1
|
Fu J, Wang Q, Fu H, Wang D, Mayard A, Pan W, Vincent SP. Design, synthesis, and discovery of cinnamoyl amide derivatives as potent NagZ inhibitors with antibacterial activity. Eur J Med Chem 2025; 291:117622. [PMID: 40249971 DOI: 10.1016/j.ejmech.2025.117622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/08/2025] [Accepted: 04/09/2025] [Indexed: 04/20/2025]
Abstract
β-N-acetylglucosaminidase (NagZ) plays an important role in the bacterial cell wall biosynthetic pathway. Inhibiting its activity could potentially impede bacterial growth. We report a study on the design and synthesis of cinnamoyl amides derived from rosmarinic acid (RA), and their enzymatic, antibacterial activity against NagZ and Pseudomonas aeruginosa respectively. In vitro enzyme activity determination showed that the best synthetic RA analogues displayed higher inhibitory activity than that of parent RA, in the same range than the most potent NagZ inhibitors reported so far. Remarkably, compounds 11h and Br-6 displayed interesting binding affinity values with Ki=3.3 ± 0.5 and 3.5 ± 1.0 μM, respectively. Docking simulations evidenced significant binding interactions of cinnamoyl amide derivatives with the active site of NagZ. Moreover, kinetic evaluations indicated these compounds displayed competitive behavior. Additionally, MICs of 11h and Br-6 combined with two β-Lactam antibiotics (imipenem and ceftazidime) were evaluated against P. aeruginosa by microdilution checkerboard assay, establishing that antibacterial agents show synergistic effects. In vivo antibacterial efficacy assay using a full-thickness skin defect model with P. aeruginosa infection confirmed these observations.
Collapse
Affiliation(s)
- Jian Fu
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine/National Engineering Technology Research Center for Miao Medicine/Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guiyang, 550025, China; Department of Chemistry, University of Namur, NARILIS (Namur Research Institute for Life Sciences), Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Qingqing Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine/National Engineering Technology Research Center for Miao Medicine/Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guiyang, 550025, China
| | - Huixiao Fu
- The First People's Hospital of Guiyang, Guiyang, 550002, China
| | - Dan Wang
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine/National Engineering Technology Research Center for Miao Medicine/Guizhou Engineering Technology Research Center for Processing and Preparation of Traditional Chinese Medicine and Ethnic Medicine, Guiyang, 550025, China
| | - Aurélie Mayard
- Research Unit in Biology of Microorganisms (URBM), NARILIS (Namur Research Institute for Life Sciences), University of Namur, Rue de Bruxelles 61, 5000, Namur, Belgium
| | - Weidong Pan
- School of Pharmaceutical Sciences, Guizhou University, Guiyang, 550025, China.
| | - Stéphane P Vincent
- Department of Chemistry, University of Namur, NARILIS (Namur Research Institute for Life Sciences), Rue de Bruxelles 61, 5000, Namur, Belgium.
| |
Collapse
|
2
|
Nägeli M, Rodriguez S, Iradukunda A, Manson AL, Earl AM, Brennan-Krohn T. Rapid emergence of resistance to broad-spectrum direct antimicrobial activity of avibactam. Microbiol Spectr 2025:e0324124. [PMID: 40503840 DOI: 10.1128/spectrum.03241-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 04/28/2025] [Indexed: 06/18/2025] Open
Abstract
Avibactam (AVI) is a diazabicyclooctane (DBO) β-lactamase inhibitor used clinically in combination with ceftazidime. At concentrations higher than those typically achieved in vivo, it also has broad-spectrum direct antibacterial activity against Enterobacterales strains, including metallo-β-lactamase-producing isolates, mediated by inhibition of penicillin-binding protein 2 (PBP2). This activity has some mechanistic similarities to that of more potent novel DBOs (zidebactam and nacubactam) in late clinical development. We found that resistance to AVI emerged readily, with a mutation frequency of 2 × 10-6 to 8 × 10-5. Whole-genome sequencing of resistant isolates revealed a heterogeneous mutational target that permitted bacterial survival and replication despite PBP2 inhibition, in line with prior studies of PBP2-targeting drugs. While such mutations are believed to act by upregulating the bacterial stringent response, we found a similarly high mutation frequency in bacteria deficient in components of the stringent response, although we observed a different set of mutations in these strains. Although avibactam-resistant strains had increased lag time, suggesting a fitness cost that might render them less problematic in clinical infections, there was no statistically significant difference in growth rates between susceptible and resistant strains. The finding of rapid emergence of resistance to avibactam as the result of a large and complex mutational target adds to our understanding of resistance to PBP2-targeting drugs and has potential implications for novel DBOs with potent direct antibacterial activity, which are being developed with the goal of expanding cell wall-active treatment options for multidrug-resistant gram-negative infections.IMPORTANCEAvibactam (AVI) is the first in a class of novel β-lactamase inhibitor antibiotics called diazabicyclooctanes (DBOs). In addition to its ability to inhibit bacterial β-lactamase enzymes that can destroy β-lactam antibiotics, we found that AVI had direct antibacterial activity, at concentrations higher than those used clinically, against even highly multidrug-resistant bacteria. This activity is the result of inhibition of the bacterial enzyme penicillin-binding protein 2 (PBP2). Resistance to other drugs that inhibit PBP2 occurs through mutations that involve upregulation of the bacterial "stringent response" to stress. We found that bacteria developed resistance to AVI at a high rate, as a result of mutations in stringent response genes. We also found that bacteria with impairments in the stringent response could still develop resistance to AVI through different mutations. Our findings indicate the importance of studying how resistance will emerge to newer, more potent DBOs in development and early clinical use.
Collapse
Affiliation(s)
- Michelle Nägeli
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Shade Rodriguez
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Aimee Iradukunda
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Abigail L Manson
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Ashlee M Earl
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Thea Brennan-Krohn
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Division of Infectious Diseases, Boston Children's Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
3
|
Kang Y, Cui J. The Role of blaOXA-101 and blaOXA-573 in Extensively Drug-Resistant/ Pan Drug-Resistant (XDR/PDR) Pseudomonas aeruginosa Resistance to Ceftazidime-Avibactam. Infect Drug Resist 2025; 18:2547-2555. [PMID: 40395970 PMCID: PMC12091062 DOI: 10.2147/idr.s506452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/18/2025] [Indexed: 05/22/2025] Open
Abstract
Objective To explore the association of the resistance of extensively drug-resistant/ pan-drug-resistant Pseudomonas aeruginosa (XDR/PDR-PA) to ceftazidime-avibactam (CZA) with various class D β-lactamase genes. Methods Twofold dilution was used to determine the minimum inhibitory concentration (MIC) of CZA against XDR/PDR-PA. Whole genome sequencing and bioinformatics analysis were used to determine the drug-resistant genes of each isolate. Pearson correlation coefficient and statistical analysis were used to assess the association of the resistance of XDR/PDR-PA to CZA and various class D β-lactamase genes. Results ST244 was the predominant type (34/68, 50%) among the 68 XDR/PDR-PA strains. Subsequently, ST357 was the second most prevalent type (5/68, 7.4%) strain. blaOXA-101 and blaOXA-573 genes were associated with resistance to CZA (p-value was 0.029 and 0.021, respectively) in the 68 XDR/PDR-PA isolates tested. Conclusion Our work found that blaOXA-101 and blaOXA-847 play a role in XDR/PDR-PA resistance to CZA.
Collapse
Affiliation(s)
- Yixin Kang
- Nankai University, Tianjin, People’s Republic of China
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| | - Junchang Cui
- Nankai University, Tianjin, People’s Republic of China
- College of Pulmonary & Critical Care Medicine, The Eighth Medical Center, Chinese PLA General Hospital, Beijing, People’s Republic of China
| |
Collapse
|
4
|
Benhadid-Brahmi Y, Amaris Hobson C, Abdelmoumene L, Jaouen E, Magnan M, Gits-Muselli M, Lescat M, Tenaillon O, Bonacorsi S, Birgy A. Evaluation of phenotypic and genotypic methods for detecting KPC variants. Antimicrob Agents Chemother 2025; 69:e0008225. [PMID: 40178306 PMCID: PMC12057356 DOI: 10.1128/aac.00082-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 02/27/2025] [Indexed: 04/05/2025] Open
Abstract
Klebsiella pneumoniae carbapenemases (KPCs) have spread and diversified extensively. To date, 242 clinical variants have been identified and harbor different hydrolytic capacities, thereby interfering with rapid diagnostic tests. The accurate detection of KPC variants is crucial to guide treatment and control measures in healthcare settings. We constructed KPC variants to assess the mutational impact on detection capacities of resistance-based tests. KPC variants (n = 45) were characterized phenotypically and used to measure the detection sensitivity of KPC detection methods (two lateral flow immunoassays [LFIAs], three hydrolysis tests, three selective culture media, and two PCR-based tests). We identified four antibiotic susceptibility patterns: "KPC-like" (23/45; 51%), "extended-spectrum beta-lactamase-like" (6/45; 13%), "ceftazidimase" (9/45; 20%), and outlier variants with "mixed-profiles" (5/45; 11%). These phenotypes had different impacts on the detection capabilities of hydrolysis tests (0%-100%), LFIA (44%-100%), and selective culture media (0%-100%), highlighting a risk of misdiagnosis for some KPC variants. All variants were detected with PCR-based tests. To detect the maximum of KPC variants, fecal carriage screening requires a combination of selective media targeting resistance to carbapenems, third-generation cephalosporins, and ceftazidime-avibactam. From antibiotic susceptibility testing, resistance to ceftazidime ± avibactam and specific phenotypic profiles should be used as warnings to track the presence of KPC variants. We recommend LFIA as a first-line test, owing to its high sensitivity in detecting KPC variants. Nevertheless, using a combination of tests may remain wise in some situations. The spread of KPC variants remains a significant concern, particularly as reversion to ancestral phenotype could restore carbapenem resistance and lead to therapeutic failure.
Collapse
Affiliation(s)
- Yasmine Benhadid-Brahmi
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
- Service de Microbiologie, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Claire Amaris Hobson
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
- Service de Maladies Infectieuses et Tropicales, Hôpital Bichat, AP-HP, Paris, France
| | - Lydia Abdelmoumene
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
| | - Ella Jaouen
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
| | - Mélanie Magnan
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
| | - Maud Gits-Muselli
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
- Service de Microbiologie, Hôpital Robert-Debré, AP-HP, Paris, France
| | - Mathilde Lescat
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
- Bacteriology Unit, CNR le Charbon, Microbiology and Infectious Diseases Department, Institut de Recherche Biomédicale des Armées, Brétigny-sur-Orge, Île-de-France, France
| | - Olivier Tenaillon
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
| | - Stéphane Bonacorsi
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
- Service de Microbiologie, Hôpital Robert-Debré, AP-HP, Paris, France
| | - André Birgy
- IAME, UMR 1137, INSERM, Université Paris Cité, Paris, Île-de-France, France
- Service de Microbiologie, Hôpital Robert-Debré, AP-HP, Paris, France
| |
Collapse
|
5
|
Hernando-Amado S, Gomis-Font MA, Valverde JR, Oliver A, Martínez JL. Ceftazidime-avibactam use selects multidrug-resistance and prevents designing collateral sensitivity-based therapies against Pseudomonas aeruginosa. Nat Commun 2025; 16:3323. [PMID: 40204696 PMCID: PMC11982268 DOI: 10.1038/s41467-025-58597-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 03/28/2025] [Indexed: 04/11/2025] Open
Abstract
Ceftazidime-avibactam is a β-lactam/β-lactamase inhibitor combination restricted for the treatment of multidrug-resistant infections of Pseudomonas aeruginosa non-susceptible to ceftazidime and resistant to carbapenems. Crucially, it has not been studied if its use could allow the design or application of new or stablished evolution-based strategies that exploit the increased susceptibility that emerges when resistance is acquired (collateral sensitivity, CS). Works in the field have focused on the study of CS in model strains, but to be exploited it must robustly emerge in pre-existing resistant mutants that can coexist in a patient. This is the first analysis of CS robustness on this last-resort drug. We evolved 15 clinical isolates on ceftazidime-avibactam and in absence of inhibitor, and here we show that we found no robust -exploitable- pattern of CS. This, together with the selection of cross-resistance and the impossibility of using previously described CS-based strategies, supports that avibactam should be restricted for the treatment of particular genotypes.
Collapse
Affiliation(s)
| | - María A Gomis-Font
- Servicio de Microbiología, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC., Hospital Universitario Son Espases, Palma de Mallorca, Spain
| | | | - Antonio Oliver
- Servicio de Microbiología, Instituto de Investigación Sanitaria Illes Balears, CIBERINFEC., Hospital Universitario Son Espases, Palma de Mallorca, Spain.
| | | |
Collapse
|
6
|
Tu Y, Gao H, Wang F, Zhao R, Chen S, Chang Y, Li H. Genomic and molecular characterization of a ceftazidime-avibactam resistant Klebsiella pneumoniae strain isolated from a Chinese tertiary hospital. BMC Microbiol 2025; 25:199. [PMID: 40200176 PMCID: PMC11978194 DOI: 10.1186/s12866-025-03929-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 03/24/2025] [Indexed: 04/10/2025] Open
Abstract
OBJECTIVE This study aims to investigate the molecular biological characteristics of a ceftazidime-avibactam resistant Klebsiella pneumoniae strain isolated from a tertiary care hospital in China. METHODS The K. pneumoniae strain KP217360, isolated from a urine specimen at Li Huili Hospital affiliated with Ningbo University, was analyzed for antimicrobial susceptibility using the VITEK-2 Compact automated system. Antimicrobial susceptibility testing for polymyxin, tigecycline, and ceftazidime-avibactam was performed using broth microdilution according to CLSI guidelines. Whole genome sequencing was conducted using the Illumina platform, followed by comprehensive genomic analysis to characterize resistance determinants and virulence-associated genes. Experiments on conjugation were conducted to evaluate the transmissibility of the resistance plasmids. The virulence potential was evaluated through in vivo experiments using Galleria mellonella larvae as an infection model. RESULTS The K. pneumoniae KP217360 strain demonstrated extensive antimicrobial resistance, showing non-susceptibility to imipenem, ertapenem and ceftazidime-avibactam. Genomic characterization revealed the strain belonged to capsular type KL16 and harbored multiple resistance determinants, including blaCTX-M-65, blaSHV-103 and blaTEM-1, along with iron acquisition-associated virulence factors (iutA, entABCDEF, and iroN). Plasmid analysis identified three distinct plasmids, among which an IncX3-type plasmid carrying blaNDM-5 was confirmed, while the functional characteristics of the remaining two plasmids require further investigation. In the Galleria mellonella infection model, the 72-hour post-infection survival rates significantly differed among groups (P < 0.001), with NTUH-K2044, KP217360 and ATCC700603 showing survival rates of 26.7%, 56.7% and 80%, respectively. Subsequent analysis using the Pathogen Host Interactions (PHI) database identified 1,349 genes in the KP217360 strain were expressed for reduced virulence. CONCLUSION This study reports the first identification of a ceftazidime-avibactam resistant K. pneumoniae ST685 strain carrying blaNDM-5 in Ningbo, Zhejiang Province, China. The findings underscore the urgent need for implementing comprehensive antimicrobial resistance surveillance programs and strengthening infection control measures to mitigate the dissemination of IncX3-type plasmids harboring blaNDM-5 in healthcare settings. Furthermore, our results emphasize the critical importance of establishing rapid enzymatic detection platforms in clinical microbiology laboratories to facilitate timely and precise therapeutic decision-making, thereby optimizing antimicrobial stewardship and improving patient outcomes.
