0.05). Proenkephalin, an endogenous opioid peptide that lowers blood pressure and sympathetic-mediated vasoconstriction, showed reduced mRNA expression in the heart, aorta, and kidneys from morphine versus vehicle group (P<0.05). CONCLUSIONS Among the effects of IUME, neurogenic hypertension, vascular dysfunction, and metabolic dysfunction could be associated with the dysregulation of the endogenous opioid system.
Collapse
Affiliation(s)
- Nermin Ahmed
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Alana Kassis
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Jena Malone
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Jodie Yang
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Esraa Zamzami
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - An-Hsuan Lin
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Scott M. Gordon
- SAHA Cardiovascular Center, University of Kentucky, Lexington, KY 40536
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Ming Gong
- Department of Physiology, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Michael Bardo
- Department of Psychology, College of Arts and Sciences, University of Kentucky, Lexington, KY 40536
| | - Carolina Dalmasso
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
| | - Analia S. Loria
- Department of Pharmacology and Nutritional Sciences, College of Medicine, University of Kentucky, Lexington, KY 40536
- SAHA Cardiovascular Center, University of Kentucky, Lexington, KY 40536
| |
Collapse
|
32
|
Alkhaldi SY, Peng I, Peng CA. Inhibition of SARS-CoV-2 Spike Protein Pseudotyped Virus Infection Using ACE2-Tethered Micro/Nanoparticles. Bioengineering (Basel) 2023; 10:652. [PMID: 37370582 PMCID: PMC10294827 DOI: 10.3390/bioengineering10060652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/22/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) has caused a global pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The viral infection is reliant upon the binding between angiotensin-converting enzyme 2 receptor (ACE2) and spike protein (S). Therefore, ACE2 is a key receptor for SARS-CoV-2 to infect the host. Nonetheless, as SARS-CoV-2 is constantly mutating into new variants that cause high infection rates, the development of prophylactic and therapeutic approaches remains a necessity to continue fighting mutated SARS-CoV-2 variants. In this study, ACE2-streptavidin fusion proteins expressed by recombinant DNA technology were anchored on biotinylated fluorescent polystyrene particles of various sizes ranging from 0.15 to 5 µm. The ACE2-tethered micro/nanoparticles were shown to prevent spike protein pseudotyped lentivirus entry into ACE2-expressing HEK293T cells. Compared to ACE2 in soluble form, micro-sized particles (2 and 5 µm) immobilized with ACE2 interfered more efficiently with viral attachment, entry, and the ensuing infection. Our results showed that particles functionalized with ACE2 could be used as efficient decoys to block the infection of SARS-CoV-2 strains.
Collapse
Affiliation(s)
| | | | - Ching-An Peng
- Department of Chemical and Biological Engineering, University of Idaho, Moscow, ID 83844, USA
| |
Collapse
|
33
|
Golab F, Vahabzadeh G, SadeghRoudbari L, Shirazi A, Shabani R, Tanbakooei S, Kooshesh L. The Protective Potential Role of ACE2 against COVID-19. Adv Virol 2023; 2023:8451931. [PMID: 37275947 PMCID: PMC10238138 DOI: 10.1155/2023/8451931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 05/16/2023] [Indexed: 06/07/2023] Open
Abstract
Due to the coronavirus disease 2019 (COVID-19), researchers all over the world have tried to find an appropriate therapeutic approach for the disease. The angiotensin-converting enzyme 2 (ACE2) has been shown as a necessary receptor to cell fusion, which is involved in infection due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It is commonly crucial for all organs and systems. When ACE2 is downregulated via the SARS-CoV-2 spike protein, it results in the angiotensin II (Ang II)/angiotensin type 1 receptor axis overactivation. Ang II has harmful effects, which can be evidenced by dysfunctions in many organs experienced by COVID-19 patients. ACE2 is the SARS-CoV-2 receptor and has an extensive distribution; thus, some COVID-19 cases experience several symptoms and complications. We suggest strategy for the potential protective effect of ACE2 to the viral infection. The current review will provide data to develop new approaches for preventing and controlling the COVID-19 outbreak.
