1
|
Sassetti C, Borrelli C, Mazuy M, Guerriero C, Rigante D, Esposito S. New Challenging Systemic Therapies for Juvenile Scleroderma: A Comprehensive Review. Pharmaceuticals (Basel) 2025; 18:643. [PMID: 40430462 PMCID: PMC12114888 DOI: 10.3390/ph18050643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 04/20/2025] [Accepted: 04/23/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Juvenile scleroderma (JS) comprises a group of rare chronic autoimmune and fibrosing disorders in children, primarily presenting as juvenile localized scleroderma (jLS) or juvenile systemic sclerosis (jSS). While jLS predominantly affects the skin and subcutaneous tissues, jSS may involve multiple internal organs and is associated with increased morbidity and mortality. Due to the scarcity of pediatric-specific clinical trials, the current treatment strategies are largely empirical and often adapted from adult protocols. Objective: This narrative review aims to provide a comprehensive update on emerging systemic therapies for juvenile scleroderma, focusing on biologics, small molecule inhibitors, and advanced cellular interventions, to support the development of more personalized and effective pediatric treatment approaches. Methods: A literature search was conducted through PubMed and a manual bibliographic review, covering publications from 2001 to 2024. Only English-language studies involving pediatric populations were included, comprising randomized controlled trials, reviews, and case reports. Additional searches were performed for drugs that are specifically used in juvenile scleroderma. Results: Biologic agents such as tocilizumab, rituximab, and abatacept, along with small molecules including Janus kinase (JAK) inhibitors and imatinib, have demonstrated potential in managing refractory cases by reducing skin fibrosis and pulmonary involvement. Novel approaches-such as pamrevlumab, nintedanib, and chimeric antigen receptor (CAR-T) cell therapy-target fibrotic and autoimmune pathways but remain investigational in children. Autologous stem cell transplantation (ASCT) has also been explored in severe, treatment-resistant cases, although data are extremely limited. The overall evidence base is constrained by small sample sizes, a lack of controlled pediatric trials, and reliance on adult extrapolation. Conclusions: While innovative systemic therapies show promise for juvenile scleroderma, their widespread clinical application remains limited by insufficient pediatric-specific evidence. Large, multicenter, long-term trials are urgently needed to establish safety, efficacy, and optimal treatment algorithms that are tailored to the pediatric population.
Collapse
Affiliation(s)
- Chiara Sassetti
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.S.); (C.B.); (M.M.)
| | - Claudia Borrelli
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.S.); (C.B.); (M.M.)
| | - Martha Mazuy
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.S.); (C.B.); (M.M.)
| | - Cristina Guerriero
- Unit of Dermatology, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
| | - Donato Rigante
- Department of Life Sciences and Public Health, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy;
- Università Cattolica Sacro Cuore, 00168 Rome, Italy
| | - Susanna Esposito
- Pediatric Clinic, Department of Medicine and Surgery, University of Parma, 43126 Parma, Italy; (C.S.); (C.B.); (M.M.)
| |
Collapse
|
2
|
Qian X, Zai Z, Tao Y, Lv H, Hao M, Zhang L, Zhang X, Xu Y, Zhang Y, Chen F. Acidosis regulates immune progression in rheumatoid arthritis by promoting the expression of cytokines and co-stimulatory molecules in synovial fibroblasts. Mol Med 2025; 31:136. [PMID: 40234753 PMCID: PMC12001510 DOI: 10.1186/s10020-025-01181-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 03/24/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Tissue acidosis is a key characteristic of RA. It remains unclear whether acidosis promotes the formation of the complex adaptive immune landscape mainly characterized by T cell activation in RA by influencing synovial fibroblasts. This study aims to investigate the influence of acidosis on the immune microenvironment of RA by exploring the cytokine secretion and expression of co-stimulatory factors of RA synovial fibroblasts. METHODS The Bulk RNA-seq dataset (GSE89408, Normal = 23, RA = 150) was utilized for cytokine screening and the immune state assessment based on disease stage. RNA-seq was employed to investigate cytokine and co-stimulatory molecule expression following 6 h of acid stimulation, combined with Bulk RNA-seq data to evaluate contributions to RA. Human cytokine arrays were used to confirm cytokine accumulation in supernatants after 12 h of acid stimulation. Proteomics was applied to explore cellular functional states in RASFs under 6 h of acid stress, with joint RNA-seq analysis elucidating transcription factor activation. Validation of select high-throughput data was performed using qRT-PCR and immune-based assays. RESULTS Bulk RNA-seq and RNA-seq identified 56 differentially expressed cytokines at their intersection. Functional enrichment analysis demonstrated that acid stimulation enhanced cytokine secretion and T cell chemotaxis in RA synovial fibroblasts (RASFs). Cytokine array revealed that acid exposure increased the accumulation of growth factors (e.g., FGF, VEGF) by over twofold and promoted the expression of multiple inflammatory and chemotactic factors. Immune state analysis indicated that acid stimulation induced a complex immune landscape by upregulating co-stimulatory and antigen-presenting molecules. Proteomics showed that acid stress enhanced mitochondrial function and triggered metabolic reprogramming in RASFs. Integrated transcriptomic and proteomic analyses revealed that AP1 regulates gene expression in RASFs, with its activation further confirmed by Western blotting and immunofluorescence.
Collapse
Affiliation(s)
- Xuewen Qian
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Zhuoyan Zai
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Yuemin Tao
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Huifang Lv
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Mengjia Hao
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Longbiao Zhang
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China
| | - Xiaoyue Zhang
- School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Yayun Xu
- Shenzhen Institute of Translational Medicine, Shenzhen Second People'S Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China.
| | - Yihao Zhang
- School of Public Health, Anhui Medical University, Hefei, 230032, China.
- Department of Health Inspection and Quarantine, School of Public Health, Anhui Medical University, Hefei, 230032, China.
| | - Feihu Chen
- School of Pharmacy, Anhui Medical University, Hefei, 230032, China.
- The Key Laboratory of Anti-Inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
3
|
Murdock J, Nguyen J, Hurtgen BJ, Andorfer C, Walsh J, Lin A, Tubbs C, Erickson K, Cockerham K. The role of IL-6 in thyroid eye disease: an update on emerging treatments. FRONTIERS IN OPHTHALMOLOGY 2025; 5:1544436. [PMID: 40297767 PMCID: PMC12034681 DOI: 10.3389/fopht.2025.1544436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/24/2025] [Indexed: 04/30/2025]
Abstract
Elevated serum interleukin-6 (IL-6) levels have been shown to correlate with disease activity in patients with thyroid eye disease (TED), a complex, heterogeneous, autoimmune disease affecting thousands of people worldwide. IL-6 plays a pivotal role in the pathogenesis of TED through three key mechanisms that together may contribute to inflammation, tissue expansion, remodeling, and fibrosis within the orbit. First, IL-6 drives an autoimmune response targeting the thyroid-stimulating hormone receptor (TSHR) by promoting the production of autoantibodies (i.e. TSHR-Ab, TSI), thereby triggering TSHR-dependent immune pathways. Second, IL-6 stimulates the activation and differentiation of orbital fibroblasts, which contributes to the inflammatory process and increase adipogenesis. Finally, IL-6 stimulates T-cell-mediated inflammation, amplifying the immune response within orbital tissues. Although corticosteroids and surgery have served as mainstays of TED treatment, a multimodal approach is often required due to the disease's heterogeneous presentation and response to current treatment options. TED is a chronic, lifelong condition characterized by periods of exacerbation and remission, with inflammation playing a central role in disease progression and severity. Because inflammation can flare intermittently throughout a patient's life, there is growing interest in targeting specific components of the immune system to reduce disease activity and severity. This review focuses on the current evidence supporting IL-6 as a key mediator of TED pathogenesis and explores its potential as a diagnostic biomarker and therapeutic target of the disease.
Collapse
Affiliation(s)
- Jennifer Murdock
- Oculofacial Plastic Surgery, Miami, FL, United States
- Thrive Health, West Vancouver, BC, Canada
| | - John Nguyen
- School of Medicine, West Virginia University, Morgantown, WV, United States
| | | | | | - John Walsh
- Tourmaline Bio, Inc., New York, NY, United States
| | - Andrea Lin
- Tourmaline Bio, Inc., New York, NY, United States
| | | | | | - Kimberly Cockerham
- Department of Surgery, Sharp Grossmont Hospital for Neuroscience La Mesa, CA, United States
| |
Collapse
|
4
|
Kawczak P, Feszak IJ, Bączek T. Abatacept, Golimumab, and Sarilumab as Selected Bio-Originator Disease-Modifying Antirheumatic Drugs with Diverse Mechanisms of Action in Their Current Use in Treatment. J Clin Med 2025; 14:2107. [PMID: 40142915 PMCID: PMC11943273 DOI: 10.3390/jcm14062107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 03/28/2025] Open
Abstract
Background/Objectives: Arthritis encompasses a range of joint-related conditions, including osteoarthritis and rheumatoid arthritis, along with inflammatory diseases such as gout and lupus. This research study explores the underlying causes, challenges, and treatment options for arthritis, aiming to enhance the effectiveness of therapies. Methods: This research study evaluated current treatment strategies and examined the effectiveness of selected biological disease-modifying antirheumatic drugs (bDMARDs), i.e., abatacept, golimumab, and sarilumab, with a focus on emerging drug classes and their distinct mechanisms of action. Results: Biologic DMARDs like abatacept, golimumab, and sarilumab offer hopeful treatment alternatives for patients who fail to respond to conventional therapies. However, individual outcomes differ because of the disease's complexity and the influence of accompanying health conditions. Conclusions: Treating arthritis continues to be challenging due to its numerous underlying causes and the varied ways in which patients respond to treatment. Although biologics and targeted therapies have brought progress, additional research is needed to identify new treatment targets and enhance patient results.
Collapse
Affiliation(s)
- Piotr Kawczak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | - Igor Jarosław Feszak
- Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland;
| | - Tomasz Bączek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
- Department of Nursing and Medical Rescue, Institute of Health Sciences, Pomeranian University in Słupsk, 76-200 Słupsk, Poland
| |
Collapse
|
5
|
Tanaka Y, Takahashi T, van Hoogstraten H, Kato N, Kameda H. The effects of sarilumab as monotherapy and in combination with non-methotrexate disease-modifying anti-rheumatic drugs on unacceptable pain in patients with rheumatoid arthritis: A post-hoc analysis of the HARUKA phase 3 study. Mod Rheumatol 2024; 35:27-33. [PMID: 39073577 DOI: 10.1093/mr/roae055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/22/2024] [Accepted: 04/30/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES To investigate unacceptable pain [UP; visual analogue scale (VAS) >40 mm] and uncontrolled inflammation [C-reactive protein (CRP) ≥1.0 mg/dL] in patients with active rheumatoid arthritis (RA) receiving sarilumab (SAR) as monotherapy or in combination with non-methotrexate conventional synthetic disease-modifying antirheumatic drugs (SAR + csDMARDs). METHODS In the HARUKA Phase 3 study (NCT02373202), Japanese patients received either SAR monotherapy (n = 61) or SAR + csDMARDs (n = 30). In this post-hoc analysis, changes in the proportions of patients with/without UP and controlled/uncontrolled inflammation were assessed over 52 weeks. RESULTS At baseline, 80.3% (49/61) of patients receiving SAR monotherapy had UP and this proportion decreased with treatment to 55.9% (33/59) at Week 4 and 15.5% (9/58) at Week 52. The SAR + csDMARDs group achieved a reduction in UP from 73.3% (22/30) at baseline to 34.5% (10/29) at Week 4 and 0% (0/24) by Week 52. At baseline, 34.4% (21/61) and 50% (15/30) of patients had both UP and uncontrolled inflammation in the SAR monotherapy and SAR + csDMARDs groups; by Week 2, the proportions decreased to 6.6% (4/61) and 3.3% (1/30), respectively; and 0% in both groups by Week 52. CONCLUSION UP and inflammation were reduced in patients with active RA in Japan in both SAR monotherapy and SAR + csDMARDs treatment groups.
Collapse
Affiliation(s)
- Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Fukuoka, Japan
| | - Toshiya Takahashi
- Medical Affairs Department, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | | | - Naoto Kato
- Medical Affairs Department, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Hideto Kameda
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
6
|
Tanaka Y, Takahashi T, van Hoogstraten H, Kato N, Kameda H. Efficacy and safety of sarilumab in patients with rheumatoid arthritis stratified by age (<65 and ≥65 years): A post hoc analysis of Japanese Phase 3 clinical trials. Mod Rheumatol 2024; 35:34-41. [PMID: 39073574 DOI: 10.1093/mr/roae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024]
Abstract
OBJECTIVES This study aimed to assess the efficacy and safety of sarilumab in older patients with active rheumatoid arthritis (RA). METHODS This is a post hoc analysis of KAKEHASI (NCT02293902) and HARUKA (NCT02373202) trials with stratification by age (<65 and ≥65 years). Patients with moderately to severely active RA were treated with sarilumab in combination with methotrexate or with conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) or as monotherapy. The primary end points in KAKEHASI and HARUKA trials were the American College of Rheumatology 20% improvement criteria (ACR20) responses at Week 24 and safety, respectively. Secondary end points were other RA disease activity measures, including Clinical Disease Activity Index (CDAI). RESULTS Approximately 20% of patients were aged ≥65 years in treatment arms across both trials, except the sarilumab + csDMARD arm (40%, 12/30). ACR20 response rates were similar between age groups across sarilumab treatment arms, and similar results were obtained for the CDAI scores. Safety profiles were similar between age groups except for a higher incidence of serious adverse events in patients aged ≥65 years in the sarilumab + methotrexate arm. CONCLUSIONS In Japanese patients with RA enrolled in Phase 3 studies for sarilumab, no clear difference in efficacy or safety was observed between patients aged <65 and ≥65 years.