Collapse
Affiliation(s)
- Yanye Tu
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315000, China
| | - Hui Gao
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315000, China.
| | - Feng Wang
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315000, China
| | - Rongqing Zhao
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315000, China
| | - Shiyong Chen
- Department of Hospital-acquired Infection Control, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315000, China
| | - Yanzi Chang
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315000, China
| | - Hong Li
- Department of Clinical Laboratory, The Affiliated Li Huili Hospital, Ningbo University, Ningbo, 315000, China.
| |
Collapse
|
7
|
Boşnak C, Akova M. Febrile neutropenia management in high-risk neutropenic patients: a narrative review on antibiotic prophylaxis and empirical treatment. Expert Rev Anti Infect Ther 2025:1-15. [PMID: 40163819 DOI: 10.1080/14787210.2025.2487149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/19/2025] [Accepted: 03/25/2025] [Indexed: 04/02/2025]
Abstract
INTRODUCTION Although febrile neutropenia (FN) remains a major cause of morbidity and mortality in patients with hematologic malignancies and hematopoietic stem cell transplant (HSCT) recipients, the increasing prevalence of antimicrobial resistance necessitates a reassessment of antibiotic prophylaxis and treatment strategies. AREAS COVERED This review explores the prophylactic and therapeutic use of antibiotics in FN management, with a particular focus on patients with hematologic malignancies - particularly acute leukemia - and HSCT recipients. EXPERT OPINION Challenges in FN management, including antibiotic prophylaxis and treatment optimization, remain due to the complexity of the condition. Pathogens with emerging antibacterial resistance cause significant concern in the management of patients. Particularly due to selection potential of resistant Gram-negative bacteria (GNB), fluoroquinolones (FQs) have become less attractive agents for prophylaxis. Whereas, emerging data may help to revitalize long-abandoned aminoglycoside containing combination therapies particularly in high-risk patients with presumed sepsis. With only a few agents available for highly resistant bacteria alternative treatment strategies including pharmacokinetic/pharmacodynamic (PK/PD) concerning antibiotic applications may be warranted. Carefully designed, randomized, controlled trials providing large scale data which then can be analyzed with emerging artificial intelligence (AI) technologies are needed. The results from such trials may allow a better, data-driven approaches for management of FN.
Collapse
|
8
|
Liu H, Zhu M, Lu J, Wu S, Ye R, Pan W, Li Y, Bao Q, Huang D. Emergence and characterization of IncFII/IncR plasmids with multiple 5,692 bp- bla KPC-2-bearing tandem repeats in ceftazidime/avibactam non-susceptible Klebsiella pneumoniae strains. Front Microbiol 2025; 16:1534631. [PMID: 40248432 PMCID: PMC12003348 DOI: 10.3389/fmicb.2025.1534631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/17/2025] [Indexed: 04/19/2025] Open
Abstract
Ceftazidime/avibactam (CAZ/AVI) is widely recognized as an effective treatment for infections caused by KPC-producing Klebsiella pneumoniae (KPC-Kp). However, the prevalence of CAZ/AVI resistance among KPC-Kp isolates has increased rapidly in recent years. In this study, high-level carbapenem resistance and enhanced CAZ/AVI resistance were observed in two hypervirulent carbapenem-resistant K. pneumoniae isolates, KP1878 and KP3034, following prolonged carbapenem use. Virulence phenotypes were confirmed using the string test and a Galleria mellonella larvae infection model. Real-time quantitative PCR revealed that the relative expression of bla KPC-2 in KP1878 and KP3034 was 2.4-fold and 11.6-fold higher, respectively, than that in the CAZ/AVI-susceptible KPC-Kp strain KP1880. Whole-genome sequencing showed that the bla KPC-2 gene resided within an identical 5,692-bp ΔklcA-korC-ΔISKpn6-bla KPC-2-ISKpn8-ΔtnpR-IS26 tandem repeat, which was replicated twice and four times in plasmids pKPC1878 and pKPC3034, respectively. Compared with KP1880, the β-lactamase hydrolysis activities of crude cell lysates derived from KP1878 and KP3034 were significantly higher in their ability to hydrolyze meropenem, ceftazidime, and nitrocefin. S1-nuclease-digested pulsed-field gel electrophoresis, along with Southern blot and restriction fragment length polymorphism fingerprinting, identified plasmid profiles but revealed one or more 5.6-kilobase variations in the regions hybridized with the KPC-specific probe. Further comparative genomic analysis suggested that a potential homologous recombination event occurred between the bla KPC-2-carrying plasmid and the pLVPK-like virulence plasmid of KP3034, leading to the generation of a cointegrated plasmid that combined both virulence and CAZ/AVI resistance.
Collapse
Affiliation(s)
- Hongmao Liu
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
- School of Laboratory Medicine and Life Sciences, Institue of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
| | - Mei Zhu
- Department of Clinical Laboratory, Zhejiang Hospital, Hangzhou, China
| | - Junwan Lu
- School of Laboratory Medicine and Life Sciences, Institue of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua University of Vocational Technology, Jinhua, China
| | - Shan Wu
- Department of Clinical Laboratory, The People's Hospital of Yuhuan, Taizhou, China
| | - Rujian Ye
- Department of Clinical Laboratory, The People's Hospital of Yuhuan, Taizhou, China
| | - Wei Pan
- Department of Clinical Laboratory, The People's Hospital of Yuhuan, Taizhou, China
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiyu Bao
- School of Laboratory Medicine and Life Sciences, Institue of Biomedical Informatics, Wenzhou Medical University, Wenzhou, China
- Medical Molecular Biology Laboratory, School of Medicine, Jinhua University of Vocational Technology, Jinhua, China
| | - Dawei Huang
- Department of Clinical Laboratory, The People's Hospital of Yuhuan, Taizhou, China
| |
Collapse
|
9
|
Farooq A, Drotleff B, Kroemer N, Han ML, Li J, Decousser JW, Schrey D, Buyck J, Grégoire N, Nordmann P, Wicha SG. Evaluation of in vitro pharmacodynamic drug interactions of ceftazidime-avibactam with tigecycline in ESBL- and carbapenemase producing Escherichia coli and Klebsiella pneumoniae. Int J Antimicrob Agents 2025; 65:107457. [PMID: 39894062 DOI: 10.1016/j.ijantimicag.2025.107457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/09/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND Combination therapy offers a promising option to enhance efficacy and prevent resistance. A comprehensive and quantitative assessment of the last-resort combination of ceftazidime/avibactam and tigecycline is not available. OBJECTIVE This study systematically investigated the pharmacodynamic interaction between ceftazidime/avibactam and tigecycline in clinical and isogenic Escherichia coli and Klebsiella pneumoniae strains harbouring genes that encode various carbapenemases or ESBLs. METHODS An adaptive in vitro 'dynamic' checkerboard design and pharmacometric modelling were employed for the evaluation of pharmacodynamic interactions in fifteen bacterial isolates. Additionally, time-kill assays and metabolomic analyses were used to provide mechanistic insights. RESULTS Antagonistic drug interactions between ceftazidime/avibactam and tigecycline were identified in the majority of tested strains. Time-kill assays confirmed antagonistic interactions, with tigecycline limiting ceftazidime/avibactam total killing. Metabolomic analyses of mono and combined drug exposure to bacteria revealed matching metabolomes in tigecycline alone and the combination with ceftazidime/avibactam, corroborating the identified antagonism between these drugs. CONCLUSIONS Our study reveals that the antagonistic interaction between ceftazidime/avibactam and tigecycline can undermine ceftazidime/avibactam's efficacy, suggesting limited clinical benefit in combining these antibiotics. Therefore, further research is encouraged to explore this and alternative combinations or approaches that may offer better clinical outcomes.
Collapse
Affiliation(s)
- Aneeq Farooq
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Bernhard Drotleff
- Metabolomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Niklas Kroemer
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Mei-Ling Han
- Department of Microbiology, Biomedicine Discovery Institute, Infection and Immunity Program, Monash University, Clayton, Victoria, Australia
| | - Jian Li
- Department of Microbiology, Biomedicine Discovery Institute, Infection and Immunity Program, Monash University, Clayton, Victoria, Australia
| | - Jean Winoc Decousser
- Dynamic Team - EA 7380, Faculté de Santé, Université Paris-Est-Créteil Val-De-Marne, Créteil, France
| | - David Schrey
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany
| | - Julien Buyck
- Inserm U1070, University of Poitiers, Poitiers, France
| | | | - Patrice Nordmann
- Medical and Molecular Microbiology, University of Fribourg, Fribourg, Switzerland
| | - Sebastian G Wicha
- Department of Clinical Pharmacy, Institute of Pharmacy, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
10
|
He M, Jiang Y, Wu H, Xu X, Jiang H. Disseminated organ and tissue infection secondary to carbapenem-resistant Klebsiella pneumoniae bloodstream infection for acute lymphoblastic leukemia treated with ceftazidime-avibactam: Two case reports. Medicine (Baltimore) 2025; 104:e41195. [PMID: 39792772 PMCID: PMC11730841 DOI: 10.1097/md.0000000000041195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/16/2024] [Indexed: 01/12/2025] Open
Abstract
RATIONALE Carbapenem-resistant Klebsiella pneumoniae (CRKP) bloodstream infections are a severe complication resulting from granulocyte deficiency following chemotherapy for hematologic malignancies and have a high mortality rate. However, reports of disseminated organ infections secondary to bloodstream infections are rare. PATIENT CONCERNS AND DIAGNOSES We report 2 cases of patients with acute lymphoblastic leukemia who both developed CRKP bloodstream infections during the granulocyte deficiency stage following chemotherapy, with 1 case of secondary bacterial liver abscess and 1 case of secondary septic arthritis. INTERVENTIONS AND OUTCOMES Based on the results of drug sensitivity testing, both patients were treated with ceftazidime-avibactam, and the infections were rapidly and effectively controlled without significant adverse effects. LESSONS Ceftazidime-avibactam exhibited satisfactory efficacy and safety in the 2 cases of disseminated organ infection secondary to CRKP bloodstream infection following chemotherapy for acute lymphoblastic leukemia.
Collapse
Affiliation(s)
- Mingxia He
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, P.R. China
| | - Yuxia Jiang
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, P.R. China
| | - Haiying Wu
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, P.R. China
| | - Xiaofeng Xu
- Department of Hematology, Hangzhou Red Cross Hospital, Hangzhou, Zhejiang, P.R. China
| | - Huifang Jiang
- Department of Hematology, Tongde Hospital of Zhejiang Province, Hangzhou, P.R. China
| |
Collapse
|
11
|
Zhanel GG, Dhami R, Baxter M, Wong M, Mirzanejad Y, Kosar J, Cervera C, Irfan N, Borgia S, Serebryanskyy A, Ariano R, Savoie M, Tascini C, Walkty A, Karlowsky JA. Ceftolozane/Tazobactam treatment for patients with hospital-acquired and ventilatory-associated bacterial pneumonia in Canada in 2022-2024: results from the CLEAR registry. Expert Rev Anti Infect Ther 2024; 22:1221-1228. [PMID: 39324660 DOI: 10.1080/14787210.2024.2405930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 09/10/2024] [Indexed: 09/27/2024]
Abstract
BACKGROUND We report results from the national CLEAR (Canadian Leadership on Antimicrobial Real-Life Usage) registry on the usage of ceftolozane/tazobactam in Canada from 2022 to 2024. RESEARCH DESIGN AND METHODS The authors reviewed the final data using the national ethics approved CLEAR study. Thereafter, the literature is surveyed regarding the usage of ceftolozane/tazobactam to treat patients with HABP and VABP via PubMed (up to May 2024). RESULTS Ceftolozane/tazobactam was primarily used as directed therapy to treat HABP and VABP caused by Pseudomonas aeruginosa. It was primarily used alone, or in combination with another agent, to treat resistant and multidrug-resistant (MDR) P. aeruginosa infections. Despite primarily being used to treat severely ill patients in intensive care units, its use was associated with relatively high microbiological/clinical cure rates, along with an excellent safety profile. Several reports attest to the microbiological/clinical efficacy and safety of using ceftolozane/tazobactam to treat HABP and VABP. CONCLUSIONS In Canada, ceftolozane/tazobactam is primarily used as directed therapy alone, or in combination, to treat MDR P. aeruginosa infections. Though mostly used to treat severely ill patients in the ICU, ceftolozane/tazobactam use in HABP and VABP is associated with relatively high microbiological/clinical cure rates and an excellent safety profile.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rita Dhami
- Department of Pharmacy, London Health Sciences Centre, London, Ontario, Canada
| | - Melanie Baxter
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Maggie Wong
- Department of Pharmacy, Fraser Health, Vancouver, British Columbia, Canada
| | - Yazdan Mirzanejad
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Justin Kosar
- Department of Pharmacy, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| | - Carlos Cervera
- Division of Infectious Diseases, Faculty of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Neal Irfan
- Department of Pharmacy, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - Sergio Borgia
- Section of Infectious Diseases, William Osler Health System, Brampton, Ontario, Canada
| | - Alex Serebryanskyy
- Department of Pharmacy, London Health Sciences Centre, London, Ontario, Canada
| | - Robert Ariano
- Department of Pharmacy, St. Boniface General Hospital, Winnipeg, Manitoba, Canada
| | - Michel Savoie
- Department of Pharmacy, CIUSSS de l'Est-de-l'Île-de-Montréal, Montreal, Quebec, Canada
| | - Carlo Tascini
- Infectious Diseases Clinic, DAME, Udine University Hospital, Udine, Italy
| | - Andrew Walkty
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
12
|
Schwartz B, Klamer K, Zimmerman J, Kale-Pradhan PB, Bhargava A. Multidrug Resistant Pseudomonas aeruginosa in Clinical Settings: A Review of Resistance Mechanisms and Treatment Strategies. Pathogens 2024; 13:975. [PMID: 39599528 PMCID: PMC11597786 DOI: 10.3390/pathogens13110975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/03/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024] Open
Abstract
Pseudomonas aeruginosa is causing increasing concern among clinicians due to its high mortality and resistance rates. This bacterium is responsible for various infections, especially in hospital settings, affecting some of the most vulnerable patients. Pseudomonas aeruginosa has developed resistance through multiple mechanisms, making treatment challenging. Diagnostic techniques are evolving, with rapid testing systems providing results within 4-6 h. New antimicrobial agents are continuously being developed, offering potential solutions to these complex clinical decisions. This article provides a review of the epidemiology, at-risk populations, resistance mechanisms, and diagnostic and treatment options for Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Beth Schwartz
- Department of Internal Medicine, Henry Ford St. John Hospital, Detroit, MI 48236, USA
| | - Katherine Klamer
- Thomas Mackey Center for Infectious Disease, Henry Ford St. John Hospital, Detroit, MI 48201, USA;
| | - Justin Zimmerman
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Science, Wayne State University, Henry Ford St. John Hospital, Detroit, MI 48201, USA; (J.Z.); (P.B.K.-P.)