Collapse
Affiliation(s)
- Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Gelareh Vahabzadeh
- Razi Drug Research Center, Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Leila SadeghRoudbari
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Arefeh Shirazi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Robabeh Shabani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Sara Tanbakooei
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Lida Kooshesh
- Department of Cellular and Molecular Biology, Islamic Azad University, Tehran North Branch, Tehran, Iran
| |
Collapse
|
34
|
Izadi S, Vavra U, Melnik S, Grünwald-Gruber C, Föderl-Höbenreich E, Sack M, Zatloukal K, Glössl J, Stöger E, Mach L, Castilho A, Strasser R. In planta deglycosylation improves the SARS-CoV-2 neutralization activity of recombinant ACE2-Fc. Front Bioeng Biotechnol 2023; 11:1180044. [PMID: 37207124 PMCID: PMC10190127 DOI: 10.3389/fbioe.2023.1180044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 04/10/2023] [Indexed: 05/21/2023] Open
Abstract
SARS-CoV-2 infects human cells via binding of the viral spike glycoprotein to its main cellular receptor, angiotensin-converting enzyme 2 (ACE2). The spike protein-ACE2 receptor interaction is therefore a major target for the development of therapeutic or prophylactic drugs to combat coronavirus infections. Various engineered soluble ACE2 variants (decoys) have been designed and shown to exhibit virus neutralization capacity in cell-based assays and in vivo models. Human ACE2 is heavily glycosylated and some of its glycans impair binding to the SARS-CoV-2 spike protein. Therefore, glycan-engineered recombinant soluble ACE2 variants might display enhanced virus-neutralization potencies. Here, we transiently co-expressed the extracellular domain of ACE2 fused to human Fc (ACE2-Fc) with a bacterial endoglycosidase in Nicotiana benthamiana to produce ACE2-Fc decorated with N-glycans consisting of single GlcNAc residues. The endoglycosidase was targeted to the Golgi apparatus with the intention to avoid any interference of glycan removal with concomitant ACE2-Fc protein folding and quality control in the endoplasmic reticulum. The in vivo deglycosylated ACE2-Fc carrying single GlcNAc residues displayed increased affinity to the receptor-binding domain (RBD) of SARS-CoV-2 as well as improved virus neutralization activity and thus is a promising drug candidate to block coronavirus infection.
Collapse
Affiliation(s)
- Shiva Izadi
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Ulrike Vavra
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Stanislav Melnik
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Clemens Grünwald-Gruber
- Core Facility Mass Spectrometry, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | | | | | - Kurt Zatloukal
- Diagnostic and Research Institute of Pathology, Medical University of Graz, Graz, Austria
| | - Josef Glössl
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Eva Stöger
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Lukas Mach
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Alexandra Castilho
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| | - Richard Strasser
- Institute of Plant Biotechnology and Cell Biology, Department of Applied Genetics and Cell Biology, University of Natural Resources and Life Sciences Vienna, Vienna, Austria
| |
Collapse
|
35
|
Kim CM, Kim DM, Bang MS, Seo JW, Kim DY, Yun NR, Lim SC, Lee JH, Sohn EJ, Kang H, Min K, Choi BH, Lee S. Efficacy of Plant-Made Human Recombinant ACE2 against COVID-19 in a Golden Syrian Hamster Model. Viruses 2023; 15:v15040964. [PMID: 37112944 PMCID: PMC10146983 DOI: 10.3390/v15040964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/31/2023] [Accepted: 04/10/2023] [Indexed: 04/29/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a novel infectious respiratory disease caused by SARS-CoV-2. We evaluated the efficacy of a plant-based human recombinant angiotensin-converting enzyme 2 (hrACE2) and hrACE2-foldon (hrACE2-Fd) protein against COVID-19. In addition, we analyzed the antiviral activity of hrACE2 and hrACE2-Fd against SARS-CoV-2 using real-time reverse-transcription PCR and plaque assays. The therapeutic efficacy was detected using the Golden Syrian hamster model infected with SARS-CoV-2. Both hrACE2 and hrACE2-Fd inhibited SARS-CoV-2 by 50% at concentrations below the maximum plasma concentration, with EC50 of 5.8 μg/mL and 6.2 μg/mL, respectively. The hrACE2 and hrACE2-Fd injection groups showed a tendency for decreased viral titers in nasal turbinate tissues on day 3 after virus inoculation; however, this decrease was not detectable in lung tissues. Histopathological examination on day 9 after virus inoculation showed continued inflammation in the SARS-CoV-2 infection group, whereas decreased inflammation was observed in both the hrACE2 and hrACE2-Fd injection groups. No significant changes were observed at other time points. In conclusion, the potential therapeutic efficacy of plant-based proteins, hrACE2 and hrACE2-Fd, against COVID-19 was confirmed in a SARS-CoV-2-inoculated Golden Syrian hamster model. Further preclinical studies on primates and humans are necessary to obtain additional evidence and determine the effectiveness of these therapies.
