1
|
Souza Tada da Cunha P, Rodriguez Gini AL, Man Chin C, dos Santos JL, Benito Scarim C. Recent Progress in Thiazole, Thiosemicarbazone, and Semicarbazone Derivatives as Antiparasitic Agents Against Trypanosomatids and Plasmodium spp. Molecules 2025; 30:1788. [PMID: 40333793 PMCID: PMC12029465 DOI: 10.3390/molecules30081788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/11/2025] [Accepted: 04/13/2025] [Indexed: 05/09/2025] Open
Abstract
Neglected tropical diseases (NTDs), including Chagas disease, human African trypanosomiasis (HAT), leishmaniasis, and malaria, remain a major global health challenge, disproportionately affecting low-income populations. Current therapies for these diseases suffer from significant limitations, such as reduced efficacy, high toxicity, and emerging parasite resistance, highlighting the urgent need for new therapeutic strategies. In response, substantial efforts have been directed toward the synthesis of new molecules with improved potency, selectivity, and pharmacokinetic profiles. However, despite many of these compounds exhibiting favorable ADMET (absorption, distribution, metabolism, excretion, and toxicity) profiles and strong in vitro activity, their translation into in vivo models remains limited. Key challenges include the lack of investment, the absence of fully representative experimental models, and difficulties in extrapolating cell-based assay results to more complex biological systems. In this review, we analyzed the latest advancements (2019-2024) in the development of these compound classes, correlating predictive parameters with their observed biological activity. Among these parameters, we highlighted the partition coefficient (LogP), which measures a compound's lipophilicity and influences its ability to cross biological membranes, and Caco-2 cell permeability, an in vitro model widely used to predict intestinal drug absorption. Additionally, we prioritized the most promising molecules and structural classes for pharmaceutical development, discussing structure-activity relationships (SARs) and the remaining challenges that must be overcome to enable the clinical application of these compounds in the treatment of NTDs.
Collapse
Affiliation(s)
| | | | | | | | - Cauê Benito Scarim
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (P.S.T.d.C.); (A.L.R.G.); (C.M.C.); (J.L.d.S.)
| |
Collapse
|
2
|
Al Nasr IS, Ma J, Khan TA, Koko WS, Ben Abdelmalek I, Schobert R, van de Sande W, Biersack B. Antiparasitic and Antifungal Activities of Cetyl-Maritima, a New N-Cetyl-Modified Maritima Derivative. Antibiotics (Basel) 2025; 14:321. [PMID: 40149131 PMCID: PMC11939259 DOI: 10.3390/antibiotics14030321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/12/2025] [Accepted: 03/15/2025] [Indexed: 03/29/2025] Open
Abstract
Background/Objectives: New drugs are urgently needed for the treatment of neglected tropical diseases including leishmaniasis and eumycetoma, as well as globally occurring parasitic diseases such as toxoplasmosis. Fragrances, both natural and synthetic, were shown to be a rich source for the development of new anti-infectives and warrant deeper investigations. Exemplarily, we synthetically optimized the fragrance 4-(4,8-dimethyl-3,7-nonadienyl)-pyridine, a.k.a. Maritima, a pyridine derivative with marine odor. Methods: A new cationic N-cetyl-modified derivative of Maritima (dubbed Cetyl-Maritima), obtained by alkylation of Maritima, was tested for its activity against Madurella mycetomatis (M. mycetomatis) fungi, as well as against Toxoplasma gondii (T. gondii) and Leishmania major (L. major) protozoal parasites. Results: Cetyl-Maritima was found to be more strongly antifungal than the parent Maritima and a known antibiotic cetylpyridinium salt. Cetyl-Maritima also showed a similar activity against T. gondii parasites and, most notably, exhibited sub-micromolar activity against L. major amastigotes. Conclusions: The considerable antileishmanial activity of Cetyl-Maritima might lead to the development of a new potent and cost-effective drug candidate for the therapy of leishmaniasis and other infectious diseases caused by kinetoplastid parasites.