| | - Pramodini B. Kale-Pradhan
- Department of Pharmacy Practice, Eugene Applebaum College of Pharmacy and Health Science, Wayne State University, Henry Ford St. John Hospital, Detroit, MI 48201, USA; (J.Z.); (P.B.K.-P.)
| | - Ashish Bhargava
- Thomas Mackey Center for Infectious Disease, Henry Ford St. John Hospital, Detroit, MI 48201, USA;
- School of Medicine, Wayne State University, Detroit, MI 48021, USA
| |
Collapse
|
13
|
Torres-Rico M, García-Calvo V, Gironda-Martínez A, Pascual-Guerra J, García AG, Maneu V. Targeting calciumopathy for neuroprotection: focus on calcium channels Cav1, Orai1 and P2X7. Cell Calcium 2024; 123:102928. [PMID: 39003871 DOI: 10.1016/j.ceca.2024.102928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
As the uncontrolled entry of calcium ions (Ca2+) through plasmalemmal calcium channels is a cell death trigger, the conjecture is here raised that mitigating such an excess of Ca2+ entry should rescue from death the vulnerable neurons in neurodegenerative diseases (NDDs). However, this supposition has failed in some clinical trials (CTs). Thus, a recent CT tested whether isradipine, a blocker of the Cav1 subtype of voltage-operated calcium channels (VOCCs), exerted a benefit in patients with Parkinson's disease (PD); however, outcomes were negative. This is one more of the hundreds of CTs done under the principle of one-drug-one-target, that have failed in Alzheimer's disease (AD) and other NDDs during the last three decades. As there are myriad calcium channels to let Ca2+ ions gain the cell cytosol, it seems reasonable to predict that blockade of Ca2+ entry through a single channel may not be capable of preventing the Ca2+ flood of cells by the uncontrolled Ca2+ entry. Furthermore, as Ca2+ signaling is involved in the regulation of myriad functions in different cell types, it seems also reasonable to guess that a therapy should be more efficient by targeting different cells with various drugs. Here, we propose to mitigate Ca2+ entry by the simultaneous partial blockade of three quite different subtypes of plasmalemmal calcium channels that is, the Cav1 subtype of VOCCs, the Orai1 store-operated calcium channel (SOCC), and the purinergic P2X7 calcium channel. All three channels are expressed in both microglia and neurons. Thus, by targeting the three channels with a combination of three drug blockers we expect favorable changes in some of the pathogenic features of NDDs, namely (i) to mitigate Ca2+ entry into microglia; (ii) to decrease the Ca2+-dependent microglia activation; (iii) to decrease the sustained neuroinflammation; (iv) to decrease the uncontrolled Ca2+ entry into neurons; (v) to rescue vulnerable neurons from death; and (vi) to delay disease progression. In this review we discuss the arguments underlying our triad hypothesis in the sense that the combination of three repositioned medicines targeting Cav1, Orai1, and P2X7 calcium channels could boost neuroprotection and delay the progression of AD and other NDDs.
Collapse
Affiliation(s)
| | | | - Adrián Gironda-Martínez
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain
| | | | - Antonio G García
- Instituto Fundación Teófilo Hernando, Madrid, Spain; Departamento de Farmacología y Terapéutica, Universidad Autónoma de Madrid, Madrid, Spain; Facultad de Medicina, Instituto de Investigación Sanitaria del Hospital Universitario La Princesa, Universidad Autónoma de Madrid, Madrid, Spain.
| | - Victoria Maneu
- Departamento de Óptica, Farmacología y Anatomía, Universidad de Alicante, Alicante, Spain.
| |
Collapse
|
14
|
Pehlivanli A, Yanik Yalçin T, Yeşiler Fİ, Şahintürk H, Kurt Azap Ö, Zeyneloğlu P, Başgut B. Antimicrobial dosing recommendations during continuous renal replacement therapy: different databases, different doses. J Chemother 2024; 36:474-482. [PMID: 38409748 DOI: 10.1080/1120009x.2024.2321015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/14/2024] [Accepted: 02/14/2024] [Indexed: 02/28/2024]
Abstract
Meticulous antimicrobial management is essential among critically ill patients with acute kidney injury, particularly if renal replacement therapy is needed. Many factors affect drug removal in patients undergoing continuous renal replacement therapy CRRT. In this study, we aimed to compare current databases that are frequently used to adjust CRRT dosages of antimicrobial drugs with the gold standard. The dosage recommendations from various databases for antimicrobial drugs eliminated by CRRT were investigated. The book 'Renal Pharmacotherapy: Dosage Adjustment of Medications Eliminated by the Kidneys' was chosen as the gold standard. There were variations in the databases. Micromedex, UpToDate, and Sanford had similar rates to the gold standard of 45%, 35%, and 30%, respectively. The Micromedex database shows the most similar results to the gold standard source. In addition, a consensus was reached as a result of the expert panel meetings established to discuss the different antimicrobial dose recommendations of the databases.
Collapse
Affiliation(s)
- Aysel Pehlivanli
- Pharmacology Department, Faculty of Pharmacy, Başkent University
- Clinical Pharmacy and Drug Information Center, Ankara Hospital, Başkent University
| | - Tuğba Yanik Yalçin
- Infectious Diseases and Clinical Microbiology Department, Faculty of Medicine, Başkent University
| | - Fatma İrem Yeşiler
- Anesthesiology and Critical Care Unit Department, Faculty of Medicine, Başkent University
| | - Helin Şahintürk
- Anesthesiology and Critical Care Unit Department, Faculty of Medicine, Başkent University
| | - Özlem Kurt Azap
- Infectious Diseases and Clinical Microbiology Department, Faculty of Medicine, Başkent University
| | - Pınar Zeyneloğlu
- Anesthesiology and Critical Care Unit Department, Faculty of Medicine, Başkent University
| | - Bilgen Başgut
- Pharmacology Department, Faculty of Pharmacy, Başkent University
- Clinical Pharmacy and Drug Information Center, Ankara Hospital, Başkent University
| |
Collapse
|
15
|
Nägeli M, Rodriguez S, Manson AL, Earl AM, Brennan-Krohn T. Rapid Emergence of Resistance to Broad-Spectrum Direct Antimicrobial Activity of Avibactam. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.615047. [PMID: 39386481 PMCID: PMC11463622 DOI: 10.1101/2024.09.25.615047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Avibactam (AVI) is a diazabicyclooctane (DBO) β-lactamase inhibitor used clinically in combination with ceftazidime. At concentrations higher than those typically achieved in vivo, it also has broad-spectrum direct antibacterial activity against Enterobacterales strains, including metallo-β-lactamase-producing isolates, mediated by inhibition of penicillin-binding protein 2 (PBP2). This activity is mechanistically similar to that of more potent novel DBOs (zidebactam, nacubactam) in late clinical development. We found that resistance to AVI emerged readily, with a mutation frequency of 2×10-6 to 8×10-5. Whole genome sequencing of resistant isolates revealed a heterogeneous mutational target that permitted bacterial survival and replication despite PBP2 inhibition, in line with prior studies of PBP2-targeting drugs. While such mutations are believed to act by upregulating the bacterial stringent response, we found a similarly high mutation frequency in bacteria deficient in components of the stringent response, although we observed a different set of mutations in these strains. Although avibactam-resistant strains had increased lag time, suggesting a fitness cost that might render them less problematic in clinical infections, there was no statistically significant difference in growth rates between susceptible and resistant strains. The finding of rapid emergence of resistance to avibactam as the result of a large mutational target has important implications for novel DBOs with potent direct antibacterial activity, which are being developed with the goal of expanding cell wall-active treatment options for multidrug-resistant gram-negative infections but may be vulnerable to treatment-emergent resistance.
Collapse
Affiliation(s)
- Michelle Nägeli
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Shade Rodriguez
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
| | - Abigail L. Manson
- Infectious Disease & Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashlee M. Earl
- Infectious Disease & Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Thea Brennan-Krohn
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, USA
- Division of Infectious Diseases, Boston Children’s Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
16
|
Valzano F, La Bella G, Lopizzo T, Curci A, Lupo L, Morelli E, Mosca A, Marangi M, Melfitano R, Rollo T, De Nittis R, Arena F. Resistance to ceftazidime-avibactam and other new β-lactams in Pseudomonas aeruginosa clinical isolates: a multi-center surveillance study. Microbiol Spectr 2024; 12:e0426623. [PMID: 38934607 PMCID: PMC11302676 DOI: 10.1128/spectrum.04266-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 06/09/2024] [Indexed: 06/28/2024] Open
Abstract
New β-lactam-β-lactamase inhibitor combinations represent last-resort antibiotics to treat infections caused by multidrug-resistant Pseudomonas aeruginosa. Carbapenemase gene acquisition can limit their spectrum of activity, and reports of resistance toward these new molecules are increasing. In this multi-center study, we evaluated the prevalence of resistance to ceftazidime-avibactam (CZA) and comparators among P. aeruginosa clinical isolates from bloodstream infections, hospital-acquired or ventilator-associated pneumonia, and urinary tract infections, circulating in Southern Italy. We also investigated the clonality and content of relevant β-lactam resistance mechanisms of CZA-resistant (CZAR) isolates. A total of 120 P. aeruginosa isolates were collected. CZA was among the most active β-lactams, retaining susceptibility in the 81.7% of cases, preceded by cefiderocol (95.8%) and followed by ceftolozane-tazobactam (79.2%), meropenem-vaborbactam (76.1%), imipenem-relebactam (75%), and aztreonam (69.6%). Among non-β-lactams, colistin and amikacin were active against 100% and 85.8% of isolates respectively. In CZAR strains subjected to whole-genome sequencing (n = 18), resistance was mainly due to the expression of metallo-β-lactamases (66.6% VIM-type and 5.5% FIM-1), followed by PER-1 (16.6%) and GES-1 (5.5%) extended-spectrum β-lactamases, mostly carried by international high-risk clones (ST111 and ST235). Of note, two strains producing the PER-1 enzyme were resistant to all β-lactams, including cefiderocol. In conclusion, the CZA resistance rate among P. aeruginosa clinical isolates in Southern Italy remained low. CZAR isolates were mostly metallo-β-lactamases producers and belonging to ST111 and ST253 epidemic clones. It is important to implement robust surveillance systems to monitor emergence of new resistance mechanisms and to limit the spread of P. aeruginosa high-risk clones. IMPORTANCE Multidrug-resistant Pseudomonas aeruginosa infections are a growing threat due to the limited therapeutic options available. Ceftazidime-avibactam (CZA) is among the last-resort antibiotics for the treatment of difficult-to-treat P. aeruginosa infections, although resistance due to the acquisition of transferable β-lactamase genes is increasing. With this work, we report that CZA represents a highly active antipseudomonal β-lactam compound (after cefiderocol), and that metallo-β-lactamases (VIM-type) and extended-spectrum β-lactamases (GES and PER-type) production is the major factor underlying CZA resistance in isolates from Southern Italian hospitals. In addition, we reported that such resistance mechanisms were mainly carried by the international high-risk clones ST111 and ST235.
Collapse
Affiliation(s)
- Felice Valzano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Gianfranco La Bella
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Istituto Zooprofilattico Sperimentale della Puglia e della Basilicata, Foggia, Italy
| | - Teresa Lopizzo
- Clinical Pathology and Microbiology Unit, AOR San Carlo, Potenza, Italy
| | - Anna Curci
- Clinical Pathology and Microbiology Unit, AOR San Carlo, Potenza, Italy
| | - Laura Lupo
- Clinical Pathology and Microbiology Unit, Vito Fazzi Hospital, Lecce, Italy
| | | | - Adriana Mosca
- Department of Interdisciplinary Medicine, Microbiology Section, University of Bari Aldo Moro, Bari, Italy
| | - Marianna Marangi
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | | | - Tiziana Rollo
- Microbiology and Virology Unit, AOU Policlinico Riuniti, Foggia, Italy
| | - Rosella De Nittis
- Microbiology and Virology Unit, AOU Policlinico Riuniti, Foggia, Italy
| | - Fabio Arena
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
- Microbiology and Virology Unit, AOU Policlinico Riuniti, Foggia, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Florence, Italy
| |
Collapse
|
17
|
Zhanel GG, Kosar J, Baxter M, Dhami R, Borgia S, Irfan N, Dow G, Dube M, von den Baumen TR, Tascini C, Lee A, Chagla Z, Girouard G, Bourassa-Blanchette S, Wu M, Keynan Y, Walkty A, Karlowsky JA. How is ceftobiprole used in Canada: the CLEAR study final results. Expert Rev Anti Infect Ther 2024; 22:681-688. [PMID: 39008122 DOI: 10.1080/14787210.2024.2374280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND We report the final results of the clinical usage of ceftobiprole in patients in Canada from data in the national CLEAR (Canadian Le adership on Antimicrobial Real-Life Usage) registry. RESEARCH DESIGN AND METHODS The authors review the final data using the national ethics approved CLEAR study. Thereafter, the literature is surveyed regarding the usage of ceftobiprole to treat patients with infectious diseases via PubMed (up to March 2024). RESULTS In Canada, ceftobiprole is primarily used as directed therapy to treat a variety of severe infections caused by MRSA. It is primarily used in patients failing previous antimicrobials, is frequently added to daptomycin and/or vancomycin with high microbiological and clinical cure rates, along with an excellent safety profile. Several reports attest to the microbiological/clinical efficacy and safety of ceftobiprole. Ceftobiprole is also reported to be used empirically in select patients with community-acquired bacterial pneumonia (CABP), as well as hospital-acquired bacterial pneumonia (HABP). CONCLUSIONS In Canada, ceftobiprole is used mostly as directed therapy to treat a variety of severe infections caused by MRSA, in patients failing previous antimicrobials. It is frequently added to, and thus used in combination with daptomycin and/or vancomycin with high microbiological/clinical cure rates, and an excellent safety profile.