Collapse
Affiliation(s)
- Choon-Mee Kim
- Premedical Science, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Dong-Min Kim
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Mi-Seon Bang
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Jun-Won Seo
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Da-Young Kim
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Na-Ra Yun
- Department of Internal Medicine, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Sung-Chul Lim
- Department of Pathology, Chosun University College of Medicine, Gwangju 61452, Republic of Korea
| | - Ju-Hyung Lee
- Department of Preventive Medicine, Jeonbuk National University Medical School, Jeonju 54907, Republic of Korea
| | - Eun-Ju Sohn
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang 37668, Republic of Korea
| | - Hyangju Kang
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang 37668, Republic of Korea
| | - Kyungmin Min
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang 37668, Republic of Korea
| | - Bo-Hwa Choi
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang 37668, Republic of Korea
| | - Sangmin Lee
- BioApplications Inc., Pohang Techno Park Complex, 394 Jigok-ro Nam-gu, Pohang 37668, Republic of Korea
| |
Collapse
|
36
|
Zhang H, Lv P, Jiang J, Liu Y, Yan R, Shu S, Hu B, Xiao H, Cai K, Yuan S, Li Y. Advances in developing ACE2 derivatives against SARS-CoV-2. THE LANCET. MICROBE 2023; 4:e369-e378. [PMID: 36934742 PMCID: PMC10019897 DOI: 10.1016/s2666-5247(23)00011-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/19/2023] [Accepted: 01/19/2023] [Indexed: 03/17/2023]
Abstract
Extensive immune evasion of SARS-CoV-2 rendered therapeutic antibodies ineffective in the COVID-19 pandemic. Propagating SARS-CoV-2 variants are characterised by immune evasion capacity through key amino acid mutations, but can still bind human angiotensin-converting enzyme 2 (ACE2) through the spike protein and are, thus, sensitive to ACE2-mimicking decoys as inhibitors. In this Review, we examine advances in the development of ACE2 derivatives from the past 3 years, including the recombinant ACE2 proteins, ACE2-loaded extracellular vesicles, ACE2-mimicking antibodies, and peptide or mini-protein mimetics of ACE2. Several ACE2 derivatives are granted potent neutralisation efficacy against SARS-CoV-2 variants that rival or surpass endogenous antibodies by various auxiliary techniques such as chemical modification and practical recombinant design. The derivatives also represent enhanced production efficiency and improved bioavailability. In addition to these derivatives of ACE2, new effective therapeutics against SARS-CoV-2 variants are expected to be developed.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Panjing Lv
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Jingrui Jiang
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Yahui Liu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Ruixi Yan
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China
| | - Sainan Shu
- Department of Pediatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bing Hu
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Han Xiao
- Institute of Maternal and Child Health, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kun Cai
- Institute of Health Inspection and Testing, Hubei Provincial Center for Disease Control and Prevention, Wuhan, China
| | - Shuai Yuan
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Sciences, Beijing, China; Hubei Jiangxia Laboratory, Wuhan, China.
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, China; Department of Pediatrics, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
37
|
Oudit GY, Wang K, Viveiros A, Kellner MJ, Penninger JM. Angiotensin-converting enzyme 2-at the heart of the COVID-19 pandemic. Cell 2023; 186:906-922. [PMID: 36787743 PMCID: PMC9892333 DOI: 10.1016/j.cell.2023.01.039] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/06/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
ACE2 is the indispensable entry receptor for SARS-CoV and SARS-CoV-2. Because of the COVID-19 pandemic, it has become one of the most therapeutically targeted human molecules in biomedicine. ACE2 serves two fundamental physiological roles: as an enzyme, it alters peptide cascade balance; as a chaperone, it controls intestinal amino acid uptake. ACE2's tissue distribution, affected by co-morbidities and sex, explains the broad tropism of coronaviruses and the clinical manifestations of SARS and COVID-19. ACE2-based therapeutics provide a universal strategy to prevent and treat SARS-CoV-2 infections, applicable to all SARS-CoV-2 variants and other emerging zoonotic coronaviruses exploiting ACE2 as their cellular receptor.
Collapse
Affiliation(s)
- Gavin Y Oudit
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada.
| | - Kaiming Wang
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Anissa Viveiros
- Division of Cardiology, Department of Medicine, University of Alberta, Edmonton, AB, Canada; Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada
| | - Max J Kellner
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria
| | - Josef M Penninger
- Institute of Molecular Biotechnology of the Austrian Academy of Science, Vienna, Austria; Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
38
|
Li S, Liu X, Liu G, Liu C. Biomimetic Nanotechnology for SARS-CoV-2 Treatment. Viruses 2023; 15:596. [PMID: 36992304 PMCID: PMC10051120 DOI: 10.3390/v15030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 02/18/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
More than 600 million people worldwide have been infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), resulting in the pandemic of coronavirus disease 2019 (COVID-19). In particular, new waves of COVID-19 caused by emerging SARS-CoV-2 variants pose new health risks to the global population. Nanotechnology has developed excellent solutions to combat the virus pandemic, such as ACE2-based nanodecoys, nanobodies, nanovaccines, and drug nanocarriers. Lessons learned and strategies developed during this battle against SARS-CoV-2 variants may also serve as inspiration for developing nanotechnology-based strategies to combat other global infectious diseases and their variants in the future.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xue Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Chao Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| |
Collapse
|
39
|
Comparison of truncated human angiotensin-converting enzyme 2 (hACE2) expression in pET28a(+) versus pET-SUMO vector and two Escherichia coli strains. Adv Med Sci 2023; 68:61-70. [PMID: 36746060 DOI: 10.1016/j.advms.2023.01.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/28/2022] [Accepted: 01/11/2023] [Indexed: 02/05/2023]
Abstract
PURPOSE Truncated human angiotensin-converting enzyme 2 (hACE2) expression rises a great scientific interest, considering its possible therapeutic and diagnostic applications. A promising research direction is the therapeutic use of smaller hACE2 versions with high binding affinity as decoy receptors for S1 glycoprotein of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Another possible application is the use of these truncated versions for the functionalization of appropriate nanomaterials for constructing novel biosensors with a rapid and sensitive response for coronavirus disease 2019 (COVID-19) detection. The present study aimed to find a suitable system for high yield expression of different versions of truncated hACE2. MATERIALS AND METHODS The encoding DNA for the hACE2 fragments (7-507 aa, 16-128 aa, and 30-357 aa) was obtained by PCR amplification using as template pcDNA3.1-hACE2 plasmid and further cloned into pET28a(+) and pET-SUMO vectors. The positive clones were selected and the correct DNA insertion was confirmed through gene sequencing. The truncated hACE2 proteins were further expressed in two E. coli strains, Rosetta(DE3) and BL21(DE3). RESULTS For all three truncated hACE2 mini proteins, pET28a(+) does not lead to protein expression, regardless of the bacterial strain. The situation changes with the use of the pET-SUMO expression system when all hACE2 fragments are expressed, but with higher efficiency in E. coli BL21(DE3) than E. coli Rosetta. CONCLUSION In the present study, we showed that different versions of recombinant hACE2 are successfully expressed in E. coli BL21(DE3) by using pET-SUMO expression system.