Collapse
Affiliation(s)
- Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health Japan, Fukuoka, Japan
| | - Toshiya Takahashi
- Medical Affairs Department, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | | | - Naoto Kato
- Medical Affairs Department, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Hideto Kameda
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
7
|
Świerczek A, Batko D, Wyska E. The Role of Pharmacometrics in Advancing the Therapies for Autoimmune Diseases. Pharmaceutics 2024; 16:1559. [PMID: 39771538 PMCID: PMC11676367 DOI: 10.3390/pharmaceutics16121559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/14/2024] [Accepted: 12/03/2024] [Indexed: 01/11/2025] Open
Abstract
Autoimmune diseases (AIDs) are a group of disorders in which the immune system attacks the body's own tissues, leading to chronic inflammation and organ damage. These diseases are difficult to treat due to variability in drug PK among individuals, patient responses to treatment, and the side effects of long-term immunosuppressive therapies. In recent years, pharmacometrics has emerged as a critical tool in drug discovery and development (DDD) and precision medicine. The aim of this review is to explore the diverse roles that pharmacometrics has played in addressing the challenges associated with DDD and personalized therapies in the treatment of AIDs. Methods: This review synthesizes research from the past two decades on pharmacometric methodologies, including Physiologically Based Pharmacokinetic (PBPK) modeling, Pharmacokinetic/Pharmacodynamic (PK/PD) modeling, disease progression (DisP) modeling, population modeling, model-based meta-analysis (MBMA), and Quantitative Systems Pharmacology (QSP). The incorporation of artificial intelligence (AI) and machine learning (ML) into pharmacometrics is also discussed. Results: Pharmacometrics has demonstrated significant potential in optimizing dosing regimens, improving drug safety, and predicting patient-specific responses in AIDs. PBPK and PK/PD models have been instrumental in personalizing treatments, while DisP and QSP models provide insights into disease evolution and pathophysiological mechanisms in AIDs. AI/ML implementation has further enhanced the precision of these models. Conclusions: Pharmacometrics plays a crucial role in bridging pre-clinical findings and clinical applications, driving more personalized and effective treatments for AIDs. Its integration into DDD and translational science, in combination with AI and ML algorithms, holds promise for advancing therapeutic strategies and improving autoimmune patients' outcomes.
Collapse
Affiliation(s)
- Artur Świerczek
- Department of Pharmacokinetics and Physical Pharmacy, Faculty of Pharmacy, Jagiellonian University Medical College, 9 Medyczna Street, 30-688 Krakow, Poland; (D.B.); (E.W.)
| | | | | |
Collapse
|
8
|
Su QY, Luo J, Zhang Y, Li Q, Jiang ZQ, Wen ZR, Wang YY, Shi MR, Zhang SX. Efficacy and safety of current therapies for difficult-to-treat rheumatoid arthritis: a systematic review and network meta-analysis. J Transl Med 2024; 22:795. [PMID: 39198829 PMCID: PMC11351028 DOI: 10.1186/s12967-024-05569-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/04/2024] [Indexed: 09/01/2024] Open
Abstract
BACKGROUND Difficult-to-treat Rheumatoid arthritis (D2T RA) is primarily characterised by failure of at least two different mechanism of action biologic/targeted synthetic disease-modifying antirheumatic drug (DMARDs) with evidence of active/progressive disease. While a variety of drugs have been used in previous studies to treat D2T RA, there has been no systematic summary of these drugs. This study conducted a systematic review of randomized controlled trials aimed at analyzing the efficacy and safety of individual therapeutic agents for the treatment of D2T RA and recommending the optimal therapeutic dose. METHODS The English databases were searched for studies on the treatment of D2T RA published between the date of the database's establishment and March, 2024. This study uses R 3.1.2 for data analysis, and the rjags package runs JAGS 3.4.0.20. The study fitted a stochastic effects Bayesian network meta-analysis for each outcome measure. RESULT A total of 42 studies were included in this study. Compared with placebo, the improvement of Disease Activity Score of 28 Joints (DAS28) score is ranked from high to low as tocilizumab, baricitinib and opinercept. The improvement of American College of Rheumatology 50 response (ACR50) score in patients with drug use was ranked from good to poor as follows: olokizumab, tocilizumab, adalimumab, baricitinib, and upadacitinib, and 8 mg/4w tocilizumab demonstrated the best efficacy. Notably, rituximab is generally the safest drug. Janus kinase (JAK) inhibitors and T cell costimulation modulators are effective in D2T RA refractory to biologic DMARDs, while JAK inhibitors and interleukin-6 (IL-6) inhibitors show effectiveness in D2T RA refractory to csDMARDs. CONCLUSION Tocilizumab and rituximab have better efficacy and safety in the treatment of D2T RA, and the 8 mg/4w dose of tocilizumab may be the first choice for achieving disease remission.
Collapse
Affiliation(s)
- Qin-Yi Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Jing Luo
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Yan Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Qian Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Zhong-Qing Jiang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Zi-Rong Wen
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Yu-Ying Wang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Mo-Ran Shi
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China
| | - Sheng-Xiao Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, The Shanxi Medical University, Taiyuan, Shanxi, China.
- Key Laboratory of Cellular Physiology, Shanxi Medical University, Ministry of Education, Taiyuan, China.
| |
Collapse
|
9
|
Tanaka Y, Takahashi T, van Hoogstraten H, Kato N, Kameda H. Effect of sarilumab on unacceptable pain and inflammation control in Japanese patients with moderately-to-severely active rheumatoid arthritis: Post hoc analysis of a Phase III study (KAKEHASI). Mod Rheumatol 2024; 34:670-677. [PMID: 37606691 DOI: 10.1093/mr/road073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 07/18/2023] [Indexed: 08/23/2023]
Abstract
OBJECTIVE The aim of this study is to investigate the effects of sarilumab on unacceptable pain [UP; visual analogue scale (VAS) >40 mm] and inflammation in patients with moderately-to-severely active rheumatoid arthritis. METHODS In this post hoc analysis of the KAKEHASI study, 243 patients received methotrexate with sarilumab 150 or 200 mg or placebo every other week, over 52 weeks. The proportion of patients with UP and correlations of changes in pain VAS from baseline with uncontrolled inflammation (C-reactive protein ≥1 mg/dl) and disease activity indices were assessed. RESULTS Almost 80% of patients (192/243) had UP at baseline, including ∼60% of patients with uncontrolled inflammation. Among patients receiving sarilumab, inflammation decreased rapidly, with 90% of patients achieving controlled inflammation by Week 2, while 63.1% continued to have UP. The proportion of patients with UP further decreased by Week 16 (28.5%, sarilumab vs. 64.0%, placebo). By Week 52, only ∼10% of patients had UP. Changes in pain VAS correlated with most disease activity indices and patient-reported outcomes. However, marked correlations between changes in pain VAS and C-reactive protein were observed only at Week 16. CONCLUSION Sarilumab treatment reduced UP and inflammation in Japanese patients with rheumatoid arthritis.
Collapse
Affiliation(s)
- Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | - Toshiya Takahashi
- Specialty Care Medical, Sanofi K.K., Tokyo, Japan
- Medical Affairs, Asahi-Kasei Pharma Corporation, Tokyo, Japan
| | | | - Naoto Kato
- Medical Affairs, Asahi-Kasei Pharma Corporation, Tokyo, Japan
| | - Hideto Kameda
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
10
|
Khan S, Bilal H, Khan MN, Fang W, Chang W, Yin B, Song NJ, Liu Z, Zhang D, Yao F, Wang X, Wang Q, Cai L, Hou B, Wang J, Mao C, Liu L, Zeng Y. Interleukin inhibitors and the associated risk of candidiasis. Front Immunol 2024; 15:1372693. [PMID: 38605952 PMCID: PMC11007146 DOI: 10.3389/fimmu.2024.1372693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
Interleukins (ILs) are vital in regulating the immune system, enabling to combat fungal diseases like candidiasis effectively. Their inhibition may cause enhanced susceptibility to infection. IL inhibitors have been employed to control autoimmune diseases and inhibitors of IL-17 and IL-23, for example, have been associated with an elevated risk of Candida infection. Thus, applying IL inhibitors might impact an individual's susceptibility to Candida infections. Variations in the severity of Candida infections have been observed between individuals with different IL inhibitors, necessitating careful consideration of their specific risk profiles. IL-1 inhibitors (anakinra, canakinumab, and rilonacept), IL-2 inhibitors (daclizumab, and basiliximab), and IL-4 inhibitors (dupilumab) have rarely been associated with Candida infection. In contrast, tocilizumab, an inhibitor of IL-6, has demonstrated an elevated risk in the context of coronavirus disease 2019 (COVID-19) treatment, as evidenced by a 6.9% prevalence of candidemia among patients using the drug. Furthermore, the incidence of Candida infections appeared to be higher in patients exposed to IL-17 inhibitors than in those exposed to IL-23 inhibitors. Therefore, healthcare practitioners must maintain awareness of the risk of candidiasis associated with using of IL inhibitors before prescribing them. Future prospective studies need to exhaustively investigate candidiasis and its associated risk factors in patients receiving IL inhibitors. Implementing enduring surveillance methods is crucial to ensure IL inhibitors safe and efficient utilization of in clinical settings.
Collapse
Affiliation(s)
- Sabir Khan
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Hazrat Bilal
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Muhammad Nadeem Khan
- Department of Microbiology, Faculty of Biological Sciences, Quaid-I-Azam University, Islamabad, Pakistan
| | - Wenjie Fang
- Department of Dermatology, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Wenqiang Chang
- School of Pharmacy, Shandong University, Qingdao, Shandong, China
| | - Bin Yin
- Department of Dermatovenereology, Chengdu Second People’s Hospital, Chengdu, China
| | - Ning-jing Song
- Department of Dermatology, Tongren Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Zhongrong Liu
- Department of Dermatology, First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongxing Zhang
- Department of Dermatology, Meizhou Dongshan Hospital, Meizhou, Guangdong, China
- Department of Dermatology, Meizhou People’s Hospital, Meizhou, Guangdong, China
| | - Fen Yao
- Department of Pharmacy, Shantou University School Medical College, Shantou, China
| | - Xun Wang
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Qian Wang
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Lin Cai
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
| | - Bing Hou
- Department of Clinical Laboratory, Skin and Venereal Diseases Prevention and Control Hospital of Shantou City, Shantou, Guangdong, China
| | - Jiayue Wang
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyan Mao
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lingxi Liu
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuebin Zeng
- Department of Dermatology, The Second Affiliated Hospital of Shantou University Medical College, Shantou, Guangdong, China
- Department of Dermatology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
11
|
Khafaei M, Asghari R, Zafari F, Sadeghi M. Impact of IL-6 rs1800795 and IL-17A rs2275913 gene polymorphisms on the COVID-19 prognosis and susceptibility in a sample of Iranian patients. Cytokine 2024; 174:156445. [PMID: 38056249 DOI: 10.1016/j.cyto.2023.156445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/23/2023] [Accepted: 11/13/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND From asymptomatic to acute and life-threatening pulmonary infection, the clinical manifestations of COVID-19 are highly variable. Interleukin (IL)-6 and IL-17A are key drivers of hyper inflammation status in COVID-19, and their elevated levels are hallmarks of the infection progression. To explore whether prognosis and susceptibility to COVID-19 are linked to IL-6 rs1800795 and IL-17A rs2275913, these single-nucleotide polymorphisms (SNPs) were assessed in a sample of Iranian COVID-19 patients. METHODS This study enrolled two hundred and eighty COVID-19 patients (140 non-severe and 140 severe). Genotyping for IL-6 rs1800795 and IL-17A rs2275913 was performed using tetra primer-amplification refractory mutation system-polymerase chain reaction (tetra-ARMS-PCR). IL-6 and IL-17A circulating levels were measured using enzyme-linked immunosorbent assay (ELISA). Also, mortality predictors of COVID-19 were investigated. RESULTS The rs1800795 GG genotype (78/140 (55.7 %)) and G allele (205/280 (73.2 %)) were significantly associated with a positive risk of COVID-19 severe infection (OR = 2.19, 95 %CI: 1.35-3.54, P =.006 and OR = 1.79, 95 %CI: 1.25-2.56, P <.001, respectively). Also, rs1800795 GG genotype was significantly linked to disease mortality (OR = 1.95, 95 %CI: 1.06-3.61, P =.04). The rs2275913 GA genotype was protective against severe COVID-19 (OR = 0.5, 95 %CI: 0.31--0.80, P =.012). However, the present study did not reveal any significant link between rs2275913 genotypes with disease mortality. INR ≥ 1.2 (OR = 2.19, 95 %CI: 1.61-3.78, P =.007), D-dimer ≥ 565.5 ng/mL (OR = 3.12, 95 %CI: 1.27-5.68, P =.019), respiratory rate ≥ 29 (OR = 1.19, 95 %CI: 1.12-1.28, P =.001), IL-6 serum concentration ≥ 28.5 pg/mL (OR = 1.97, 95 %CI: 1.942-2.06, P =.013), and IL-6 rs1800795 GG genotype (OR = 1.95, 95 %CI: 1.06-3.61, P =.04) were predictive of COVID-19 mortality. CONCLUSION The rs1800795 GG genotype and G allele were associated with disease severity, and INR, D-dimer, respiratory rate, IL-6 serum concentration, and IL-6 rs1800795 GG genotype were predictive of COVID-19 mortality.