Collapse
Affiliation(s)
- George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Justin Kosar
- Department of Pharmacy, Royal University Hospital, Saskatoon, Saskatchewan, Canada
| | - Melanie Baxter
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Rita Dhami
- Department of Pharmacy, London Health Sciences Centre, London, Ontario, Canada
| | - Sergio Borgia
- Section of Infectious Diseases, William Osler Health System, Brampton, Ontario, Canada
| | - Neal Irfan
- Department of Pharmacy, Hamilton Health Sciences Centre, Hamilton, Ontario, Canada
| | - Gordon Dow
- Section of Infectious Diseases, Department of Medicine, The Moncton Hospital, New Brunswick, Canada
| | - Maxime Dube
- Department of Pharmacy, Sainte-Croix Hospital, Drummondville, Québec, Canada
| | | | - Carlo Tascini
- Infectious Diseases Clinic, DAME, Udine University Hospital, Udine, Italy
| | - Anna Lee
- Department of Pharmacy, Scarborough Health Network, Toronto, Ontario, Canada
| | - Zain Chagla
- Section of Infectious Diseases, St. Joseph's Healthcare, Hamilton, Ontario, Canada
| | - Gabriel Girouard
- Section of Infectious Diseases, Dr. Georges-L.-Dumont University Hospital, Moncton, New Brunswich, Canada
| | - Samuel Bourassa-Blanchette
- Medical Microbiology and Infectious Diseases, Memorial University of Newfoundland Faculty of Medicine, St. John's, Newfoundland, Canada
| | - May Wu
- Department of Pharmacy, Surrey Memorial Hospital, Vancouver, British Columbia, Canada
| | - Yoav Keynan
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Andrew Walkty
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| | - James A Karlowsky
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
18
|
Chao CM, Yu WL. Ceftolozane/tazobactam: Literature review of its activity on Taiwanese isolates before its launch in Taiwan (2012-2021). Heliyon 2024; 10:e33114. [PMID: 39040254 PMCID: PMC11260915 DOI: 10.1016/j.heliyon.2024.e33114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 07/24/2024] Open
Abstract
Ceftolozane, a novel cephalosporin, combined with tazobactam, a known β-lactamase inhibitor, shows robust antipseudomonal activity, although it doesn't cover carbapenemases. Our review of data from 2012 to 2021 in Taiwan highlights TOL/TAZ's in-vitro performance. TOL/TAZ is most effective against Pseudomonas aeruginosa (91.3-94.4 % susceptible, with an MIC <4 μg/mL). It also demonstrates good activity against Enterobacterales, including Escherichia coli (88-94.3 % susceptible), Klebsiella pneumoniae (72.6-84.1 % susceptible), Citrobacter koseri (93.3 % susceptible), Klebsiella oxytoca (98.1-100 % susceptible), and Proteus mirabilis (100 % susceptible). However, its efficacy varies among species typically associated with chromosomally-mediated AmpC production, such as Morganella morganii (100 % susceptible), Serratia marcescens (81.3-90.0 % susceptible), Enterobacter cloacae species complex (76.6-76.7 % susceptible), Klebsiella aerogenes (66.7-89.6% susceptible), and Citrobacter freundii (60.0 % susceptible). For carbapenem-nonsusceptible isolates, TOL/TAZ is less effective against K. pneumoniae and E. coli (susceptibility <10 %) but remains useful for P. aeruginosa (susceptibility 81.3-91.8 %). In conclusion, TOL/TAZ shows potent activity against P. aeruginosa and carbapenem-susceptible Enterobacterales in Taiwan.
Collapse
Affiliation(s)
- Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, 73657, Taiwan
- Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan, 73657, Taiwan
| | - Wen-Liang Yu
- Department of Intensive Care Medicine, Chi Mei Medical Center, Tainan City, Taiwan
- Department of Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei City, Taiwan
| |
Collapse
|
19
|
Yamatani I, Aono A, Fujiwara K, Asami T, Kamada K, Morishige Y, Igarashi Y, Chikamatsu K, Murase Y, Yamada H, Takaki A, Komiya K, Mitarai S. In vitro effects of the new oral β-lactamase inhibitor xeruborbactam in combination with oral β-lactams against clinical Mycobacterium abscessus isolates. Microbiol Spectr 2024; 12:e0008424. [PMID: 38842354 PMCID: PMC11218443 DOI: 10.1128/spectrum.00084-24] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 05/02/2024] [Indexed: 06/07/2024] Open
Abstract
Non-tuberculosis mycobacteria (NTM), particularly Mycobacterium abscessus subsp. abscessus (M. abscessus), are increasingly being recognized as etiological agents of NTM pulmonary disease. However, treatment options for M. abscessus are limited owing to their natural resistance to most antibiotics, including β-lactams. M. abscessus produces a class A β-lactamase, whose activity is inhibited by cyclic boronic acid β-lactamase inhibitors. We aimed to evaluate the in vitro effects of xeruborbactam, a cyclic boronic acid β-lactamase inhibitor, against M. abscessus when combined with five β-lactams (amoxicillin, tebipenem, cefdinir, cefuroxime, and cefoxitin). The drug susceptibilities of 43 M. abscessus clinical isolates obtained from 43 patients between August 2005 and May 2014 were tested. The MIC results for each β-lactam with or without 4 µg/mL xeruborbactam were examined. Xeruborbactam lowered the MIC90 values of tebipenem, amoxicillin, cefuroxime, and cefdinir by 5, ≥4, 3, and 3 dilutions, respectively. The MIC90 values of cefoxitin without xeruborbactam were 32 µg/mL and did not change upon the addition of xeruborbactam. The lowest MIC90 value was obtained for tebipenem with xeruborbactam. Almost all isolates had an MIC of 4 µg/mL; one isolate had an MIC of 2 µg/mL. With respect to the susceptibility to the same family drug, the number of susceptible isolates increased from 1/43 (2%) to 43/43 (100%) for tebipenem with xeruborbactam. Combining tebipenem and xeruborbactam could be considered an effective all-oral regimen that benefits outpatient treatment of M. abscessus pulmonary disease. IMPORTANCE Mycobacterium abscessus subsp. abscessus (M. abscessus) disease is treated in two phases; injectable drugs for initial followed by others for continuation. There is a need to develop all-oral treatment methods for M. abscessus infection, especially in the continuation phase. However, treatment options for M. abscessus are limited owing to their natural resistance to most antibiotics. This is the first report to evaluate the in vitro effects of xeruborbactam, a cyclic boronic acid β-lactamase inhibitor capable of inhibiting the class A β-lactamase produced by M. abscessus, against 43 M. abscessus clinical isolates when combined with five β-lactam antibiotics. Xeruborbactam lowered the MIC90 values of tebipenem by five dilutions, and the number of susceptible isolates increased from 1/43 (2%) to 43/43 (100%). We showed that the tebipenem-xeruborbactam combination might be of interest to explore further as a potentially effective oral regimen for outpatient treatment of M. abscessus pulmonary disease.
Collapse
Affiliation(s)
- Izumi Yamatani
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Oita, Japan
| | - Akio Aono
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keiji Fujiwara
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Takahiro Asami
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Keisuke Kamada
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yuta Morishige
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yuriko Igarashi
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Kinuyo Chikamatsu
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Yoshiro Murase
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Hiroyuki Yamada
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
| | - Akiko Takaki
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Oita, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Kosaku Komiya
- Respiratory Medicine and Infectious Diseases, Oita University Faculty of Medicine, Oita, Japan
| | - Satoshi Mitarai
- Department of Mycobacterium Reference and Research, Research Institute of Tuberculosis, Japan Anti-Tuberculosis Association, Tokyo, Japan
- Department of Basic Mycobacteriosis, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
20
|
Caffrey AR, Appaneal HJ, Lopes VV, Riccobene TA, LaPlante KL. Real-world utilization of ceftazidime/avibactam among inpatients in the national Veterans Affairs Healthcare System. Am J Health Syst Pharm 2024; 81:509-520. [PMID: 38365226 DOI: 10.1093/ajhp/zxae038] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Indexed: 02/18/2024] Open
Abstract
PURPOSE Multidrug-resistant (MDR) infections are challenging to treat due to underlying patient conditions, pathogen characteristics, and high antibiotic resistance rates. As newer antibiotic therapies come to market, limited data exist about their real-world utilization. METHODS This was a national retrospective cohort study of ceftazidime/avibactam (approved in 2015) utilization among inpatients from the Veterans Affairs (VA) Healthcare System, from 2015 through 2021. Joinpoint regression was used to estimate time trends in utilization. RESULTS Ceftazidime/avibactam use increased by 52.3% each year (days of therapy per 1,000 bed days; 95% confidence interval, 12.4%-106.4%). We identified 1,048 unique predominantly male (98.3%) and white (66.2%; Black, 27.7%) patients treated with ceftazidime/avibactam, with a mean (SD) age of 71.5 (11.9) years. The most commonly isolated organisms were Pseudomonas aeruginosa (36.3%; carbapenem resistant, 80.6%; MDR, 65.0%) and Klebsiella species (34.1%; carbapenem resistant, 78.4%; extended-spectrum cephalosporin resistant, 90.7%). Common comorbid conditions included hypertension (74.8%), nervous system disorders (60.2%), diabetes mellitus (48.7%), and cancer (45.1%). Median time to ceftazidime/avibactam initiation from admission was 6 days, with a median of 3 changes in therapy before ceftazidime/avibactam initiation and a subsequent median length of inpatient stay of 14 days (median of 8 days of ceftazidime/avibactam therapy). Treatment heterogeneity was high, both before ceftazidime/avibactam initiation (89.6%) and during ceftazidime/avibactam treatment (85.6%), and common concomitant antibiotics included vancomycin (41.4%), meropenem (24.1%), cefepime (15.2%), and piperacillin/tazobactam (15.2%). The inpatient mortality rate was 23.6%, and 20.8% of patients had a subsequent admission with ceftazidime/avibactam treatment. CONCLUSION Utilization of ceftazidime/avibactam increased from 2015 to 2021 in the national VA Healthcare System. Ceftazidime/avibactam was utilized in complex, difficult-to-treat patients, with substantial treatment heterogeneity and variation in the causative organism and culture sites.
Collapse
Affiliation(s)
- Aisling R Caffrey
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, RI
- College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Haley J Appaneal
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, RI
- College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| | - Vrishali V Lopes
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, RI, USA
| | | | - Kerry L LaPlante
- Infectious Diseases Research Program, Providence Veterans Affairs Medical Center, Providence, RI
- College of Pharmacy, University of Rhode Island, Kingston, RI, USA
| |
Collapse
|
21
|
Singh G, Rana A, Smriti. Decoding antimicrobial resistance: unraveling molecular mechanisms and targeted strategies. Arch Microbiol 2024; 206:280. [PMID: 38805035 DOI: 10.1007/s00203-024-03998-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/29/2024]
Abstract
Antimicrobial resistance poses a significant global health threat, necessitating innovative approaches for combatting it. This review explores various mechanisms of antimicrobial resistance observed in various strains of bacteria. We examine various strategies, including antimicrobial peptides (AMPs), novel antimicrobial materials, drug delivery systems, vaccines, antibody therapies, and non-traditional antibiotic treatments. Through a comprehensive literature review, the efficacy and challenges of these strategies are evaluated. Findings reveal the potential of AMPs in combating resistance due to their unique mechanisms and lower propensity for resistance development. Additionally, novel drug delivery systems, such as nanoparticles, show promise in enhancing antibiotic efficacy and overcoming resistance mechanisms. Vaccines and antibody therapies offer preventive measures, although challenges exist in their development. Non-traditional antibiotic treatments, including CRISPR-Cas systems, present alternative approaches to combat resistance. Overall, this review underscores the importance of multifaceted strategies and coordinated global efforts to address antimicrobial resistance effectively.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| | - Anita Rana
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India.
| | - Smriti
- Department of Biosciences (UIBT), Chandigarh University, Punjab, 140413, India
| |
Collapse
|
22
|
Alshammari FA. Exploring the Antibacterial Potential of Artemisia judaica Compounds Targeting the Hydrolase/Antibiotic Protein in Klebsiella pneumoniae: In Vitro and In Silico Investigations. Pharmaceuticals (Basel) 2024; 17:667. [PMID: 38931335 PMCID: PMC11207000 DOI: 10.3390/ph17060667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 06/28/2024] Open
Abstract
Carbapenem antibiotic resistance is an emerging medical concern. Bacteria that possess the Klebsiella pneumoniae carbapenemase (KPC) protein, an enzyme that catalyzes the degradation of carbapenem antibiotics, have exhibited remarkable resistance to traditional and even modern therapeutic approaches. This study aimed to identify potential natural drug candidates sourced from the leaves of Artemisia judaica (A. judaica). The phytoconstituents present in A. judaica dried leaves were extracted using ethanol 80%. A reasonable amount of the extract was used to identify these phytochemicals via gas chromatography/mass spectrometry (GC/MS). One hundred twenty-two bioactive compounds from A. judaica were identified and subjected to docking analysis against the target bacterial protein. Four compounds (PubChem CID: 6917974, 159099, 628694, and 482788) were selected based on favorable docking scores (-9, -7.8, -7.7, and -7.5 kcal/mol). This computational investigation highlights the potential of these four compounds as promising antibacterial candidates against the specific KPC protein. Additionally, in vitro antibacterial assays using A. judaica extracts were conducted. The minimum inhibitory concentration (MIC) against the bacterium K. pneumonia was 125 μg/mL. Well-disk diffusion tests exhibited inhibition zones ranging from 10.3 ± 0.5 mm to 17 ± 0.5 mm at different concentrations, and time-kill kinetics at 12 h indicated effective inhibition of bacterial growth by A. judaica leaf extracts. Our findings have revealed the pharmaceutical potential of Artemisia judaica as a natural source for drug candidates against carbapenem-resistant pathogens.
Collapse
Affiliation(s)
- Fahdah Ayed Alshammari
- Department of Biology, College of Science, Northern Border University, Arar 76312, Saudi Arabia
| |
Collapse
|
23
|
Viscardi S, Topola E, Sobieraj J, Duda-Madej A. Novel Siderophore Cephalosporin and Combinations of Cephalosporins with β-Lactamase Inhibitors as an Advancement in Treatment of Ventilator-Associated Pneumonia. Antibiotics (Basel) 2024; 13:445. [PMID: 38786173 PMCID: PMC11117516 DOI: 10.3390/antibiotics13050445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/25/2024] Open
Abstract
In an era of increasing antibiotic resistance among pathogens, the treatment options for infectious diseases are diminishing. One of the clinical groups especially vulnerable to this threat are patients who are hospitalized in intensive care units due to ventilator-associated pneumonia caused by multidrug-resistant/extensively drug-resistant Gram-negative bacteria. In order to prevent the exhaustion of therapeutic options for this life-threatening condition, there is an urgent need for new pharmaceuticals. Novel β-lactam antibiotics, including combinations of cephalosporins with β-lactamase inhibitors, are proposed as a solution to this escalating problem. The unique mechanism of action, distinctive to this new group of siderophore cephalosporins, can overcome multidrug resistance, which is raising high expectations. In this review, we present the summarized results of clinical trials, in vitro studies, and case studies on the therapeutic efficacy of cefoperazone-sulbactam, ceftolozane-tazobactam, ceftazidime-avibactam, and cefiderocol in the treatment of ventilator-associated pneumonia. We demonstrate that treatment strategies based on siderophore cephalosporins and combinations of β-lactams with β-lactamases inhibitors show comparable or higher clinical efficacy than those used with classic pharmaceuticals, like carbapenems, colistin, or tigecycline, and are often associated with a lower risk of adverse events.
