1
|
Menghani SV. Carcinogenetic mechanisms employed by the oral microbiome: A narrative review. Am J Med Sci 2025; 369:556-561. [PMID: 39788425 DOI: 10.1016/j.amjms.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/15/2024] [Accepted: 01/06/2025] [Indexed: 01/12/2025]
Abstract
Cancers of the oral cavity, lip, salivary gland, and oropharynx cause substantial global disease burden. While tobacco-use and alcohol use are highly associated with oral cancers, the rising incidence of disease in patients who do not use tobacco or alcohol points to additional carcinogenic risk factors. Chronic inflammation, disruption of the oral microbiome, and dysbiosis are becoming more widely implicated in the pathogenesis of oral cancer. Several studies have identified specific bacterial species enriched in patients with oral cancer, including Porphyromonas gingivalis and Fusobacterium nucleatum. In this narrative review, we describe potential carcinogenic mechanisms exhibited by these species and other microbes in the development of oral cancer.
Collapse
Affiliation(s)
- Sanjay V Menghani
- University of Arizona College of Medicine - Tucson, AZ, USA; Medical Scientist Training MD-PhD Program, University of Arizona College of Medicine Tucson, AZ, USA.
| |
Collapse
|
2
|
Śmiga M, Roszkiewicz E, Ślęzak P, Tracz M, Olczak T. cAMP-independent Crp homolog adds to the multi-layer regulatory network in Porphyromonas gingivalis. Front Cell Infect Microbiol 2025; 15:1535009. [PMID: 40308968 PMCID: PMC12040651 DOI: 10.3389/fcimb.2025.1535009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 03/21/2025] [Indexed: 05/02/2025] Open
Abstract
Introduction Porphyromonas gingivalis encodes three CRP/FNR superfamily proteins: HcpR, PgRsp, and CrpPg, with CrpPg similar to cAMP-sensing proteins but not classified into known families. This study investigates the role of CrpPg in regulating the expression of factors essential for P. gingivalis virulence in A7436 and ATCC 33277 strains. Methods The role of CrpPg protein in P. gingivalis was determined using the ΔcrpPg mutant strains to characterize their phenotype and to assess the impact of crpPg inactivation on gene expression using RNA-seq and RT-qPCR. Additionally, the CrpPg protein was purified and characterized. Results Key findings in the ΔcrpPg mutant strain include up-regulated mfa1-5 and rgpA genes and down-regulated trxA, soxR, and ustA genes. While crpPg inactivation does not affect growth in liquid culture media, it impairs biofilm formation and enhances adhesion to and invasion of gingival keratinocytes. CrpPg binds directly to its own and mfa promoters without interacting with cyclic nucleotides or di-nucleotides. Its three-dimensional structure, resembling E. coli Crp in complex with cAMP and DNA, suggests that CrpPg functions as a global regulator independently of cAMP binding. The highest crpPg expression in the early exponential growth phase declines as cell density and metabolic conditions change over time, suggesting a regulatory function depending on the CrpPg protein amount. Conclusions By controlling the shift from planktonic to biofilm lifestyle, CrpPg may play a role in pathogenicity. Regulating the expression of virulence factors required for host cell invasion and intracellular replication, CrpPg may help P. gingivalis evade immune responses.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Ewa Roszkiewicz
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Paulina Ślęzak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Michał Tracz
- Laboratory of Protein Mass Spectrometry, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
3
|
Luo S, Zhang L, Li X, Tong C. Annexin A1 protects periodontal ligament cells against lipopolysaccharide-induced inflammatory response and cellular senescence: An implication in periodontitis. Biotechnol Appl Biochem 2025; 72:449-459. [PMID: 39318270 DOI: 10.1002/bab.2675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Periodontitis is an inflammatory condition that affects the tooth-supporting structures, triggered by the host's immune response toward the bacterial deposits around the teeth. Annexin A1 (AnxA1), a vital member of the annexin superfamily, is known for its diverse physiological functions, particularly its anti-inflammatory and anti-senescence properties. We hypothesized that AnxA1 has a protective effect against lipopolysaccharide (LPS)-induced inflammatory responses and cellular damage in periodontal ligament cells (PDLCs). In this study, we demonstrate that LPS stimulation significantly reduced telomerase activity in PDLCs, a decline that was dose-dependently reversed by AnxA1. Importantly, AnxA1 protected the cells from LPS-induced cellular senescence and the downregulation of human telomerase reverse transcriptase (hTERT) expression. In line with this, AnxA1 suppressed the LPS-induced expression of p21 and p16 at both the mRNA and protein levels. Furthermore, AnxA1 demonstrated potent anti-inflammatory effects by inhibiting the secretion of interleukin 6 (IL-6), interleukin 8 (IL-8), and monocyte chemoattractant protein-1 (MCP-1). It also mitigated LPS-induced oxidative stress by reducing the levels of phosphorylated Foxo3a (Ser253) and restored sirtuin 1 (SIRT1) expression. Notably, SIRT1 silencing abolished AnxA1's protective effects on Foxo3a phosphorylation and cellular senescence, suggesting that SIRT1 mediates AnxA1's actions. In conclusion, AnxA1 protected PDLCs against LPS-triggered inflammation and cell senescence by activating SIRT1 signal pathway. These findings indicate that AnxA1 could serve as a promising therapeutic strategy for the treatment of periodontitis.
Collapse
Affiliation(s)
- Shuwen Luo
- Department of Stomatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Lin Zhang
- Department of Stomatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Xiaoyu Li
- Department of Stomatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| | - Chunshi Tong
- Department of Stomatology, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Exertier C, Montemiglio LC, Tognaccini L, Zamparelli C, Vallone B, Olczak T, Śmiga M, Smulevich G, Malatesta F. Gaseous ligand binding to Porphyromonas gingivalis HmuY hemophore-like protein in complex with heme. J Inorg Biochem 2025; 269:112879. [PMID: 40073653 DOI: 10.1016/j.jinorgbio.2025.112879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/14/2025] [Accepted: 02/28/2025] [Indexed: 03/14/2025]
Abstract
Porphyromonas gingivalis is the main pathogenic player in the development of periodontitis. To acquire heme, being an essential source of iron and protoporphyrin IX, P. gingivalis utilizes TonB-dependent outer membrane heme receptor (HmuR) and heme-binding hemophore-like protein (HmuY) as the main system for heme uptake from host hemoproteins. In this work, we present an extensive spectroscopic characterization of the binding of exogenous gaseous ligands to the holo-form of the HmuY (HmuY-heme) to unravel the mechanistic basis of heme release. Our data are consistent with a scenario where heme release from HmuY-heme is a multistep process that requires the initial rupture of one of the two heme‑iron coordination bonds with endogenous histidines.
Collapse
Affiliation(s)
- Cécile Exertier
- Institute of Molecular Biology and Pathology (IBPM), CNR, c/o Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Linda Celeste Montemiglio
- Institute of Molecular Biology and Pathology (IBPM), CNR, c/o Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Lorenzo Tognaccini
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, FI, Italy.
| | - Carlotta Zamparelli
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Beatrice Vallone
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383 Wrocław, Poland.
| | - Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383 Wrocław, Poland.
| | - Giulietta Smulevich
- Dipartimento di Chimica "Ugo Schiff" (DICUS), Università di Firenze, Via della Lastruccia 3, I-50019 Sesto Fiorentino, FI, Italy.
| | - Francesco Malatesta
- Department of Biochemical Sciences "A. Rossi Fanelli", University of Rome, Sapienza, P.le Aldo Moro, 5, 00185 Rome, Italy.
| |
Collapse
|
5
|
Naja JR, Desparois L, Hebert EM, Nader MEF, Saavedra L, Minahk CJ, Houde VP. In vitro modulation of proinflammatory and proteolytic activities of Porphyromonas gingivalis by selected lactobacilli. J Oral Microbiol 2025; 17:2469894. [PMID: 40013015 PMCID: PMC11864006 DOI: 10.1080/20002297.2025.2469894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/28/2025] [Accepted: 02/14/2025] [Indexed: 02/28/2025] Open
Abstract
Objective The aim of the present study was to characterize the antimicrobial and anti-inflammatory activities of postbiotics from lactic acid bacteria against Porphyromonas gingivalis. Material and methods The anti-P. gingivalis activity of postbiotics from the CERELA culture collection was assessed by measuring changes in the expression of key host proteins by ELISA and qPCR, the proteolytic activity by a fluorescence and a spectrophotometric method and virulence factors from P. gingivalis by qPCR. Results Even though Lacticaseibacillus (L.) rhamnosus CRL1522 and Lactiplantibacillus (L.) plantarum CRL1363 exhibit only a discrete antibacterial activity against P. gingivalis, the cell-free supernatants of these strains significantly reduced P. gingivalis-induced secretion of interleukins IL-6 and IL-8 by keratinocytes and TNF-α and IL-6 by U937 macrophage-like cells. More importantly, P. gingivalis arginine-gingipain (Rgp) protease activity was markedly reduced by both lactic acid bacteria (LAB) strains. This finding is particularly interesting because it means that both LAB might prevent the ulterior citrullination of peptides and the consequent generation of autoantibodies. The expression of COX2 and TLR2 was also significantly downregulated in macrophages. Conclusion Postbiotics from L. rhamnosus CRL1522 and L. plantarum CRL1363 rise as suitable candidates for antagonizing the periodontopathogen P. gingivalis, since they were able to reduce the expression of proinflammatory cytokines and the protein degradation induced by this pathogen. We propose that postbiotics from these LAB could potentially halt the progression of periodontitis based on this in vitro study.
Collapse
Affiliation(s)
- Johana R. Naja
- Laboratorio de Genética y Biología Molecular, Centro de Referencia para Lactobacilos (CERELA), San Miguel de Tucumán, Argentina
- Oral Ecology Research Group (GREB), Faculty of Dental Medicine, Université Laval, Québec, QC, Canada
| | - Leyla Desparois
- Oral Ecology Research Group (GREB), Faculty of Dental Medicine, Université Laval, Québec, QC, Canada
| | - Elvira M. Hebert
- Laboratorio de Genética y Biología Molecular, Centro de Referencia para Lactobacilos (CERELA), San Miguel de Tucumán, Argentina
| | - Maria Elena Fátima Nader
- Laboratorio de Genética y Biología Molecular, Centro de Referencia para Lactobacilos (CERELA), San Miguel de Tucumán, Argentina
| | - Lucila Saavedra
- Laboratorio de Genética y Biología Molecular, Centro de Referencia para Lactobacilos (CERELA), San Miguel de Tucumán, Argentina
| | - Carlos J. Minahk
- Instituto Superior de Investigaciones Biológicas (INSIBIO), CONICET-UNT, Instituto de Química Biológica “Dr. Bernabé Bloj”, Facultad de Bioquímica, Química y Farmacia, UNT, San Miguel de Tucumán, Argentina
| | - Vanessa P. Houde
- Oral Ecology Research Group (GREB), Faculty of Dental Medicine, Université Laval, Québec, QC, Canada
| |
Collapse
|
6
|
Furukawa MV, Oliveira MF, da Silva RA, Máximo PM, Dionizio A, Ventura TMO, Cortelli SC, Corelli JR, Buzalaf MAR, Rovai ES. Salivary proteomic analysis in patients with type 2 diabetes mellitus and periodontitis. Clin Oral Investig 2025; 29:77. [PMID: 39847108 DOI: 10.1007/s00784-025-06171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/17/2025] [Indexed: 01/24/2025]
Abstract
OBJECTIVE This study aimed to compare the salivary protein profile in individuals with Type 2 Diabetes Mellitus (DM2) and periodontitis and their respective controls. METHODS Eighty participants were included in the study. The four groups were formed by individuals with DM2 and periodontitis (DM2 + P, n = 20), DM2 without periodontitis (DM2, n = 20), periodontitis without DM2 (P, n = 20) and individuals without periodontitis and without DM2 (H, n = 20). Periodontal clinical examinations were performed and unstimulated saliva was collected. Proteomic analysis was performed by shotgun mass spectrometry. The results were obtained by searching the Homo sapiens database of the UniProt catalog. RESULTS A total of 220 proteins were identified in saliva samples. In the comparison between DM2 + P and DM2 groups, 27 proteins were up-regulated [e.g. S100-A8 was 6 times up-regulated (humoral immune response pathway)]. The DM2 + P and P groups had 26 up-regulated proteins [e.g. Immunoglobulin lambda constant 7 more than 2 times up-regulated (complement activation pathway)]. The non-DM2 groups (P and H) presented 22 up-regulated proteins [e.g. Glyceraldehyde-3-phosphate dehydrogenase more than 2 times up-regulated (Peptidyl-cysteine S-nitrosylation pathway)]. The groups without periodontitis (DM2 and H) showed 23 were up-regulated proteins [e.g. Hemoglobin subunit alpha that was more than 10 times up-regulated (cellular oxidant detoxification pathway)]. CONCLUSION The presence of DM2 and periodontitis significantly impacts the salivary proteome. Our proteomic analysis demonstrated that changes in the S100 family proteins (S100A8 and S100 A9) are highly related to the presence of DM2 and periodontitis. CLINICAL RELEVANCE Diabetes Mellitus (DM) and periodontitis are highly prevalent chronic diseases that present a wide variety of signs and symptoms. They present a bidirectional relationship, where patients with DM have a higher prevalence and severity of periodontitis, and patients with periodontitis have a higher prevalence of DM, worse glycemic control, and more diabetic complications. Diagnosing periodontitis requires specific clinical examinations, which require a highly trained operator. In this study, we used high throughput proteomics in order to evaluate non-invasive biomarkers for periodontitis in type 2 DM subjects. The results can contribute to earlier, more accurate, and less costly diagnosis of periodontitis in diabetic subjects, enabling better diabetes control.