Collapse
|
40
|
Chen H, Peng J, Wang T, Wen J, Chen S, Huang Y, Zhang Y. Counter-regulatory renin-angiotensin system in hypertension: Review and update in the era of COVID-19 pandemic. Biochem Pharmacol 2023; 208:115370. [PMID: 36481346 PMCID: PMC9721294 DOI: 10.1016/j.bcp.2022.115370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/26/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022]
Abstract
Cardiovascular disease is the major cause of mortality and disability, with hypertension being the most prevalent risk factor. Excessive activation of the renin-angiotensin system (RAS) under pathological conditions, leading to vascular remodeling and inflammation, is closely related to cardiovascular dysfunction. The counter-regulatory axis of the RAS consists of angiotensin-converting enzyme 2 (ACE2), angiotensin (1-7), angiotensin (1-9), alamandine, proto-oncogene Mas receptor, angiotensin II type-2 receptor and Mas-related G protein-coupled receptor member D. Each of these components has been shown to counteract the effects of the overactivated RAS. In this review, we summarize the latest insights into the complexity and interplay of the counter-regulatory RAS axis in hypertension, highlight the pathophysiological functions of ACE2, a multifunctional molecule linking hypertension and COVID-19, and discuss the function and therapeutic potential of targeting this counter-regulatory RAS axis to prevent and treat hypertension in the context of the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Hongyin Chen
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China
| | - Jiangyun Peng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Tengyao Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Jielu Wen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Sifan Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, China,Nanhai Translational Innovation Center of Precision Immunology, Sun Yat-sen Memorial Hospital, Foshan 528200, Guangdong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China,Corresponding authors
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen 518000, Guangdong, China,Corresponding authors
| |
Collapse
|
41
|
Anderson CF, Wang Q, Stern D, Leonard EK, Sun B, Fergie KJ, Choi CY, Spangler JB, Villano J, Pekosz A, Brayton CF, Jia H, Cui H. Supramolecular filaments for concurrent ACE2 docking and enzymatic activity silencing enable coronavirus capture and infection prevention. MATTER 2023; 6:583-604. [PMID: 36531610 PMCID: PMC9743467 DOI: 10.1016/j.matt.2022.11.027] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/11/2022] [Accepted: 11/16/2022] [Indexed: 06/01/2023]
Abstract
Coronaviruses have historically precipitated global pandemics of severe acute respiratory syndrome (SARS) into devastating public health crises. Despite the virus's rapid rate of mutation, all SARS coronavirus 2 (SARS-CoV-2) variants are known to gain entry into host cells primarily through complexation with angiotensin-converting enzyme 2 (ACE2). Although ACE2 has potential as a druggable decoy to block viral entry, its clinical use is complicated by its essential biological role as a carboxypeptidase and hindered by its structural and chemical instability. Here we designed supramolecular filaments, called fACE2, that can silence ACE2's enzymatic activity and immobilize ACE2 to their surface through enzyme-substrate complexation. This docking strategy enables ACE2 to be effectively delivered in inhalable aerosols and improves its structural stability and functional preservation. fACE2 exhibits enhanced and prolonged inhibition of viral entry compared with ACE2 alone while mitigating lung injury in vivo.