Collapse
Affiliation(s)
- Szymon Viscardi
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (J.S.)
| | - Ewa Topola
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (J.S.)
| | - Jakub Sobieraj
- Faculty of Medicine, Wroclaw Medical University, Ludwika Pasteura 1, 50-367 Wrocław, Poland; (E.T.); (J.S.)
| | - Anna Duda-Madej
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
| |
Collapse
|
24
|
Zhu X, Guo C, Xu S, Lv F, Guo Z, Lin S, Yang C, Deng Z, Chen S, Huang Y, Zhao Z, Li L. Clinical distribution of carbapenem genotypes and resistance to ceftazidime-avibactam in Enterobacteriaceae bacteria. Front Cell Infect Microbiol 2024; 14:1345935. [PMID: 38572315 PMCID: PMC10987847 DOI: 10.3389/fcimb.2024.1345935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 04/05/2024] Open
Abstract
Introduction Bacterial resistance is a major threat to public health worldwide. To gain an understanding of the clinical infection distribution, drug resistance information, and genotype of CRE in Dongguan, China, as well as the resistance of relevant genotypes to CAZ-AVI, this research aims to improve drug resistance monitoring information in Dongguan and provide a reliable basis for the clinical control and treatment of CRE infection. Methods VITEK-2 Compact automatic analyzer was utilized to identify 516 strains of CRE collected from January 2017 to June 2023. To determine drug sensitivity, the K-B method, E-test, and MIC methods were used. From June 2022 to June 2023, 80 CRE strains were selected, and GeneXpert Carba-R was used to detect and identify the genotype of the carbapenemase present in the collected CRE strains. An in-depth analysis was conducted on the CAZ-AVI in vitro drug sensitivity activity of various genotypes of CRE, and the results were statistically evaluated using SPSS 23.0 and WHONET 5.6 software. Results This study identified 516 CRE strains, with the majority (70.16%) being K.pneumoniae, followed by E.coli (18.99%). Respiratory specimens had highest detection rate with 53.77% identified, whereas urine specimens had the second highest detection rate with 17.99%. From June 2022 to June 2023, 95% of the strains tested using the CRE GeneXpert Carba-R assay possessed carbapenemase genes, of which 32.5% were blaNDM strains and 61.25% blaKPC strains. The results showed that CRE strains containing blaKPC had a significantly higher rate of resistance to amikacin, cefepime, and aztreonam than those harboring blaNDM. Conclusions The CRE strains isolated from Dongguan region demonstrated a high resistance rate to various antibiotics used in clinical practice but a low resistance rate to tigecycline. These strains produce Class A serine carbapenemases and Class B metals β-lactamases, with the majority of them carrying blaNDM and blaKPC. Notably, CRE strains with blaKPC and blaNDM had significantly lower resistance rates to tigecycline. CAZ-AVI showed a good sensitivity rate with no resistance to CRE strains carrying blaKPC. Therefore, CAZ-AVI and tigecycline should be used as a guide for rational use of antibiotics in clinical practice to effectively treat CRE.
Collapse
Affiliation(s)
- Xueyun Zhu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Laboratory Medicine, Dongguan Kanghua Hospital, Dongguan, China
| | - Caixia Guo
- The Fourth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengxi Xu
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Fei Lv
- Department of Laboratory Medicine, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Zhusheng Guo
- Department of Laboratory Medicine, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Sisi Lin
- Department of Laboratory Medicine, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - CongZhu Yang
- Department of Laboratory Medicine, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Zhuliang Deng
- Department of Laboratory Medicine, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Shaofeng Chen
- Department of Laboratory Medicine, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Ya Huang
- Department of Laboratory Medicine, Dongguan Songshan Lake Tungwah Hospital, Dongguan, China
| | - Zuguo Zhao
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Lu Li
- Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, School of Medical Technology, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| |
Collapse
|
25
|
Parwana D, Gu J, Chen S, Bethel CR, Marshall E, Hujer AM, Bonomo RA, Haider S. The Structural Role of N170 in Substrate-Assisted Deacylation in KPC-2 β-Lactamase. Angew Chem Int Ed Engl 2024; 63:e202317315. [PMID: 38227422 DOI: 10.1002/anie.202317315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/17/2024]
Abstract
The amino acid substitutions in Klebsiella pneumoniae carbapenemase 2 (KPC-2) that have arisen in the clinic are observed to lead to the development of resistance to ceftazidime-avibactam, a preferred treatment for KPC bearing Gram-negative bacteria. Specific substitutions in the omega loop (R164-D179) result in changes in the structure and function of the enzyme, leading to alterations in substrate specificity, decreased stability, and more recently observed, increased resistance to ceftazidime/avibactam. Using accelerated rare-event sampling well-tempered metadynamics simulations, we explored in detail the structural role of R164 and D179 variants that are described to confer ceftazidime/avibactam resistance. The buried conformation of D179 substitutions produce a pronounced structural disorder in the omega loop - more than R164 mutants, where the crystallographic omega loop structure remains mostly intact. Our findings also reveal that the conformation of N170 plays an underappreciated role impacting drug binding and restricting deacylation. The results further support the hypothesis that KPC-2 D179 variants employ substrate-assisted catalysis for ceftazidime hydrolysis, involving the ring amine of the aminothiazole group to promote deacylation and catalytic turnover. Moreover, the shift in the WT conformation of N170 contributes to reduced deacylation and an altered spectrum of enzymatic activity.
Collapse
Affiliation(s)
| | - Jing Gu
- UCL School of Pharmacy, London, UK
| | | | - Christopher R Bethel
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Emma Marshall
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Andrea M Hujer
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Robert A Bonomo
- Research Service, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Medicine, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Clinician Scientist Investigator, Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Cleveland, OH, USA
- Department of Molecular Biology and Microbiology, Pharmacology, Biochemistry, and Proteomics and Bioinformatics, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- CWRU-Cleveland VAMC Center for Antimicrobial Resistance and Epidemiology (Case VA CARES), Cleveland, OH, USA
| | - Shozeb Haider
- UCL School of Pharmacy, London, UK
- UCL Centre for Advanced Research Computing, London, UK
| |
Collapse
|
26
|
Hibbert T, Krpetic Z, Latimer J, Leighton H, McHugh R, Pottenger S, Wragg C, James CE. Antimicrobials: An update on new strategies to diversify treatment for bacterial infections. Adv Microb Physiol 2024; 84:135-241. [PMID: 38821632 DOI: 10.1016/bs.ampbs.2023.12.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
Ninety-five years after Fleming's discovery of penicillin, a bounty of antibiotic compounds have been discovered, modified, or synthesised. Diversification of target sites, improved stability and altered activity spectra have enabled continued antibiotic efficacy, but overwhelming reliance and misuse has fuelled the global spread of antimicrobial resistance (AMR). An estimated 1.27 million deaths were attributable to antibiotic resistant bacteria in 2019, representing a major threat to modern medicine. Although antibiotics remain at the heart of strategies for treatment and control of bacterial diseases, the threat of AMR has reached catastrophic proportions urgently calling for fresh innovation. The last decade has been peppered with ground-breaking developments in genome sequencing, high throughput screening technologies and machine learning. These advances have opened new doors for bioprospecting for novel antimicrobials. They have also enabled more thorough exploration of complex and polymicrobial infections and interactions with the healthy microbiome. Using models of infection that more closely resemble the infection state in vivo, we are now beginning to measure the impacts of antimicrobial therapy on host/microbiota/pathogen interactions. However new approaches are needed for developing and standardising appropriate methods to measure efficacy of novel antimicrobial combinations in these contexts. A battery of promising new antimicrobials is now in various stages of development including co-administered inhibitors, phages, nanoparticles, immunotherapy, anti-biofilm and anti-virulence agents. These novel therapeutics need multidisciplinary collaboration and new ways of thinking to bring them into large scale clinical use.
Collapse
Affiliation(s)
- Tegan Hibbert
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Zeljka Krpetic
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Joe Latimer
- School of Science, Engineering, and Environment, University of Salford, Salford, UK
| | - Hollie Leighton
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Rebecca McHugh
- School of Infection and Immunity, University of Glasgow, Glasgow, UK
| | - Sian Pottenger
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Charlotte Wragg
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection, Veterinary and Ecological Sciences (IVES), University of Liverpool, Liverpool, UK
| | - Chloë E James
- School of Science, Engineering, and Environment, University of Salford, Salford, UK.
| |
Collapse
|
27
|
Zhang S, Liao X, Ding T, Ahn J. Role of β-Lactamase Inhibitors as Potentiators in Antimicrobial Chemotherapy Targeting Gram-Negative Bacteria. Antibiotics (Basel) 2024; 13:260. [PMID: 38534695 DOI: 10.3390/antibiotics13030260] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Since the discovery of penicillin, β-lactam antibiotics have commonly been used to treat bacterial infections. Unfortunately, at the same time, pathogens can develop resistance to β-lactam antibiotics such as penicillins, cephalosporins, monobactams, and carbapenems by producing β-lactamases. Therefore, a combination of β-lactam antibiotics with β-lactamase inhibitors has been a promising approach to controlling β-lactam-resistant bacteria. The discovery of novel β-lactamase inhibitors (BLIs) is essential for effectively treating antibiotic-resistant bacterial infections. Therefore, this review discusses the development of innovative inhibitors meant to enhance the activity of β-lactam antibiotics. Specifically, this review describes the classification and characteristics of different classes of β-lactamases and the synergistic mechanisms of β-lactams and BLIs. In addition, we introduce potential sources of compounds for use as novel BLIs. This provides insights into overcoming current challenges in β-lactamase-producing bacteria and designing effective treatment options in combination with BLIs.
Collapse
Affiliation(s)
- Song Zhang
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Xinyu Liao
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Tian Ding
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
- Department of Food Science and Nutrition, Zhejiang University, Hangzhou 310058, China
| | - Juhee Ahn
- Department of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
- Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| |
Collapse
|
28
|
Sanz MB, Pasteran F, de Mendieta JM, Brunetti F, Albornoz E, Rapoport M, Lucero C, Errecalde L, Nuñez MR, Monge R, Pennini M, Power P, Corso A, Gomez SA. KPC-2 allelic variants in Klebsiella pneumoniae isolates resistant to ceftazidime-avibactam from Argentina: blaKPC-80, blaKPC-81, blaKPC-96 and blaKPC-97. Microbiol Spectr 2024; 12:e0411123. [PMID: 38319084 PMCID: PMC10913460 DOI: 10.1128/spectrum.04111-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 01/10/2024] [Indexed: 02/07/2024] Open
Abstract
Ceftazidime-avibactam (CZA) therapy has significantly improved survival rates for patients infected by carbapenem-resistant bacteria, including KPC producers. However, resistance to CZA is a growing concern, attributed to multiple mechanisms. In this study, we characterized four clinical CZA-resistant Klebsiella pneumoniae isolates obtained between July 2019 and December 2020. These isolates expressed novel allelic variants of blaKPC-2 resulting from changes in hotspots of the mature protein, particularly in loops surrounding the active site of KPC. Notably, KPC-80 had an K269_D270insPNK mutation near the Lys270-loop, KPC-81 had a del_I173 mutation within the Ω-loop, KPC-96 showed a Y241N substitution within the Val240-loop and KPC-97 had an V277_I278insNSEAV mutation within the Lys270-loop. Three of the four isolates exhibited low-level resistance to imipenem (4 µg/mL), while all remained susceptible to meropenem. Avibactam and relebactam effectively restored carbapenem susceptibility in resistant isolates. Cloning mutant blaKPC genes into pMBLe increased imipenem MICs in recipient Escherichia coli TOP10 for blaKPC-80, blaKPC-96, and blaKPC-97 by two dilutions; again, these MICs were restored by avibactam and relebactam. Frameshift mutations disrupted ompK35 in three isolates. Additional resistance genes, including blaTEM-1, blaOXA-18 and blaOXA-1, were also identified. Interestingly, three isolates belonged to clonal complex 11 (ST258 and ST11) and one to ST629. This study highlights the emergence of CZA resistance including unique allelic variants of blaKPC-2 and impermeability. Comprehensive epidemiological surveillance and in-depth molecular studies are imperative for understanding and monitoring these complex resistance mechanisms, crucial for effective antimicrobial treatment strategies. IMPORTANCE The emergence of ceftazidime-avibactam (CZA) resistance poses a significant threat to the efficacy of this life-saving therapy against carbapenem-resistant bacteria, particularly Klebsiella pneumoniae-producing KPC enzymes. This study investigates four clinical isolates exhibiting resistance to CZA, revealing novel allelic variants of the key resistance gene, blaKPC-2. The mutations identified in hotspots surrounding the active site of KPC, such as K269_D270insPNK, del_I173, Y241N and V277_I278insNSEAV, prove the adaptability of these pathogens. Intriguingly, low-level resistance to imipenem and disruptions in porin genes were observed, emphasizing the complexity of the resistance mechanisms. Interestingly, three of four isolates belonged to clonal complex 11. This research not only sheds light on the clinical significance of CZA resistance but also shows the urgency for comprehensive surveillance and molecular studies to inform effective antimicrobial treatment strategies in the face of evolving bacterial resistance.
Collapse
Affiliation(s)
- María Belén Sanz
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Fernando Pasteran
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Juan Manuel de Mendieta
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Florencia Brunetti
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Ezequiel Albornoz
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Melina Rapoport
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Celeste Lucero
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | | | - Maria Rosa Nuñez
- Hospital Provincial Neuquén Dr. Castro Rendón, Neuquén, Argentina
| | | | | | - Pablo Power
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Instituto de Investigaciones en Bacteriología y Virología Molecular (IBaViM), Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Alejandra Corso
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
| | - Sonia A. Gomez
- National and Regional Reference Laboratory in Antimicrobial Resistance (NRRLAR)-INEI-ANLIS Dr. Carlos G. Malbrán, Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| |
Collapse
|
29
|
Li X, Zhang J, Wang J, Long W, Liang X, Yang Y, Gong X, Li J, Liu L, Zhang X. Activities of aztreonam in combination with several novel β-lactam-β-lactamase inhibitor combinations against carbapenem-resistant Klebsiella pneumoniae strains coproducing KPC and NDM. Front Microbiol 2024; 15:1210313. [PMID: 38505552 PMCID: PMC10949892 DOI: 10.3389/fmicb.2024.1210313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 01/30/2024] [Indexed: 03/21/2024] Open
Abstract
Isolates coproducing serine/metallo-carbapenems are a serious emerging public health threat, given their rapid dissemination and the limited number of treatment options. The purposes of this study were to evaluate the in vitro antibacterial activity of novel β-lactam-β-lactamase inhibitor combinations (BLBLIs) against carbapenem-resistant Klebsiella pneumoniae (CRKP) coproducing metallo-β-lactamase and serine-β-lactamase, and to explore their effects in combination with aztreonam, meropenem, or polymyxin in order to identify the best therapeutic options. Four CRKP isolates coproducing K. pneumoniae carbapenemase (KPC) and New Delhi metallo-β-lactamase (NDM) were selected, and a microdilution broth method was used to determine their susceptibility to antibiotics. Time-kill assay was used to detect the bactericidal effects of the combinations of antibiotics. The minimum inhibitory concentration (MIC) values for imipenem and meropenem in three isolates did not decrease after the addition of relebactam or varbobactam, but the addition of avibactam to aztreonam reduced the MIC by more than 64-fold. Time-kill assay demonstrated that imipenem-cilastatin/relebactam (ICR) alone exerted a bacteriostatic effect against three isolates (average reduction: 1.88 log10 CFU/mL) and ICR combined with aztreonam exerted an additive effect. Aztreonam combined with meropenem/varbobactam (MEV) or ceftazidime/avibactam (CZA) showed synergistic effects, while the effect of aztreonam combined with CZA was inferior to that of MEV. Compared with the same concentration of aztreonam plus CZA combination, aztreonam/avibactam had a better bactericidal effect (24 h bacterial count reduction >3 log10CFU/mL). These data indicate that the combination of ATM with several new BLBLIs exerts powerful bactericidal activity, which suggests that these double β-lactam combinations might provide potential alternative treatments for infections caused by pathogens coproducing-serine/metallo-carbapenems.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Xiaoli Zhang
- Department of Microbiology, Yongchuan Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
30
|
Baciu AP, Baciu C, Baciu G, Gurau G. The burden of antibiotic resistance of the main microorganisms causing infections in humans - review of the literature. J Med Life 2024; 17:246-260. [PMID: 39044924 PMCID: PMC11262613 DOI: 10.25122/jml-2023-0404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 02/21/2024] [Indexed: 07/25/2024] Open
Abstract
One of the biggest threats to human well-being and public health is antibiotic resistance. If allowed to spread unchecked, it might become a major health risk and trigger another pandemic. This proves the need to develop antibiotic resistance-related global health solutions that take into consideration microdata from various global locations. Establishing positive social norms, guiding individual and group behavioral habits that support global human health, and ultimately raising public awareness of the need for such action could all have a positive impact. Antibiotic resistance is not just a growing clinical concern but also complicates therapy, making adherence to current guidelines for managing antibiotic resistance extremely difficult. Numerous genetic components have been connected to the development of resistance; some of these components have intricate paths of transfer between microorganisms. Beyond this, the subject of antibiotic resistance is becoming increasingly significant in medical microbiology as new mechanisms underpinning its development are identified. In addition to genetic factors, behaviors such as misdiagnosis, exposure to broad-spectrum antibiotics, and delayed diagnosis contribute to the development of resistance. However, advancements in bioinformatics and DNA sequencing technology have completely transformed the diagnostic sector, enabling real-time identification of the components and causes of antibiotic resistance. This information is crucial for developing effective control and prevention strategies to counter the threat.