Collapse
Affiliation(s)
- Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Reza Asghari
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Fariba Zafari
- Cellular and Molecular Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Morteza Sadeghi
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Mohan S. Targeted Treatment of Diseases of Immune Dysregulation. Rheum Dis Clin North Am 2023; 49:913-929. [PMID: 37821203 DOI: 10.1016/j.rdc.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Increasing molecular knowledge of autoinflammatory and autoimmune disorders has enabled more targeted treatment of these conditions. Treatment of inflammasomopathies is often aimed at interleukin-1 (IL-1) blockade, with potential use of other inhibitors targeting cytokines such as IL-18 and IL-6. Interferonopathies and some disorders with overlap features of autoimmunity and autoinflammation may improve with Janus kinase inhibition. Autoimmune conditions may also respond to inhibition of different cytokines, as well as to inhibition of T and B lymphocytes. Effective treatment is increasingly possible through targeted/precision medicine approaches.
Collapse
Affiliation(s)
- Smriti Mohan
- Division of Rheumatology, Department of Pediatrics, University of Michigan CS Mott Children's Hospital, 1500 East Medical Ctr Dr SPC 5718, Ann Arbor, MI 48109-5718, USA.
| |
Collapse
|
13
|
Xiang Y, Zhang M, Jiang D, Su Q, Shi J. The role of inflammation in autoimmune disease: a therapeutic target. Front Immunol 2023; 14:1267091. [PMID: 37859999 PMCID: PMC10584158 DOI: 10.3389/fimmu.2023.1267091] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Autoimmune diseases (AIDs) are immune disorders whose incidence and prevalence are increasing year by year. AIDs are produced by the immune system's misidentification of self-antigens, seemingly caused by excessive immune function, but in fact they are the result of reduced accuracy due to the decline in immune system function, which cannot clearly identify foreign invaders and self-antigens, thus issuing false attacks, and eventually leading to disease. The occurrence of AIDs is often accompanied by the emergence of inflammation, and inflammatory mediators (inflammatory factors, inflammasomes) play an important role in the pathogenesis of AIDs, which mediate the immune process by affecting innate cells (such as macrophages) and adaptive cells (such as T and B cells), and ultimately promote the occurrence of autoimmune responses, so targeting inflammatory mediators/pathways is one of emerging the treatment strategies of AIDs. This review will briefly describe the role of inflammation in the pathogenesis of different AIDs, and give a rough introduction to inhibitors targeting inflammatory factors, hoping to have reference significance for subsequent treatment options for AIDs.
Collapse
Affiliation(s)
- Yu Xiang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Mingxue Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Die Jiang
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, China
| | - Qian Su
- Department of Health Management & Institute of Health Management, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan, Sichuan Academy of Medical Science & Sichuan Provincial People’s Hospital, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
14
|
Sharma P, Joshi RV, Pritchard R, Xu K, Eicher MA. Therapeutic Antibodies in Medicine. Molecules 2023; 28:6438. [PMID: 37764213 PMCID: PMC10535987 DOI: 10.3390/molecules28186438] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/05/2023] [Accepted: 08/28/2023] [Indexed: 09/29/2023] Open
Abstract
Antibody engineering has developed into a wide-reaching field, impacting a multitude of industries, most notably healthcare and diagnostics. The seminal work on developing the first monoclonal antibody four decades ago has witnessed exponential growth in the last 10-15 years, where regulators have approved monoclonal antibodies as therapeutics and for several diagnostic applications, including the remarkable attention it garnered during the pandemic. In recent years, antibodies have become the fastest-growing class of biological drugs approved for the treatment of a wide range of diseases, from cancer to autoimmune conditions. This review discusses the field of therapeutic antibodies as it stands today. It summarizes and outlines the clinical relevance and application of therapeutic antibodies in treating a landscape of diseases in different disciplines of medicine. It discusses the nomenclature, various approaches to antibody therapies, and the evolution of antibody therapeutics. It also discusses the risk profile and adverse immune reactions associated with the antibodies and sheds light on future applications and perspectives in antibody drug discovery.
Collapse
Affiliation(s)
- Prerna Sharma
- Geisinger Commonwealth School of Medicine, Scranton, PA 18509, USA
| | | | | | | | | |
Collapse
|
15
|
Curtis JR, Yun H, Chen L, Ford SS, van Hoogstraten H, Fiore S, Ford K, Praestgaard A, Rehberg M, Choy E. Real-World Sarilumab Use and Rule Testing to Predict Treatment Response in Patients with Rheumatoid Arthritis: Findings from the RISE Registry. Rheumatol Ther 2023; 10:1055-1072. [PMID: 37349636 PMCID: PMC10326227 DOI: 10.1007/s40744-023-00568-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 05/30/2023] [Indexed: 06/24/2023] Open
Abstract
INTRODUCTION Clinical trial findings may not be generalizable to routine practice. This study evaluated sarilumab effectiveness in patients with rheumatoid arthritis (RA) and tested the real-world applicability of a response prediction rule, derived from trial data using machine learning (based on C-reactive protein [CRP] > 12.3 mg/l and seropositivity [anticyclic citrullinated peptide antibodies, ACPA +]). METHODS Sarilumab initiators from the ACR-RISE Registry, with ≥ 1 prescription on/after its FDA approval (2017-2020), were divided into three cohorts based on progressively restrictive criteria: Cohort A (had active disease), Cohort B (met eligibility criteria of a phase 3 trial in RA patients with inadequate response/intolerance to tumor necrosis factor inhibitors [TNFi]), and Cohort C (characteristics matched to the phase 3 trial baseline). Mean changes in Clinical Disease Activity Index (CDAI) and Routine Assessment of Patient Index Data 3 (RAPID3) were evaluated at 6 and 12 months. In a separate cohort, predictive rule was tested based on CRP levels and seropositive status (ACPA and/or rheumatoid factor); patients were categorized into rule-positive (seropositive with CRP > 12.3 mg/l) and rule-negative groups to compare the odds of achieving CDAI low disease activity (LDA)/remission and minimal clinically important difference (MCID) over 24 weeks. RESULTS Among sarilumab initiators (N = 2949), treatment effectiveness was noted across cohorts, with greater improvement noted for Cohort C at 6 and 12 months. Among the predictive rule cohort (N = 205), rule-positive (vs. rule-negative) patients were more likely to reach LDA (odds ratio: 1.5 [0.7, 3.2]) and MCID (1.1 [0.5, 2.4]). Sensitivity analyses (CRP > 5 mg/l) showed better response to sarilumab in rule-positive patients. CONCLUSIONS In real-world setting, sarilumab demonstrated treatment effectiveness, with greater improvements in the most selective population, mirroring phase 3 TNFi-refractory and rule-positive RA patients. Seropositivity appeared a stronger driver for treatment response than CRP, although optimization of the rule in routine practice requires further data.
Collapse
Affiliation(s)
- Jeffrey R Curtis
- University of Alabama at Birmingham, Birmingham, AL, 35233, USA.
| | - Huifeng Yun
- University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | - Lang Chen
- University of Alabama at Birmingham, Birmingham, AL, 35233, USA
| | | | | | | | | | | | | | - Ernest Choy
- CREATE Centre, Cardiff University, Cardiff, UK
| |
Collapse
|
16
|
Wu D, Li Y, Xu R. Can pyroptosis be a new target in rheumatoid arthritis treatment? Front Immunol 2023; 14:1155606. [PMID: 37426634 PMCID: PMC10324035 DOI: 10.3389/fimmu.2023.1155606] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/07/2023] [Indexed: 07/11/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic systemic autoimmune disease of undefined etiology, with persistent synovial inflammation and destruction of articular cartilage and bone. Current clinical drugs for RA mainly include non-steroidal anti-inflammatory drugs (NSAIDs), glucocorticoids, disease modifying anti-rheumatic drugs (DMARDs) and so on, which can relieve patients' joint symptoms. If we want to have a complete cure for RA, there are still some limitations of these drugs. Therefore, we need to explore new mechanisms of RA to prevent and treat RA radically. Pyroptosis is a newly discovered programmed cell death (PCD) in recent years, which is characterized by the appearance of holes in cell membranes, cell swelling and rupture, and the release of intracellular pro-inflammatory factors into the extracellular space, resulting in a strong inflammatory response. The nature of pyroptosis is pro-inflammatory, and whether it is participating in the development of RA has attracted a wide interest among scholars. This review describes the discovery and mechanism of pyroptosis, the main therapeutic strategies for RA, and the role of pyroptosis in the mechanism of RA development. From the perspective of pyroptosis, the study of new mechanisms of RA may provide a potential target for the treatment of RA and the development of new drugs in the clinics.
Collapse
Affiliation(s)
- Dengqiang Wu
- Department of Clinical Laboratory, Ningbo No.6 Hospital, Ningbo, China
| | - Yujie Li
- Department of Clinical Laboratory, Ningbo Medical Center Lihuili Hospital, Ningbo, China
| | - Ranxing Xu
- Department of Clinical Laboratory, Ningbo No.6 Hospital, Ningbo, China
| |
Collapse
|
17
|
Chi XK, Xu XL, Chen BY, Su J, Du YZ. Combining nanotechnology with monoclonal antibody drugs for rheumatoid arthritis treatments. J Nanobiotechnology 2023; 21:105. [PMID: 36964609 PMCID: PMC10039584 DOI: 10.1186/s12951-023-01857-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 03/26/2023] Open
Abstract
Rheumatoid arthritis (RA) is a systemic immune disease characterized by synovial inflammation. Patients with RA commonly experience significant damage to their hand and foot joints, which can lead to joint deformities and even disability. Traditional treatments have several clinical drawbacks, including unclear pharmacological mechanisms and serious side effects. However, the emergence of antibody drugs offers a promising approach to overcome these limitations by specifically targeting interleukin-1 (IL-1), interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), and other cytokines that are closely related to the onset of RA. This approach reduces the incidence of adverse effects and contributes to significant therapeutic outcomes. Furthermore, combining these antibody drugs with drug delivery nanosystems (DDSs) can improve their tissue accumulation and bioavailability.Herein, we provide a summary of the pathogenesis of RA, the available antibody drugs and DDSs that improve the efficacy of these drugs. However, several challenges need to be addressed in their clinical applications, including patient compliance, stability, immunogenicity, immunosupression, target and synergistic effects. We propose strategies to overcome these limitations. In summary, we are optimistic about the prospects of treating RA with antibody drugs, given their specific targeting mechanisms and the potential benefits of combining them with DDSs.
Collapse
Affiliation(s)
- Xiao-Kai Chi
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China
| | - Xiao-Ling Xu
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China.
| | - Bang-Yao Chen
- Shulan International Medical College, Zhejiang Shuren University), 8 Shuren Street, Hangzhou, 310015, China
| | - Jin Su
- College of Pharmacy, Jiamusi University, 258 Xuefu Road, Jiamusi, 154007, China.
| | - Yong-Zhong Du
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou, 310058, China.
| |
Collapse
|
18
|
Signaling pathways in rheumatoid arthritis: implications for targeted therapy. Signal Transduct Target Ther 2023; 8:68. [PMID: 36797236 PMCID: PMC9935929 DOI: 10.1038/s41392-023-01331-9] [Citation(s) in RCA: 163] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/16/2022] [Accepted: 01/18/2023] [Indexed: 02/18/2023] Open
Abstract
Rheumatoid arthritis (RA) is an incurable systemic autoimmune disease. Disease progression leads to joint deformity and associated loss of function, which significantly impacts the quality of life for sufferers and adds to losses in the labor force. In the past few decades, RA has attracted increased attention from researchers, the abnormal signaling pathways in RA are a very important research field in the diagnosis and treatment of RA, which provides important evidence for understanding this complex disease and developing novel RA-linked intervention targets. The current review intends to provide a comprehensive overview of RA, including a general introduction to the disease, historical events, epidemiology, risk factors, and pathological process, highlight the primary research progress of the disease and various signaling pathways and molecular mechanisms, including genetic factors, epigenetic factors, summarize the most recent developments in identifying novel signaling pathways in RA and new inhibitors for treating RA. therapeutic interventions including approved drugs, clinical drugs, pre-clinical drugs, and cutting-edge therapeutic technologies. These developments will hopefully drive progress in new strategically targeted therapies and hope to provide novel ideas for RA treatment options in the future.
Collapse
|
19
|
Weber B, Liao KP. Evidence for Biologic Drug Modifying Anti-Rheumatoid Drugs and Association with Cardiovascular Disease Risk Mitigation in Inflammatory Arthritis. Rheum Dis Clin North Am 2023; 49:165-178. [PMID: 36424023 PMCID: PMC10250044 DOI: 10.1016/j.rdc.2022.08.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Systemic auto-immune inflammatory arthritides are associated with increased cardiovascular (CV) risk compared to those without these conditions, and is a leading cause of morbidity and mortality. Newer biologic drug modifying antirheumatoid drugs (bDMARD) and small molecules have transformed treatment paradigms enabling tighter control of disease activity and in some cases, remission. There is evidence to suggest that the majority of bDMARDs may also reduce cardiovascular risk, although prospective interventional data remain sparse. Additionally, recent results raise concern for treatments targeting specific pathways that may negatively affect cardiovascular risk. This review will cover key biologic pathways targeted in rheumatoid arthritis, psoriatic arthritis, and spondyloarthropathies.