Collapse
Affiliation(s)
- Monique Vieira Furukawa
- Departament of Dentistry, Periodontics Research Division, University of Taubaté, São Paulo, Brazil
| | | | - Rodrigo Augusto da Silva
- Departament of Dentistry, Periodontics Research Division, University of Taubaté, São Paulo, Brazil
| | - Priscila Macedo Máximo
- Department of Biological Sciences, University of São Paulo, Bauru School of Dentistry, Bauru, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, University of São Paulo, Bauru School of Dentistry, Bauru, Brazil
| | | | - Sheila Cavalca Cortelli
- Departament of Dentistry, Periodontics Research Division, University of Taubaté, São Paulo, Brazil
| | - José Roberto Corelli
- Departament of Dentistry, Periodontics Research Division, University of Taubaté, São Paulo, Brazil
| | | | - Emanuel Silva Rovai
- Institute of Science and Technology, Division of Periodontics, São Paulo State University (Unesp), Av. Eng. Francisco José Longo, 777, São José dos Campos, São Paulo, 12245-000, Brazil.
| |
Collapse
|
7
|
Shawkatova I, Durmanova V, Javor J. Alzheimer's Disease and Porphyromonas gingivalis: Exploring the Links. Life (Basel) 2025; 15:96. [PMID: 39860036 PMCID: PMC11766648 DOI: 10.3390/life15010096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/10/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025] Open
Abstract
Recent research highlights compelling links between oral health, particularly periodontitis, and systemic diseases, including Alzheimer's disease (AD). Although the biological mechanisms underlying these associations remain unclear, the role of periodontal pathogens, particularly Porphyromonas gingivalis, has garnered significant attention. P. gingivalis, a major driver of periodontitis, is recognized for its potential systemic effects and its putative role in AD pathogenesis. This review examines evidence connecting P. gingivalis to hallmark AD features, such as amyloid β accumulation, tau hyperphosphorylation, neuroinflammation, and other neuropathological features consistent with AD. Virulence factors, such as gingipains and lipopolysaccharides, were shown to be implicated in blood-brain barrier disruption, neuroinflammation, and neuronal damage. P. gingivalis-derived outer membrane vesicles may serve to disseminate virulence factors to brain tissues. Indirect mechanisms, including systemic inflammation triggered by chronic periodontal infections, are also supposed to exacerbate neurodegenerative processes. While the exact pathways remain uncertain, studies detecting P. gingivalis virulence factors and its other components in AD-affected brains support their possible role in disease pathogenesis. This review underscores the need for further investigation into P. gingivalis-mediated mechanisms and their interplay with host responses. Understanding these interactions could provide critical insights into novel strategies for reducing AD risk through periodontal disease management.
Collapse
Affiliation(s)
- Ivana Shawkatova
- Institute of Immunology, Faculty of Medicine, Comenius University in Bratislava, Odborarske nam. 14, 811 08 Bratislava, Slovakia; (V.D.); (J.J.)
| | | | | |
Collapse
|
8
|
Hideaki Uyeda F, Quilles Vargas G, Matias Malavazi L, Tiemi Macedo T, Paim de Abreu Paulo Gomes A, Rocha Bueno M, Henrique Moreira Paulo Tolentino P, Aguiar da Silva LD, Cristina Figueiredo L, Awad Shibli J, Bueno-Silva B. Platelet-rich fibrin obtained from different protocols affects the formation of the in vitro multispecies subgingival biofilm associated with periodontitis. J Oral Microbiol 2025; 17:2445598. [PMID: 39801747 PMCID: PMC11722119 DOI: 10.1080/20002297.2024.2445598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 12/13/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Background The aim of this article is to evaluate the effect of different portions of Platelet Rich Fibrin (PRF) membranes and liquid-PRF, prepared by two distinct protocols/centrifuges each, on the multispecies subgingival biofilm. Materials and methods PRF membranes and liquid-PRF were prepared using two protocols: centrifuge 1 uses fixed acceleration while centrifuge 2, progressive acceleration. PRF samples were introduced into device concurrently with 33-species bacterial inoculum. After seven days, biofilm metabolic activity (MA) and microbial profile were evaluated through colorimetric reaction and DNA-DNA hybridization, respectively. Results Among PRF membranes, the ones from centrifuge 1 led to better reduction in MA, total biofilm, and F. periodonticum, P. gingivalis and T. forsythia counts when compared to untreated/centrifuge 2 treated biofilms. However, centrifuge 2 liquid-PRF reduced MA, total biofilm and F. periodonticum counts when compared to untreated/centrifuge 1 treated-biofilms. Conclusion PRF membrane and exhibited comparable antibiofilm activity. However, PRF distinct forms, obtained by same centrifugation protocol, may present different antimicrobial properties.
Collapse
Affiliation(s)
| | - Gustavo Quilles Vargas
- Department of Biosciences; Piracicaba School of Dentistry, University of Campinas, Piracicaba, Brazil
| | - Larissa Matias Malavazi
- Department of Biosciences; Piracicaba School of Dentistry, University of Campinas, Piracicaba, Brazil
| | | | | | | | | | | | | | | | - Bruno Bueno-Silva
- Department of Biosciences; Piracicaba School of Dentistry, University of Campinas, Piracicaba, Brazil
| |
Collapse
|
9
|
Śmiga M, Ślęzak P, Tracz M, Cierpisz P, Wagner M, Olczak T. Defining the role of Hmu and Hus systems in Porphyromonas gingivalis heme and iron homeostasis and virulence. Sci Rep 2024; 14:31156. [PMID: 39730829 DOI: 10.1038/s41598-024-82326-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 12/04/2024] [Indexed: 12/29/2024] Open
Abstract
Iron and heme are essential nutrients for all branches of life. Pathogenic members of the Bacteroidota phylum, including Porphyromonas gingivalis, do not synthesize heme and rely on host hemoproteins for heme as a source of iron and protoporphyrin IX. P. gingivalis is the main pathogen responsible for dysbiosis in the oral microbiome and the initiation and progression of chronic periodontitis. It utilizes Hmu and Hus systems for heme uptake, including HmuY and HusA hemophore-like proteins and their cognate HmuR and HusB TonB-dependent outer membrane heme receptors. Although the mechanisms of heme uptake are relatively well characterized in P. gingivalis, little is known about the importance of heme uptake systems in heme and iron homeostasis and virulence. Therefore, this work aimed to investigate these mechanisms in detail. We characterized the P. gingivalis double mutant strain deficient in functional hmuY and hmuR or husA and husB genes. Global gene expression and phenotypic analyses revealed that the Hmu system significantly influences heme homeostasis, confirming its main role in heme supply. Both systems, particularly the Hus system, affect the virulence of P. gingivalis. Our results demonstrate the diverse role of Hmu and Hus systems in P. gingivalis heme and iron homeostasis and virulence.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland.
| | - Paulina Ślęzak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland
| | - Michał Tracz
- Laboratory of Protein Mass Spectrometry, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland
| | - Patryk Cierpisz
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland
| | - Mateusz Wagner
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland
- Department of Molecular Biology and Genetics, Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, 14A F. Joliot-Curie St., 50-383, Wrocław, Poland
| |
Collapse
|
10
|
Cafferata EA, Ramanauskaite A, Cuypers A, Obreja K, Dohle E, Ghanaati S, Schwarz F. Experimental peri-implantitis induces neuroinflammation: An exploratory study in rats. BMC Oral Health 2024; 24:1238. [PMID: 39425138 PMCID: PMC11490110 DOI: 10.1186/s12903-024-04995-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 10/01/2024] [Indexed: 10/21/2024] Open
Abstract
PURPOSE Cumulating evidence supports the close association between periodontal diseases, neuroinflammation and neurodegenerative pathologies, except for peri-implantitis (PI). Thus, this study explored the association between experimental PI and neuropathological changes in the rat brain. MATERIALS AND METHODS After bilateral first molars extraction, experimental PI was induced at titanium implants placed in the maxillae by lipopolysaccharide injections and ligature placement. Following 28-weeks of disease progression, the maxillae and brains were retrieved from 6 rats. Healthy brains from 3 rats were used as control. Brains were analyzed by immunohistochemistry to detect signs of neuroinflammation (interleukin (IL)-6 and tumor necrosis factor (TNF)-α)), microglial activation (IBA-1) and astrogliosis (GFAP). To explore signs of neurodegeneration, hematoxylin/eosin and Nissl stainings were used. Also, four different antibodies against amyloid beta (Aβ 1-42) were tested. RESULTS Chronic PI lesions showed peri-implant bone resorption accompanied by large inflammatory infiltrates. IL-6+ and TNF-α+ cells were found within the CA1 and Dentate Gyrus regions of the hippocampus of the PI-affected group, while almost no immune-positivity was detected in the control (p < 0.05). Detection of activated GFAP+ microglia and IBA-1+ astrocytes surface were significantly higher at the CA areas, and cerebral cortex of the PI-affected group, in comparison with control (p < 0.05). Shrunk neurons with pyknotic nuclei were inconsistently found among the PI-affected group, and these were almost not detected in control. No positive Aβ reactivity was detected in any of the samples. CONCLUSION Chronic experimental PI lesions led to an increased detection of IL-6 and TNF-α, GFAP+ microgliosis and IBA-1+ astrocytosis, and in some cases, neurodegeneration, in the rat brain.
Collapse
Affiliation(s)
- Emilio A Cafferata
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt am Main, Germany.
- Department of Periodontology, School of Dentistry, Universidad Científica del Sur, Lima, Perú.
| | - Ausra Ramanauskaite
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt am Main, Germany
| | - Astrid Cuypers
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt am Main, Germany
| | - Karina Obreja
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt am Main, Germany
| | - Eva Dohle
- Frankfurt Oral Regenerative Medicine (FORM-Lab), Clinic for Maxillofacial and Plastic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Shahram Ghanaati
- Frankfurt Oral Regenerative Medicine (FORM-Lab), Clinic for Maxillofacial and Plastic Surgery, Goethe University, Frankfurt am Main, Germany
| | - Frank Schwarz
- Department of Oral Surgery and Implantology, Goethe University, Carolinum, Frankfurt am Main, Germany
| |
Collapse
|
11
|
Saran A, Kim HM, Manning I, Hancock MA, Schmitz C, Madej M, Potempa J, Sola M, Trempe JF, Zhu Y, Davey ME, Zeytuni N. Unveiling the molecular mechanisms of the type IX secretion system's response regulator: Structural and functional insights. PNAS NEXUS 2024; 3:pgae316. [PMID: 39139265 PMCID: PMC11320123 DOI: 10.1093/pnasnexus/pgae316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 07/22/2024] [Indexed: 08/15/2024]
Abstract
The type IX secretion system (T9SS) is a nanomachinery utilized by bacterial pathogens to facilitate infection. The system is regulated by a signaling cascade serving as its activation switch. A pivotal member in this cascade, the response regulator protein PorX, represents a promising drug target to prevent the secretion of virulence factors. Here, we provide a comprehensive characterization of PorX both in vitro and in vivo. First, our structural studies revealed PorX harbors a unique enzymatic effector domain, which, surprisingly, shares structural similarities with the alkaline phosphatase superfamily, involved in nucleotide and lipid signaling pathways. Importantly, such pathways have not been associated with the T9SS until now. Enzymatic characterization of PorX's effector domain revealed a zinc-dependent phosphodiesterase activity, with active site dimensions suitable to accommodate a large substrate. Unlike typical response regulators that dimerize via their receiver domain upon phosphorylation, we found that zinc can also induce conformational changes and promote PorX's dimerization via an unexpected interface. These findings suggest that PorX can serve as a cellular zinc sensor, broadening our understanding of its regulatory mechanisms. Despite the strict conservation of PorX in T9SS-utilizing bacteria, we demonstrate that PorX is essential for virulence factors secretion in Porphyromonas gingivalis and affects metabolic enzymes secretion in the nonpathogenic Flavobacterium johnsoniae, but not for the secretion of gliding adhesins. Overall, this study advances our structural and functional understanding of PorX, highlighting its potential as a druggable target for intervention strategies aimed at disrupting the T9SS and mitigating virulence in pathogenic species.
Collapse
Affiliation(s)
- Anshu Saran
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
| | - Hey-Min Kim
- Department of Microbiology, The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - Ireland Manning
- Department of Biological Sciences, Minnesota State University Mankato, 242 Trafton Science Center South, Mankato, MN 56001, USA
| | - Mark A Hancock
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - Claus Schmitz
- Department of Structural Biology, Molecular Biology Institute of Barcelona, Spanish Research Council, Barcelona Science Park, Barcelona E-08028, Spain
| | - Mariusz Madej
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków PL-30-387, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, Kraków PL-30-387, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, 501 S Preston St, Louisville, KY 40202, USA
| | - Maria Sola
- Department of Structural Biology, Molecular Biology Institute of Barcelona, Spanish Research Council, Barcelona Science Park, Barcelona E-08028, Spain
| | - Jean-François Trempe
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
- Department of Pharmacology & Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, QC H3G 1Y6, Canada
| | - Yongtao Zhu
- Department of Biological Sciences, Minnesota State University Mankato, 242 Trafton Science Center South, Mankato, MN 56001, USA
- Department of Biological Sciences, Xi’an Jiaotong-Liverpool University, 111 Ren’ai Road, Suzhou Dushu Lake Science and Education Innovation District, Suzhou Industrial Park, Suzhou, Jiangsu 215123, China
| | - Mary Ellen Davey
- Department of Microbiology, The Forsyth Institute, 245 First St, Cambridge, MA 02142, USA
| | - Natalie Zeytuni
- Department of Anatomy and Cell Biology, McGill University, 3640 Rue University, Montreal, QC H3A 0C7, Canada
- Centre de Recherche en Biologie Structurale (CRBS), McGill University, 3649 Promenade Sir William Olser, Montreal, QC H3G 0B1, Canada
| |
Collapse
|
12
|
Kendlbacher FL, Bloch S, Hager-Mair FF, Schäffer C, Andrukhov O. Red-complex bacteria exhibit distinctly different interactions with human periodontal ligament stromal cells compared to Fusobacterium nucleatum. Arch Oral Biol 2024; 164:106004. [PMID: 38776586 DOI: 10.1016/j.archoralbio.2024.106004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/17/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024]
Abstract
OBJECTIVE The red-complex bacteria Porphyromonas gingivalis and Tannerella forsythia together with Fusobacterium nucleatum are essential players in periodontitis. This study investigated the bacterial interplay with human periodontal ligament mesenchymal stromal cells (hPDL-MSCs) which act in the acute phase of periodontal infection. DESIGN The capability of the bacteria to induce an inflammatory response as well as their viability, cellular adhesion and invasion were analyzed upon mono- and co-infections of hPDL-MSCs to delineate potential synergistic or antagonistic effects. The expression level and concentration of interleukin (IL)-6, IL-8 and monocyte chemoattractant protein (MCP)-1 were measured using qRT-PCR and ELISA. Viability, invasion, and adhesion were determined quantitatively using agar plate culture and qualitatively by confocal microscopy. RESULTS Viability of P. gingivalis and T. forsythia but not F. nucleatum was preserved in the presence of hPDL-MSCs, even in an oxygenated environment. F. nucleatum significantly increased the expression and concentration of IL-6, IL-8 and MCP-1 in hPDL-MSCs, while T. forsythia and P. gingivalis caused only a minimal inflammatory response. Co-infections in different combinations had no effect on the inflammatory response. Moreover, P. gingivalis mitigated the increase in cytokine levels elicited by F. nucleatum. Both red-complex bacteria adhered to and invaded hPDL-MSCs in greater numbers than F. nucleatum, with only a minor effect of co-infections. CONCLUSIONS Oral bacteria of different pathogenicity status interact differently with hPDL-MSCs. The data support P. gingivalis' capability to manipulate the inflammatory host response. Further research is necessary to obtain a comprehensive picture of the role of hPDL-MSCs in more complex oral biofilms.