Collapse
Key Words
- AOM, acute otitis media
- CDC, Centers for Disease Control and Prevention
- CRE, carbapenem-resistant Enterobacterales
- ESBL, extended-spectrum beta-lactamase
- Hib, Haemophilus influenzae type b
- LVRE, linezolid/vancomycin -resistant enterococci
- MBC, minimum bactericidal concentration
- MBL, metallo-beta-lactamases
- MDR, multidrug-resistant
- MIC, minimum inhibitor concentration
- MRSA, methicillin-resistant Staphylococcus aureus
- PBP, penicillin-binding protein
- SCCmec staphylococcal chromosomal cassette mec
- VRE, vancomycin-resistant enterococci
- XDR, extensively drug-resistant
- antibiotic resistance
- antibiotics
- beta-lactamase
- cIAI, complicated intra-abdominal infection
- cUTI, complicated urinary tract infection
- carbapenems
- methicillin-resistant Staphylococcus aureus
- vancomycin
Collapse
Affiliation(s)
| | - Carmen Baciu
- MedLife Hyperclinic Nicolae Balcescu, Galati, Romania
| | - Ginel Baciu
- Sf. Ioan Emergency Clinical Hospital for Children, Galati, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University, Galati, Romania
| | - Gabriela Gurau
- Sf. Ioan Emergency Clinical Hospital for Children, Galati, Romania
- Faculty of Medicine and Pharmacy, Dunarea de Jos University, Galati, Romania
| |
Collapse
|
31
|
Xiong Z, Zhang C, Sarbandi K, Liang Z, Mai J, Liang B, Cai H, Chen X, Gao F, Lan F, Liu X, Liu S, Zhou Z. Clinical and molecular epidemiology of carbapenem-resistant Enterobacteriaceae in pediatric inpatients in South China. Microbiol Spectr 2023; 11:e0283923. [PMID: 37819092 PMCID: PMC10714942 DOI: 10.1128/spectrum.02839-23] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 10/13/2023] Open
Abstract
IMPORTANCE This study assessed the clinical and molecular epidemiology of carbapenem-resistant Enterobacteriaceae in pediatric inpatients at three hospitals in South China by means of screening stool samples for carbapenem-resistant genes and a nested case-control study to determine risk factors for carriage of carbapenem-resistant Enterobacteriaceae. Of 4,033 fecal samples screened, 158 (3.92%) were positive for CRE, including Escherichia coli (51.27 %), Klebsiella pneumoniae (37.97%), and Enterobacter cloacae (6.96%). The most common carbapenemase genes harbored by gastrointestinal CRE strains were blaNDM-5, blaNDM-1, and blaIMP-4. Hematological malignancies, respiratory diseases, otolaryngological diseases, nervous system diseases, oral administration of third-generation cephalosporins, and the combined use of two or more antibiotics were independently associated with CRE colonization.
Collapse
Affiliation(s)
- Zhile Xiong
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Clinical Laboratory, Guangzhou, Guangdong, China
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt – Universität zu Berlin, Institute of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - Chao Zhang
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Clinical Laboratory, Guangzhou, Guangdong, China
| | - Kurosh Sarbandi
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt – Universität zu Berlin, Institute of Microbiology, Infectious Diseases and Immunology, Berlin, Germany
| | - Zhuwei Liang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Clinical Laboratory, Guangzhou, Guangdong, China
| | - Jialiang Mai
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Clinical Laboratory, Guangzhou, Guangdong, China
| | - Bingshao Liang
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Clinical Laboratory, Guangzhou, Guangdong, China
| | - Hao Cai
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Clinical Laboratory, Guangzhou, Guangdong, China
| | - Xiantang Chen
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Clinical Laboratory, Guangzhou, Guangdong, China
| | - Fei Gao
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Clinical Laboratory, Guangzhou, Guangdong, China
| | - Fangjun Lan
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, China
| | - Xiaochun Liu
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, China
| | - Shuyan Liu
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, China
| | - Zhenwen Zhou
- Longgang Maternity and Child Institute of Shantou University Medical College (Longgang District Maternity & Child Healthcare Hospital of Shenzhen City), Clinical Laboratory, Shenzhen, China
- Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Clinical Laboratory, Guangzhou, Guangdong, China
| |
Collapse
|
32
|
Palombo M, Secci B, Bovo F, Gatti M, Ambretti S, Gaibani P. In Vitro Evaluation of Increasing Avibactam Concentrations on Ceftazidime Activity against Ceftazidime/Avibactam-Susceptible and Resistant KPC-Producing Klebsiella pneumoniae Clinical Isolates. Antibiotics (Basel) 2023; 12:1707. [PMID: 38136741 PMCID: PMC10740727 DOI: 10.3390/antibiotics12121707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 12/05/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
The novel β-lactam/β-lactamase inhibitor combinations (βL-βLICs) are one of the last-line resources available against multidrug-resistant (MDR) Gram-negative bacteria. Among βL-βLICs, ceftazidime/avibactam (CAZ-AVI) demonstrated strong activity against carbapenem-resistant Enterobacterales (CRE). Avibactam was proven to restore bactericidal activity of ceftazidime, inhibiting both KPC and OXA-48-like β-lactamases. Despite this, emergence of CAZ-AVI-resistant strains in Enterobacterales has been reported. Herein, we evaluated the in vitro ceftazidime activity in the presence of increasing concentrations of avibactam by the broth microdilution method against CAZ-AVI-susceptible and resistant genome-characterized KPC-producing K. pneumoniae (KPC-Kp) clinical isolates. Strains expressing KPC and co-expressing KPC/OXA-181 carbapenemase were selected on the basis of the different phenotypic traits for novel βL-βLICs and cefiderocol. Notably, avibactam at 8 mg/L maintained the MIC of ceftazidime above the clinical breakpoint in 14 out of 15 (93%) KPC-Kp resistant to CAZ-AVI. A high concentration of avibactam (i.e., 64 mg/L) is required to observe a bactericidal activity of ceftazidime against 9 out of 15 (60%) CAZ-AVI-resistant isolates. In vitro evaluation showed that with the increase in the concentration of avibactam, ceftazidime showed high activity against CAZ-AVI-susceptible strains. High concentrations of avibactam in vivo are required for ceftazidime to be active against CAZ-AVI-resistant KPC-Kp.
Collapse
Affiliation(s)
- Marta Palombo
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy (F.B.); (S.A.)
| | - Benedetta Secci
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy (F.B.); (S.A.)
| | - Federica Bovo
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy (F.B.); (S.A.)
| | - Milo Gatti
- SSD Clinical Pharmacology-Department, Integrated Management of Infectious Risk, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy;
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Simone Ambretti
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy (F.B.); (S.A.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy
| | - Paolo Gaibani
- Division of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40126 Bologna, Italy (F.B.); (S.A.)
- Department of Diagnostic and Public Health, Microbiology Section, Verona University, 37134 Verona, Italy
| |
Collapse
|
33
|
Xu J, Luo C, Huang L, Xiao X, Liu L, Yang Z. Clinical Efficacy and Safety Evaluation of Ceftazidime-Avibactam in the Treatment of Klebsiella pneumoniae Infection: A Retrospective Analysis from a Hospital in China. Infect Drug Resist 2023; 16:7227-7237. [PMID: 38023408 PMCID: PMC10656859 DOI: 10.2147/idr.s435882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/04/2023] [Indexed: 12/01/2023] Open
Abstract
Background Ceftazidime-avibactam (CAZ-AVI) is a new cephalosporin/β-lactamase inhibitor combination that received clinical approval in China in 2019. This study aims to investigate the efficacy and safety of CAZ-AVI in the treatment of Klebsiella pneumoniae (KP) infection in a hospital, and differences in efficacy among various infection sites and between monotherapy and combination therapy, providing valuable insights for its further application. Methods Patients who used CAZ-AVI between January 2019 and April 2023 were identified through the hospital information system. Demographic information, details of the infection site, KP strain's drug sensitivity report, treatment duration, combination therapies, adverse drug reactions (ADR), and 28-day survival were recorded. Clinical and microbiological efficacies were analyzed using SPSS 23.0 software to compare different infection sites and combination therapies. Results The overall effective clinical response (CR) rate of CAZ-AVI against KP infection was 62.13%, with a favorable microbial response (MR) rate was 65.68% and a 28-day survival rate was 63.91%. No significant difference occurred in effective CR and 28-day survival rate among different infection sites (P = 0.709 and 0.862, respectively). The favorable MR rate for abdominal infections was slightly lower than that for other sites of infection (P = 0.021). No significant differences in effective CR, favorable MR, and 28-day survival between monotherapy and combination therapy were present (P values were 0.649, 0.123, and 0.280, respectively). The incidence of ADR was 1.78%, including increased creatinine, elevated transaminase, hematuria, and thrombocytopenia. Conclusion CAZ-AVI demonstrates good clinical efficacy and safety in the treatment of KP infections. The clinical efficacy of CAZ-AVI was similar across different infection sites, and combination therapy did not show an advantage over monotherapy. Further studies are warranted. It should be noted that CAZ-AVI may induce thrombocytopenia and hematuria.
Collapse
Affiliation(s)
- Jia Xu
- Department of Clinical Pharmacy, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410016, People’s Republic of China
| | - Chengjia Luo
- Department of Clinical Pharmacy, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410016, People’s Republic of China
| | - Liang Huang
- Department of Rehabilitation, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410016, People’s Republic of China
| | - Xi Xiao
- Department of Clinical Laboratory, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410016, People’s Republic of China
| | - Ling Liu
- Department of Clinical Pharmacy, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410016, People’s Republic of China
| | - Zhiling Yang
- Department of Clinical Pharmacy, Hunan Provincial People’s Hospital (The First-Affiliated Hospital of Hunan Normal University), Changsha, 410016, People’s Republic of China
| |
Collapse
|
34
|
Marino A, Campanella E, Stracquadanio S, Calvo M, Migliorisi G, Nicolosi A, Cosentino F, Marletta S, Spampinato S, Prestifilippo P, Stefani S, Cacopardo B, Nunnari G. Ceftazidime/Avibactam and Meropenem/Vaborbactam for the Management of Enterobacterales Infections: A Narrative Review, Clinical Considerations, and Expert Opinion. Antibiotics (Basel) 2023; 12:1521. [PMID: 37887222 PMCID: PMC10603868 DOI: 10.3390/antibiotics12101521] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 09/28/2023] [Accepted: 10/08/2023] [Indexed: 10/28/2023] Open
Abstract
This comprehensive review examines the unique attributes, distinctions, and clinical implications of ceftazidime-avibactam (CAZ-AVI) and meropenem-vaborbactam (MEM-VAB) against difficult-to-treat Enterobacterales infections. Our manuscript explores these antibiotics' pharmacokinetic and pharmacodynamic properties, antimicrobial activities, in vitro susceptibility testing, and clinical data. Moreover, it includes a meticulous examination of comparative clinical and microbiological studies, assessed and presented to provide clarity in making informed treatment choices for clinicians. Finally, we propose an expert opinion from a microbiological and a clinical point of view about their use in appropriate clinical settings. This is the first review aiming to provide healthcare professionals with valuable insights for making informed treatment decisions when combating carbapenem-resistant pathogens.
Collapse
Affiliation(s)
- Andrea Marino
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (B.C.); (G.N.)
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (A.N.); (S.S.)
| | - Edoardo Campanella
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (E.C.); (S.S.)
| | - Stefano Stracquadanio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (A.N.); (S.S.)
| | - Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-Vittorio Emanuele”, Via S. Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Giuseppe Migliorisi
- U.O.C. Laboratory Analysis Unit, A.O.U. “Policlinico-Vittorio Emanuele”, Via S. Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Alice Nicolosi
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (A.N.); (S.S.)
| | - Federica Cosentino
- Unit of Infectious Diseases, ARNAS Garibaldi Hospital, University of Catania, 95122 Catania, Italy;
| | - Stefano Marletta
- Department of Diagnostic and Public Health, Section of Pathology, University of Verona, 37124 Verona, Italy;
| | - Serena Spampinato
- Unit of Infectious Diseases, Department of Clinical and Experimental Medicine, University of Messina, 98124 Messina, Italy; (E.C.); (S.S.)
| | | | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy; (S.S.); (A.N.); (S.S.)
| | - Bruno Cacopardo
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (B.C.); (G.N.)
| | - Giuseppe Nunnari
- Department of Clinical and Experimental Medicine, University of Catania, 95123 Catania, Italy; (B.C.); (G.N.)
| |
Collapse
|
35
|
Rotstein C, Lynch JP, Zhanel GG. Hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP) in Canada: treatment update and the role of new IV antimicrobials. Expert Rev Anti Infect Ther 2023:1-13. [PMID: 37811572 DOI: 10.1080/14787210.2023.2268287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/04/2023] [Indexed: 10/10/2023]
Abstract
INTRODUCTION Hospital-acquired bacterial pneumonia (HABP) and ventilator-associated bacterial pneumonia (VABP) continue to be common infections causing significant morbidity and mortality worldwide. The timely initiation of empiric antimicrobial therapy is essential. In this paper, we provide a focused expert opinion on the current and potential empiric antimicrobial treatment options in HABP and VABP in Canada influenced by antimicrobial resistance impacting the use of older agents as well as available new intravenous (IV) antimicrobials. AREAS COVERED The authors discuss treatment options for HABP and VABP in Canada. In addition, we focus on the potential role of new IV antimicrobials recently introduced to Canada. A literature search of HABP and VABP treatments was performed via PubMed (up to March 2023), using the following key words: monotherapy, combination therapy, aminoglycosides, carbapenems, cephalosporins, fluoroquinolones, penicillins as well as amoxicillin/clavulanate, ceftobiprole, ceftolozane/tazobactam, dalbavancin, and fosfomycin. EXPERT OPINION Empiric antimicrobial treatment for HABP and VABP in Canada continues to focus on both the severity of illness and the presence/absence of patient risk factors for antimicrobial resistance. The role of new IV antimicrobials in the empiric treatment for HABP and VABP depends on their antimicrobial activity and published data on efficacy and safety and influenced by Health Canada-approved indications.