Collapse
Affiliation(s)
- Brittany Weber
- Department of Medicine, Division of Cardiovascular Medicine, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA 02115, USA; Cardiovascular Imaging Program, Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| | - Katherine P Liao
- Division of Rheumatology, Inflammation, and Immunity, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
20
|
A Clinical Insight on New Discovered Molecules and Repurposed Drugs for the Treatment of COVID-19. Vaccines (Basel) 2023; 11:vaccines11020332. [PMID: 36851211 PMCID: PMC9967525 DOI: 10.3390/vaccines11020332] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) began churning out incredulous terror in December 2019. Within several months from its first detection in Wuhan, SARS-CoV-2 spread to the rest of the world through droplet infection, making it a pandemic situation and a healthcare emergency across the globe. The available treatment of COVID-19 was only symptomatic as the disease was new and no approved drug or vaccine was available. Another challenge with COVID-19 was the continuous mutation of the SARS-CoV-2 virus. Some repurposed drugs, such as hydroxychloroquine, chloroquine, and remdesivir, received emergency use authorization in various countries, but their clinical use is compromised with either severe and fatal adverse effects or nonavailability of sufficient clinical data. Molnupiravir was the first molecule approved for the treatment of COVID-19, followed by Paxlovid™, monoclonal antibodies (MAbs), and others. New molecules have variable therapeutic efficacy against different variants or strains of SARS-CoV-2, which require further investigations. The aim of this review is to provide in-depth information on new molecules and repurposed drugs with emphasis on their general description, mechanism of action (MOA), correlates of protection, dose and dosage form, route of administration, clinical trials, regulatory approval, and marketing authorizations.
Collapse
|
21
|
Thabet RH, Massadeh NA, Badarna OB, Al-Momani OM. Highlights on molecular targets in the management of COVID-19: Possible role of pharmacogenomics. J Int Med Res 2023; 51:3000605231153764. [PMID: 36717541 PMCID: PMC9893104 DOI: 10.1177/03000605231153764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
By the end of 2022, there had been a reduction in new cases and deaths caused by coronavirus disease 2019 (COVID-19). At the same time, new variants of the severe acute respiratory syndrome coronavirus 2 virus were being discovered. Critically ill patients with COVID-19 have been found to have high serum levels of proinflammatory cytokines, especially interleukin (IL)-6. COVID-19-related mortality has been attributed in most cases to the cytokine storm caused by increased levels of inflammatory cytokines. Dexamethasone in low doses and immunomodulators such as IL-6 inhibitors are recommended to overcome the cytokine storm. This current narrative review highlights the place of other therapeutic choices such as proteasome inhibitors, protease inhibitors and nuclear factor kappa B inhibitors in the treatment of patients with COVID-19.
Collapse
Affiliation(s)
- Romany H. Thabet
- Department of Pharmacology, Faculty of Medicine, Assiut University, Assiut, Egypt,Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Irbid, Jordan,Romany H. Thabet, Department of Basic Medical Sciences, Faculty of Medicine, Yarmouk University, Shafiq Irshidat Street, Irbid 21163, Jordan.
| | - Noor A. Massadeh
- Internship, Princess Basma Hospital, Ministry of Health, Irbid, Jordan
| | - Omar B. Badarna
- Internship, Princess Basma Hospital, Ministry of Health, Irbid, Jordan
| | - Omar M. Al-Momani
- Internship, Princess Basma Hospital, Ministry of Health, Irbid, Jordan
| |
Collapse
|
22
|
Mourtzi N, Georgakis M, Ntanasi E, Hatzimanolis A, Ramirez A, Heilmann-Heimbach S, Grenier-Boley B, Lambert J, Yannakoulia M, Kosmidis M, Dardiotis E, Hadjigeorgiou G, Sakka P, Scarmeas N. Genetically downregulated Interleukin-6 signalling is associated with a lower risk of frailty. Age Ageing 2023; 52:7008635. [PMID: 36729470 DOI: 10.1093/ageing/afac318] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 08/04/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND numerous studies point towards a critical role of Interleukin 6 (IL-6) pathway in frailty pathogenesis yet the causal relationship between the two remains elusive. METHODS we selected genetic variants near the IL-6 receptor locus (IL-6R) associated with reduced C-reactive protein (CRP) levels, a downstream effector of IL-6 pathway, and we used them as genetic proxies of IL-6 signalling downregulation. We then performed a two-sample Mendelian randomisation (MR) to investigate the association with frailty status, as defined by the Frailty Index (FI) in 11,171 individuals from the Hellenic Longitudinal Investigation of Ageing and Diet (HELIAD) study. MR analysis was repeated after excluding depression or cognition-related FI items as well as following age or sex stratification. Association with frailty was also examined using an alternative instrument, weighted on s-IL-6R levels. Replication was attempted in UK Biobank dataset. RESULTS genetic predisposition to IL-6 signalling downregulation, weighted on CRP levels, was associated with lower risk of frailty, inserted either as categorical (odds ratio [95% confidence interval] = 0.15 [-3.39, -0.40], P = 0.013) or continuous variable (beta [se] = -0.09 [0.003], P = 0.0009). Sensitivity analyses revealed similar estimates across different MR methods with no evidence for horizontal pleiotropy or heterogeneity. Results remained robust after exclusion of depression or cognition-related FI items and following sex or age stratification. Genetically increased s-IL-6R levels were negatively correlated with frailty and this finding remained significant in a meta-analysis of UK Biobank and HELIAD cohorts. CONCLUSION our results support a potential causal effect of IL-6 signalling on frailty and further suggest that downregulation of IL-6 levels may reduce frailty risk.
Collapse
Affiliation(s)
- Niki Mourtzi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens 11528, Greece
| | - Mariosk Georgakis
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA 02142, USA.,Program in Medical and Population Genetics, Broad Institute of Harvard and the Massachusetts Institute of Technology, Boston, MA 02142, USA.,Institute for Stroke and Dementia Research (ISD), University Hospital, Ludwig-Maximilians-University (LMU) Munich, Munich 81377, Germany
| | - Eva Ntanasi
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens 11528, Greece.,Department of Nutrition and Dietetics, Harokopio University, Athens 176768, Greece
| | - Alexandros Hatzimanolis
- Department of Psychiatry, National and Kapodistrian University of Athens Medical School, Aiginition Hospital, Athens 11528, Greece.,Neurobiology Research Institute, Theodor-Theohari Cozzika Foundation, Athens 11521, Greece
| | - Alfredo Ramirez
- Medical Faculty, Division of Neurogenetics and Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University of Cologne, Cologne 50923, Germany.,Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Hospital Bonn, Bonn 53127, Germany.,German Center for Neurodegenerative Diseases (DZNE Bonn), Bonn 53127, Germany.,Department of Psychiatry, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, San Antonio, TX 78229, USA
| | - Stephanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn 53127, Germany
| | | | - Jeanc Lambert
- Univ. Lille, Inserm, CHU Lille, Institut Pasteur de Lille, Lille 59800, France
| | - Mary Yannakoulia
- Department of Nutrition and Dietetics, Harokopio University, Athens 17676, Greece
| | - Mary Kosmidis
- Lab of Cognitive Neuroscience, School of Psychology, Aristotle University of Thessaloniki, Thessaloniki 5412415, Greece
| | - Efthimios Dardiotis
- Department of Neurology, Faculty of Medicine, School of Health Sciences, University Hospital of Larissa, University of Thessaly, Larissa 41110, Greece
| | | | - Paraskevi Sakka
- Athens Association of Alzheimer's Disease and Related Disorders, Marousi 11636, Greece
| | - Nikolaos Scarmeas
- 1st Department of Neurology, Aiginition Hospital, National and Kapodistrian University of Athens Medical School, Athens 11528, Greece.,Department of Neurology, The Gertrude H. Sergievsky Center, Taub Institute for Research in Alzheimer's Disease and the Aging Brain, Columbia University, New York, NY 10032, USA
| |
Collapse
|
23
|
Macovei LA, Burlui A, Bratoiu I, Rezus C, Cardoneanu A, Richter P, Szalontay A, Rezus E. Adult-Onset Still's Disease-A Complex Disease, a Challenging Treatment. Int J Mol Sci 2022; 23:12810. [PMID: 36361602 PMCID: PMC9655522 DOI: 10.3390/ijms232112810] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 12/02/2022] Open
Abstract
Adult-onset Still's disease (AOSD) is a systemic inflammatory disorder with an unknown cause characterized by high-spiking fever, lymphadenopathy, hepatosplenomegaly, hyperferritinemia, and leukocytosis. The clinical course can be divided into three significant patterns, each with a different prognosis: Self-limited or monophasic, intermittent or polycyclic systemic, and chronic articular. Two criteria sets have been validated. The Yamaguchi criteria are the most generally used, although the Fautrel criteria offer the benefit of adding ferritin and glycosylated ferritin values. AOSD's pathogenesis is not yet completely understood. Chemokines and pro-inflammatory cytokines, including interferon (IFN)-γ, tumor necrosis factor α (TNFα), interleukin (IL)-1, IL-6, IL-8, and IL-18, play a crucial role in the progression of illness, resulting in the development of innovative targeted therapeutics. There are no treatment guidelines for AOSD due to its rarity, absence of controlled research, and lack of a standard definition for remission and therapy objectives. Non-steroidal anti-inflammatory drugs (NSAIDs), corticosteroids (CS), and conventional synthetic disease-modifying antirheumatic drugs (csDMARDs) are used in AOSD treatment. Biological therapy, including IL-1, IL-6, IL-18, and IL-17 inhibitors, as well as TNFα or Janus-kinases (JAKs) inhibitors, is administered to patients who do not react to CS and csDMARDs or achieve an inadequate response.
Collapse
Affiliation(s)
- Luana Andreea Macovei
- Department of Rheumatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Alexandra Burlui
- Department of Rheumatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ioana Bratoiu
- Department of Rheumatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Ciprian Rezus
- Department of Internal Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- III Internal Medicine Clinic, “St. Spiridon” County Emergency Clinical Hospital, 700111 Iasi, Romania
| | - Anca Cardoneanu
- Department of Rheumatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Patricia Richter
- Department of Rheumatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| | - Andreea Szalontay
- Department of Psychiatry, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
- Institute of Psychiatry “Socola”, 700282 Iasi, Romania
| | - Elena Rezus
- Department of Rheumatology, “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universitatii Street, 700115 Iasi, Romania
- Clinical Rehabilitation Hospital, 700661 Iasi, Romania
| |
Collapse
|
24
|
Aliyu M, Zohora FT, Anka AU, Ali K, Maleknia S, Saffarioun M, Azizi G. Interleukin-6 cytokine: An overview of the immune regulation, immune dysregulation, and therapeutic approach. Int Immunopharmacol 2022; 111:109130. [PMID: 35969896 DOI: 10.1016/j.intimp.2022.109130] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/26/2022] [Accepted: 08/03/2022] [Indexed: 12/19/2022]
Abstract
Several studies have shown that interleukin 6 (IL-6) is a multifunctional cytokine with both pro-inflammatory and anti-inflammatory activity, depending on the immune response context. Macrophages are among several cells that secrete IL-6, which they express upon activation by antigens, subsequently inducing fever and production of acute-phase proteins from the liver. Moreover, IL-6 induces the final maturation of B cells into memory B cells and plasma cells as well as an adaptive role for short-term energy allocation. Activation of IL-6 receptors results in the intracellular activation of the JAK/STAT pathway with resultant production of inflammatory cytokines. Several mechanisms-controlled IL-6 expression, but aberrant production was shown to be crucial in the pathogenesis of many diseases, which include autoimmune and chronic inflammatory diseases. IL-6 in combination with transforming growth factor β (TGF-β) induced differentiation of naïve T cells to Th17 cells, which is the cornerstone in autoimmune diseases. Recently, IL-6 secretion was shown to form the backbone of hypercytokinemia seen in the Coronavirus disease 2019 (COVID-19)-associated hyperinflammation and multiorgan failure. There are two classes of approved IL-6 inhibitors: anti-IL-6 receptor monoclonal antibodies (e.g., tocilizumab) and anti-IL-6 monoclonal antibodies (i.e., siltuximab). These drugs have been evaluated in patients with rheumatoid arthritis, juvenile idiopathic arthritis, cytokine release syndrome, and COVID-19 who have systemic inflammation. JAK/STAT pathway blockers were also successfully used in dampening IL-6 signal transduction. A better understanding of different mechanisms that modulate IL-6 expression will provide the much-needed solution with excellent safety and efficacy profiles for the treatment of autoimmune and inflammatory diseases in which IL-6 derives their pathogenesis.