Collapse
Affiliation(s)
- Fabian L Kendlbacher
- NanoGlycobiology Research Group, Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Susanne Bloch
- NanoGlycobiology Research Group, Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F Hager-Mair
- NanoGlycobiology Research Group, Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria
| | - Christina Schäffer
- NanoGlycobiology Research Group, Institute of Biochemistry, Department of Chemistry, Universität für Bodenkultur Wien, Vienna, Austria.
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, A-1090 Vienna, Austria.
| |
Collapse
|
13
|
Torre E, Morra M, Cassinelli C, Iviglia G. Anti-Bacterial and Anti-Inflammatory Effects of a Ceramic Bone Filler Containing Polyphenols from Grape Pomace. CERAMICS 2024; 7:975-988. [DOI: 10.3390/ceramics7030063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Bone loss is a major burden for society and impacts people’s health all over the world. In a changing world looking toward a more conscious use of raw materials, efforts are being made to increasingly consider new promising biomaterials that account for, on one side, the ability to provide specific functional biological activities and, on the other, the feature of being well tolerated. In this regard, the use of phenolic compounds in the field of bone-related bioengineering shows a rising interest in the development of medical solutions aimed at taking advantage of the multiple beneficial properties of these plant molecules. In this work, the anti-bacterial and anti-inflammatory power of a biphasic calcium phosphate synthetic bone filler coated with a mixture of phenolic compounds was investigated by evaluating the minimal inhibitory concentration (MIC) value against Streptococcus mutans and Porphyromonas gingivalis and the expression of genes involved in inflammation and autophagy by real-time reverse transcription polymerase chain reaction (RT-qPCR) on J774a.1 murine macrophage cells. Results show a MIC of 0.8 μg/mL, a neat anti-inflammatory effect, and induction of autophagy key genes compared to a ceramic bone filler. In conclusion, functionalization with a polyphenol-rich extract confers to a ceramic bone filler anti-bacterial and anti-inflammatory properties.
Collapse
Affiliation(s)
- Elisa Torre
- Nobil Bio Ricerche Srl, V. Valcastellana 26, 14037 Portacomaro, AT, Italy
| | - Marco Morra
- Nobil Bio Ricerche Srl, V. Valcastellana 26, 14037 Portacomaro, AT, Italy
| | - Clara Cassinelli
- Nobil Bio Ricerche Srl, V. Valcastellana 26, 14037 Portacomaro, AT, Italy
| | - Giorgio Iviglia
- Nobil Bio Ricerche Srl, V. Valcastellana 26, 14037 Portacomaro, AT, Italy
| |
Collapse
|
14
|
Śmiga M, Olczak T. Porphyromonas endodontalis HmuY differentially participates in heme acquisition compared to the Porphyromonas gingivalis and Tannerella forsythia hemophore-like proteins. Front Cell Infect Microbiol 2024; 14:1421018. [PMID: 38938884 PMCID: PMC11208336 DOI: 10.3389/fcimb.2024.1421018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024] Open
Abstract
Introduction Porphyromonas gingivalis and Porphyromonas endodontalis belong to the Bacteroidota phylum. Both species inhabit the oral cavity and can be associated with periodontal diseases. To survive, they must uptake heme from the host as an iron and protoporphyrin IX source. Among the best-characterized heme acquisition systems identified in members of the Bacteroidota phylum is the P. gingivalis Hmu system, with a leading role played by the hemophore-like HmuY (HmuYPg) protein. Methods Theoretical analysis of selected HmuY proteins and spectrophotometric methods were employed to determine the heme-binding mode of the P. endodontalis HmuY homolog (HmuYPe) and its ability to sequester heme. Growth phenotype and gene expression analysis of P. endodontalis were employed to reveal the importance of the HmuYPe and Hmu system for this bacterium. Results Unlike in P. gingivalis, where HmuYPg uses two histidines for heme-iron coordination, other known HmuY homologs use two methionines in this process. P. endodontalis HmuYPe is the first characterized representative of the HmuY family that binds heme using a histidine-methionine pair. It allows HmuYPe to sequester heme directly from serum albumin and Tannerella forsythia HmuYTf, the HmuY homolog which uses two methionines for heme-iron coordination. In contrast to HmuYPg, which sequesters heme directly from methemoglobin, HmuYPe may bind heme only after the proteolytic digestion of hemoglobin. Conclusions We hypothesize that differences in components of the Hmu system and structure-based properties of HmuY proteins may evolved allowing different adaptations of Porphyromonas species to the changing host environment. This may add to the superior virulence potential of P. gingivalis over other members of the Bacteroidota phylum.
Collapse
|
15
|
Chen W, Kim SY, Lee A, Kim YJ, Chang C, Ton-That H, Kim R, Kim S, Park NH. hTERT Peptide Fragment GV1001 Prevents the Development of Porphyromonas gingivalis-Induced Periodontal Disease and Systemic Disorders in ApoE-Deficient Mice. Int J Mol Sci 2024; 25:6126. [PMID: 38892314 PMCID: PMC11172542 DOI: 10.3390/ijms25116126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
GV1001, an anticancer vaccine, exhibits other biological functions, including anti-inflammatory and antioxidant activity. It also suppresses the development of ligature-induced periodontitis in mice. Porphyromonas gingivalis (Pg), a major human oral bacterium implicated in the development of periodontitis, is associated with various systemic disorders, such as atherosclerosis and Alzheimer's disease (AD). This study aimed to explore the protective effects of GV1001 against Pg-induced periodontal disease, atherosclerosis, and AD-like conditions in Apolipoprotein (ApoE)-deficient mice. GV1001 effectively mitigated the development of Pg-induced periodontal disease, atherosclerosis, and AD-like conditions by counteracting Pg-induced local and systemic inflammation, partly by inhibiting the accumulation of Pg DNA aggregates, Pg lipopolysaccharides (LPS), and gingipains in the gingival tissue, arterial wall, and brain. GV1001 attenuated the development of atherosclerosis by inhibiting vascular inflammation, lipid deposition in the arterial wall, endothelial to mesenchymal cell transition (EndMT), the expression of Cluster of Differentiation 47 (CD47) from arterial smooth muscle cells, and the formation of foam cells in mice with Pg-induced periodontal disease. GV1001 also suppressed the accumulation of AD biomarkers in the brains of mice with periodontal disease. Overall, these findings suggest that GV1001 holds promise as a preventive agent in the development of atherosclerosis and AD-like conditions associated with periodontal disease.
Collapse
Affiliation(s)
- Wei Chen
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, 714 Tiverton Ave., Los Angeles, CA 90095, USA; (W.C.); (S.Y.K.); (A.L.); (Y.-J.K.); (R.K.)
| | - Sharon Y. Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, 714 Tiverton Ave., Los Angeles, CA 90095, USA; (W.C.); (S.Y.K.); (A.L.); (Y.-J.K.); (R.K.)
| | - Alicia Lee
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, 714 Tiverton Ave., Los Angeles, CA 90095, USA; (W.C.); (S.Y.K.); (A.L.); (Y.-J.K.); (R.K.)
| | - Yun-Jeong Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, 714 Tiverton Ave., Los Angeles, CA 90095, USA; (W.C.); (S.Y.K.); (A.L.); (Y.-J.K.); (R.K.)
| | - Chungyu Chang
- Section of Oral Biology, UCLA School of Dentistry, 714 Tiverton Avenue, Los Angeles, CA 90095, USA; (C.C.); (H.T.-T.)
| | - Hung Ton-That
- Section of Oral Biology, UCLA School of Dentistry, 714 Tiverton Avenue, Los Angeles, CA 90095, USA; (C.C.); (H.T.-T.)
| | - Reuben Kim
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, 714 Tiverton Ave., Los Angeles, CA 90095, USA; (W.C.); (S.Y.K.); (A.L.); (Y.-J.K.); (R.K.)
- UCLA Jonsson Comprehensive Cancer Center, 10833 Le Conte Ave., Los Angeles, CA 90095, USA
| | - Sangjae Kim
- Teloid Inc., 920 Westholme Avenue, Los Angeles, CA 90024, USA;
| | - No-Hee Park
- The Shapiro Family Laboratory of Viral Oncology and Aging Research, UCLA School of Dentistry, 714 Tiverton Ave., Los Angeles, CA 90095, USA; (W.C.); (S.Y.K.); (A.L.); (Y.-J.K.); (R.K.)
- Teloid Inc., 920 Westholme Avenue, Los Angeles, CA 90024, USA;
- Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Ave., Los Angeles, CA 90095, USA
| |
Collapse
|
16
|
Saran A, Kim HM, Manning I, Hancock MA, Schmitz C, Madej M, Potempa J, Sola M, Trempe JF, Zhu Y, Davey ME, Zeytuni N. Unveiling the Molecular Mechanisms of the Type-IX Secretion System's Response Regulator: Structural and Functional Insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594396. [PMID: 38798656 PMCID: PMC11118453 DOI: 10.1101/2024.05.15.594396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The Type-IX secretion system (T9SS) is a nanomachinery utilized by bacterial pathogens to facilitate infection. The system is regulated by a signaling cascade serving as its activation switch. A pivotal member in this cascade, the response regulator protein PorX, represents a promising drug target to prevent the secretion of virulence factors. Here, we provide a comprehensive characterization of PorX both in vitro and in vivo . First, our structural studies revealed PorX harbours a unique enzymatic effector domain, which, surprisingly, shares structural similarities with the alkaline phosphatase superfamily, involved in nucleotide and lipid signaling pathways. Importantly, such pathways have not been associated with the T9SS until now. Enzymatic characterization of PorX's effector domain revealed a zinc-dependent phosphodiesterase activity, with active site dimensions suitable to accommodate a large substrate. Unlike typical response regulators that dimerize via their receiver domain upon phosphorylation, we found that zinc can also induce conformational changes and promote PorX's dimerization via an unexpected interface. These findings suggest that PorX can serve as a cellular zinc sensor, broadening our understanding of its regulatory mechanisms. Despite the strict conservation of PorX in T9SS-utilizing bacteria, we demonstrate that PorX is essential for virulence factors secretion in Porphyromonas gingivalis and affects metabolic enzymes secretion in the non-pathogenic Flavobacterium johnsoniae , but not for the secretion of gliding adhesins. Overall, this study advances our structural and functional understanding of PorX, highlighting its potential as a druggable target for intervention strategies aimed at disrupting the T9SS and mitigating virulence in pathogenic species.
Collapse
|
17
|
Muñoz-Medel M, Pinto MP, Goralsky L, Cáceres M, Villarroel-Espíndola F, Manque P, Pinto A, Garcia-Bloj B, de Mayo T, Godoy JA, Garrido M, Retamal IN. Porphyromonas gingivalis, a bridge between oral health and immune evasion in gastric cancer. Front Oncol 2024; 14:1403089. [PMID: 38807771 PMCID: PMC11130407 DOI: 10.3389/fonc.2024.1403089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/02/2024] [Indexed: 05/30/2024] Open
Abstract
Porphyromonas gingivalis (P. gingivalis) is a gram-negative oral pathogen associated with chronic periodontitis. Previous studies have linked poor oral health and periodontitis with oral cancer. Severe cases of periodontal disease can result in advanced periodontitis, leading to tissue degradation, tooth loss, and may also correlate with higher gastric cancer (GC) risk. In fact, tooth loss is associated with an elevated risk of cancer. However, the clinical evidence for this association remains inconclusive. Periodontitis is also characterized by chronic inflammation and upregulation of members of the Programmed Death 1/PD1 Ligand 1 (PD1/PDL1) axis that leads to an immunosuppressive state. Given that chronic inflammation and immunosuppression are conditions that facilitate cancer progression and carcinogenesis, we hypothesize that oral P. gingivalis and/or its virulence factors serve as a mechanistic link between oral health and gastric carcinogenesis/GC progression. We also discuss the potential impact of P. gingivalis' virulence factors (gingipains, lipopolysaccharide (LPS), and fimbriae) on inflammation and the response to immune checkpoint inhibitors in GC which are part of the current standard of care for advanced stage patients.