Collapse
Affiliation(s)
- Caleb F Anderson
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Qiong Wang
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David Stern
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Elissa K Leonard
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Boran Sun
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kyle J Fergie
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chang-Yong Choi
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jamie B Spangler
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Jason Villano
- Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Andrew Pekosz
- Department of Molecular Microbiology and Immunology, The Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Cory F Brayton
- Molecular and Comparative Pathobiology, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Hongpeng Jia
- Division of Pediatric Surgery, Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Oncology and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Center for Nanomedicine, The Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
42
|
Li G, Qian K, Zhang S, Fu W, Zhao J, Lei C, Hu S. Engineered soluble ACE2 receptor: Responding to change with change. Front Immunol 2023; 13:1084331. [PMID: 36741399 PMCID: PMC9891289 DOI: 10.3389/fimmu.2022.1084331] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Accepted: 12/15/2022] [Indexed: 01/19/2023] Open
Abstract
SARS coronavirus 2 (SARS-CoV-2) invades the human body by binding to major receptors such as ACE2 via its S-spike protein, so the interaction of receptor-binding sites has been a hot topic in the development of coronavirus drugs. At present, the clinical progress in monoclonal antibody therapy that occurred early in the pandemic is gradually showing signs of slowing. While recombinant soluble ACE2, as an alternative therapy, has been modified by many engineering methods, both the safety and functional aspects are approaching maturity, and this therapy shows great potential for broadly neutralizing coronaviruses, but its progress in clinical development remains stalled. Therefore, there are still several key problems to be considered and solved for recombinant soluble ACE2 to be approved as a clinical treatment as soon as possible.
Collapse
Affiliation(s)
- Guangyao Li
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Kewen Qian
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shuyi Zhang
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Wenyan Fu
- Department of Assisted Reproduction, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Zhao
- KOCHKOR Biotech, Inc., Shanghai, China
| | - Changhai Lei
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Shi Hu
- Department of Biophysics, College of Basic Medical Sciences, Naval Medical University (Second Military Medical University), Shanghai, China,*Correspondence: Shi Hu,
| |
Collapse
|
43
|
Nejat R, Torshizi MF, Najafi DJ. S Protein, ACE2 and Host Cell Proteases in SARS-CoV-2 Cell Entry and Infectivity; Is Soluble ACE2 a Two Blade Sword? A Narrative Review. Vaccines (Basel) 2023; 11:204. [PMID: 36851081 PMCID: PMC9968219 DOI: 10.3390/vaccines11020204] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/07/2023] [Accepted: 01/12/2023] [Indexed: 01/19/2023] Open
Abstract
Since the spread of the deadly virus SARS-CoV-2 in late 2019, researchers have restlessly sought to unravel how the virus enters the host cells. Some proteins on each side of the interaction between the virus and the host cells are involved as the major contributors to this process: (1) the nano-machine spike protein on behalf of the virus, (2) angiotensin converting enzyme II, the mono-carboxypeptidase and the key component of renin angiotensin system on behalf of the host cell, (3) some host proteases and proteins exploited by SARS-CoV-2. In this review, the complex process of SARS-CoV-2 entrance into the host cells with the contribution of the involved host proteins as well as the sequential conformational changes in the spike protein tending to increase the probability of complexification of the latter with angiotensin converting enzyme II, the receptor of the virus on the host cells, are discussed. Moreover, the release of the catalytic ectodomain of angiotensin converting enzyme II as its soluble form in the extracellular space and its positive or negative impact on the infectivity of the virus are considered.
Collapse
Affiliation(s)
- Reza Nejat
- Department of Anesthesiology and Critical Care Medicine, Laleh Hospital, Tehran 1467684595, Iran
| | | | | |
Collapse
|
44
|
Köchl K, Schopper T, Durmaz V, Parigger L, Singh A, Krassnigg A, Cespugli M, Wu W, Yang X, Zhang Y, Wang WWS, Selluski C, Zhao T, Zhang X, Bai C, Lin L, Hu Y, Xie Z, Zhang Z, Yan J, Zatloukal K, Gruber K, Steinkellner G, Gruber CC. Optimizing variant-specific therapeutic SARS-CoV-2 decoys using deep-learning-guided molecular dynamics simulations. Sci Rep 2023; 13:774. [PMID: 36641503 PMCID: PMC9840421 DOI: 10.1038/s41598-023-27636-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 01/05/2023] [Indexed: 01/15/2023] Open
Abstract
Treatment of COVID-19 with a soluble version of ACE2 that binds to SARS-CoV-2 virions before they enter host cells is a promising approach, however it needs to be optimized and adapted to emerging viral variants. The computational workflow presented here consists of molecular dynamics simulations for spike RBD-hACE2 binding affinity assessments of multiple spike RBD/hACE2 variants and a novel convolutional neural network architecture working on pairs of voxelized force-fields for efficient search-space reduction. We identified hACE2-Fc K31W and multi-mutation variants as high-affinity candidates, which we validated in vitro with virus neutralization assays. We evaluated binding affinities of these ACE2 variants with the RBDs of Omicron BA.3, Omicron BA.4/BA.5, and Omicron BA.2.75 in silico. In addition, candidates produced in Nicotiana benthamiana, an expression organism for potential large-scale production, showed a 4.6-fold reduction in half-maximal inhibitory concentration (IC50) compared with the same variant produced in CHO cells and an almost six-fold IC50 reduction compared with wild-type hACE2-Fc.