Collapse
Affiliation(s)
- Coleman Rotstein
- Division of Infectious Diseases, University of Toronto, and University Health Network, Toronto General Hospital, Toronto, Ontario, Canada
| | - Joseph P Lynch
- Division of Pulmonary, Critical Care Medicine, Allergy, and Clinical Immunology, Department of Internal Medicine, The David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - George G Zhanel
- Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
36
|
Shafiekhani M, Fatemi SA, Hosseini P, Marhemati F, Mohammadi S, Sharifi F, Moorkani Kurde Esfahani Pour A, Sadeghi Habibabad F, Saad Abadi N, Shorafa E, Azadi S. Pharmacokinetic and Pharmacodynamic Considerations of Novel Antibiotic Agents for Pediatric Infections: A Narrative Review. Surg Infect (Larchmt) 2023; 24:703-715. [PMID: 37831932 DOI: 10.1089/sur.2023.055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2023] Open
Abstract
Background: Currently, the escalation of microbial resistance poses a significant global challenge. Children are more susceptible to develop infections and therefore are prescribed antibiotics more frequently. The overuse and misuse of antibiotics in pediatric patients can play a considerable role in developing microbial resistance. Accordingly, many policies, including research into new antibiotic agents have been recommended to combat microbial resistance. Recent developments in novel antibiotics have shown promising results against multi-drug resistant (MDR) and extensive drug resistance (XDR) pathogens. However, as pediatric patients are typically excluded from the clinical trials of new medications, labeling and information about approved antibiotics should be improved. This study aimed to evaluate antibiotics having been introduced to the market in the last decade focusing on pediatric population. Methods: This study reviewed the published literatures on novel FDA-approved antibiotics released between 2010 and 2022. Results: Finally, seven newly approved antibiotics including ceftaroline fosamil, ceftazidime-avibactam, ceftolozane-tazobactam, ceftobiprole, imipenem-cilastatin-relebactam, meropenem-vaborbactam, and tedizolid were considered in the present review-article. All relevant data extracted from literatures, were discussed in different subtitles of "Pharmacology", "Mechanism of action", "Indication", "Dosage regimen and pharmacokinetic and pharmacodynamic properties", "Dosage adjustment in renal/liver failure", "Resistance pattern", and "Adverse drug events". Conclusion: This study reviewed available data on seven new antibiotic agents and their pharmacodynamic and pharmacokinetic properties, with a particular focus on their use in pediatric patients. The information presented in this review will be useful for healthcare professionals in selecting appropriate antibiotics for pediatric patients and for researchers in achieving the ideal therapeutic regimens.
Collapse
Affiliation(s)
- Mojtaba Shafiekhani
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz Transplant Center, Abu-Ali Sina Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Pouria Hosseini
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Marhemati
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soniya Mohammadi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sharifi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Negin Saad Abadi
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Eslam Shorafa
- Department of Pediatrics, Division of Pediatric Intensive Care, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Soha Azadi
- Department of Clinical Pharmacy, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
- Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
37
|
Mumtaz L, Farid A, Yousef Alomar S, Ahmad N, Nawaz A, Andleeb S, Amin A. Assesment of polyphenolic compounds against biofilms produced by clinical Acinetobacter baumannii strains using in silico and in vitro models. Saudi J Biol Sci 2023; 30:103743. [PMID: 37564783 PMCID: PMC10410175 DOI: 10.1016/j.sjbs.2023.103743] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 07/05/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
Several types of microbial infections are caused by Acinetobacter baumanii that has developed resistance to antimicrobial agents. We therefore investigated the role of plant polyphenols against A. baumannii using in silico and in vitro models. The clinical strains of A. baumannii were investigated for determination of resistance pattern and resistance mechanisms including efflux pump, extended spectrum beta lactamase, phenotype detection of AmpC production, and Metallo-β-lactamase. The polyphenolic compounds were docked against transcription regulator BfmR (PDB ID 6BR7) and antimicrobial, antibiofilm, and anti-quorum sensing activities were performed. The antibiogram studies showed that all isolated strains were resistant. Strain A77 was positive in Metallo-β-lactamase production. Similarly, none of strains were producers of AmpC, however, A77, A76, A75 had active efflux pumps. Molecular docking studies confirmed a strong binding affinity of Rutin and Catechin towards transcription regulator 6BR7. A significant antimicrobial activity was recorded in case of quercetin and syringic acid (MIC 3.1 µg/mL) followed by vanillic acid and caffeic acid (MIC 12.5 µg/mL). All tested compounds presented a strong antibiofilm activity against A. baumanii strain A77 (65 to 90%). It was concluded that all tested polyphenols samples posess antimicrobial and antibiofilm activities, and hence they may be utilized to treat multidrug resistance A. baumannii infections.
Collapse
Affiliation(s)
- Laraib Mumtaz
- Gomal Centre of Biochemistry and Biotechnology(GCBB), Gomal University, KPK, 29050 D.I.Khan, Pakistan
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, D.I.Khan 29050, Pakistan
| | - Arshad Farid
- Gomal Centre of Biochemistry and Biotechnology(GCBB), Gomal University, KPK, 29050 D.I.Khan, Pakistan
| | - Suliman Yousef Alomar
- Doping Research Chair, Zoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Naushad Ahmad
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Asif Nawaz
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, D.I.Khan 29050, Pakistan
| | - Saadia Andleeb
- Atta Ur Rehman School of Biological Sciences, National University of Science and Technology, Islamabad Pakistan
| | - Adnan Amin
- Gomal Centre of Pharmaceutical Sciences, Faculty of Pharmacy, Gomal University, D.I.Khan 29050, Pakistan
| |
Collapse
|
38
|
Mancuso A, Pipitò L, Rubino R, Distefano SA, Mangione D, Cascio A. Ceftazidime-Avibactam as Osteomyelitis Therapy: A Miniseries and Review of the Literature. Antibiotics (Basel) 2023; 12:1328. [PMID: 37627748 PMCID: PMC10451286 DOI: 10.3390/antibiotics12081328] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 08/14/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Bone and joint infections (BJIs) caused by multidrug-resistant gram-negative bacteria are becoming a concern due to limited therapeutic options. Although not approved for these indications, an ever-growing amount of evidence supports the efficacy and safety of ceftazidime-avibactam as a therapy for osteomyelitis and prosthetic joint infections. Here, we present three cases of difficult-to-treat resistant Pseudomonas aeruginosa osteomyelitis that were successfully treated with ceftazidime-avibactam alone or in combination therapy with fosfomycin and amikacin. Ceftazidime-avibactam was prescribed at a daily dose of 2.5 g every 8 h for 42 days in all cases. One potential drug-related adverse effect was observed, i.e., Clostridioides difficile infection, which occurred after fourteen days of treatment with ceftazidime-avibactam.
Collapse
Affiliation(s)
- Alessandro Mancuso
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D′Alessandro”, University of Palermo, 90127 Palermo, Italy
- Infectious and Tropical Disease Unit, Sicilian Regional Reference Centre for the Fight against AIDS, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Luca Pipitò
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D′Alessandro”, University of Palermo, 90127 Palermo, Italy
- Infectious and Tropical Disease Unit, Sicilian Regional Reference Centre for the Fight against AIDS, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | - Raffaella Rubino
- Infectious and Tropical Disease Unit, Sicilian Regional Reference Centre for the Fight against AIDS, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy
- Antimicrobial Stewardship Team, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy
| | | | - Donatella Mangione
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D′Alessandro”, University of Palermo, 90127 Palermo, Italy
| | - Antonio Cascio
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties “G. D′Alessandro”, University of Palermo, 90127 Palermo, Italy
- Infectious and Tropical Disease Unit, Sicilian Regional Reference Centre for the Fight against AIDS, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy
- Antimicrobial Stewardship Team, AOU Policlinico “P. Giaccone”, 90127 Palermo, Italy
| |
Collapse
|
39
|
Delroba K, Alaei M, Khalili H. Treatment options for infections caused by multidrug-resistant Gram-negative bacteria: a guide to good clinical practice. Future Microbiol 2023; 18:287-294. [PMID: 37140271 DOI: 10.2217/fmb-2022-0160] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Abstract
The rapid emergence of multidrug-resistant Gram-negative bacterial infections necessitates the development of new treatments or the repurposing of available antibiotics. Here, treatment options for treatment of these infections, recent guidelines and evidence are reviewed. Studies that included treatment options for infections caused by multidrug-resistant Gram-negative bacteria (Enterobacterales and nonfermenters), as well as extended-spectrum β-lactamase-producing and carbapenem-resistant bacteria, were considered. Potential agents for the treatment of these infections, considering type of microorganism, mechanism of resistant, source and severity of infection as well as pharmacotherapy considerations, are summarized.
Collapse
Affiliation(s)
- Khadijeh Delroba
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Maryam Alaei
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
| | - Hossein Khalili
- Department of Clinical Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417614411, Iran
- Research Center for Antibiotic Stewardship & Antimicrobial Resistance, Imam Khomeini Hospital, Tehran, 1417614411, Iran
| |
Collapse
|
40
|
Wise MG, Karlowsky JA, Lemos-Luengas EV, Valdez RR, Sahm DF. Epidemiology and in vitro activity of ceftazidime-avibactam and comparator agents against multidrug-resistant isolates of Enterobacterales and Pseudomonas aeruginosa collected in Latin America as part of the ATLAS surveillance program in 2015‒2020. Braz J Infect Dis 2023; 27:102759. [PMID: 36977498 PMCID: PMC10285213 DOI: 10.1016/j.bjid.2023.102759] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/14/2023] [Accepted: 03/13/2023] [Indexed: 03/28/2023] Open
Abstract
INTRODUCTION The incidence of antimicrobial resistance is increasing in many parts of the world. The focus of this report is to examine changes in antimicrobial resistance epidemiology among clinical isolates of Enterobacterales and Pseudomonas aeruginosa collected in six Latin American countries as part of the Antimicrobial Testing Leadership and Surveillance (ATLAS) program from 2015 to 2020, with a focus on the in vitro activity of ceftazidime-avibactam against Multidrug-Resistant (MDR) isolates. METHODS Non-duplicate, clinical isolates of Enterobacterales (n = 15,215) and P. aeruginosa (n = 4,614) collected by 40 laboratories in Argentina, Brazil, Chile, Colombia, Mexico, and Venezuela, from 2015 to 2020, underwent centralized Clinical Lab Standards Institute (CLSI) broth microdilution susceptibility testing. Minimum Inhibitory Concentration (MIC) values were interpreted using 2022 CLSI breakpoints. An MDR phenotype was defined by resistance to ≥ 3 of seven sentinel agents. RESULTS In total, 23.3% of Enterobacterales and 25.1% of P. aeruginosa isolates were MDR. Annual percent MDR values for Enterobacterales were stable from 2015 to 2018 (21.3% to 23.7% year) but markedly increased in 2019 (31.5%) and 2020 (32.4%). Annual percent MDR values for P. aeruginosa were stable from 2015 to 2020 (23.0% to 27.6% year). Isolates were divided into two 3-year time-periods, 2015‒2017 and 2018‒2020, for additional analyses. For Enterobacterales, 99.3% of all isolates and 97.1% of MDR isolates from 2015‒2017 were ceftazidime-avibactam-susceptible compared to 97.2% and 89.3% of isolates, respectively, from 2018‒2020. For P. aeruginosa, 86.6% of all isolates and 53.9% of MDR isolates from 2015‒2017 were ceftazidime-avibactam-susceptible compared to 85.3% and 45.3% of isolates, respectively, from 2018‒2020. Among individual countries, Enterobacterales and P. aeruginosa collected in Venezuela showed the greatest reductions in ceftazidime-avibactam susceptibility over time. CONCLUSION MDR Enterobacterales increased in Latin America from 22% in 2015 to 32% in 2020 while MDR P. aeruginosa remained constant at 25%. Ceftazidime-avibactam remains highly active against all clinical isolates of both Enterobacterales (97.2% susceptible, 2018‒2020) and P. aeruginosa (85.3%), and inhibited more MDR isolates (Enterobacterales, 89.3% susceptible, 2018‒2020; P. aeruginosa, 45.3%) than carbapenems, fluoroquinolones, and aminoglycosides.
Collapse
Affiliation(s)
| | - James A Karlowsky
- IHMA, Schaumburg, IL, USA; Department of Medical Microbiology and Infectious Diseases, Max Rady College of Medicine, University of Manitoba, Winnipeg, Canada
| | | | - Rafael R Valdez
- Pfizer Hospital Regional Director for LATAM, Mexico City, Mexico
| | | |
Collapse
|
41
|
Kumar R, Pathania V, Kumar S, Kumar M, Nandanwar H, Maurya SK. Synthesis of Novel Ciprofloxacin-Avibactam Conjugates for the Development of Second-Generation Non-β-Lactam-β-Lactamase Inhibitors. Bioorg Med Chem Lett 2023; 88:129308. [PMID: 37127102 DOI: 10.1016/j.bmcl.2023.129308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 03/21/2023] [Accepted: 04/26/2023] [Indexed: 05/03/2023]
Abstract
To overcome the antibiotic resistance challenge, we synthesized a novel class of conjugates based on ciprofloxacin and avibactam, covalently linked by diverse amino acids. In vitro studies of these conjugates have shown improved antibacterial efficacy of avibactam when used alone against some ESKAPE pathogens, i.e., S. aureus, E. coli, and A. baumannii. Further, ceftazidime was screened in combination with all conjugates and found to be less synergistically effective than avibactam-ceftazidime co-dosing against K. pneumoniae and E. coli bacterial strains. Subsequently, the top-ranked active conjugates were investigated against the commercially available β-lactamase-II (Penicillinase from Bacillus cereus) through in vitro studies. These studies elucidated two conjugates i.e, 9 (IC50 = 1.69 ± 0.35 nM) and 24b (IC50 = 57.37 ± 5.39 nM), which have higher inhibition profile than avibactam (IC50 = 141.08 ± 12.20 nM). These outcomes allude to avibactam integration with ciprofloxacin is a novel and fruitful approach to discovering clinically valuable next-generation non-β-lactam-β-lactamase inhibitors.