Collapse
Affiliation(s)
- Matías Muñoz-Medel
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Mauricio P. Pinto
- Support Team for Oncological Research and Medicine (STORM), Santiago, Chile
| | - Lauren Goralsky
- Department of Biological Sciences, Columbia University, New York, NY, United States
| | - Mónica Cáceres
- Millennium Nucleus of Ion Channel-Associated Diseases (MiNICAD), Santiago, Chile
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
- Millennium Institute on Immunology and Immunotherapy, Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | | | - Patricio Manque
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Andrés Pinto
- Department of Oral and Maxillofacial Medicine and Diagnostic Sciences, Case Western Reserve University School of Dental Medicine, Cleveland, OH, United States
| | - Benjamin Garcia-Bloj
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Tomas de Mayo
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Juan A. Godoy
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Marcelo Garrido
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| | - Ignacio N. Retamal
- Precision Oncology Center, School of Medicine, Faculty of Medicine and Health Sciences, Universidad Mayor, Santiago, Chile
| |
Collapse
|
18
|
Olczak T, Śmiga M, Antonyuk SV, Smalley JW. Hemophore-like proteins of the HmuY family in the oral and gut microbiome: unraveling the mystery of their evolution. Microbiol Mol Biol Rev 2024; 88:e0013123. [PMID: 38305743 PMCID: PMC10966948 DOI: 10.1128/mmbr.00131-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
SUMMARY Heme (iron protoporphyrin IX, FePPIX) is the main source of iron and PPIX for host-associated pathogenic bacteria, including members of the Bacteroidota (formerly Bacteroidetes) phylum. Porphyromonas gingivalis, a keystone oral pathogen, uses a unique heme uptake (Hmu) system, comprising a hemophore-like protein, designated as the first member of the novel HmuY family. Compared to classical, secreted hemophores utilized by Gram-negative bacteria or near-iron transporter domain-based hemophores utilized by Gram-positive bacteria, the HmuY family comprises structurally similar proteins that have undergone diversification during evolution. The best characterized are P. gingivalis HmuY and its homologs from Tannerella forsythia (Tfo), Prevotella intermedia (PinO and PinA), Bacteroides vulgatus (Bvu), and Bacteroides fragilis (BfrA, BfrB, and BfrC). In contrast to the two histidine residues coordinating heme iron in P. gingivalis HmuY, Tfo, PinO, PinA, Bvu, and BfrA preferentially use two methionine residues. Interestingly, BfrB, despite conserved methionine residue, binds the PPIX ring without iron coordination. BfrC binds neither heme nor PPIX in keeping with the lack of conserved histidine or methionine residues used by other members of the HmuY family. HmuY competes for heme binding and heme sequestration from host hemoproteins with other members of the HmuY family to increase P. gingivalis competitiveness. The participation of HmuY in the host immune response confirms its relevance in relation to the survival of P. gingivalis and its ability to induce dysbiosis not only in the oral microbiome but also in the gut microbiome or other host niches, leading to local injuries and involvement in comorbidities.
Collapse
Affiliation(s)
- Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Svetlana V. Antonyuk
- Molecular Biophysics Group, Institute of Systems, Molecular and Integrative Biology, Faculty of Health and Life Sciences, the University of Liverpool, Liverpool, United Kingdom
| | - John W. Smalley
- Institute of Life Course and Medical Sciences, School of Dentistry, the University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
19
|
Śmiga M, Ślęzak P, Olczak T. Comparative analysis of Porphyromonas gingivalis A7436 and ATCC 33277 strains reveals differences in the expression of heme acquisition systems. Microbiol Spectr 2024; 12:e0286523. [PMID: 38289063 PMCID: PMC10913741 DOI: 10.1128/spectrum.02865-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/15/2023] [Indexed: 03/06/2024] Open
Abstract
Porphyromonas gingivalis strains exhibit different phenotypes in vitro, different virulence potential in animal models, and different associations with human diseases, with strains classified as virulent/more virulent (e.g., A7436 and W83) or as less virulent/avirulent (e.g., ATCC 33277). In this study, we comparatively analyzed the A7436 and ATCC 33277 strains to better understand their variability. Global gene expression analysis in response to heme and iron limitation revealed more pronounced differences in the A7436 than in the ATCC 33277 strain; however, in both strains, the largest changes were observed in genes encoding hypothetical proteins, genes whose products participate in energy metabolism, and in genes encoding proteins engaged in transport and binding proteins. Our results confirmed that variability between P. gingivalis strains is due to differences in the arrangement of their genomes. Analysis of gene expression of heme acquisition systems demonstrated that not only the availability of iron and heme in the external environment but also the ability to store iron intracellularly can influence the P. gingivalis phenotype. Therefore, we assume that differences in virulence potential may also be due to differences in the production of systems involved in iron and heme acquisition, mainly the Hmu system. In addition, our study showed that hemoglobin, in a concentration-dependent manner, differentially influences the virulence potential of P. gingivalis strains. We conclude that iron and heme homeostasis may add to the variability observed between P. gingivalis strains. IMPORTANCE Periodontitis belongs to a group of multifactorial diseases, characterized by inflammation and destruction of tooth-supporting tissues. P. gingivalis is one of the most important microbial factors involved in the initiation and progression of periodontitis. To survive in the host, the bacterium must acquire heme as a source of iron and protoporphyrin IX. P. gingivalis strains respond differently to changing iron and heme concentrations, which may be due to differences in the expression of systems involved in iron and heme acquisition. The ability to accumulate iron intracellularly, being different in more and less virulent P. gingivalis strains, may influence their phenotypes, production of virulence factors (including proteins engaged in heme acquisition), and virulence potential of this bacterium.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Paulina Ślęzak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wroclaw, Wroclaw, Poland
| |
Collapse
|
20
|
Schuster A, Nieboga E, Kantorowicz M, Lipska W, Kaczmarzyk T, Potempa J, Grabiec AM. Gingival fibroblast activation by Porphyromonas gingivalis is driven by TLR2 and is independent of the LPS-TLR4 axis. Eur J Immunol 2024; 54:e2350776. [PMID: 38191758 DOI: 10.1002/eji.202350776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/10/2024]
Abstract
Gingival fibroblasts (GFs) are abundant structural cells of the periodontium that contribute to the host's innate immunity by producing cytokines and chemokines in response to oral pathogens, such as Porphyromonas gingivalis. Isolated lipopolysaccharide (Pg-LPS) is commonly used to study GF responses to P. gingivalis; however, this approach produced conflicting observations regarding its proinflammatory potential and the engagement of specific Toll-like receptors (TLRs). In this work, we demonstrate that commercially available Pg-LPS preparations are weak activators of GF innate immune responses compared with live P. gingivalis or other relevant virulence factors, such as P. gingivalis fimbriae or LPS from Escherichia coli. GF's nonresponsiveness to Pg-LPS can be only partly attributed to the low expression of TLR4 and its accessory molecules, CD14 and LY36, and is likely caused by the unique structure and composition of the Pg-LPS lipid A. Finally, we combined gene silencing and neutralizing antibody studies to demonstrate that GF response to infection with live P. gingivalis relies predominantly on TLR2. In contrast, the LPS-TLR4 signaling plays a negligible role in inflammatory cytokine production by GFs exposed to this oral pathogen, confirming that Pg-LPS stimulation is not an optimal model for studies of GF responses to P. gingivalis.
Collapse
Affiliation(s)
- Aureliusz Schuster
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Elwira Nieboga
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Malgorzata Kantorowicz
- Department of Periodontology, Preventive Dentistry and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Weronika Lipska
- Department of Periodontology, Preventive Dentistry and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Kaczmarzyk
- Chair of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, Kentucky, USA
| | - Aleksander M Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics, and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
21
|
Bloch S, Hager-Mair FF, Andrukhov O, Schäffer C. Oral streptococci: modulators of health and disease. Front Cell Infect Microbiol 2024; 14:1357631. [PMID: 38456080 PMCID: PMC10917908 DOI: 10.3389/fcimb.2024.1357631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/05/2024] [Indexed: 03/09/2024] Open
Abstract
Streptococci are primary colonizers of the oral cavity where they are ubiquitously present and an integral part of the commensal oral biofilm microflora. The role oral streptococci play in the interaction with the host is ambivalent. On the one hand, they function as gatekeepers of homeostasis and are a prerequisite for the maintenance of oral health - they shape the oral microbiota, modulate the immune system to enable bacterial survival, and antagonize pathogenic species. On the other hand, also recognized pathogens, such as oral Streptococcus mutans and Streptococcus sobrinus, which trigger the onset of dental caries belong to the genus Streptococcus. In the context of periodontitis, oral streptococci as excellent initial biofilm formers have an accessory function, enabling late biofilm colonizers to inhabit gingival pockets and cause disease. The pathogenic potential of oral streptococci fully unfolds when their dissemination into the bloodstream occurs; streptococcal infection can cause extra-oral diseases, such as infective endocarditis and hemorrhagic stroke. In this review, the taxonomic diversity of oral streptococci, their role and prevalence in the oral cavity and their contribution to oral health and disease will be discussed, focusing on the virulence factors these species employ for interactions at the host interface.
Collapse
Affiliation(s)
- Susanne Bloch
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Fiona F. Hager-Mair
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| | - Oleh Andrukhov
- Competence Center for Periodontal Research, University Clinic of Dentistry, Medical University of Vienna, Vienna, Austria
| | - Christina Schäffer
- Department of Chemistry, Institute of Biochemistry, NanoGlycobiology Research Group, Universität für Bodenkultur Wien, Vienna, Austria
| |
Collapse
|
22
|
Vinţeler N, Feurdean CN, Petkes R, Barabas R, Boşca BA, Muntean A, Feștilă D, Ilea A. Biomaterials Functionalized with Inflammasome Inhibitors-Premises and Perspectives. J Funct Biomater 2024; 15:32. [PMID: 38391885 PMCID: PMC10889089 DOI: 10.3390/jfb15020032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/21/2024] [Accepted: 01/25/2024] [Indexed: 02/24/2024] Open
Abstract
This review aimed at searching literature for data regarding the inflammasomes' involvement in the pathogenesis of oral diseases (mainly periodontitis) and general pathologies, including approaches to control inflammasome-related pathogenic mechanisms. The inflammasomes are part of the innate immune response that activates inflammatory caspases by canonical and noncanonical pathways, to control the activity of Gasdermin D. Once an inflammasome is activated, pro-inflammatory cytokines, such as interleukins, are released. Thus, inflammasomes are involved in inflammatory, autoimmune and autoinflammatory diseases. The review also investigated novel therapies based on the use of phytochemicals and pharmaceutical substances for inhibiting inflammasome activity. Pharmaceutical substances can control the inflammasomes by three mechanisms: inhibiting the intracellular signaling pathways (Allopurinol and SS-31), blocking inflammasome components (VX-765, Emricasan and VX-740), and inhibiting cytokines mediated by the inflammasomes (Canakinumab, Anakinra and Rilonacept). Moreover, phytochemicals inhibit the inflammasomes by neutralizing reactive oxygen species. Biomaterials functionalized by the adsorption of therapeutic agents onto different nanomaterials could represent future research directions to facilitate multimodal and sequential treatment in oral pathologies.
Collapse
Affiliation(s)
- Norina Vinţeler
- Department of Oral Rehabilitation, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Claudia Nicoleta Feurdean
- Department of Oral Rehabilitation, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Regina Petkes
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Reka Barabas
- Department of Chemistry and Chemical Engineering of Hungarian Line of Study, Faculty of Chemistry and Chemical Engineering, Babeș-Bolyai University, 400028 Cluj-Napoca, Romania
| | - Bianca Adina Boşca
- Department of Histology, Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| | - Alexandrina Muntean
- Department of Paediatric, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Dana Feștilă
- Department of Orthodontics, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, Cluj-Napoca 400012, Romania
| | - Aranka Ilea
- Department of Oral Rehabilitation, Faculty of Dentistry, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania
| |
Collapse
|
23
|
Cintra Moreira MV, Figueiredo LC, da Cunha Melo MAR, Uyeda FH, da Silva LDA, Macedo TT, Sacco R, Mourão CF, Shibli JA, Bueno-Silva B. Evaluation of the Microbial Profile on the Polydioxanone Membrane and the Collagen Membrane Exposed to Multi-Species Subgingival Biofilm: An In Vitro Study. MEMBRANES 2023; 13:907. [PMID: 38132911 PMCID: PMC10744605 DOI: 10.3390/membranes13120907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/02/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023]
Abstract
Dehiscence in surgeries involving membranes often leads to bacterial contamination, hindering the healing process. This study assessed bacterial colonization on various membrane materials. Polydioxanone (PDO) membranes, with thicknesses of 0.5 mm and 1 mm, and a collagen membrane were examined. Packages containing polystyrene pins were crafted using these membranes, attached to 24-well plates, and exposed to oral bacteria from supra and subgingival biofilm. After a week's anaerobic incubation, biofilm formation was evaluated using the DNA-DNA hybridization test. Statistical analysis employed the Kruskal-Wallis test with Dunn's post hoc test. The biofilm on the polystyrene pins covered by the 0.5 mm PDO membrane showed a higher count of certain pathogens. The collagen membrane had a greater total biofilm count on its inner surface compared to both PDO membranes. The external collagen membrane face had a higher total biofilm count than the 0.5 mm PDO membrane. Furthermore, the 1 mm PDO membrane exhibited a greater count of specific pathogens than its 0.5 mm counterpart. In conclusion, the collagen membrane presented more biofilm and pathogens both internally and on its inner surface.
Collapse
Affiliation(s)
- Marcus Vinícius Cintra Moreira
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (M.V.C.M.); (L.C.F.); (F.H.U.)
| | - Luciene C. Figueiredo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (M.V.C.M.); (L.C.F.); (F.H.U.)
| | - Marcelo Augusto Ruiz da Cunha Melo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (M.V.C.M.); (L.C.F.); (F.H.U.)
| | - Fabio Hideaki Uyeda
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (M.V.C.M.); (L.C.F.); (F.H.U.)
| | - Lucas Daylor Aguiar da Silva
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (M.V.C.M.); (L.C.F.); (F.H.U.)
| | - Tatiane Tiemi Macedo
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (M.V.C.M.); (L.C.F.); (F.H.U.)
| | - Roberto Sacco
- Department of Oral Surgery, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9SP, UK
| | - Carlos Fernando Mourão
- Department of Periodontology, Tufts University School of Dental Medicine, Boston, MA 02111, USA
| | - Jamil A. Shibli
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (M.V.C.M.); (L.C.F.); (F.H.U.)
| | - Bruno Bueno-Silva
- Department of Periodontology, Dental Research Division, Guarulhos University, Guarulhos 07023-070, SP, Brazil; (M.V.C.M.); (L.C.F.); (F.H.U.)