Collapse
Affiliation(s)
- Mansur Aliyu
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, International Campus, TUMS-IC, Tehran, Iran; Department of Medical Microbiology, Faculty of Clinical Science, College of Health Sciences, Bayero University, Kano, Nigeria
| | - Fatema Tuz Zohora
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Malaysia
| | - Abubakar Umar Anka
- Department of Medical Laboratory Science, College of Medical Sciences, Ahmadu Bello University, Zaria, Nigeria
| | - Kashif Ali
- Department of Pharmacy Abdul Wali, Khan University Mardan, Pakistan
| | - Shayan Maleknia
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Mohammad Saffarioun
- Biopharmaceutical Research Center, AryoGen Pharmed Inc., Alborz University of Medical Sciences, Karaj, Iran
| | - Gholamreza Azizi
- Non-communicable Diseases Research Center, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
25
|
Research progress in drug therapy of juvenile idiopathic arthritis. World J Pediatr 2022; 18:383-397. [PMID: 35364799 DOI: 10.1007/s12519-022-00530-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Juvenile idiopathic arthritis (JIA) is the most common chronic rheumatic disease in children. With the gradual expansion of the incidence of JIA in the population, the pathogenesis and treatment of JIA were further explored and analyzed, and JIA has achieved some success in drug therapy. DATA SOURCES A systemic literature search was conducted on PubMed, Cochrane Library, EMBASE, ISI Web of Science, the US National Institutes of Health Ongoing Trials Register, and the EU Clinical Trials Register. Through the searching of clinical trials of JIA in recent years, we summarized the progress of the clinical treatment of JIA. RESULTS The main treatment drugs for JIA include non-steroidal anti-inflammatory drugs, glucocorticoids, disease-modifying antirheumatic drugs and biological agents. So far, a variety of biological agents targeting the cytokines and receptors involved in its pathogenesis have been gradually approved for JIA in many countries. The application of biological agents in JIA showed good efficacy and safety, bringing unprecedented experience to children and adolescents with JIA. CONCLUSIONS The potential and advantages of biologic agents in the treatment of JIA are significant, and the application of biologic agents in the treatment of JIA will be more and more common.
Collapse
|
26
|
Zhao Z, Zhang Y, Gao D, Zhang Y, Han W, Xu X, Song Q, Zhao C, Yang J. Inhibition of Histone H3 Lysine-27 Demethylase Activity Relieves Rheumatoid Arthritis Symptoms via Repression of IL6 Transcription in Macrophages. Front Immunol 2022; 13:818070. [PMID: 35371061 PMCID: PMC8965057 DOI: 10.3389/fimmu.2022.818070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/24/2022] [Indexed: 12/12/2022] Open
Abstract
Rheumatoid arthritis (RA) occurs in about 5 per 1,000 people and can lead to severe joint damage and disability. However, the knowledge of pathogenesis and treatment for RA remains limited. Here, we found that histone demethylase inhibitor GSK-J4 relieved collagen induced arthritis (CIA) symptom in experimental mice model, and the underlying mechanism is related to epigenetic transcriptional regulation in macrophages. The role of epigenetic regulation has been introduced in the process of macrophage polarization and the pathogenesis of inflammatory diseases. As a repressive epigenetic marker, tri-methylation of lysine 27 on histone H3 (H3K27me3) was shown to be important for transcriptional gene expression regulation. Here, we comprehensively analyzed H3K27me3 binding promoter and corresponding genes function by RNA sequencing in two differentially polarized macrophage populations. The results revealed that H3K27me3 binds on the promoter regions of multiple critical cytokine genes and suppressed their transcription, such as IL6, specifically in M-CSF derived macrophages but not GM-CSF derived counterparts. Our results may provide a new approach for the treatment of inflammatory and autoimmune disorders.
Collapse
Affiliation(s)
- Zhan Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yazhuo Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Danling Gao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Yidan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Wenwei Han
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Ximing Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qiaoling Song
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.,Innovation Platform of Marine Drug Screening & Evaluation, Qingdao Pilot National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
27
|
Galozzi P, Bindoli S, Doria A, Sfriso P. Progress in Biological Therapies for Adult-Onset Still’s Disease. Biologics 2022; 16:21-34. [PMID: 35481241 PMCID: PMC9038152 DOI: 10.2147/btt.s290329] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 04/06/2022] [Indexed: 12/17/2022]
Abstract
Adult-onset Still’s disease (AOSD) is a rare multifactorial autoinflammatory disorder of unknown etiology, characterized by an excessive release of cytokines triggered by dysregulated inflammation and articular and systemic manifestations. The clinical spectrum of AOSD ranges from self-limiting forms with mild symptoms to life-threatening cases and presents clinical and biological similarities with the juvenile form (sJIA). Nowadays, the advances in biologic agents no longer limit the treatment to NSAIDs, glucocorticoids, or conventional synthetic DMARDs. The blockade of IL-1 and IL-6 is effective in the treatment of systemic and articular inflammation of AOSD patients; however, novel compounds with different properties and targets are now available and others are being studied. In this review, starting from the pathogenesis of AOSD, we summarized the current and emerging biological therapies, possible effective agents for achieving AOSD control and remission.
Collapse
Affiliation(s)
- Paola Galozzi
- Rheumatology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
- Correspondence: Paola Galozzi, Rheumatology Unit, Department of Medicine DIMED, University of Padova, via Giustiniani, 2, Padova, 35128, Italy, Tel +39 049 821 8654, Email
| | - Sara Bindoli
- Rheumatology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Andrea Doria
- Rheumatology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
| | - Paolo Sfriso
- Rheumatology Unit, Department of Medicine DIMED, University of Padova, Padova, Italy
| |
Collapse
|
28
|
Villaescusa L, Zaragozá F, Gayo-Abeleira I, Zaragozá C. A New Approach to the Management of COVID-19. Antagonists of IL-6: Siltuximab. Adv Ther 2022; 39:1126-1148. [PMID: 35072887 PMCID: PMC8784859 DOI: 10.1007/s12325-022-02042-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/06/2022] [Indexed: 02/06/2023]
Abstract
Since the beginning of the pandemic, numerous national and international clinical trials have been conducted with a large number of drugs. Many of them are intended for the treatment of other pathologies; however, despite the great effort made, no specific drug is available for the treatment of the symptoms of respiratory disease caused by SARS-CoV-2 infection. The aim of this article is to provide data to justify the use of drugs to tackle the effects produced by IL-6 as the main inflammatory mediator in patients with COVID-19 with severe respiratory complications, considering all clinical evidence linking the poor prognosis of these patients with increased IL-6 levels in the context of cytokine release syndrome. Furthermore, data are provided to justify the proposal of a rational dosing of siltuximab, a monoclonal antibody specifically targeting IL-6, based on RCP levels, considering the limited results published so far on the use of this drug in COVID-19. A literature search was conducted on the clinical trials of siltuximab published to date as well as on the different IL-6 signalling pathways and the effects of its overexpression. Knowledge of the mechanisms of action on these pathways may provide important information for the design of drugs useful in the treatment of these patients. This article describes the characteristics, properties, mechanism of action, therapeutic uses and clinical studies conducted with siltuximab so far. The results confirm that administration of siltuximab downregulates IL-6 levels, thereby reducing the inflammatory process in COVID-19 patients with severe respiratory disease, suggesting that it can be successfully used to prevent cytokine release syndrome and death from this cause.
Collapse
Affiliation(s)
- Lucinda Villaescusa
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Madrid, 28805, Alcalá de Henares, Spain.
| | - Francisco Zaragozá
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Madrid, 28805, Alcalá de Henares, Spain
| | - Irene Gayo-Abeleira
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Madrid, 28805, Alcalá de Henares, Spain
| | - Cristina Zaragozá
- Pharmacology Unit, Biomedical Sciences Department, University of Alcalá, Madrid, 28805, Alcalá de Henares, Spain
| |
Collapse
|
29
|
Wang Z, Huang J, Xie D, He D, Lu A, Liang C. Toward Overcoming Treatment Failure in Rheumatoid Arthritis. Front Immunol 2021; 12:755844. [PMID: 35003068 PMCID: PMC8732378 DOI: 10.3389/fimmu.2021.755844] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/06/2021] [Indexed: 12/29/2022] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disorder characterized by inflammation and bone erosion. The exact mechanism of RA is still unknown, but various immune cytokines, signaling pathways and effector cells are involved. Disease-modifying antirheumatic drugs (DMARDs) are commonly used in RA treatment and classified into different categories. Nevertheless, RA treatment is based on a "trial-and-error" approach, and a substantial proportion of patients show failed therapy for each DMARD. Over the past decades, great efforts have been made to overcome treatment failure, including identification of biomarkers, exploration of the reasons for loss of efficacy, development of sequential or combinational DMARDs strategies and approval of new DMARDs. Here, we summarize these efforts, which would provide valuable insights for accurate RA clinical medication. While gratifying, researchers realize that these efforts are still far from enough to recommend specific DMARDs for individual patients. Precision medicine is an emerging medical model that proposes a highly individualized and tailored approach for disease management. In this review, we also discuss the potential of precision medicine for overcoming RA treatment failure, with the introduction of various cutting-edge technologies and big data.
Collapse
Affiliation(s)
- Zhuqian Wang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Jie Huang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Duoli Xie
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| | - Dongyi He
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Shanghai Guanghua Hospital of Integrative Medicine, Shanghai, China
| | - Aiping Lu
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Institute of Arthritis Research in Integrative Medicine, Shanghai Academy of Traditional Chinese Medicine, Shanghai, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, China
| | - Chao Liang
- Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
- Institute of Integrated Bioinfomedicine and Translational Science (IBTS), School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
- Law Sau Fai Institute for Advancing Translational Medicine in Bone and Joint Diseases, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, Hong Kong SAR, China
| |
Collapse
|
30
|
Precision Medicine in Systemic Mastocytosis. Medicina (B Aires) 2021; 57:medicina57111135. [PMID: 34833353 PMCID: PMC8623914 DOI: 10.3390/medicina57111135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/11/2021] [Accepted: 10/12/2021] [Indexed: 12/20/2022] Open
Abstract
Mastocytosis is a rare hematological neoplasm characterized by the proliferation of abnormal clonal mast cells (MCs) in different cutaneous and extracutaneous organs. Its diagnosis is based on well-defined major and minor criteria, including the pathognomonic dense infiltrate of MCs detected in bone marrow (BM), elevated serum tryptase level, abnormal MCs CD25 expression, and the identification of KIT D816V mutation. The World Health Organization (WHO) classification subdivides mastocytosis into a cutaneous form (CM) and five systemic variants (SM), namely indolent/smoldering (ISM/SSM) and advanced SM (AdvSM) including aggressive SM (ASM), SM associated to hematological neoplasms (SM-AHN), and mast cell leukemia (MCL). More than 80% of patients with SM carry a somatic point mutation of KIT at codon 816, which may be targeted by kinase inhibitors. The presence of additional somatic mutations detected by next generation sequencing analysis may impact prognosis and drive treatment strategy, which ranges from symptomatic drugs in indolent forms to kinase-inhibitors active on KIT. Allogeneic stem cell transplant (SCT) may be considered in selected SM cases. Here, we review the clinical, diagnostic, and therapeutic issues of SM, with special emphasis on the translational implications of SM genetics for a precision medicine approach in clinical practice.
Collapse
|
31
|
Marcuzzi A, Melloni E, Zauli G, Romani A, Secchiero P, Maximova N, Rimondi E. Autoinflammatory Diseases and Cytokine Storms-Imbalances of Innate and Adaptative Immunity. Int J Mol Sci 2021; 22:11241. [PMID: 34681901 PMCID: PMC8541037 DOI: 10.3390/ijms222011241] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023] Open
Abstract
Innate and adaptive immune responses have a well-known link and represent the distinctive origins of several diseases, many of which may be the consequence of the loss of balance between these two responses. Indeed, autoinflammation and autoimmunity represent the two extremes of a continuous spectrum of pathologic conditions with numerous overlaps in different pathologies. A common characteristic of these dysregulations is represented by hyperinflammation, which is an exaggerated response of the immune system, especially involving white blood cells, macrophages, and inflammasome activation with the hyperproduction of cytokines in response to various triggering stimuli. Moreover, hyperinflammation is of great interest, as it is one of the main manifestations of COVID-19 infection, and the cytokine storm and its most important components are the targets of the pharmacological treatments used to combat COVID-19 damage. In this context, the purpose of our review is to provide a focus on the pathogenesis of autoinflammation and, in particular, of hyperinflammation in order to generate insights for the identification of new therapeutic targets and strategies.
Collapse
Affiliation(s)
- Annalisa Marcuzzi
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (G.Z.); (A.R.)
| | - Elisabetta Melloni
- LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (E.R.)
| | - Giorgio Zauli
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (G.Z.); (A.R.)
| | - Arianna Romani
- Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (A.M.); (G.Z.); (A.R.)
| | - Paola Secchiero
- LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (E.R.)
| | - Natalia Maximova
- Bone Marrow Transplant Unit, Institute for Maternal and Child Health-IRCCS Burlo Garofolo, 34137 Trieste, Italy;
| | - Erika Rimondi
- LTTA Centre, Department of Translational Medicine, University of Ferrara, 44121 Ferrara, Italy; (E.M.); (E.R.)
| |
Collapse
|
32
|
Shekhawat J, Gauba K, Gupta S, Purohit P, Mitra P, Garg M, Misra S, Sharma P, Banerjee M. Interleukin-6 Perpetrator of the COVID-19 Cytokine Storm. Indian J Clin Biochem 2021; 36:440-450. [PMID: 34177139 PMCID: PMC8216093 DOI: 10.1007/s12291-021-00989-8] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 06/08/2021] [Indexed: 12/21/2022]
Abstract
COVID-19 has emerged as a global pandemic. It is mainly manifested as pneumonia which may deteriorate into severe respiratory failure. The major hallmark of the disease is the systemic inflammatory immune response characterized by Cytokine Storm (CS). CS is marked by elevated levels of inflammatory cytokines, mainly interleukin-6 (IL-6), IL-8, IL-10, tumour necrosis factor-α (TNF-α) and interferon-γ (IFN-γ). Of these, IL-6 is found to be significantly associated with higher mortality. IL-6 is also a robust marker for predicting disease prognosis and deterioration of clinical profile. In this review, the pivotal role played by IL-6 in the immuno-pathology of COVID-19 has been illustrated. The role of IL-6 as a pleiotropic cytokine executing both pro and anti-inflammatory activities has been reviewed. ADAM 10, a metalloproteinase switches the anti-inflammatory pathway of IL-6 to pro inflammatory hence blocking the action of ADAM 10 could be a new therapeutic strategy to mitigate the proinflammatory action of IL-6. Furthermore, we explore the role of anti-IL6 agents, IL-6 receptor antibodies which were being used for autoimmune diseases but now are being repurposed for the therapy of COVID-19.