Collapse
Affiliation(s)
- Ibrahim S. Al Nasr
- Department of Biology, College of Science, Qassim University, Buraydah 51452, Saudi Arabia; (I.S.A.N.); (W.S.K.); (I.B.A.)
| | - Jingyi Ma
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (J.M.); (W.v.d.S.)
| | - Tariq A. Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Waleed S. Koko
- Department of Biology, College of Science, Qassim University, Buraydah 51452, Saudi Arabia; (I.S.A.N.); (W.S.K.); (I.B.A.)
| | - Imen Ben Abdelmalek
- Department of Biology, College of Science, Qassim University, Buraydah 51452, Saudi Arabia; (I.S.A.N.); (W.S.K.); (I.B.A.)
| | - Rainer Schobert
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany;
| | - Wendy van de Sande
- Department of Medical Microbiology and Infectious Diseases, Erasmus MC, University Medical Center Rotterdam, Dr. Molewaterplein 40, 3015 GD Rotterdam, The Netherlands; (J.M.); (W.v.d.S.)
| | - Bernhard Biersack
- Organic Chemistry Laboratory, University Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany;
| |
Collapse
|
3
|
Jooste J, Legoabe LJ, Ilbeigi K, Caljon G, Beteck RM. Hydrazinated geraniol derivatives as potential broad-spectrum antiprotozoal agents. Arch Pharm (Weinheim) 2024; 357:e2400430. [PMID: 38982314 DOI: 10.1002/ardp.202400430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/11/2024]
Abstract
Geraniol, a primary component of several essential oils, has been associated with broad-spectrum antiprotozoal activities, although moderate to weak. This study primarily concentrated on the synthesis of hydrazinated geraniol derivatives as potential antiprotozoal agents. The synthesised compounds were tested in vitro against different parasitic protozoans of clinical relevance, including Trypanosoma brucei brucei, Trypanosoma brucei rhodesiense, Trypanosoma cruzi and Leishmania infantum. Compounds 6, 8, 13, 14 and 15 demonstrated low micromolar activity against the different parasites. Compounds 8, 13, 14 and 15 had the highest efficacy against Trypanosoma brucei rhodesiense, as indicated by their respective IC50 values of 0.74, 0.56, 1.26 and 1.00 µM. Compounds 6, 14 and 15 displayed the best activity against Trypanosoma brucei brucei, with IC50 values of 1.49, 1.48 and 1.85 µM, respectively. The activity of compounds 6, 14 and 15 also extended to intracellular Trypanosoma cruzi, with IC50 values of 5.14, 6.30 and 4.90 µM, respectively. Compound 6, with an IC50 value of 11.73 µM, and compound 14, with an IC50 value of 8.14 µM, demonstrated some modest antileishmanial activity.
Collapse
Affiliation(s)
- Joelien Jooste
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | - Kayhan Ilbeigi
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Guy Caljon
- Laboratory of Microbiology, Parasitology and Hygiene (LMPH), Infla-Med Centre of Excellence, University of Antwerp, Antwerp, Belgium
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| |
Collapse
|
4
|
González-Montero MC, Andrés-Rodríguez J, García-Fernández N, Pérez-Pertejo Y, Reguera RM, Balaña-Fouce R, García-Estrada C. Targeting Trypanothione Metabolism in Trypanosomatids. Molecules 2024; 29:2214. [PMID: 38792079 PMCID: PMC11124245 DOI: 10.3390/molecules29102214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/06/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Infectious diseases caused by trypanosomatids, including African trypanosomiasis (sleeping sickness), Chagas disease, and different forms of leishmaniasis, are Neglected Tropical Diseases affecting millions of people worldwide, mainly in vulnerable territories of tropical and subtropical areas. In general, current treatments against these diseases are old-fashioned, showing adverse effects and loss of efficacy due to misuse or overuse, thus leading to the emergence of resistance. For these reasons, searching for new antitrypanosomatid drugs has become an urgent necessity, and different metabolic pathways have been studied as potential drug targets against these parasites. Considering that trypanosomatids possess a unique redox pathway based on the trypanothione molecule absent in the mammalian host, the key enzymes involved in trypanothione metabolism, trypanothione reductase and trypanothione synthetase, have been studied in detail as druggable targets. In this review, we summarize some of the recent findings on the molecules inhibiting these two essential enzymes for Trypanosoma and Leishmania viability.
Collapse
Affiliation(s)
- María-Cristina González-Montero
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Julia Andrés-Rodríguez
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Nerea García-Fernández
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
| | - Yolanda Pérez-Pertejo
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rosa M. Reguera
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Rafael Balaña-Fouce
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| | - Carlos García-Estrada
- Departamento de Ciencias Biomédicas, Facultad de Veterinaria, Universidad de León, Campus de Vegazana s/n, 24071 León, Spain; (M.-C.G.-M.); (J.A.-R.); (N.G.-F.); (Y.P.-P.); (R.M.R.)
- Instituto de Biomedicina (IBIOMED), Universidad de León, Campus de Vegazana s/n, 24071 León, Spain
| |
Collapse
|