- Departament of Bioscienses, Piracicaba Dental School, University of Campinas, Piracicaba 13414-903, SP, Brazil
| |
Collapse
|
24
|
Hernández Martínez CDJ, Felix Silva P, Salvador SL, Messora M, Palioto DB. Chronological analysis of periodontal bone loss in experimental periodontitis in mice. Clin Exp Dent Res 2023; 9:1009-1020. [PMID: 37997536 PMCID: PMC10728515 DOI: 10.1002/cre2.806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 10/04/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023] Open
Abstract
OBJECTIVES Periodontal disease is understood to be a result of dysbiotic interactions between the host and the biofilm, causing a unique reaction for each individual, which in turn characterizes their susceptibility. The objective of this study was to chronologically evaluate periodontal tissue destruction induced by systemic bacterial challenge in known susceptible (BALB/c) and resistant (C57BL/6) mouse lineages. MATERIAL AND METHODS Animals, 6-8 weeks old, were allocated into three experimental groups: Negative control (C), Gavage with sterile carboxymethyl cellulose 2%-without bacteria (Sham), and Gavage with carboxymethyl cellulose 2% + Porphyromonas gingivalis (Pg-W83). Before infection, all animals received antibiotic treatment (sulfamethoxazole/trimethoprim, 400/80 mg/5 mL) for 7 days, followed by 3 days of rest. Microbial challenge was performed 3 times per week for 1, 2, or 3 weeks. After that, the animals were kept until the completion of 42 days of experiments, when they were euthanized. The alveolar bone microarchitecture was assessed by computed microtomography. RESULTS Both C57BL/6 and BALB/c mice exhibited significant bone volume loss and lower trabecular thickness as well as greater bone porosity compared to the (C) and (Sham) groups after 1 week of microbial challenge (p < .001). When comparing only the gavage groups regarding disease implantation, time and lineage, it was possible to observe that within 1 week of induction the disease was more established in BALB/c than in C57BL/6 (p < .05). CONCLUSIONS Our results reflected that after 1 week of microbial challenge, there was evidence of alveolar bone loss for both lineages, with the loss observed in BALB/c mice being more pronounced.
Collapse
Affiliation(s)
- Cristhiam de J. Hernández Martínez
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of Sao Paulo—USPRibeirão Preto SPBrazil
| | - Pedro Felix Silva
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of Sao Paulo—USPRibeirão Preto SPBrazil
| | - Sergio L. Salvador
- Department of Clinical Analyses, School of Pharmaceutical Sciences of Ribeirao PretoUniversity of Sao Paulo—USPRibeirão Preto SPBrazil
| | - Michel Messora
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of Sao Paulo—USPRibeirão Preto SPBrazil
| | - Daniela B. Palioto
- Department of Oral & Maxillofacial Surgery and Periodontology, Ribeirão Preto Dental SchoolUniversity of Sao Paulo—USPRibeirão Preto SPBrazil
| |
Collapse
|
25
|
Lee H, Joo J, Song J, Kim H, Kim YH, Park HR. Immunological link between periodontitis and type 2 diabetes deciphered by single-cell RNA analysis. Clin Transl Med 2023; 13:e1503. [PMID: 38082425 PMCID: PMC10713875 DOI: 10.1002/ctm2.1503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 11/19/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Type 2 diabetes mellitus (DM) is a complex metabolic disorder that causes various complications, including periodontitis (PD). Although a bidirectional relationship has been reported between DM and PD, their immunological relationship remains poorly understood. Therefore, this study aimed to compare the immune response in patients with PD alone and in those with both PD and DM (PDDM) to expand our knowledge of the complicated connection between PD and DM. METHODS Peripheral blood mononuclear cells were collected from 11 healthy controls, 10 patients with PD without DM, and six patients with PDDM, followed by analysis using single-cell RNA sequencing. The differences among groups were then compared based on intracellular and intercellular perspectives. RESULTS Compared to the healthy state, classical monocytes exhibited the highest degree of transcriptional change, with elevated levels of pro-inflammatory cytokines in both PD and PDDM. DM diminished the effector function of CD8+ T and natural killer (NK) cells as well as completely modified the differentiation direction of these cells. Interestingly, a prominent pathway, RESISTIN, which is known to increase insulin resistance and susceptibility to diabetes, was found to be activated under both PD and PDDM conditions. In particular, CAP1+ classical monocytes from patients with PD and PDDM showed elevated nuclear factor kappa B-inducing kinase activity. CONCLUSIONS Overall, this study elucidates how the presence of DM contributes to the deterioration of T/NK cell immunity and the immunological basis connecting PD to DM.
Collapse
Affiliation(s)
- Hansong Lee
- Medical Research InstitutePusan National UniversityYangsanRepublic of Korea
| | - Ji‐Young Joo
- Department of PeriodontologySchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
| | - Jae‐Min Song
- Department of Oral and Maxillofacial SurgerySchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
| | - Hyun‐Joo Kim
- Department of PeriodontologyDental and Life Science Institute, School of Dentistry, Pusan National UniversityYangsanRepublic of Korea
- Department of Periodontology and Dental Research InstitutePusan National University Dental HospitalYangsanRepublic of Korea
- Periodontal Disease Signaling Network Research CenterSchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
| | - Yun Hak Kim
- Periodontal Disease Signaling Network Research CenterSchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
- Department of Biomedical Informatics, School of MedicinePusan National UniversityYangsanRepublic of Korea
- Department of AnatomySchool of Medicine, Pusan National UniversityYangsanRepublic of Korea
| | - Hae Ryoun Park
- Department of Periodontology and Dental Research InstitutePusan National University Dental HospitalYangsanRepublic of Korea
- Periodontal Disease Signaling Network Research CenterSchool of Dentistry, Pusan National UniversityYangsanRepublic of Korea
- Department of Oral PathologyDental and Life Science Institute, Pusan National UniversityYangsanRepublic of Korea
| |
Collapse
|
26
|
Rams TE, Sautter JD, van Winkelhoff AJ. Emergence of Antibiotic-Resistant Porphyromonas gingivalis in United States Periodontitis Patients. Antibiotics (Basel) 2023; 12:1584. [PMID: 37998786 PMCID: PMC10668829 DOI: 10.3390/antibiotics12111584] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 10/30/2023] [Accepted: 11/01/2023] [Indexed: 11/25/2023] Open
Abstract
Antibiotic resistance patterns of the major human periodontal pathogen Porphyromonas gingivalis were assessed over a 20-year period in the United States. Subgingival P. gingivalis was cultured pre-treatment from 2193 severe periodontitis patients during three time periods: 1999-2000 (936 patients), 2009-2010 (685 patients), and 2019-2020 (572 patients). The clinical isolates were tested for in vitro resistance to 4 mg/L for clindamycin and doxycycline, 8 mg/L for amoxicillin, and 16 mg/L for metronidazole, with a post hoc combination of data for metronidazole plus amoxicillin. Clindamycin-resistant P. gingivalis was significantly more prevalent in 2009-2010 (9.1% of patients) and 2019-2020 (9.3%; 15-fold increase) as compared to 1999-2000 (0.6%). P. gingivalis resistance to amoxicillin also significantly increased from 0.1% of patients in 1999-2000 to 1.3% in 2009-2010 and 2.8% (28-fold increase) in 2019-2020. P. gingivalis resistance to metronidazole, metronidazole plus amoxicillin, and doxycycline was low (≤0.5% prevalence), and statistically unchanged, over the 20-year period. These findings are the first to reveal marked increases over 20 years in clindamycin-resistant and amoxicillin-resistant P. gingivalis in United States periodontitis patients. Increased antibiotic resistance of P. gingivalis and other periodontitis-associated bacteria threatens the efficacy of periodontal antimicrobial chemotherapy.
Collapse
Affiliation(s)
- Thomas E. Rams
- Department of Periodontology and Oral Implantology, Temple University School of Dentistry, Philadelphia, PA 19140, USA;
| | - Jacqueline D. Sautter
- Department of Periodontology and Oral Implantology, Temple University School of Dentistry, Philadelphia, PA 19140, USA;
| | - Arie J. van Winkelhoff
- Center for Dentistry and Oral Hygiene, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
| |
Collapse
|
27
|
Blancas-Luciano BE, Zamora-Chimal J, da Silva-de Rosenzweig PG, Ramos-Mares M, Fernández-Presas AM. Macrophages immunomodulation induced by Porphyromonas gingivalis and oral antimicrobial peptides. Odontology 2023; 111:778-792. [PMID: 36897441 PMCID: PMC10492884 DOI: 10.1007/s10266-023-00798-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/21/2023] [Indexed: 03/11/2023]
Abstract
Porphyromonas gingivalis is a keystone pathogen associated with periodontitis development, a chronic inflammatory pathology characterized by the destruction of the supporting teeth structure. Macrophages are recruited cells in the inflammatory infiltrate from patients with periodontitis. They are activated by the P. gingivalis virulence factors arsenal, promoting an inflammatory microenvironment characterized by cytokine production (TNF-α, IL-1β, IL-6), prostaglandins, and metalloproteinases (MMPs) that foster the tissular destruction characteristic of periodontitis. Furthermore, P. gingivalis suppresses the generation of nitric oxide, a potent antimicrobial molecule, through its degradation, and incorporating its byproducts as a source of energy. Oral antimicrobial peptides can contribute to controlling the disease due to their antimicrobial and immunoregulatory activity, which allows them to maintain homeostasis in the oral cavity. This study aimed to analyze the immunopathological role of macrophages activated by P. gingivalis in periodontitis and suggested using antimicrobial peptides as therapeutic agents to treat the disease.
Collapse
Affiliation(s)
- Blanca Esther Blancas-Luciano
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Ciudad Universitaria, Edificio D, 1° Piso, Mexico City, Mexico
| | - Jaime Zamora-Chimal
- Unidad de Investigación en Medicina Experimental, Universidad Nacional Autónoma de México, Hospital General de México, Dr. Balmis, 148 Col. Doctores, Del. Cuauhtémoc, C.P. 06726, Mexico City, Mexico
| | - Pablo Gomes da Silva-de Rosenzweig
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Mariana Ramos-Mares
- Centro de Investigación en Ciencias de la Salud (CICSA), FCS, Universidad Anáhuac México Campus Norte, Huixquilucan, State of Mexico, Mexico
| | - Ana María Fernández-Presas
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Col. Universidad Nacional Autónoma de México, Av. Universidad 3000, CP 04510, Mexico City, Mexico.
| |
Collapse
|
28
|
Harris DM, Sulewski JG. Photoinactivation and Photoablation of Porphyromonas gingivalis. Pathogens 2023; 12:1160. [PMID: 37764967 PMCID: PMC10535405 DOI: 10.3390/pathogens12091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/29/2023] Open
Abstract
Several types of phototherapy target human pathogens and Porphyromonas gingivitis (Pg) in particular. The various approaches can be organized into five different treatment modes sorted by different power densities, interaction times, effective wavelengths and mechanisms of action. Mode 1: antimicrobial ultraviolet (aUV); mode 2: antimicrobial blue light (aBL); mode 3: antimicrobial selective photothermolysis (aSP); mode 4: antimicrobial vaporization; mode 5: antimicrobial photodynamic therapy (aPDT). This report reviews the literature to identify for each mode (a) the putative molecular mechanism of action; (b) the effective wavelength range and penetration depth; (c) selectivity; (d) in vitro outcomes; and (e) clinical trial/study outcomes as these elements apply to Porphyromonas gingivalis (Pg). The characteristics of each mode influence how each is translated into the clinic.
Collapse
Affiliation(s)
- David M. Harris
- Bio-Medical Consultants, Inc., Canandaigua, NY 14424, USA
- Department of Periodontics, Rutgers School of Dental Medicine, Newark, NJ 07103, USA
| | - John G. Sulewski
- Institute for Advanced Dental Technologies, Huntington Woods, MI 48070, USA
- Millennium Dental Technologies, Inc., Cerritos, CA 90703, USA
| |
Collapse
|
29
|
Gualtero DF, Lafaurie GI, Buitrago DM, Castillo Y, Vargas-Sanchez PK, Castillo DM. Oral microbiome mediated inflammation, a potential inductor of vascular diseases: a comprehensive review. Front Cardiovasc Med 2023; 10:1250263. [PMID: 37711554 PMCID: PMC10498784 DOI: 10.3389/fcvm.2023.1250263] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 08/10/2023] [Indexed: 09/16/2023] Open
Abstract
The dysbiosis of the oral microbiome and vascular translocation of the periodontopathic microorganism to peripheral blood can cause local and systemic extra-oral inflammation. Microorganisms associated with the subgingival biofilm are readily translocated to the peripheral circulation, generating bacteremia and endotoxemia, increasing the inflammation in the vascular endothelium and resulting in endothelial dysfunction. This review aimed to demonstrate how the dysbiosis of the oral microbiome and the translocation of oral pathogen-induced inflammation to peripheral blood may be linked to cardiovascular diseases (CVDs). The dysbiosis of the oral microbiome can regulate blood pressure and activate endothelial dysfunction. Similarly, the passage of periodontal microorganisms into the peripheral circulation and their virulence factors have been associated with a vascular compartment with a great capacity to activate endothelial cells, monocytes, macrophages, and plaquettes and increase interleukin and chemokine secretion, as well as oxidative stress. This inflammatory process is related to atherosclerosis, hypertension, thrombosis, and stroke. Therefore, oral diseases could be involved in CVDs via inflammation. The preclinic and clinical evidence suggests that periodontal disease increases the proinflammatory markers associated with endothelial dysfunction. Likewise, the evidence from clinical studies of periodontal treatment in the long term evidenced the reduction of these markers and improved overall health in patients with CVDs.