Collapse
Affiliation(s)
- Jyoti Shekhawat
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Kavya Gauba
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Shruti Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Purvi Purohit
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Prasenjit Mitra
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Mahendra Garg
- Department of Endocrinology, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Sanjeev Misra
- Department of Surgical Oncology, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Praveen Sharma
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| | - Mithu Banerjee
- Department of Biochemistry, All India Institute of Medical Sciences, Jodhpur, 342005 India
| |
Collapse
|
33
|
Sánchez-Robles EM, Girón R, Paniagua N, Rodríguez-Rivera C, Pascual D, Goicoechea C. Monoclonal Antibodies for Chronic Pain Treatment: Present and Future. Int J Mol Sci 2021; 22:ijms221910325. [PMID: 34638667 PMCID: PMC8508878 DOI: 10.3390/ijms221910325] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 12/20/2022] Open
Abstract
Chronic pain remains a major problem worldwide, despite the availability of various non-pharmacological and pharmacological treatment options. Therefore, new analgesics with novel mechanisms of action are needed. Monoclonal antibodies (mAbs) are directed against specific, targeted molecules involved in pain signaling and processing pathways that look to be very effective and promising as a novel therapy in pain management. Thus, there are mAbs against tumor necrosis factor (TNF), nerve growth factor (NGF), calcitonin gene-related peptide (CGRP), or interleukin-6 (IL-6), among others, which are already recommended in the treatment of chronic pain conditions such as osteoarthritis, chronic lower back pain, migraine, or rheumatoid arthritis that are under preclinical research. This narrative review summarizes the preclinical and clinical evidence supporting the use of these agents in the treatment of chronic pain.
Collapse
|
34
|
Tanaka Y, Takahashi T, Sumi M, Hagino O, Van Hoogstraten H, Xu C, Kato N, Kameda H. Immunogenicity of sarilumab and impact on safety and efficacy in Japanese patients with rheumatoid arthritis: analysis of two Phase 3 randomised clinical trials. Mod Rheumatol 2021; 32:686-695. [PMID: 34915576 DOI: 10.1093/mr/roab066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/10/2021] [Accepted: 08/14/2021] [Indexed: 11/14/2022]
Abstract
OBJECTIVES To describe the immunogenicity profile of sarilumab in Japanese patients with rheumatoid arthritis (RA). METHODS Patients enrolled in the KAKEHASI and HARUKA studies were included in our analysis. In these studies, patients received sarilumab 150 mg or 200 mg every 2 weeks for 52 or 28 weeks in combination with methotrexate (MTX) (KAKEHASI), or for 52 weeks as monotherapy or in combination with non-MTX conventional synthetic disease-modifying anti-rheumatic drugs (HARUKA). Anti-drug antibodies (ADAs) and neutralising antibodies (NAbs) were assessed in the pooled population. RESULTS Positive ADA assay responses occurred in 10/149 (7.1%) patients treated with sarilumab 150 mg and 13/185 (7.0%) patients treated with sarilumab 200 mg, with persistent responses in 2 (1.4%) and 4 (2.2%) patients, respectively. Peak ADA titre was 30. No patients treated with the 150 mg dose and one patient (0.5%) treated with the 200 mg dose exhibited NAbs. There was no evidence of an association between ADA formation and hypersensitivity reactions or reduced efficacy. CONCLUSIONS ADAs, which occurred at a low frequency and titre, did not affect the safety or efficacy of sarilumab 150 or 200 mg administered as monotherapy or combination therapy in Japanese patients with RA in the KAKEHASI or HARUKA studies.
Collapse
Affiliation(s)
- Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, Kitakyushu, Japan
| | | | - Mariko Sumi
- Research and Development, Sanofi K.K., Tokyo, Japan
| | - Owen Hagino
- Research and Development, Sanofi-Genzyme, Bridgewater, NJ, USA
| | | | - Christine Xu
- Translational Medicine and Early Development, Sanofi, Bridgewater, NJ, USA
| | - Naoto Kato
- Medical Affairs, Asahi Kasei Pharma Corporation, Tokyo, Japan
| | - Hideto Kameda
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, Toho University, Tokyo, Japan
| |
Collapse
|
35
|
Zhou YW, Xie Y, Tang LS, Pu D, Zhu YJ, Liu JY, Ma XL. Therapeutic targets and interventional strategies in COVID-19: mechanisms and clinical studies. Signal Transduct Target Ther 2021; 6:317. [PMID: 34446699 PMCID: PMC8390046 DOI: 10.1038/s41392-021-00733-x] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/27/2021] [Accepted: 07/14/2021] [Indexed: 02/06/2023] Open
Abstract
Owing to the limitations of the present efforts on drug discovery against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the lack of the understanding of the biological regulation mechanisms underlying COVID-19, alternative or novel therapeutic targets for COVID-19 treatment are still urgently required. SARS-CoV-2 infection and immunity dysfunction are the two main courses driving the pathogenesis of COVID-19. Both the virus and host factors are potential targets for antiviral therapy. Hence, in this study, the current therapeutic strategies of COVID-19 have been classified into "target virus" and "target host" categories. Repurposing drugs, emerging approaches, and promising potential targets are the implementations of the above two strategies. First, a comprehensive review of the highly acclaimed old drugs was performed according to evidence-based medicine to provide recommendations for clinicians. Additionally, their unavailability in the fight against COVID-19 was analyzed. Next, a profound analysis of the emerging approaches was conducted, particularly all licensed vaccines and monoclonal antibodies (mAbs) enrolled in clinical trials against primary SARS-CoV-2 and mutant strains. Furthermore, the pros and cons of the present licensed vaccines were compared from different perspectives. Finally, the most promising potential targets were reviewed, and the update of the progress of treatments has been summarized based on these reviews.
Collapse
Affiliation(s)
- Yu-Wen Zhou
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yao Xie
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Department of Dermatovenerology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lian-Sha Tang
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Dan Pu
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ya-Juan Zhu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ji-Yan Liu
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| | - Xue-Lei Ma
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
- Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
36
|
Cao Q, Lin Y, Yue C, Wang Y, Quan F, Cui X, Bi R, Tang X, Yang Y, Wang C, Li X, Gao X. IL-6 deficiency promotes colitis by recruiting Ly6C hi monocytes into inflamed colon tissues in a CCL2-CCR2-dependent manner. Eur J Pharmacol 2021; 904:174165. [PMID: 33979652 DOI: 10.1016/j.ejphar.2021.174165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 04/24/2021] [Accepted: 05/05/2021] [Indexed: 12/24/2022]
Abstract
Interleukin 6 (IL-6) is a pleiotropic cytokine that is elevated in inflammatory bowel disease. However, the role of IL-6 deficiency in colitis is not well-defined. Some IL-6 and IL-6 receptor antagonists are associated with severe gastrointestinal immune adverse effects, but the mechanisms of the effects are not clear. This study aimed to investigate the effect of IL-6 in ulcerative colitis in Il6-/- mice. Results indicated that physiological deficiency of IL-6 promoted the development of colitis. Moreover, IL-6 deficiency significantly increased the mRNA levels of monocytes chemokine Ccl2 and its receptor Ccr2 in colon tissues. Similarly, the percentage of Ly6Chigh monocytes and neutrophils were increased in the colon of Il6-/- mice. Intestinal crypts more strongly increased the migration of Il6-/- macrophages than wild-type ones. Moreover, Il6-/- macrophages promoted the migration of neutrophils. Most importantly, RS102895, an antagonist of CCR2, diminished chemotaxis of macrophages and inhibited colitis in Il6-/- mice. Collectively, these results indicate that Il6-/- macrophages migrate to inflamed colon tissues and recruit neutrophils, thereby promoting the effect of Il6-/- on colitis. This study expands our understanding on the effect of IL-6 deficiency in colitis and the development of gastrointestinal immune adverse effects.
Collapse
Affiliation(s)
- Qiuhua Cao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Yanting Lin
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Chongxiu Yue
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Yue Wang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Fei Quan
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Xinmeng Cui
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Ran Bi
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Xinying Tang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China; School of Pharmacy, Xuzhou Medical University, 209 Tongshan Road, Xuzhou, Jiangsu, 221004, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| | - Xianjing Li
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| | - Xinghua Gao
- Center for New Drug Safety Evaluation and Research, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu, 211198, PR China.
| |
Collapse
|
37
|
Constantinescu C, Pasca S, Tat T, Teodorescu P, Vlad C, Iluta S, Dima D, Tomescu D, Scarlatescu E, Tanase A, Sigurjonsson OE, Colita A, Einsele H, Tomuleasa C. Continuous renal replacement therapy in cytokine release syndrome following immunotherapy or cellular therapies? J Immunother Cancer 2021; 8:jitc-2020-000742. [PMID: 32474415 PMCID: PMC7264828 DOI: 10.1136/jitc-2020-000742] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2020] [Indexed: 02/07/2023] Open
Abstract
Recently, an increasing number of novel drugs were approved in oncology and hematology. Nevertheless, pharmacology progress comes with a variety of side effects, of which cytokine release syndrome (CRS) is a potential complication of some immunotherapies that can lead to multiorgan failure if not diagnosed and treated accordingly. CRS generally occurs with therapies that lead to highly activated T cells, like chimeric antigen receptor T cells or in the case of bispecific T-cell engaging antibodies. This, in turn, leads to a proinflammatory state with subsequent organ damage. To better manage CRS there is a need for specific therapies or to repurpose strategies that are already known to be useful in similar situations. Current management strategies for CRS are represented by anticytokine directed therapies and corticosteroids. Based on its pathophysiology and the resemblance of CRS to sepsis and septic shock, as well as based on the principles of initiation of continuous renal replacement therapy (CRRT) in sepsis, we propose the rationale of using CRRT therapy as an adjunct treatment in CRS where all the other approaches have failed in controlling the clinically significant manifestations.
Collapse
Affiliation(s)
- Catalin Constantinescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Anesthesia - Intensive Care, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sergiu Pasca
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Medfuture Research Center for Advanced Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Tiberiu Tat
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Patric Teodorescu
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Catalin Vlad
- Department of Surgery, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| | - Sabina Iluta
- Department of Hematology, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania.,Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Delia Dima
- Department of Hematology, Ion Chiricuta Clinical Cancer Center, Cluj-Napoca, Romania
| | - Dana Tomescu
- Department of Anesthesia - Intensive Care, Carol Davila University of Medicine and Pharmacy, Bucuresti, Romania.,Department of Anesthesia - Intensive Care, Fundeni Clinical Institute, Bucuresti, Romania
| | - Ecaterina Scarlatescu
- Department of Stem Cell Transplantation, Clinical Institute Fundeni, Bucuresti, Romania
| | - Alina Tanase
- Department of Stem Cell Transplantation, Clinical Institute Fundeni, Bucuresti, Romania
| | - Olafur Eysteinn Sigurjonsson
- University of Reykjavik, Reykjavik, Iceland.,Bloodbank, Landspitali National University Hospital of Iceland, Reykjavik, Iceland
| | - Anca Colita
- Department of Stem Cell Transplantation, Clinical Institute Fundeni, Bucuresti, Romania
| | - Hermann Einsele
- Medizinische Klinik und Poliklinik II, Universitätsklinikum Würzburg, Wurzburg, Bayern, Germany
| | - Ciprian Tomuleasa
- Research Center for Functional Genomics and Translational Medicine, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj Napoca, Romania
| |
Collapse
|
38
|
Parikh CR, Ponnampalam JK, Seligmann G, Coelewij L, Pineda-Torra I, Jury EC, Ciurtin C. Impact of immunogenicity on clinical efficacy and toxicity profile of biologic agents used for treatment of inflammatory arthritis in children compared to adults. Ther Adv Musculoskelet Dis 2021; 13:1759720X211002685. [PMID: 34188697 PMCID: PMC8212384 DOI: 10.1177/1759720x211002685] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022] Open
Abstract
The treatment of inflammatory arthritis has been revolutionised by the
introduction of biologic treatments. Many biologic agents are currently licensed
for use in both paediatric and adult patients with inflammatory arthritis and
contribute to improved disease outcomes compared with the pre-biologic era.
However, immunogenicity to biologic agents, characterised by an immune reaction
leading to the production of anti-drug antibodies (ADAs), can negatively impact
the therapeutic efficacy of biologic drugs and induce side effects to treatment.