Collapse
Affiliation(s)
- Rahul Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vikas Pathania
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Clinical Microbiology and Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Shashi Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahender Kumar
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Hemraj Nandanwar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Clinical Microbiology and Antimicrobial Research Laboratory, CSIR-Institute of Microbial Technology, Chandigarh 160036, India
| | - Sushil K Maurya
- Chemical Technology Division, CSIR-Institute of Himalayan Bioresource Technology, Palampur, Himachal Pradesh 176061, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India; Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow, Uttar Pradesh 226 007, India
| |
Collapse
|
42
|
Barbu IC, Gheorghe-Barbu I, Grigore GA, Vrancianu CO, Chifiriuc MC. Antimicrobial Resistance in Romania: Updates on Gram-Negative ESCAPE Pathogens in the Clinical, Veterinary, and Aquatic Sectors. Int J Mol Sci 2023; 24:7892. [PMID: 37175597 PMCID: PMC10178704 DOI: 10.3390/ijms24097892] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/20/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Multidrug-resistant Gram-negative bacteria such as Acinetobacter baumannii, Pseudomonas aeruginosa, and members of the Enterobacterales order are a challenging multi-sectorial and global threat, being listed by the WHO in the priority list of pathogens requiring the urgent discovery and development of therapeutic strategies. We present here an overview of the antibiotic resistance profiles and epidemiology of Gram-negative pathogens listed in the ESCAPE group circulating in Romania. The review starts with a discussion of the mechanisms and clinical significance of Gram-negative bacteria, the most frequent genetic determinants of resistance, and then summarizes and discusses the epidemiological studies reported for A. baumannii, P. aeruginosa, and Enterobacterales-resistant strains circulating in Romania, both in hospital and veterinary settings and mirrored in the aquatic environment. The Romanian landscape of Gram-negative pathogens included in the ESCAPE list reveals that all significant, clinically relevant, globally spread antibiotic resistance genes and carrying platforms are well established in different geographical areas of Romania and have already been disseminated beyond clinical settings.
Collapse
Affiliation(s)
- Ilda Czobor Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Irina Gheorghe-Barbu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Georgiana Alexandra Grigore
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- National Institute of Research and Development for Biological Sciences, 060031 Bucharest, Romania
| | - Corneliu Ovidiu Vrancianu
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
| | - Mariana Carmen Chifiriuc
- Microbiology-Immunology Department, Faculty of Biology, University of Bucharest, 050095 Bucharest, Romania
- The Research Institute of the University of Bucharest, 050095 Bucharest, Romania
- Academy of Romanian Scientists, 050044 Bucharest, Romania
- Romanian Academy, 010071 Bucharest, Romania
| |
Collapse
|
43
|
Kumar H, Williford EE, Blake KS, Virgin-Downey B, Dantas G, Wencewicz TA, Tolia NH. Structure of anhydrotetracycline-bound Tet(X6) reveals the mechanism for inhibition of type 1 tetracycline destructases. Commun Biol 2023; 6:423. [PMID: 37062778 PMCID: PMC10106456 DOI: 10.1038/s42003-023-04792-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 03/31/2023] [Indexed: 04/18/2023] Open
Abstract
Inactivation of tetracycline antibiotics by tetracycline destructases (TDases) remains a clinical and agricultural threat. TDases can be classified as type 1 Tet(X)-like TDases and type 2 soil-derived TDases. Type 1 TDases are widely identified in clinical pathogens. A combination therapy of tetracycline and a TDase inhibitor is much needed to rescue the clinical efficacy of tetracyclines. Anhydrotetracycline is a pan-TDase inhibitor that inhibits both type 1 and type 2 TDases. Here, we present structural, biochemical, and phenotypic evidence that anhydrotetracycline binds in a substrate-like orientation and competitively inhibits the type 1 TDase Tet(X6) to rescue tetracycline antibiotic activity as a sacrificial substrate. Anhydrotetracycline interacting residues of Tet(X6) are conserved within type 1 TDases, indicating a conserved binding mode and mechanism of inhibition. This mode of binding and inhibition is distinct from anhydrotetracycline's inhibition of type 2 TDases. This study forms the framework for development of next-generation therapies to counteract enzymatic tetracycline resistance.
Collapse
Affiliation(s)
- Hirdesh Kumar
- Host-pathogen interaction and structural vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA
| | - Emily E Williford
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Kevin S Blake
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Brett Virgin-Downey
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA
| | - Gautam Dantas
- The Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Timothy A Wencewicz
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, St. Louis, MO, 63130, USA.
| | - Niraj H Tolia
- Host-pathogen interaction and structural vaccinology section (HPISV), National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
44
|
Priyadarshi K, Dhandapani S, Sivaradjy M, Shanmugam L, Sastry AS. Feasibility of Using Ceftazidime-Avibactam as a Therapeutic Option for Bloodstream Infections Caused by Multidrug-Resistant Enterobacterales and Pseudomonas aeruginosa Based on Its Susceptibility Profile. Cureus 2023; 15:e37002. [PMID: 37139019 PMCID: PMC10151155 DOI: 10.7759/cureus.37002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/01/2023] [Indexed: 04/03/2023] Open
Abstract
Background In the era of increased antimicrobial resistance, there are limited therapeutic options available for the treatment of bacteremia caused by multidrug-resistant organisms (MDROs). This study aims to find out the feasibility of using ceftazidime/avibactam (CZA) as a therapeutic option for bloodstream infections caused by multidrug-resistant (MDR) Enterobacterales and Pseudomonas aeruginosa based on its susceptibility profile. Materials and methods The isolates were routinely subjected to antimicrobial susceptibility testing (AST) by an automated AST system (VITEK-2). Those isolates found as MDR (resistant to at least one drug for ≥3 antimicrobial classes) were tested against CZA by Kirby-Bauer's disk diffusion (kb-DD) method. Results A total number of 293 MDR Enterobacterales and 31 MDR P. aeruginosa isolates were included. Of these, 87.3% of isolates were found as carbapenem-resistant (CR), whereas 12.7% of isolates were found as carbapenem susceptible. About 30.6% of MDROs were susceptible to CZA. Among carbapenem-resistant organisms (CROs), CR Klebsiella pneumoniae(33.5%) is most susceptible to CZA, compared to CR P. aeruginosa(0%)and CREscherichia coli(3.2%). Among the MDR isolates that were susceptible to CZA (30.6%), the majority had poor susceptibility against other β-lactam-β-lactamase inhibitor (BL-BLI) agents. Among all antimicrobial agents tested against CROs, colistin (96%) was found to have the best susceptibility profile. Conclusion It is observed that CZA is an acceptable therapeutic option for the treatment of bacteremia caused by MDROs, especially CROs. Therefore, it is important for the laboratories to perform the AST for CZA if the healthcare settings intend to use CZA for the management of such "difficult-to-treat" bloodstream infections.
Collapse
|
45
|
Pund A, Rane V, Pursani R, Ahirrao V, Rafeeq M, Yadav RP, Yeole R, Merwade A. Stereo-retentive synthesis of (5S)-5-benzyloxycarbonyl-5-tert-butoxycarbonylamino-2-oxo-hexylide-dimethylsulfoxonium, a key intermediate of a β-lactamase inhibitor. RESEARCH ON CHEMICAL INTERMEDIATES 2023. [DOI: 10.1007/s11164-023-04990-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
46
|
Shi Z, Zhang J, Tian L, Xin L, Liang C, Ren X, Li M. A Comprehensive Overview of the Antibiotics Approved in the Last Two Decades: Retrospects and Prospects. Molecules 2023; 28:1762. [PMID: 36838752 PMCID: PMC9962477 DOI: 10.3390/molecules28041762] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 01/25/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Due to the overuse of antibiotics, bacterial resistance has markedly increased to become a global problem and a major threat to human health. Fortunately, in recent years, various new antibiotics have been developed through both improvements to traditional antibiotics and the discovery of antibiotics with novel mechanisms with the aim of addressing the decrease in the efficacy of traditional antibiotics. This manuscript reviews the antibiotics that have been approved for marketing in the last 20 years with an emphasis on the antibacterial properties, mechanisms, structure-activity relationships (SARs), and clinical safety of these antibiotics. Furthermore, the current deficiencies, opportunities for improvement, and prospects of antibiotics are thoroughly discussed to provide new insights for the design and development of safer and more potent antibiotics.
Collapse
Affiliation(s)
- Zhenfeng Shi
- Department of Urology Surgery Center, Xinjiang Uyghur People’s Hospital, Urumqi 830002, China
| | - Jie Zhang
- Department of Urology Surgery Center, Xinjiang Uyghur People’s Hospital, Urumqi 830002, China
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Lei Tian
- Department of Urology Surgery Center, Xinjiang Uyghur People’s Hospital, Urumqi 830002, China
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Liang Xin
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, China
| | - Min Li
- College of Pharmacy, Xinjiang Medical University, Urumqi 830054, China
| |
Collapse
|
47
|
Batchelder JI, Hare PJ, Mok WWK. Resistance-resistant antibacterial treatment strategies. FRONTIERS IN ANTIBIOTICS 2023; 2:1093156. [PMID: 36845830 PMCID: PMC9954795 DOI: 10.3389/frabi.2023.1093156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 01/18/2023] [Indexed: 01/31/2023]
Abstract
Antibiotic resistance is a major danger to public health that threatens to claim the lives of millions of people per year within the next few decades. Years of necessary administration and excessive application of antibiotics have selected for strains that are resistant to many of our currently available treatments. Due to the high costs and difficulty of developing new antibiotics, the emergence of resistant bacteria is outpacing the introduction of new drugs to fight them. To overcome this problem, many researchers are focusing on developing antibacterial therapeutic strategies that are "resistance-resistant"-regimens that slow or stall resistance development in the targeted pathogens. In this mini review, we outline major examples of novel resistance-resistant therapeutic strategies. We discuss the use of compounds that reduce mutagenesis and thereby decrease the likelihood of resistance emergence. Then, we examine the effectiveness of antibiotic cycling and evolutionary steering, in which a bacterial population is forced by one antibiotic toward susceptibility to another antibiotic. We also consider combination therapies that aim to sabotage defensive mechanisms and eliminate potentially resistant pathogens by combining two antibiotics or combining an antibiotic with other therapeutics, such as antibodies or phages. Finally, we highlight promising future directions in this field, including the potential of applying machine learning and personalized medicine to fight antibiotic resistance emergence and out-maneuver adaptive pathogens.
Collapse
Affiliation(s)
- Jonathan I Batchelder
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| | - Patricia J Hare
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
- School of Dental Medicine, University of Connecticut, Farmington, CT, United States
| | - Wendy W K Mok
- Department of Molecular Biology and Biophysics, UConn Health, Farmington, CT, United States
| |
Collapse
|
48
|
Carbapenem-Resistant Klebsiella pneumoniae: Virulence Factors, Molecular Epidemiology and Latest Updates in Treatment Options. Antibiotics (Basel) 2023; 12:antibiotics12020234. [PMID: 36830145 PMCID: PMC9952820 DOI: 10.3390/antibiotics12020234] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/13/2023] [Accepted: 01/16/2023] [Indexed: 01/26/2023] Open
Abstract
Klebsiella pneumoniae is a Gram-negative opportunistic pathogen responsible for a variety of community and hospital infections. Infections caused by carbapenem-resistant K. pneumoniae (CRKP) constitute a major threat for public health and are strongly associated with high rates of mortality, especially in immunocompromised and critically ill patients. Adhesive fimbriae, capsule, lipopolysaccharide (LPS), and siderophores or iron carriers constitute the main virulence factors which contribute to the pathogenicity of K. pneumoniae. Colistin and tigecycline constitute some of the last resorts for the treatment of CRKP infections. Carbapenemase production, especially K. pneumoniae carbapenemase (KPC) and metallo-β-lactamase (MBL), constitutes the basic molecular mechanism of CRKP emergence. Knowledge of the mechanism of CRKP appearance is crucial, as it can determine the selection of the most suitable antimicrobial agent among those most recently launched. Plazomicin, eravacycline, cefiderocol, temocillin, ceftolozane-tazobactam, imipenem-cilastatin/relebactam, meropenem-vaborbactam, ceftazidime-avibactam and aztreonam-avibactam constitute potent alternatives for treating CRKP infections. The aim of the current review is to highlight the virulence factors and molecular pathogenesis of CRKP and provide recent updates on the molecular epidemiology and antimicrobial treatment options.
Collapse
|
49
|
Cephalosporins as key lead generation beta-lactam antibiotics. Appl Microbiol Biotechnol 2022; 106:8007-8020. [DOI: 10.1007/s00253-022-12272-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Abstract
Antibiotics are antibacterial compounds that interfere with bacterial growth, without harming the infected eukaryotic host. Among the clinical agents, beta-lactams play a major role in treating infected humans and animals. However, the ever-increasing antibiotic resistance crisis is forcing the pharmaceutical industry to search for new antibacterial drugs to combat a range of current and potential multi-resistant bacterial pathogens. In this review, we provide an overview of the development, innovation, and current status of therapeutic applications for beta-lactams with a focus on semi-synthetic cephalosporins. Cephalosporin C (CPC), which is a natural secondary metabolite from the filamentous fungus Acremonium chrysogenum, plays a major and demanding role in both producing modern antibiotics and developing new ones. CPC serves as a core compound for producing semi-synthetic cephalosporins that can control infections with different resistance mechanisms. We therefore summarize our latest knowledge about the CPC biosynthetic pathway and its regulation in the fungal host. Finally, we describe how CPC serves as a key lead generation source for the in vitro and better, in vivo synthesis of 7-aminocephalosporanic acid (7-ACA), the major core compound for the pharmaceutical synthesis of current and future semi-synthetic cephalosporins.
Key points
•Latest literature on cephalosporin generations
•Biotechnical production of cephalosporins
•In vivo production of 7-ACA
Collapse
|
50
|
Ji Z, Kozuch J, Mathews II, Diercks CS, Shamsudin Y, Schulz MA, Boxer SG. Protein Electric Fields Enable Faster and Longer-Lasting Covalent Inhibition of β-Lactamases. J Am Chem Soc 2022; 144:20947-20954. [PMID: 36324090 PMCID: PMC10066720 DOI: 10.1021/jacs.2c09876] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The widespread design of covalent drugs has focused on crafting reactive groups of proper electrophilicity and positioning toward targeted amino-acid nucleophiles. We found that environmental electric fields projected onto a reactive chemical bond, an overlooked design element, play essential roles in the covalent inhibition of TEM-1 β-lactamase by avibactam. Using the vibrational Stark effect, the magnitudes of the electric fields that are exerted by TEM active sites onto avibactam's reactive C═O were measured and demonstrate an electrostatic gating effect that promotes bond formation yet relatively suppresses the reverse dissociation. These results suggest new principles of covalent drug design and off-target site prediction. Unlike shape and electrostatic complementary which address binding constants, electrostatic catalysis drives reaction rates, essential for covalent inhibition, and deepens our understanding of chemical reactivity, selectivity, and stability in complex systems.
Collapse
Affiliation(s)
- Zhe Ji
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Jacek Kozuch
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
- Research Building SupraFAB, Altensteinstreet 23a, 14195 Berlin, Germany
| | - Irimpan I Mathews
- Stanford Synchrotron Radiation Lightsource, Menlo Park, California 94025, United States
| | - Christian S Diercks
- Department of Chemistry, Scripps Research, La Jolla, California 92037, United States
| | - Yasmin Shamsudin
- Department of Chemistry-BMC, Uppsala University, 752 37 Uppsala, Sweden
| | - Mirjam A Schulz
- Department of Physics, Experimental Molecular Biophysics, Freie Universität Berlin, Arnimallee 14, D-14195 Berlin, Germany
- Research Building SupraFAB, Altensteinstreet 23a, 14195 Berlin, Germany
| | - Steven G Boxer
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| |
Collapse
|