Collapse
|
30
|
Bianchi G, de'Angelis N, Gavriilidis P, Sobhani I, de'Angelis GL, Carra MC. Oral microbiota in obstructive sleep apnea patients: a systematic review. Sleep Breath 2023; 27:1203-1216. [PMID: 36207622 DOI: 10.1007/s11325-022-02718-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/13/2022] [Accepted: 09/27/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE Evidence suggests that patients with obstructive sleep apnea (OSA) are at increased risk of suffering from periodontitis, a chronic inflammatory disease of the tooth-supporting tissues associated with a dysbiotic oral microbiota. This systematic review aims to explore the current literature about the composition of the oral microbiota in patients with OSA compared to those without OSA. METHODS Medline, Embase, and Cochrane Library were searched in May 2022 to identify original articles investigating the oral microbiota composition and/or oral microbiome (any microbiological technique) of patients with OSA (adults or children) vs. controls. Case report, reviews, and animal studies were excluded. RESULTS Of over 279 articles initially identified, 8 were selected, of which 3 dealt with pediatric patients. Overall, 344 patients with OSA and 131 controls were included. Five studies used salivary samples, 2 oral mucosal swabs, and 1 subgingival plaque sample. With different methods to characterize oral microbiota, 6/8 studies observed significant differences between patients with OSA patients and controls in the composition and relative abundance of several bacteria species/genera linked to periodontitis. CONCLUSION Within the limitations of the available literature, the present systematic review indicates that OSA and related conditions (e.g., mouth breathing) are associated with different oral microbiota compositions, which may underlie the association between OSA and periodontitis.
Collapse
Affiliation(s)
- Giorgio Bianchi
- Service of General Surgery, Henri Mondor University Hospital, Creteil, France
- Department of Medicine and Surgery, University of Parma, Parma, Italy
| | - Nicola de'Angelis
- Service of General Surgery, Henri Mondor University Hospital, Creteil, France
- Faculté de Santé, Université Paris Est, UPEC, Creteil, France
| | - Paschalis Gavriilidis
- Department of HBP Surgery, University Hospitals Coventry and Warwickshire NHS Trust, Clifford Bridge Road, Coventry, CV2 2DX, UK
| | - Iradj Sobhani
- Department of Gastroenterology, APHP-Henri Mondor University Hospital, Creteil, France
- EC2M-EA7375 Research Team, Henri Mondor Campus, Paris East University, Creteil, France
| | - Gian Luigi de'Angelis
- Gastroenterology and Endoscopy Unit, Department of Medicine and Surgery, University Hospital of Parma, Parma, Italy
| | - Maria Clotilde Carra
- Service of Odontology, Unit of Oral and Periodontal Surgery, Rothschild University Hospital and University Paris Cité, 5, rue Santerre, Paris, France.
| |
Collapse
|
31
|
Minne X, Mbuya Malaïka Mutombo J, Chandad F, Fanganiello RD, Houde VP. Porphyromonas gingivalis under palmitate-induced obesogenic microenvironment modulates the inflammatory transcriptional signature of macrophage-like cells. PLoS One 2023; 18:e0288009. [PMID: 37384642 PMCID: PMC10309636 DOI: 10.1371/journal.pone.0288009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/16/2023] [Indexed: 07/01/2023] Open
Abstract
Metabolic diseases and low-grade chronic inflammation are interconnected: obese persons are at higher risk of developing periodontitis. However, the molecular mechanisms involved in the development and progression of periodontitis in an obesogenic microenvironment in response to periodontopathogens are still lacking. This study aims to investigate the combined effects of palmitate and Porphyromonas gingivalis on the secretion of pro-inflammatory cytokines and on transcriptional landscape modifications in macrophage-like cells. U937 macrophage-like cells were treated with palmitate and stimulated with P. gingivalis for 24h. Cytokines IL-1β, TNF-α and IL-6 were measured by ELISA in the culture medium and cell extracted RNA was submitted to a microarray analysis followed by Gene Ontology analyses. P. gingivalis, in presence of palmitate, potentiated IL-1β and TNF-α secretion in comparison to palmitate alone. Gene Ontology analyses also revealed that the combination palmitate-P. gingivalis potentiated the number of gene molecular functions implicated in the regulation of immune and inflammatory pathways compared to macrophages treated with palmitate alone. Our results provide the first comprehensive mapping of gene interconnections between palmitate and P. gingivalis during inflammatory responses in macrophage-like cells. These data highlight the importance of considering systemic conditions, specifically obesogenic microenvironment, in the management of periodontal disease in obese patients.
Collapse
Affiliation(s)
- Xavier Minne
- Faculty of Dentistry, Oral Ecology Research Group (GREB), Université Laval, Quebec City, Quebec, Canada
| | | | - Fatiha Chandad
- Faculty of Dentistry, Oral Ecology Research Group (GREB), Université Laval, Quebec City, Quebec, Canada
| | - Roberto D. Fanganiello
- Faculty of Dentistry, Oral Ecology Research Group (GREB), Université Laval, Quebec City, Quebec, Canada
| | - Vanessa P. Houde
- Faculty of Dentistry, Oral Ecology Research Group (GREB), Université Laval, Quebec City, Quebec, Canada
| |
Collapse
|
32
|
Śmiga M, Siemińska K, Trindade SC, Gomes-Filho IS, Nobre dos Santos EK, Olczak T. Hemophore-like proteins produced by periodontopathogens are recognized by the host immune system and react differentially with IgG antibodies. J Oral Microbiol 2023; 15:2214455. [PMID: 37213663 PMCID: PMC10193874 DOI: 10.1080/20002297.2023.2214455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/16/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023] Open
Abstract
Aims Hemophore-like proteins sequester heme from host hemoproteins. We aimed to determine whether the host immune system can recognize not only Porphyromonas gingivalis HmuY but also its homologs expressed by other periodontopathogens, and how periodontitis influences the production of respective antibodies. Methods The reactivity of total bacterial antigens and purified proteins with serum IgG antibodies of 18 individuals with periodontitis and 17 individuals without periodontitis was examined by enzyme-linked immunosorbent assay (ELISA). To compare IgG reactivity between groups with and without periodontitis and within the various dilutions of sera, statistical analysis was performed using the Mann-Whitney U-test and two-way ANOVA test with the post-hoc Bonferroni test. Results Individuals with periodontitis produced IgG antibodies reacting more strongly not only with total P. gingivalis antigens (P = 0.0002; 1:400) and P. gingivalis HmuY (P = 0.0016; 1:100) but also with Prevotella intermedia PinA (P = 0.0059; 1:100), and with low efficiency with P. intermedia PinO (P = 0.0021; 1:100). No increase in the reactivity of IgG antibodies with Tannerella forsythia Tfo and P. gingivalis HusA was found in individuals with periodontitis. Conclusions Although hemophore-like proteins are structurally related, they are differentially recognized by the host immune system. Our findings point to specific antigens, mainly P. gingivalis HmuY and P. intermedia PinA, whose immunoreactivity could be further investigated to develop markers of periodontitis.
Collapse
Affiliation(s)
- Michał Śmiga
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Klaudia Siemińska
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| | - Soraya C. Trindade
- Laboratory of Oral Biology, Department of Health, Feira de Santana State University, Feira de Santana, Brazil
- Laboratory of Immunology and Molecular Biology, Institute of Health Science, Federal University of Bahia, Salvador, Brazil
| | - Isaac S. Gomes-Filho
- Laboratory of Oral Biology, Department of Health, Feira de Santana State University, Feira de Santana, Brazil
| | - Ellen K. Nobre dos Santos
- Laboratory of Immunology and Molecular Biology, Institute of Health Science, Federal University of Bahia, Salvador, Brazil
| | - Teresa Olczak
- Laboratory of Medical Biology, Faculty of Biotechnology, University of Wrocław, Wrocław, Poland
| |
Collapse
|
33
|
Bueno-Silva B, Kiausinus KR, Gonçalves FJDS, Moreira MVC, de Oliveira EG, Brugnera Junior A, Feres M, Figueiredo LC. Antimicrobial activity of Desplac® oral gel in the subgingival multispecies biofilm formation. Front Microbiol 2023; 14:1122051. [PMID: 37260680 PMCID: PMC10227524 DOI: 10.3389/fmicb.2023.1122051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/04/2023] [Indexed: 06/02/2023] Open
Abstract
Natural products are well-known due to their antimicrobial properties. This study aimed to evaluate the antimicrobial effect of Desplac® product (composed of Aloe Vera, Propolis Extract, Green Tea, Cranberry, and Calendula) on the subgingival biofilm. Two different protocols were used to treat the 33-species biofilms: (A) 2×/day (12/12 h) for 1 min with Desplac® or Noplak Toothpaste (Chlorhexidine + Cetylpyridinium Chloride) or Oral B ProGengiva (stannous Fluoride) or a placebo gel; (B) a 12-h use of the Desplac® product or 0.12% chlorhexidine gel or a placebo gel. After 7 days of biofilm formation, the metabolic activity (MA) and biofilm profile were determined by 2,3,5-triphenyltetrazolium chloride and Checker-board DNA-DNA hybridization, respectively. Statistical analysis used the Kruskal-Wallis test followed by Dunn's post-hoc. In protocol A, all treatments presented reduced MA compared to the placebo (p ≤ 0.05). The Desplac®-treated biofilm showed a similar microbial profile to other antimicrobials, although with higher bacterial total counts. In protocol B, MA of Desplac®-treated biofilms was lower than the placebo's MA but higher than chlorhexidine-treated biofilms (p ≤ 0.05). Pathogen levels in Desplac®-treated biofilms were lower than in placebo-treated biofilms and elevated compared to the chlorhexidine-treated biofilms (p ≤ 0.05). Desplac® inhibited the biofilm development and disrupted the mature subgingival biofilm, highlighting its effect on Tannerella forsythia counts.
Collapse
Affiliation(s)
| | | | | | | | | | - Aldo Brugnera Junior
- Education College of the European Master in Oral Laser Application (EMDOLA), University of Liège, Liège, Belgium
- Research Collaborator at the IFSC-University of São Paulo (USP), São Paulo, Brazil
| | - Magda Feres
- Dental Research Division, Guarulhos University, Guarulhos, Brazil
| | | |
Collapse
|
34
|
Liu M, Shao J, Zhao Y, Ma B, Ge S. Porphyromonas gingivalis Evades Immune Clearance by Regulating Lysosome Efflux. J Dent Res 2023; 102:555-564. [PMID: 36800907 DOI: 10.1177/00220345221146097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023] Open
Abstract
Porphyromonas gingivalis, a major periodontal pathogen, invades autophagosomes of cells, including gingival epithelial cells, endothelial cells, gingival fibroblasts, macrophages, and dendritic cells, to escape antimicrobial autophagy and lysosome fusion. However, it is not known how P. gingivalis resists autophagic immunity, survives within cells, and induces inflammation. Thus, we investigated whether P. gingivalis could escape antimicrobial autophagy by promoting lysosome efflux to block autophagic maturation, leading to intracellular survival, and whether the growth of P. gingivalis within cells results in cellular oxidative stress, causing mitochondrial damage and inflammatory responses. P. gingivalis invaded human immortalized oral epithelial cells in vitro and mouse oral epithelial cells of gingival tissues in vivo. The production of reactive oxygen species (ROS) increased upon bacterial invasion, as well as mitochondrial dysfunction-related parameters with downregulated mitochondrial membrane potential and intracellular adenosine triphosphate (ATP), upregulated mitochondrial membrane permeability, intracellular Ca2+ influx, mitochondrial DNA expression, and extracellular ATP. Lysosome excretion was elevated, the number of intracellular lysosomes was diminished, and lysosomal-associated membrane protein 2 was downregulated. Expression of autophagy-related proteins, microtubule-associated protein light chain 3, sequestosome-1, the NLRP3 inflammasome, and interleukin-1β increased with P. gingivalis infection. P. gingivalis may survive in vivo by promoting lysosome efflux, blocking autophagosome-lysosome fusion, and destroying autophagic flux. As a result, ROS and damaged mitochondria accumulated and activated the NLRP3 inflammasome, which recruited the adaptor protein ASC and caspase 1, leading to the production of proinflammatory factor interleukin-1β and inflammation.
Collapse
Affiliation(s)
- M Liu
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - J Shao
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - Y Zhao
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - B Ma
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| | - S Ge
- Department of Periodontology & Tissue Engineering and Regeneration, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, China
| |
Collapse
|
35
|
Said-Sadier N, Sayegh B, Farah R, Abbas LA, Dweik R, Tang N, Ojcius DM. Association between Periodontal Disease and Cognitive Impairment in Adults. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:4707. [PMID: 36981618 PMCID: PMC10049038 DOI: 10.3390/ijerph20064707] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/12/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Periodontitis is a severe oral infection that can contribute to systemic inflammation. A large body of evidence suggests a role for systemic inflammation in the initiation of neurodegenerative disease. This systematic review synthesized data from observational studies to investigate the association between periodontitis and neuroinflammation in adults. METHODS AND MATERIALS A systematic literature search of PubMed, Web of Science, and Cumulative Index to Nursing and Allied Health Literature (CINAHL) was performed for studies published from the date of inception up to September 2021. Search terms for the exposure "oral disease" and outcome "dementia", "neuroinflammation" and "cognitive decline" were used. Study selection and data extraction were independently undertaken by two reviewers. The final eligible articles were included only if the exposure is periodontitis and the outcome is cognitive impairment or dementia or a topic related to this condition, and if the study was conducted in an adult population. The quality and risk of bias were assessed by Newcastle Ottawa Scale (NOS). Qualitative synthesis was used to narratively synthesize the results. Six cohort studies, three cross-sectional studies, and two case-control studies met the inclusion criteria. These eleven studies were only narratively synthesized. Meta-analysis was not performed due to the methodological heterogeneity of the studies. RESULTS The results of included studies show that chronic periodontitis patients with at least eight years of exposure are at higher risk of developing cognitive decline and dementia. Oral health measures such as gingival inflammation, attachment loss, probing depth, bleeding on probing, and alveolar bone loss are associated with cognitive impairment. The reduction of epidermal growth factor (EGF), interleukin 8 (IL-8), interferon γ-induced protein 10 (IP-10), and monocyte chemoattractant protein-1 (MCP-1) in addition to over expression of interleukin 1-β (IL-1β) are significant in patients suffering from cognitive decline with pre-existing severe periodontitis. CONCLUSIONS All the included studies show evidence of an association between periodontitis and cognitive impairment or dementia and Alzheimer's disease pathology. Nonetheless, the mechanisms responsible for the association between periodontitis and dementia are still unclear and warrant further investigation.