Collapse
Affiliation(s)
- Katharina Köchl
- Innophore GmbH, 8010, Graz, Austria
- Austrian Centre of Industrial Biotechnology, 8010, Graz, Austria
| | | | | | | | - Amit Singh
- Innophore GmbH, 8010, Graz, Austria
- Institute of Molecular Bioscience, University of Graz, 8010, Graz, Austria
| | | | | | - Wei Wu
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Xiaoli Yang
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Yanchong Zhang
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Welson Wen-Shang Wang
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Crystal Selluski
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Tiehan Zhao
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Xin Zhang
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Caihong Bai
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Leon Lin
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Yuxiang Hu
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Zhiwei Xie
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Zaihui Zhang
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Jun Yan
- SignalChem Lifesciences Corp., 110-13120 Vanier Place, Richmond, BC, V6V 2J2, Canada
| | - Kurt Zatloukal
- Diagnostic- and Research Center for Molecular Biomedicine, Institute of Pathology, Medical University of Graz, 8010, Graz, Austria
| | - Karl Gruber
- Innophore GmbH, 8010, Graz, Austria
- Institute of Molecular Bioscience, University of Graz, 8010, Graz, Austria
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria
| | - Georg Steinkellner
- Innophore GmbH, 8010, Graz, Austria.
- Institute of Molecular Bioscience, University of Graz, 8010, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria.
| | - Christian C Gruber
- Innophore GmbH, 8010, Graz, Austria.
- Austrian Centre of Industrial Biotechnology, 8010, Graz, Austria.
- Institute of Molecular Bioscience, University of Graz, 8010, Graz, Austria.
- Field of Excellence BioHealth, University of Graz, 8010, Graz, Austria.
| |
Collapse
|
45
|
Cheng ZJ, Li B, Zhan Z, Zhao Z, Xue M, Zheng P, Lyu J, Hu C, He J, Chen R, Sun B. Clinical Application of Antibody Immunity Against SARS-CoV-2: Comprehensive Review on Immunoassay and Immunotherapy. Clin Rev Allergy Immunol 2023; 64:17-32. [PMID: 35031959 PMCID: PMC8760112 DOI: 10.1007/s12016-021-08912-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 02/07/2023]
Abstract
The current COVID-19 global pandemic poses immense challenges to global health, largely due to the difficulty to detect infection in the early stages of the disease, as well as the current lack of effective antiviral therapy. Research and understanding of the human immune system can provide important theoretical and technical support for the clinical diagnosis and treatment of COVID-19, the clinical implementations of which include immunoassays and immunotherapy, which play a crucial role in the fight against the pandemic. This review consolidates the current scientific evidence for immunoassay, which includes multiple methods of detecting antigen and antibody against SARS-CoV-2. We compared the characteristics, advantages and disadvantages, and clinical applications of these three detection techniques. In addition to detecting viral infections, knowledge on the body's immunity against the virus is desirable; thus, the immunotherapy-based neutralizing antibody (nAb) detection methods were discussed. We also gave a brief introduction to the new immunoassay technology such as biosensing. This was followed by an in-depth and extensive review on a variety of immunotherapy methods. It includes convalescent plasma therapy, neutralizing antibody-based treatments targeting different regions of SARS-CoV-2, immunotherapy targeted on the host cell including inhibiting the host cell receptor and cytokine storm, as well as cocktail antibodies, cross-neutralizing antibodies, and immunotherapy based on cross-reactivity between viral epitopes and autoepitopes and autoantibody. Despite the development of various immunological testing methods and antibody therapies, the current global situation of COVID-19 is still tense. We need more efficient detection methods and more reliable antibody therapies. The up-to-date knowledge on therapeutic strategies will likely help clinicians worldwide to protect patients from life-threatening viral infections.
Collapse
Affiliation(s)
- Zhangkai J. Cheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Bizhou Li
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Zhiqing Zhan
- Guangzhou Medical University, Guangzhou, 511436 China
| | - Zifan Zhao
- Guangzhou Medical University, Guangzhou, 511436 China
| | - Mingshan Xue
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Peiyan Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Jiali Lyu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Chundi Hu
- Guangzhou Medical University, Guangzhou, 511436 China
| | - Jianxing He
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Ruchong Chen
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| | - Baoqing Sun
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, 510120 China
| |
Collapse
|
46
|
Okamoto T, Itoh Y, Suzuki T. [Development of an engineered ACE2 decoy for COVID-19 therapy.]. Uirusu 2023; 73:163-172. [PMID: 39343551 DOI: 10.2222/jsv.73.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
It has been passed four years since the pandemic caused by the severe acute respiratory syndrome-2 (SARS-CoV-2) that began in 2019. Since June 2020, we have been working on a project to develop a therapeutic drug using receptor decoys, even though we cannot predict how long the pandemic will last or how long our daily lives will be restricted. This receptor decoy utilizes Angiotensin-converting enzyme 2 (ACE2), which is the receptor for SARS-CoV-2, and involves introducing mutations that enhance its binding ability with the spike protein of SARS-CoV-2. This high-affinity ACE2, acting as a decoy protein, is a strategy to inhibit viral infection and to expect therapeutic effects by replacing the endogeneous ACE2 that SARS-CoV-2 binds to with ACE2 decoy. This paper introduces the development of ACE2 decoys that have progressed through collaborative research with many researchers outside the field of virology.