This review explores for the first time the impact of immunogenicity against all
licensed biologic treatments currently used in inflammatory arthritis across
age, and will examine any significant differences between ADA prevalence, titres
and timing of development, as well as ADA impact on therapeutic drug levels,
clinical efficacy and side effects between paediatric and adult patients. In
addition, we will investigate factors associated with differences in
immunogenicity across biologic agents used in inflammatory arthritis, and their
potential therapeutic implications.
Collapse
Affiliation(s)
- Chinar R Parikh
- Centre for Adolescent Rheumatology versus Arthritis, University College London, London, UK
| | - Jaya K Ponnampalam
- Centre for Adolescent Rheumatology versus Arthritis, University College London, London, UK
| | - George Seligmann
- Centre for Adolescent Rheumatology versus Arthritis, University College London, London, UK
| | - Leda Coelewij
- Centre for Rheumatology Research, University College London, London, UK
| | - Ines Pineda-Torra
- Centre for Cardiometabolic and Vascular Science, University College London, London, UK
| | - Elizabeth C Jury
- Centre for Rheumatology Research, University College London, London, UK
| | - Coziana Ciurtin
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, 3rd Floor Central, 250 Euston Road, London NW1 2PG, UK
| |
Collapse
|
39
|
Gediz Erturk A, Sahin A, Bati Ay E, Pelit E, Bagdatli E, Kulu I, Gul M, Mesci S, Eryilmaz S, Oba Ilter S, Yildirim T. A Multidisciplinary Approach to Coronavirus Disease (COVID-19). Molecules 2021; 26:3526. [PMID: 34207756 PMCID: PMC8228528 DOI: 10.3390/molecules26123526] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 02/07/2023] Open
Abstract
Since December 2019, humanity has faced an important global threat. Many studies have been published on the origin, structure, and mechanism of action of the SARS-CoV-2 virus and the treatment of its disease. The priority of scientists all over the world has been to direct their time to research this subject. In this review, we highlight chemical studies and therapeutic approaches to overcome COVID-19 with seven different sections. These sections are the structure and mechanism of action of SARS-CoV-2, immunotherapy and vaccine, computer-aided drug design, repurposing therapeutics for COVID-19, synthesis of new molecular structures against COVID-19, food safety/security and functional food components, and potential natural products against COVID-19. In this work, we aimed to screen all the newly synthesized compounds, repurposing chemicals covering antiviral, anti-inflammatory, antibacterial, antiparasitic, anticancer, antipsychotic, and antihistamine compounds against COVID-19. We also highlight computer-aided approaches to develop an anti-COVID-19 molecule. We explain that some phytochemicals and dietary supplements have been identified as antiviral bioproducts, which have almost been successfully tested against COVID-19. In addition, we present immunotherapy types, targets, immunotherapy and inflammation/mutations of the virus, immune response, and vaccine issues.
Collapse
Affiliation(s)
- Aliye Gediz Erturk
- Department of Chemistry, Faculty of Arts and Sciences, Ordu University, Altınordu, Ordu 52200, Turkey;
| | - Arzu Sahin
- Department of Basic Medical Sciences—Physiology, Faculty of Medicine, Uşak University, 1-EylulUşak 64000, Turkey;
| | - Ebru Bati Ay
- Department of Plant and Animal Production, Suluova Vocational School, Amasya University, Suluova, Amasya 05100, Turkey;
| | - Emel Pelit
- Department of Chemistry, Faculty of Arts and Sciences, Kırklareli University, Kırklareli 39000, Turkey;
| | - Emine Bagdatli
- Department of Chemistry, Faculty of Arts and Sciences, Ordu University, Altınordu, Ordu 52200, Turkey;
| | - Irem Kulu
- Department of Chemistry, Faculty of Basic Sciences, Gebze Technical University, Kocaeli 41400, Turkey;
| | - Melek Gul
- Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey
| | - Seda Mesci
- Scientific Technical Application and Research Center, Hitit University, Çorum 19030, Turkey;
| | - Serpil Eryilmaz
- Department of Physics, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey;
| | - Sirin Oba Ilter
- Food Processing Department, Suluova Vocational School, Amasya University, Suluova, Amasya 05100, Turkey;
| | - Tuba Yildirim
- Department of Biology, Faculty of Arts and Sciences, Amasya University, Ipekkoy, Amasya 05100, Turkey;
| |
Collapse
|
40
|
Kichloo A, Albosta M, Kumar A, Aljadah M, Mohamed M, El-Amir Z, Wani F, Jamal S, Singh J, Kichloo A. Emerging therapeutics in the management of COVID-19. World J Virol 2021; 10:1-29. [PMID: 33585175 PMCID: PMC7852573 DOI: 10.5501/wjv.v10.i1.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/02/2020] [Accepted: 12/13/2020] [Indexed: 02/06/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (coronavirus disease 2019, COVID-19) pandemic has placed a tremendous burden on healthcare systems globally. Therapeutics for treatment of the virus are extremely inconsistent due to the lack of time evaluating drug efficacy in clinical trials. Currently, there is a deficiency of published literature that comprehensively discusses all therapeutics being considered for the treatment of COVID-19. A review of the literature was performed for articles related to therapeutics and clinical trials in the context of the current COVID-19 pandemic. We used PubMed, Google Scholar, and Clinicaltrials.gov to search for articles relative to the topic of interest. We used the following keywords: "COVID-19", "therapeutics", "clinical trials", "treatment", "FDA", "ICU", "mortality", and "management". In addition, searches through the references of retrieved articles was also performed. In this paper, we have elaborated on the therapeutic strategies that have been hypothesized or trialed to-date, the mechanism of action of each therapeutic, the clinical trials finished or in-process that support the use of each therapeutic, and the adverse effects associated with each therapeutic. Currently, there is no treatment that has been proven to provide significant benefit in reducing morbidity and mortality. There are many clinical trials for numerous different therapeutic agents currently underway. By looking back and measuring successful strategies from previous pandemics in addition to carrying out ongoing research, we provide ourselves with the greatest opportunity to find treatments that are beneficial.
Collapse
Affiliation(s)
- Asim Kichloo
- Department of Internal Medicine, Samaritan Medical Center, Watertown, NY 13601, United States
| | - Michael Albosta
- Department of Internal Medicine, Central Michigan University, Saginaw, MI 48602, United States
| | - Akshay Kumar
- Department of Cardiothoracic Surgery, University of Pittsburgh, Pittsburgh, PA 15260, United States
| | - Michael Aljadah
- Deparment of Internal Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, United States
| | - Mohamed Mohamed
- Department of Internal Medicine, Central Michigan University, Saginaw, MI 48602, United States
| | - Zain El-Amir
- Department of Internal Medicine, Central Michigan University, Saginaw, MI 48602, United States
| | - Farah Wani
- Department of Family Medicine, Samaritan Medical Center, Watertown, NY 13601, United States
| | - Shakeel Jamal
- Department of Internal Medicine, Central Michigan University, Saginaw, MI 48602, United States
| | - Jagmeet Singh
- Department of Transplant Nephrology, Geisinger Commonwealth School of Medicine, Sayre, PA 18510, United States
| | - Akif Kichloo
- Department of Anesthesiology and Critical Care, Saraswathi Institue of Medical Sciences, Uttar Pradesh 245304, India
| |
Collapse
|
41
|
Doharey PK, Singh V, Gedda MR, Sahoo AK, Varadwaj PK, Sharma B. In silico study indicates antimalarials as direct inhibitors of SARS-CoV-2-RNA dependent RNA polymerase. J Biomol Struct Dyn 2021; 40:5588-5605. [PMID: 33475021 PMCID: PMC7842134 DOI: 10.1080/07391102.2021.1871956] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Coronavirus disease 2019 (COVID-19) caused by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has caused a global pandemic. RNA-dependent RNA polymerase (RdRp) is the key component of the replication or transcription machinery of coronavirus. Therefore SARS-CoV-2-RdRp has been chosen as an important target for the development of antiviral drug(s). During the early pandemic of the COVID-19, chloroquine and hydroxychloroquine were suggested by the researchers for the prevention or treatment of SARS-CoV-2. In our study, the antimalarial compounds have been screened and docked against SARS-CoV-2-RdRp (PDB ID: 7BTF), and it was observed that the antimalarials chloroquine, hydroxychloroquine, and amodiaquine exhibit good affinity. Since the crystal structure of SARS-CoV-2-RdRp with its substrate is not available, poliovirus-RdRp crystal structure co-crystallized with its substrate ATP (PDB ID: 2ILY) was used as a reference structure. The superimposition of SARS-CoV-2-RdRp and poliovirus-RdRp structures showed that the active sites of both of the RdRps superimposed very well. The amino acid residues involved in the binding of ATP in the case of poliovirus-RdRp and residues involved in binding with the antimalarial compounds with SARS-CoV-2-RdRp were compared. In both cases, the conserved residues were found to be involved in establishing the interactions. The MMGBSA and molecular dynamic simulation studies were performed to strengthen our docking results. Further residues involved in binding of antimalarials with SARS-CoV-2-RdRp were compared with the residues involved in the SARS-CoV-2-RdRp complexed with remdesivir [PDB ID: 7BV2]. It was observed that co-crystallized remdesivir and docked antimalarials bind in the same pocket of SARS-CoV-2 -RdRp. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
| | - Vishal Singh
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, UP, India
| | - Mallikarjuna Rao Gedda
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, UP, India
| | - Amaresh Kumar Sahoo
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, UP, India
| | - Pritish Kumar Varadwaj
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Allahabad, UP, India
| | - Bechan Sharma
- Department of Biochemistry, University of Allahabad, Allahabad, UP, India
| |
Collapse
|
42
|
Castelnovo L, Tamburello A, Lurati A, Zaccara E, Marrazza MG, Olivetti M, Mumoli N, Mastroiacovo D, Colombo D, Ricchiuti E, Vigano’ P, Paola F, Mazzone A. Anti-IL6 treatment of serious COVID-19 disease: A monocentric retrospective experience. Medicine (Baltimore) 2021; 100:e23582. [PMID: 33429732 PMCID: PMC7793456 DOI: 10.1097/md.0000000000023582] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 11/03/2020] [Accepted: 11/06/2020] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT COVID-19 is causing a high influx of patients suffering from serious respiratory complications leading the necessity to find effective therapies. These patients seem to present with cytokine perturbation and high levels of IL6. Tocilizumab and sarilumab could be effective in this condition.We retrospectively collected data about 112 consecutive hospitalized in a single center.Fifty (IL6 group) treated with tocilizumab (8 mg/kg intravenously [IV], 2 infusions 12 hours apart) or sarilumab 400 mg IV once and 62 treated with the standard of care but not anti-cytokine drugs (CONTROL group).To determine whether anti-IL6 drugs are effective in improving prognosis and reducing hospitalization times and mortality in COVID-19 pneumonia.To date 84% (42/50) of IL6 group patients have already been discharged and only 2/50 are still recovered and intubated in intensive care. Six/fifty patients (12%) died: 5/6 due to severe respiratory failure within a framework of severe acute respiratory distress syndrome (ARDS), 1 suffered an acute myocardial infarction, and 1 died of massive pulmonary thromboembolism. There were no adverse treatment events or infectious complications. Compared to the CONTROL group they showed a lower mortality rate (12% versus 43%), for the same number of complications and days of hospitalization.Anti-IL6 drugs seem to be effective in the treatment of medium to severe forms of COVID-19 pneumonia reducing the risk of mortality due to multi-organ failure, acting at the systemic level and reducing inflammation levels and therefore microvascular complications. However, it is essential to identify the best time for treatment, which, if delayed, is rendered useless as well as counterproductive. Further studies and ongoing clinical trials will help us to better define patients eligible as candidates for more aggressive intervention.
Collapse
Affiliation(s)
- Laura Castelnovo
- Department of Internal Medicine, ASST Ovest Milanese Ospedale di Legnano
| | - Antonio Tamburello
- Department of Internal Medicine, ASST Ovest Milanese Ospedale di Legnano
| | | | - Eleonora Zaccara
- Department of Internal Medicine, ASST Ovest Milanese Ospedale di Legnano
| | | | - Micol Olivetti
- Department of Internal Medicine, ASST Ovest Milanese Ospedale di Magenta
| | - Nicola Mumoli
- Department of Internal Medicine, ASST Ovest Milanese Ospedale di Magenta
| | | | - Daniele Colombo
- Department of Internal Medicine, ASST Ovest Milanese Ospedale di Legnano
| | | | - Paolo Vigano’
- Department of Infectious Diseases, ASST Ovest Milanese Ospedale di Legnano, Italy
| | - Faggioli Paola
- Department of Internal Medicine, ASST Ovest Milanese Ospedale di Legnano
| | - Antonino Mazzone
- Department of Internal Medicine, ASST Ovest Milanese Ospedale di Legnano
| |
Collapse
|
43
|
Han Q, Guo M, Zheng Y, Zhang Y, De Y, Xu C, Zhang L, Sun R, Lv Y, Liang Y, Xu F, Pang J, Chen Y. Current Evidence of Interleukin-6 Signaling Inhibitors in Patients With COVID-19: A Systematic Review and Meta-Analysis. Front Pharmacol 2020; 11:615972. [PMID: 33384605 PMCID: PMC7769953 DOI: 10.3389/fphar.2020.615972] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Accepted: 11/17/2020] [Indexed: 12/16/2022] Open
Abstract
Background: Interleukin-6 (IL-6) is known to be detrimental in coronavirus disease 2019 (COVID-19) because of its involvement in driving cytokine storm. This systematic review and meta-analysis aimed to assess the safety and efficacy of anti-IL-6 signaling (anti-IL6/IL-6R/JAK) agents on COVID-19 based on the current evidence. Methods: Studies were identified through systematic searches of PubMed, EMBASE, ISI Web of Science, Cochrane library, ongoing clinical trial registries (clinicaltrials.gov), and preprint servers (medRxiv, ChinaXiv) on August 10, 2020, as well as eligibility checks according to predefined selection criteria. Statistical analysis was performed using Review Manager (version 5.3) and STATA 12.0. Results: Thirty-one studies were included in the pooled analysis of mortality, and 12 studies were identified for the analysis of risk of secondary infections. For mortality analysis, 5630 COVID-19 cases including 2,132 treated patients and 3,498 controls were analyzed. Anti-IL-6 signaling agents plus standard of care (SOC) significantly decreased the mortality rate compared to SOC alone (pooled OR = 0.61, 95% CI 0.45-0.84, p = 0.002). For the analysis of secondary infection risk, 1,624 patients with COVID-19 including 639 treated patients and 985 controls were included, showing that anti-IL-6 signaling agents did not increase the rate of secondary infections (pooled OR = 1.21, 95% CI 0.70-2.08, p = 0.50). By contrast, for patients with critical COVID-19 disease, anti-IL-6 signaling agents failed to reduce mortality compared to SOC alone (pooled OR = 0.75, 95% CI 0.42-1.33, p = 0.33), but they tended to increase the risk of secondary infections (pooled OR = 1.85, 95% CI 0.95-3.61, p = 0.07). A blockade of IL-6 signaling failed to reduce the mechanical ventilation rate, ICU admission rate, or elevate the clinical improvement rate. Conclusion: IL-6 signaling inhibitors reduced the mortality rate without increasing secondary infections in patients with COVID-19 based on current studies. For patients with critical disease, IL-6 signaling inhibitors did not exhibit any benefit.