Collapse
Affiliation(s)
- Najwane Said-Sadier
- College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Batoul Sayegh
- Neuroscience Research Center (NRC), Lebanese University, Beirut 1533, Lebanon
| | - Raymond Farah
- Neuroscience Research Center (NRC), Lebanese University, Beirut 1533, Lebanon
| | - Linda Abou Abbas
- Neuroscience Research Center (NRC), Lebanese University, Beirut 1533, Lebanon
- INSPECT-LB (Institut National de Santé Publique, d’Épidémiologie Clinique et de Toxicologie-Liban), Beirut 1103, Lebanon
| | - Rania Dweik
- College of Health Sciences, Abu Dhabi University, Abu Dhabi 59911, United Arab Emirates
| | - Norina Tang
- Department of Periodontics, University of the Pacific, San Francisco, CA 94103, USA
- Department of Laboratory Medicine, Veterans Affairs Medical Center, San Francisco, CA 94121, USA
- Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| | - David M. Ojcius
- Arthur Dugoni School of Dentistry, University of the Pacific, San Francisco, CA 94103, USA
| |
Collapse
|
36
|
Uriarte SM, Hajishengallis G. Neutrophils in the periodontium: Interactions with pathogens and roles in tissue homeostasis and inflammation. Immunol Rev 2023; 314:93-110. [PMID: 36271881 PMCID: PMC10049968 DOI: 10.1111/imr.13152] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Neutrophils are of key importance in periodontal health and disease. In their absence or when they are functionally defective, as occurs in certain congenital disorders, affected individuals develop severe forms of periodontitis in early age. These observations imply that the presence of immune-competent neutrophils is essential to homeostasis. However, the presence of supernumerary or hyper-responsive neutrophils, either because of systemic priming or innate immune training, leads to imbalanced host-microbe interactions in the periodontium that culminate in dysbiosis and inflammatory tissue breakdown. These disease-provoking imbalanced interactions are further exacerbated by periodontal pathogens capable of subverting neutrophil responses to their microbial community's benefit and the host's detriment. This review attempts a synthesis of these findings for an integrated view of the neutrophils' ambivalent role in periodontal disease and, moreover, discusses how some of these concepts underpin the development of novel therapeutic approaches to treat periodontal disease.
Collapse
Affiliation(s)
- Silvia M. Uriarte
- Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, USA
| | - George Hajishengallis
- Department of Basic and Translational Sciences, Laboratory of Innate Immunity and Inflammation, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
37
|
Lagosz-Cwik KB, Melnykova M, Nieboga E, Schuster A, Bysiek A, Dudek S, Lipska W, Kantorowicz M, Tyrakowski M, Darczuk D, Kaczmarzyk T, Gilijamse M, de Vries TJ, Potempa J, Grabiec AM. Mapping of DNA methylation-sensitive cellular processes in gingival and periodontal ligament fibroblasts in the context of periodontal tissue homeostasis. Front Immunol 2023; 14:1078031. [PMID: 36776856 PMCID: PMC9909404 DOI: 10.3389/fimmu.2023.1078031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Interactions between gingival fibroblasts (GFs) and oral pathogens contribute to the chronicity of inflammation in periodontitis. Epigenetic changes in DNA methylation are involved in periodontitis pathogenesis, and recent studies indicate that DNA methyltransferase (DNMT) inhibitors may protect against epithelial barrier disruption and bone resorption. To assess the impact of DNMT inhibition on GFs, cells were cultured with decitabine (5-aza-2'-deoxycytidine, DAC) for 12 days to induce DNA hypomethylation. We observed several potentially detrimental effects of DAC on GF biological functions. First, extended treatment with DAC reduced GF proliferation and induced necrotic cell death. Second, DAC amplified Porphyromonas gingivalis- and cytokine-induced expression and secretion of the chemokine CCL20 and several matrix metalloproteinases (MMPs), including MMP1, MMP9, and MMP13. Similar pro-inflammatory effects of DAC were observed in periodontal ligament fibroblasts. Third, DAC upregulated intercellular adhesion molecule-1 (ICAM-1), which was associated with increased P. gingivalis adherence to GFs and may contribute to bacterial dissemination. Finally, analysis of DAC-induced genes identified by RNA sequencing revealed increased expression of CCL20, CCL5, CCL8, CCL13, TNF, IL1A, IL18, IL33, and CSF3, and showed that the most affected processes were related to immune and inflammatory responses. In contrast, the genes downregulated by DAC were associated with extracellular matrix and collagen fibril organization. Our observations demonstrate that studies of DNMT inhibitors provide important insights into the role of DNA methylation in cells involved in periodontitis pathogenesis. However, the therapeutic potential of hypomethylating agents in periodontal disease may be limited due to their cytotoxic effects on fibroblast populations and stimulation of pro-inflammatory pathways.
Collapse
Affiliation(s)
- Katarzyna B. Lagosz-Cwik
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Mariia Melnykova
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Elwira Nieboga
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Aureliusz Schuster
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Bysiek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Slawomir Dudek
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| | - Weronika Lipska
- Department of Periodontology, Preventive Dentistry and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Malgorzata Kantorowicz
- Department of Periodontology, Preventive Dentistry and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Michal Tyrakowski
- Chair of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Dagmara Darczuk
- Department of Periodontology, Preventive Dentistry and Oral Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Tomasz Kaczmarzyk
- Chair of Oral Surgery, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Marjolijn Gilijamse
- Department of Oral and Maxillofacial Surgery and Oral Pathology, Amsterdam University Medical Center (Amsterdam UMC), Amsterdam, Netherlands
- Department of Oral and Maxillofacial Surgery, OLVG Hospital, Amsterdam, Netherlands
| | - Teun J. de Vries
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
- Department of Oral Immunology and Infectious Diseases, University of Louisville School of Dentistry, Louisville, KY, United States
| | - Aleksander M. Grabiec
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
38
|
Klomp T, Jahr H, Abdelbary MMH, Conrads G. Evaluation of hydrocortisone as a strain-dependent growth-regulator of Porphyromonasgingivalis. Anaerobe 2023; 80:102698. [PMID: 36681234 DOI: 10.1016/j.anaerobe.2023.102698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Porphyromonas gingivalis is an oral key pathogen and known to be very diverse in geno- and phenotypes. It is a fastidious bacterium with low O2-tolerance and 3-7 days of incubation are necessary. With growing interest in the field of microbial endocrinology we explored the potential growth-stimulating effect of hydrocortisone (HC, synonym cortisol) on P. gingivalis cultures. MATERIAL AND METHODS Six different P. gingivalis strains were pre-incubated in supplemented Brain-Heart-Infusion broth under appropriate conditions for 24 h, diluted and transferred into microplates. A newly developed and semi-automated spectrophotometric measurement in triplicate, applying a SpectraMax i3x microplate reader at an optical density of 600 nm, was conducted to test growth differences between test group (exposed to a supplement of either 1.25, 2.5, 5, 10, or 20 μg/ml of hydrocortisone) and control group over 48 h of anaerobic incubation (O2 ≤ 1%). Furthermore, strains were also incubated on HC-supplemented blood agar to test for a possible growth-stimulating effect on solid media. RESULTS HC significantly stimulated the lag-phase growth of four out of six P. gingivalis strains. Our data suggest a concentration-dependent growth stimulatory effect of HC between 2.5 and 5 μg/ml, while below 1.25 μg/ml and above 10 μg/ml HC either did not stimulate or inhibited growth. CONCLUSIONS HC could reduce the incubation time when isolating P. gingivalis from clinical samples and could boost low biomass cultivations especially during their lag-phase. The growth-modulating effect might be via modulation of virulence factors/quorum sensing gene expression or by reactive oxygen species(ROS)-capturing during early stages of bacterial growth. Further experiments are necessary to explain the mechanism behind our observations.
Collapse
Affiliation(s)
- Tim Klomp
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany; Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Holger Jahr
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen and Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, Aachen, Germany
| | - Mohamed M H Abdelbary
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany
| | - Georg Conrads
- Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule University Hospital, Aachen, Germany.
| |
Collapse
|
39
|
Gershater E, Liu Y, Xue B, Shin MK, Koo H, Zheng Z, Li C. Characterizing the microbiota of cleft lip and palate patients: a comprehensive review. Front Cell Infect Microbiol 2023; 13:1159455. [PMID: 37143743 PMCID: PMC10152472 DOI: 10.3389/fcimb.2023.1159455] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/31/2023] [Indexed: 05/06/2023] Open
Abstract
Orofacial cleft disorders, including cleft lip and/or palate (CL/P), are one of the most frequently-occurring congenital disorders worldwide. The health issues of patients with CL/P encompass far more than just their anatomic anomaly, as patients with CL/P are prone to having a high incidence of infectious diseases. While it has been previously established that the oral microbiome of patients with CL/P differs from that of unaffected patients, the exact nature of this variance, including the relevant bacterial species, has not been fully elucidated; likewise, examination of anatomic locations besides the cleft site has been neglected. Here, we intended to provide a comprehensive review to highlight the significant microbiota differences between CL/P patients and healthy subjects in various anatomic locations, including the teeth inside and adjacent to the cleft, oral cavity, nasal cavity, pharynx, and ear, as well as bodily fluids, secretions, and excretions. A number of bacterial and fungal species that have been proven to be pathogenic were found to be prevalently and/or specifically detected in CL/P patients, which can benefit the development of CL/P-specific microbiota management strategies.
Collapse
Affiliation(s)
| | - Yuan Liu
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Department of Preventive and Restorative Sciences, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Binglan Xue
- School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Min Kyung Shin
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hyun Koo
- Biofilm Research Laboratories, Levy Center for Oral Health, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- Center for Innovation & Precision Dentistry, School of Dental Medicine and School of Engineering & Applied Sciences, University of Pennsylvania, Philadelphia, PA, United States
| | - Zhong Zheng
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| | - Chenshuang Li
- Department of Orthodontics, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA, United States
- *Correspondence: Zhong Zheng, ; Chenshuang Li,
| |
Collapse
|
40
|
Firatli Y, Firatli E, Loimaranta V, Elmanfi S, Gürsoy UK. Regulation of gingival keratinocyte monocyte chemoattractant protein-1-induced protein (MCPIP)-1 and mucosa-associated lymphoid tissue lymphoma translocation protein (MALT)-1 expressions by periodontal bacteria, lipopolysaccharide, and interleukin-1β. J Periodontol 2023; 94:130-140. [PMID: 35712915 PMCID: PMC10087685 DOI: 10.1002/jper.22-0093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/13/2022] [Accepted: 06/09/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND The aim of this study was to evaluate oral bacteria- and interleukin (IL)-1β-induced protein and mRNA expression profiles of monocyte chemoattractant protein-1-induced protein (MCPIP)-1 and mucosa-associated lymphoid tissue lymphoma translocation protein (MALT)-1 in human gingival keratinocyte monolayers and organotypic oral mucosal models. METHODS Human gingival keratinocyte (HMK) monolayers were incubated with Porphyromonas gingivalis, Fusobacterium nucleatum, P. gingivalis lipopolysaccharide (LPS) and IL-1β. The protein levels of MCPIP-1 and MALT-1 were examined by immunoblots and mRNA levels by qPCR. MCPIP-1 and MALT-1 protein expression levels were also analyzed immunohistochemically using an organotypic oral mucosal model. One-way analysis of variance followed by Tukey correction was used in statistical analyses. RESULTS In keratinocyte monolayers, MCPIP-1 protein expression was suppressed by F. nucleatum and MALT-1 protein expression was suppressed by F. nucleatum, P. gingivalis LPS and IL-1β. P. gingivalis seemed to degrade MCPIP-1 and MALT-1 at all tested time points and degradation was inhibited when P. gingivalis was heat-killed. MCPIP-1 mRNA levels were increased by P. gingivalis, F. nucleatum, and IL-1β, however, no changes were observed in MALT-1 mRNA levels. CONCLUSION Gingival keratinocyte MCPIP-1 and MALT-1 mRNA and protein expression responses are regulated by infection and inflammatory mediators. These findings suggest that periodontitis-associated bacteria-induced modifications in MCPIP-1 and MALT-1 responses can be a part of periodontal disease pathogenesis.
Collapse
Affiliation(s)
- Yigit Firatli
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland.,Department of Periodontology, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Erhan Firatli
- Department of Periodontology, Faculty of Dentistry, Istanbul University, Istanbul, Turkey
| | - Vuokko Loimaranta
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Samira Elmanfi
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| | - Ulvi K Gürsoy
- Department of Periodontology, Institute of Dentistry, University of Turku, Turku, Finland
| |
Collapse
|
41
|
de Jongh CA, de Vries TJ, Bikker FJ, Gibbs S, Krom BP. Mechanisms of Porphyromonas gingivalis to translocate over the oral mucosa and other tissue barriers. J Oral Microbiol 2023; 15:2205291. [PMID: 37124549 PMCID: PMC10134951 DOI: 10.1080/20002297.2023.2205291] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
Introduction The oral pathogen Porphyromonas gingivalis is not only associated with periodontitis but also with systemic diseases elsewhere in the body. The mechanisms by which P. gingivalis travels from the oral cavity to other organs in the body are largely unknown. This review describes the four putative mechanisms supported by experimental evidence, which enable translocation of P. gingivalis over the oral mucosa, endothelial barriers and subsequent dissemination into the bloodstream. Mechanisms The first mechanism: proteolytic enzymes secreted by P. gingivalis degrade adhesion molecules between tissue cells, and the extracellular matrix. This weakens the structural integrity of the mucosa and allows P. gingivalis to penetrate the tissue. The second is transcytosis: bacteria actively enter tissue cells and transfer to the next layer or the extracellular space. By travelling from cell to cell, P. gingivalis reaches deeper structures. Thirdly, professional phagocytes take up P. gingivalis and travel to the bloodstream where P. gingivalis is released. Lastly, P. gingivalis can adhere to the hyphae forming Candida albicans. These hyphae can penetrate the mucosal tissue, which may allow P. gingivalis to reach deeper structures. Conclusion More research could elucidate targets to inhibit P. gingivalis dissemination and prevent the onset of various systemic diseases.