Collapse
Affiliation(s)
- Toru Okamoto
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Yumi Itoh
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Tatsuya Suzuki
- Department of Microbiology, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
47
|
A New Perspective on the Renin-Angiotensin System. Diagnostics (Basel) 2022; 13:diagnostics13010016. [PMID: 36611307 PMCID: PMC9818283 DOI: 10.3390/diagnostics13010016] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death in the world. Hypertension is a serious medical problem not only in adults but also in children and adolescents. The renin-angiotensin-aldosterone system (RAAS) is one of the most important mechanisms regulating blood pressure and the balance of water and electrolytes. According to the latest reports, RAAS acts not only on endocrine but also on paracrine, autocrine, and intracrine. Moreover, RAAS has a component associated with hypotension and cardioprotective effects. These components are called alternative pathways of RAAS. The most important peptide of the alternative pathway is Ang 1-7, which is related to the Mas receptor. Mas receptors have widely known antihypertension properties, including vasodilatation, the release of nitric oxide, and increased production of anti-inflammatory cytokines. Another interesting peptide is angiotensin A, which combines the properties of the classical and alternative pathways. No less important components of RAAS are the proteolytic enzymes angiotensin convertase enzyme type 1 and 2. They are responsible for the functioning of the RAAS system and are a hypertension therapeutic target. Also involved are tissue-specific enzymes that form a local renin-angiotensin system. Currently, a combination of drugs is used in hypertension treatment. These drugs have many undesirable side effects that cannot always be avoided. For this reason, new treatments are being sought, and the greatest hope comes from the ACE2/ang 1-7/MasR axis.
Collapse
|
48
|
Maleksabet H, Rezaee E, Tabatabai SA. Host-Cell Surface Binding Targets in SARS-CoV-2 for Drug Design. Curr Pharm Des 2022; 28:3583-3591. [PMID: 36420875 DOI: 10.2174/1381612829666221123111849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 08/20/2022] [Accepted: 08/31/2022] [Indexed: 11/27/2022]
Abstract
The ongoing pandemic of coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became a major public health threat to all countries worldwide. SARS-CoV-2 interactions with its receptor are the first step in the invasion of the host cell. The coronavirus spike protein (S) is crucial in binding to receptors on host cells. Additionally, targeting the SARS-CoV-2 viral receptors is considered a therapeutic option in this regard. In this review of literature, we summarized five potential host cell receptors, as host-cell surface bindings, including angiotensin-converting enzyme 2 (ACE2), neuropilin 1 (NRP-1), dipeptidyl peptidase 4 (DPP4), glucose regulated protein-78 (GRP78), and cluster of differentiation 147 (CD147) related to the SARS-CoV-2 infection. Among these targets, ACE2 was recognized as the main SARS-CoV-2 receptor, expressed at a low/moderate level in the human respiratory system, which is also involved in SARS-CoV-2 entrance, so the virus may utilize other secondary receptors. Besides ACE2, CD147 was discovered as a novel SARS-CoV-2 receptor, CD147 appears to be an alternate receptor for SARSCoV- 2 infection. NRP-1, as a single-transmembrane glycoprotein, has been recently found to operate as an entrance factor and enhance SARS Coronavirus 2 (SARS-CoV-2) infection under in-vitro. DPP4, which was discovered as the first gene clustered with ACE2, may serve as a potential SARS-CoV-2 spike protein binding target. GRP78 could be recognized as a secondary receptor for SARS-CoV-2 because it is widely expressed at substantially greater levels, rather than ACE2, in bronchial epithelial cells and the respiratory mucosa. This review highlights recent literature on this topic.
Collapse
Affiliation(s)
- Hanieh Maleksabet
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elham Rezaee
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sayyed Abbas Tabatabai
- Department of Pharmaceutical Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
49
|
Kim J, Jozic A, Mukherjee A, Nelson D, Chiem K, Khan MSR, Torrelles JB, Martinez‐Sobrido L, Sahay G. Rapid Generation of Circulating and Mucosal Decoy Human ACE2 using mRNA Nanotherapeutics for the Potential Treatment of SARS-CoV-2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202556. [PMID: 36216580 PMCID: PMC9762296 DOI: 10.1002/advs.202202556] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/19/2022] [Indexed: 05/24/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause lethal pulmonary damage in humans. It contains spike proteins on its envelope that bind to human angiotensin-converting enzyme 2 (hACE2) expressed on airway cells, enabling entry of the virus, and causing infection. The soluble form of hACE2 binds SARS-CoV-2 spike protein, prevents viral entry into target cells, and ameliorates lung injury; however, its short half-life limits therapeutic utilities. Here, synthetic mRNA is engineered to encode a soluble form of hACE2 (hsACE2) to prevent viral infection. A novel lipid nanoparticle (LNP) is used for packaging and delivering mRNA to cells to produce hsACE2 proteins. Intravenously administered LNP delivers mRNA to hepatocytes, leading to the production of circulatory hsACE2 initiated within 2 h and sustained over several days. Inhaled LNP results in lung transfection and secretion of mucosal hsACE2 to lung epithelia, the primary site of entry and pathogenesis for SARS-CoV-2. Furthermore, mRNA-generated hsACE2 binds to the receptor-binding domain of the viral spike protein. Finally, hsACE2 effectively inhibits SARS-CoV-2 and its pseudoviruses from infecting host cells. The proof of principle study shows that mRNA-based nanotherapeutics can be potentially deployed to neutralize SARS-CoV-2 and open new treatment opportunities for coronavirus disease 2019 (COVID-19).