Collapse
Affiliation(s)
- Qi Han
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Mingyue Guo
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yue Zheng
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yanshan De
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Changchang Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Lin Zhang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Ruru Sun
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Ying Lv
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yan Liang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Feng Xu
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Jiaojiao Pang
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| | - Yuguo Chen
- Department of Emergency Medicine, Qilu Hospital of Shandong University, Jinan, China
- Shandong Provincial Clinical Research Center for Emergency and Critical Care Medicine, Institute of Emergency and Critical Care Medicine of Shandong University, Chest Pain Center, Qilu Hospital of Shandong University, Jinan, China
- Key Laboratory of Emergency and Critical Care Medicine of Shandong Province, Key Laboratory of Cardiopulmonary-Cerebral Resuscitation Research of Shandong Province, Shandong Provincial Engineering Laboratory for Emergency and Critical Care Medicine, Qilu Hospital of Shandong University, Jinan, China
- The Key Laboratory of Cardiovascular Remodeling and Function Research, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Chinese Ministry of Education, Chinese Ministry of Health and Chinese Academy of Medical Sciences, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
44
|
Bhagat S, Yadav N, Shah J, Dave H, Swaraj S, Tripathi S, Singh S. Novel corona virus (COVID-19) pandemic: current status and possible strategies for detection and treatment of the disease. Expert Rev Anti Infect Ther 2020; 20:1275-1298. [PMID: 33043740 DOI: 10.1080/14787210.2021.1835469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION In December 2019, a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak occurred and caused the coronavirus disease of 2019 (COVID-19), which affected ~ 190 countries. The World Health Organization (WHO) has declared COVID-19 a pandemic on 11 March 2020. AREA COVERED In the review, a comprehensive analysis of the recent developments of the COVID-19 pandemic has been provided, including the structural characterization of the virus, the current worldwide status of the disease, various detection strategies, drugs recommended for the effective treatment, and progress of vaccine development programs by different countries. This report was constructed by following a systematic literature search of bibliographic databases of published reports of relevance until 1 September 2020. EXPERT OPINION Currently, the countries are opening businesses despite a spike in the number of COVID-19 cases. The pharmaceutical industries are developing clinical diagnostic kits, medicines, and vaccines. They target different approaches, including repurposing the already approved diagnosis and treatment options for similar CoVs. At present, over ~200 vaccine candidates are being developed against COVID-19. Future research may unravel the genetic variations or polymorphisms that dictate these differences in susceptibilities to the disease.
Collapse
Affiliation(s)
- Stuti Bhagat
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Nisha Yadav
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Juhi Shah
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Harsh Dave
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Ahmedabad, Gujarat, India
| | - Shachee Swaraj
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Shashank Tripathi
- Department of Microbiology & Cell Biology, Indian Institute of Science, Bengaluru, India.,Centre for Infectious Disease Research, Indian Institute of Science, Bengaluru, India
| | - Sanjay Singh
- Division of Biological and Life Sciences, School of Arts and Sciences, Central Campus, Ahmedabad University, Ahmedabad, Gujarat, India
| |
Collapse
|
45
|
Klug B, Schnierle B, Trebesch I. [Monoclonal antibodies for anti-infective therapy]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2020; 63:1396-1402. [PMID: 33034695 PMCID: PMC7545799 DOI: 10.1007/s00103-020-03229-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022]
Abstract
Sera of animal origin and hyperimmunoglobulins have dominated serum therapy for a century. Although numerous monoclonal antibodies (MABs) have been developed since the end of the 1980s, particularly for the treatment of immunological and oncological diseases, it will take 20 years before the first anti-infective MAB is approved in the European Union. Interestingly, to combat the COVID-19 pandemic, numerous MABs, which are approved in particular for immunological indications, are currently being used to treat the consequences of SARS-CoV‑2 infection, such as pneumonia or hyperimmune reactions.The approved monoclonal antibodies for the treatment of infectious diseases are presented here. In addition, an overview of the current developments, in particular in the treatment of SARS-CoV‑2 infection, is provided.
Collapse
Affiliation(s)
- Bettina Klug
- Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland.
| | - Barbara Schnierle
- Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, 63225, Langen, Deutschland
| | | |
Collapse
|
46
|
Hojyo S, Uchida M, Tanaka K, Hasebe R, Tanaka Y, Murakami M, Hirano T. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen 2020. [PMID: 33014208 DOI: 10.1186/s41232‐020‐00146‐3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The newly emerging coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China, but has rapidly spread all over the world. Some COVID-19 patients encounter a severe symptom of acute respiratory distress syndrome (ARDS) with high mortality. This high severity is dependent on a cytokine storm, most likely induced by the interleukin-6 (IL-6) amplifier, which is hyper-activation machinery that regulates the nuclear factor kappa B (NF-κB) pathway and stimulated by the simultaneous activation of IL-6-signal transducer and activator of transcription 3 (STAT3) and NF-κB signaling in non-immune cells including alveolar epithelial cells and endothelial cells. We hypothesize that IL-6-STAT3 signaling is a promising therapeutic target for the cytokine storm in COVID-19, because IL-6 is a major STAT3 stimulator, particularly during inflammation. We herein review the pathogenic mechanism and potential therapeutic targets of ARDS in COVID-19 patients.
Collapse
Affiliation(s)
- Shintaro Hojyo
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, 060-0815 Japan
| | - Mona Uchida
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, 060-0815 Japan
| | - Kumiko Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, 060-0815 Japan
| | - Rie Hasebe
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, 060-0815 Japan
| | - Yuki Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, 060-0815 Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, 060-0815 Japan
| | - Toshio Hirano
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, 060-0815 Japan.,Headquarters, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555 Japan
| |
Collapse
|
47
|
Hojyo S, Uchida M, Tanaka K, Hasebe R, Tanaka Y, Murakami M, Hirano T. How COVID-19 induces cytokine storm with high mortality. Inflamm Regen 2020; 40:37. [PMID: 33014208 PMCID: PMC7527296 DOI: 10.1186/s41232-020-00146-3] [Citation(s) in RCA: 426] [Impact Index Per Article: 85.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/18/2020] [Indexed: 02/06/2023] Open
Abstract
The newly emerging coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in Wuhan, China, but has rapidly spread all over the world. Some COVID-19 patients encounter a severe symptom of acute respiratory distress syndrome (ARDS) with high mortality. This high severity is dependent on a cytokine storm, most likely induced by the interleukin-6 (IL-6) amplifier, which is hyper-activation machinery that regulates the nuclear factor kappa B (NF-κB) pathway and stimulated by the simultaneous activation of IL-6-signal transducer and activator of transcription 3 (STAT3) and NF-κB signaling in non-immune cells including alveolar epithelial cells and endothelial cells. We hypothesize that IL-6-STAT3 signaling is a promising therapeutic target for the cytokine storm in COVID-19, because IL-6 is a major STAT3 stimulator, particularly during inflammation. We herein review the pathogenic mechanism and potential therapeutic targets of ARDS in COVID-19 patients.
Collapse
Affiliation(s)
- Shintaro Hojyo
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, 060-0815 Japan
| | - Mona Uchida
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, 060-0815 Japan
| | - Kumiko Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, 060-0815 Japan
| | - Rie Hasebe
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, 060-0815 Japan
| | - Yuki Tanaka
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, 060-0815 Japan
| | - Masaaki Murakami
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, 060-0815 Japan
| | - Toshio Hirano
- Molecular Psychoimmunology, Institute for Genetic Medicine, Graduate School of Medicine, Hokkaido University, Hokkaido, 060-0815 Japan.,Headquarters, National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555 Japan
| |
Collapse
|
48
|
Morgan EL, Macdonald A. Manipulation of JAK/STAT Signalling by High-Risk HPVs: Potential Therapeutic Targets for HPV-Associated Malignancies. Viruses 2020; 12:E977. [PMID: 32899142 PMCID: PMC7552066 DOI: 10.3390/v12090977] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 08/28/2020] [Accepted: 08/30/2020] [Indexed: 12/14/2022] Open
Abstract
Human papillomaviruses (HPVs) are small, DNA viruses that cause around 5% of all cancers in humans, including almost all cervical cancer cases and a significant proportion of anogenital and oral cancers. The HPV oncoproteins E5, E6 and E7 manipulate cellular signalling pathways to evade the immune response and promote virus persistence. The Janus Kinase/Signal Transducer and Activator of Transcription (JAK/STAT) pathway has emerged as a key mediator in a wide range of important biological signalling pathways, including cell proliferation, cell survival and the immune response. While STAT1 and STAT2 primarily drive immune signalling initiated by interferons, STAT3 and STAT5 have widely been linked to the survival and proliferative potential of a number of cancers. As such, the inhibition of STAT3 and STAT5 may offer a therapeutic benefit in HPV-associated cancers. In this review, we will discuss how HPV manipulates JAK/STAT signalling to evade the immune system and promote cell proliferation, enabling viral persistence and driving cancer development. We also discuss approaches to inhibit the JAK/STAT pathway and how these could potentially be used in the treatment of HPV-associated disease.
Collapse
Affiliation(s)
- Ethan L. Morgan
- Tumour Biology Section, Head and Neck Surgery Branch, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, USA
| | - Andrew Macdonald
- School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, West Yorkshire, UK
| |
Collapse
|
49
|
Magro G. COVID-19: Review on latest available drugs and therapies against SARS-CoV-2. Coagulation and inflammation cross-talking. Virus Res 2020; 286:198070. [PMID: 32569708 PMCID: PMC7305708 DOI: 10.1016/j.virusres.2020.198070] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 12/17/2022]
Abstract
SARS-CoV-2 is the agent responsible for COVID-19. The infection can be dived into three phases: mild infection, the pulmonary phase and the inflammatory phase. Treatment options for the pulmonary phase include: Hydroxychloroquine, Remdesivir, Lopinavir/Ritonavir. The inflammatory phase includes therapeutic options like Tocilizumab, Anakinra, Baricitinib, Eculizumab, Emapalumab and Heparin. Human clinical trials are starting to show some results, in some cases like that of Remdesivir and corticosteroids these are controversial. Coagulopathy is a common complication in severe cases, inflammation and coagulation are intertwined and cross-talking between these two responses is known to happen. A possible amplification of this cross-talking is suggested to be implicated in the severe cases that show both a cytokine storm and coagulopathy.
Collapse
Affiliation(s)
- Giuseppe Magro
- Department of Medical, Surgical Sciences, University "Magna Græcia" of Catanzaro, Italy.
| |
Collapse
|
50
|
Joshi S, Joshi M, Degani MS. Tackling SARS-CoV-2: proposed targets and repurposed drugs. Future Med Chem 2020; 12:1579-1601. [PMID: 32564623 PMCID: PMC7307730 DOI: 10.4155/fmc-2020-0147] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
The SARS-CoV-2 pandemic, declared as a global health emergency by the WHO in February 2020, has currently infected more than 6 million people with fatalities near 371,000 and increasing exponentially, in absence of vaccines and drugs. The pathogenesis of SARS-CoV-2 is still being elucidated. Identifying potential targets and repurposing drugs as therapeutic options is the need of the hour. In this review, we focus on potential druggable targets and suitable therapeutics, currently being explored in clinical trials, to treat SARS-CoV-2 infection. A brief understanding of the complex interactions of both viral as well as host targets, and the possible repurposed drug candidates are described with an emphasis on understanding the mechanisms at the molecular level.
Collapse
Affiliation(s)
- Siddhi Joshi
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Maithili Joshi
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| | - Mariam S Degani
- Department of Pharmaceutical Sciences & Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Mumbai, 400019, Maharashtra, India
| |
Collapse
|