Collapse
Affiliation(s)
- Jeonghwan Kim
- Department of Pharmaceutical SciencesCollege of PharmacyRobertson Life Sciences BuildingOregon State UniversityPortlandOR97201USA
| | - Antony Jozic
- Department of Pharmaceutical SciencesCollege of PharmacyRobertson Life Sciences BuildingOregon State UniversityPortlandOR97201USA
| | - Anindit Mukherjee
- Department of Pharmaceutical SciencesCollege of PharmacyRobertson Life Sciences BuildingOregon State UniversityPortlandOR97201USA
| | - Dylan Nelson
- Department of Pharmaceutical SciencesCollege of PharmacyRobertson Life Sciences BuildingOregon State UniversityPortlandOR97201USA
- High‐Throughput Screening Services LaboratoryCollege of PharmacyOregon State UniversityCorvallisOR97331USA
| | - Kevin Chiem
- Disease Prevention and Interventionand Population Health ProgramsTexas Biomedical Research InstituteSan AntonioTX78227USA
| | - Md Siddiqur Rahman Khan
- Disease Prevention and Interventionand Population Health ProgramsTexas Biomedical Research InstituteSan AntonioTX78227USA
| | - Jordi B. Torrelles
- Disease Prevention and Interventionand Population Health ProgramsTexas Biomedical Research InstituteSan AntonioTX78227USA
| | - Luis Martinez‐Sobrido
- Disease Prevention and Interventionand Population Health ProgramsTexas Biomedical Research InstituteSan AntonioTX78227USA
| | - Gaurav Sahay
- Department of Pharmaceutical SciencesCollege of PharmacyRobertson Life Sciences BuildingOregon State UniversityPortlandOR97201USA
- Department of Biomedical EngineeringRobertson Life Sciences BuildingOregon Health & Science UniversityPortlandOR97201USA
- Department of OphthalmologyCasey Eye InstituteOregon Health & Science UniversityPortlandOR97239USA
| |
Collapse
|
50
|
Coles MJ, Masood M, Crowley MM, Hudgi A, Okereke C, Klein J. It Ain't Over 'Til It's Over: SARS CoV-2 and Post-infectious Gastrointestinal Dysmotility. Dig Dis Sci 2022; 67:5407-5415. [PMID: 35357608 PMCID: PMC8968095 DOI: 10.1007/s10620-022-07480-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 12/20/2021] [Indexed: 01/05/2023]
Abstract
The ongoing pandemic resulting from severe acute respiratory syndrome-caused by coronavirus 2 (SARS-CoV-2)-has posed a multitude of healthcare challenges of unprecedented proportions. Intestinal enterocytes have the highest expression of angiotensin-converting enzyme-2 (ACE2), which functions as the key receptor for SARS-CoV-2 entry into cells. As such, particular interest has been accorded to SARS-CoV-2 and how it manifests within the gastrointestinal system. The acute and chronic alimentary clinical implications of infection are yet to be fully elucidated, however, the gastrointestinal consequences from non-SARS-CoV-2 viral GI tract infections, coupled with the generalized nature of late sequelae following COVID-19 disease, would predict that motility disorders are likely to be seen in these patients. Determination of the chronic effects of COVID-19 disease, herein defined as GI disease which is persistent or recurrent more than 3 months following recovery from the acute respiratory illness, will require comprehensive investigations comprising combined endoscopic- and motility-based evaluation. It will be fascinating to ascertain whether the specific post-COVID-19 phenotype is hypotonic or hypertonic in nature and to identify the most vulnerable target portions of the gut. A specific biological hypothesis is that motility disorders may result from SARS-CoV-2-induced angiotensin-converting enzyme 2 (ACE2) depletion. Since SARS-CoV-2 is known to exhibit direct neuronal tropism, the potential also exists for the development of neurogenic motility disorders. This review aims to explore some of the potential pathophysiologic mechanisms underlying motility dysfunction as it relates to ACE2 and thereby aims to provide the foundation for mechanism-based potential therapeutic options.
Collapse
Affiliation(s)
- Michael J Coles
- Department of Gastroenterology, Temple University Hospital, Philadelphia, USA.
| | - Muaaz Masood
- Department of Internal Medicine, Medical College of Georgia, Augusta, USA
| | - Madeline M Crowley
- Department of Biomedical Engineering, University of British Colombia, Vancouver, Canada
| | - Amit Hudgi
- Department of Internal Medicine, Medical College of Georgia, Augusta, USA
| | - Chijioke Okereke
- Department of Internal Medicine, Medical College of Georgia, Augusta, USA
| | - Jeremy Klein
- Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| |
Collapse
|