Collapse
Affiliation(s)
- Caroline A. de Jongh
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Teun J. de Vries
- Department of Periodontology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Floris J. Bikker
- Department of Oral Biochemistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Susan Gibbs
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Bastiaan P. Krom
- Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- CONTACT Bastiaan P. Krom Department of Preventive Dentistry, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
42
|
Haque MM, Yerex K, Kelekis-Cholakis A, Duan K. Advances in novel therapeutic approaches for periodontal diseases. BMC Oral Health 2022; 22:492. [PMID: 36380339 PMCID: PMC9664646 DOI: 10.1186/s12903-022-02530-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022] Open
Abstract
AbstractPeriodontal diseases are pathological processes resulting from infections and inflammation affecting the periodontium or the tissue surrounding and supporting the teeth. Pathogenic bacteria living in complex biofilms initiate and perpetuate this disease in susceptible hosts. In some cases, broad-spectrum antibiotic therapy has been a treatment of choice to control bacterial infection. However, increasing antibiotic resistance among periodontal pathogens has become a significant challenge when treating periodontal diseases. Thanks to the improved understanding of the pathogenesis of periodontal disease, which involves the host immune response, and the importance of the human microbiome, the primary goal of periodontal therapy has shifted, in recent years, to the restoration of homeostasis in oral microbiota and its harmonious balance with the host periodontal tissues. This shift in therapeutic goals and the drug resistance challenge call for alternative approaches to antibiotic therapy that indiscriminately eliminate harmful or beneficial bacteria. In this review, we summarize the recent advancement of alternative methods and new compounds that offer promising potential for the treatment and prevention of periodontal disease. Agents that target biofilm formation, bacterial quorum-sensing systems and other virulence factors have been reviewed. New and exciting microbiome approaches, such as oral microbiota replacement therapy and probiotic therapy for periodontal disease, are also discussed.
Collapse
|
43
|
陈 思, 邹 淑. [ Porphyromonas gingivalis HmuY and Its Possible Effect on the Pathogenesis of Periodontitis]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:1104-1109. [PMID: 36443060 PMCID: PMC10408960 DOI: 10.12182/20221160208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 06/16/2023]
Abstract
Periodontitis, one of the most common inflammatory oral diseases in human beings, threatens the health of teeth and mouth and is closely associated with the development of many systemic diseases. Existing research about the pathogenesis of periodontitis mainly focuses on the oral microbial homeostasis and its complex interaction with the immune system. Among all the oral microorganisms, Porphyromonas gingivalis ( P. gingivalis) is considered to be the main pathogen causing chronic periodontitis. Recent studies have shown that P. gingivalis poesseses HmuY, a special heme binding protein, which binds with heme to provide essential nutrition for P. gingivalis and activates the host immune system. Therefore, HmuY plays an important role in the growth, proliferation, invasion, and pathogenesis of P. gingivalis and is a potential virulence factor of the bacteria. Existing studies on HmuY are limited to the host immune response that HmuY triggers, and there are still no conclusive findings on whether HmuY participates in the pathogenesis of periodontitis through other ways, such as influencing periodontal bone metabolism. Herein, we reviewed the latest research findings on the biological characteristics and physiological functions of HmuY and its relationship with chronic periodontitis, so as to provide new ideas for in-depth research and further explorations into the pathogenesis of chronic periodontitis.
Collapse
Affiliation(s)
- 思睿 陈
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 口腔正畸科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for OralDiseases, Department of Dental and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 淑娟 邹
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 口腔正畸科 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for OralDiseases, Department of Dental and Endodontic Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
44
|
Agnihotri R, Gaur S. C3 Targeted Complement Therapy for Chronic Periodontitis - A Scoping Review. J Int Soc Prev Community Dent 2022; 12:500-505. [PMID: 36532323 PMCID: PMC9753925 DOI: 10.4103/jispcd.jispcd_161_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 01/25/2023] Open
Abstract
Aim Chronic Periodontitis (CP) is a complex disease initiated by inflammation caused by dysbiotic bacterial communities in the subgingival environment. The Porphyromonas gingivalis, a keystone pathogen at low colonization, causes immune subversion of complement component C5aR, leading to complement C3-dependent destructive inflammation responsible for the inflammatory bone loss in CP. Animal studies have shown that targeting complement C3 with its inhibitor like AMY-101 may help reduce inflammatory bone loss in CP. This scoping review elaborates on the role of complement C3 targeted therapy for CP. Materials and Methods About 66 original studies were obtained during an initial electronic search in Medline (Pubmed), Scopus, Web of Science, and Embase. About four articles were included in the review after screening the duplicates and reading the full text. Their aims and objectives, drug dosage, route of administration, results, and conclusions were recorded. Results Of the four-original research, 3 were animal studies and one randomized Phase IIa clinical trial. They showed that C3 targeted complement therapy reduced the inflammatory and clinical periodontal parameters in CP. Conclusion C3 targeted complement therapy may be regarded as a valuable adjunct to non-surgical periodontal treatment for CP. However, the results are still under investigation and require further verification through clinical trials.
Collapse
Affiliation(s)
- Rupali Agnihotri
- Department of Periodontology, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Sumit Gaur
- Department of Pedodontics and Preventive Dentistry, Manipal College of Dental Sciences, Manipal, Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| |
Collapse
|
45
|
Ge D, Wang F, Hu Y, Wang B, Gao X, Chen Z. Fast, Simple, and Highly Specific Molecular Detection of Porphyromonas gingivalis Using Isothermal Amplification and Lateral Flow Strip Methods. Front Cell Infect Microbiol 2022; 12:895261. [PMID: 35694545 PMCID: PMC9174636 DOI: 10.3389/fcimb.2022.895261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 04/27/2022] [Indexed: 12/16/2022] Open
Abstract
Porphyromonas gingivalis is an important oral pathogen that causes periodontal disease and is difficult to culture under conventional conditions. Therefore, a reliable technique for detecting this pathogenic bacterium is required. Here, isothermal recombinase polymerase amplification (RPA), a new nucleic acid amplification method, was combined with a visualization method based on nanoparticle-based lateral flow strips (LFS) for the rapid detection of P. gingivalis. The species-specific 16S rRNA sequence of P. gingivalis was used as the target for RPA, and a set of specific primer–probe combinations were designed and screened to amplify the target sequences. As a thermostatic amplification method, the RPA reaction, under optimized conditions, takes only 30 min to complete at a constant temperature (37°C). The amplification reaction products can be detected visually by LFS without any need for special equipment. The RPA-LFS method established for the detection of P. gingivalis was shown to be highly specific in distinguishing P. gingivalis from other pathogenic organisms by using 20 clinical isolates of P. gingivalis and 23 common pathogenic microorganisms. Susceptibility measurements and probit regression analysis were performed with gradient dilutions of P. gingivalis genomic DNA. The method was obtained to be highly sensitive, with a detection limit of 9.27 CFU per reaction at 95% probability. By analyzing the gingival sulcus fluid specimens from 130 patients with chronic periodontitis, the results showed that the RPA-LFS method detected 118 positive cases and 12 negative cases of P. gingivalis, and the results obtained were consistent with those of a conventional PCR assay. The RPA–LFS method is an efficient, rapid, and convenient diagnostic method that simplifies the tedious process of detecting P. gingivalis.
Collapse
Affiliation(s)
| | | | | | | | - Xuzhu Gao
- *Correspondence: Zhenxing Chen, ; Xuzhu Gao,
| | | |
Collapse
|
46
|
Tafaj G, Iniesta M, Sanz M, Herrera D. The subgingival cultivable bacteria of Albanian subjects with different periodontal status compared to a similar population of Spanish subjects: a case control study. BMC Oral Health 2022; 22:89. [PMID: 35321708 PMCID: PMC8944025 DOI: 10.1186/s12903-022-02121-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/14/2022] [Indexed: 11/10/2022] Open
Abstract
Background The objective was to qualitatively and quantitatively describe the subgingival cultivable bacteria in Albanian subjects and to compare it with a similar Spanish population.
Materials and methods Consecutive patients, diagnosed as periodontitis in stages I–II or III–IV, and as periodontally healthy or with gingivitis, were studied clinically and microbiologically by means of microbiological culture, including total anaerobic counts, proportions, and frequency of detection of target species. Outcome variables were analysed by Mann–Whitney, Kruskal–Wallis, ANOVA, ANCOVA and Chi-square tests.
Results In this cross-sectional study, 83 (Albania) and 90 (Spain) subjects were included. No statistically significant differences were observed between test and control populations regarding demographic variables or smoking habit. Significantly higher total anaerobic counts in the Albanian population (p = 0.022) were observed, especially in the periodontal health/gingivitis group (p = 0.001). In the test population, the proportions of the cultivable bacteria of Fusobacterium nucleatum were significantly lower in both the healthy/gingivitis (p = 0.022) and stages I–II periodontitis (p = 0.034) groups.
Conclusions The subgingival cultivable bacteria in both periodontitis and non-periodontitis subjects from Albania showed significantly higher total anaerobic counts and lower proportions of the cultivable bacteria of F. nucleatum than a similar population of subjects from Spain. Supplementary Information The online version contains supplementary material available at 10.1186/s12903-022-02121-5.
Collapse
Affiliation(s)
- Gerila Tafaj
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, School of Dentistry, University Complutense of Madrid (UCM), Madrid, Spain.,Dental Clinic, School of Dentistry, Albanian University, Tirana, Albania
| | - Margarita Iniesta
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, School of Dentistry, University Complutense of Madrid (UCM), Madrid, Spain.
| | - Mariano Sanz
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, School of Dentistry, University Complutense of Madrid (UCM), Madrid, Spain
| | - David Herrera
- ETEP (Etiology and Therapy of Periodontal and Peri-Implant Diseases) Research Group, School of Dentistry, University Complutense of Madrid (UCM), Madrid, Spain
| |
Collapse
|
47
|
Effect of Dextranase and Dextranase-and-Nisin-Containing Mouthwashes on Oral Microbial Community of Healthy Adults—A Pilot Study. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12031650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This study analyzed the alteration of oral microbial composition in healthy subjects after using dextranase-containing mouthwash (DMW; Mouthwash formulation I) and dextranase-and-nisin-containing mouthwash (DNMW; Mouthwash formulation II). Eighteen participants were recruited and were randomly allocated to two groups: G1 (DMW user; n = 8) and G2 (DNMW user; n = 10). The subjects were instructed to use the provided mouthwash regularly twice a day for 30 days. The bleeding on probing (BOP), plaque index (PI), probing depth (PBD), and gingival index (GI) were analyzed, and saliva samples were collected before (day 0) and after (day 30) the use of mouthwashes. The saliva metagenomic DNA was extracted and sequenced (next-generation sequencing, Miseq paired-end Illumina 2 × 250 bp platform). The oral microbial community in the pre-and post-treated samples were annotated using QIIME 2™. The results showed the PI and PBD values were significantly reduced in G2 samples. The BOP and GI values of both groups were not significantly altered. The post-treated samples of both groups yielded a reduced amount of microbial DNA. The computed phylogenetic diversity, species richness, and evenness were reduced significantly in the post-treated samples of G2 compared to the post-treated G1 samples. The mouthwash formulations also supported some pathogens’ growth, which indicated that formulations required further improvement. The study needs further experiments to conclude the results. The study suggested that the improved DNMW could be an adjuvant product to improve oral hygiene.
Collapse
|
48
|
Kajikawa T, Mastellos DC, Hasturk H, Kotsakis GA, Yancopoulou D, Lambris JD, Hajishengallis G. C3-targeted host-modulation approaches to oral inflammatory conditions. Semin Immunol 2022; 59:101608. [PMID: 35691883 DOI: 10.1016/j.smim.2022.101608] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Periodontitis is an inflammatory disease caused by biofilm accumulation and dysbiosis in subgingival areas surrounding the teeth. If not properly treated, this oral disease may result in tooth loss and consequently poor esthetics, deteriorated masticatory function and compromised quality of life. Epidemiological and clinical intervention studies indicate that periodontitis can potentially aggravate systemic diseases, such as, cardiovascular disease, type 2 diabetes mellitus, rheumatoid arthritis, and Alzheimer disease. Therefore, improvements in the treatment of periodontal disease may benefit not only oral health but also systemic health. The complement system is an ancient host defense system that plays pivotal roles in immunosurveillance and tissue homeostasis. However, complement has unwanted consequences if not controlled appropriately or excessively activated. Complement overactivation has been observed in patients with periodontitis and in animal models of periodontitis and drives periodontal inflammation and tissue destruction. This review places emphasis on a promising periodontal host-modulation therapy targeting the complement system, namely the complement C3-targeting drug, AMY-101. AMY-101 has shown safety and efficacy in reducing gingival inflammation in a recent Phase 2a clinical study. We also discuss the potential of AMY-101 to treat peri-implant inflammatory conditions, where complement also seems to be involved and there is an urgent unmet need for effective treatment.
Collapse
Affiliation(s)
- Tetsuhiro Kajikawa
- University of Pennsylvania, Penn Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, PA, USA; Tohoku University Graduate School of Dentistry, Department of Periodontology and Endodontology, Sendai, Miyagi, Japan
| | - Dimitrios C Mastellos
- National Center for Scientific Research 'Demokritos', Division of Biodiagnostic Sciences and Technologies, INRASTES, Athens, Greece
| | - Hatice Hasturk
- The Forsyth Institute, Center for Clinical and Translational Research, Cambridge, MA, USA
| | - Georgios A Kotsakis
- University of Texas Health Science Center at San Antonio, School of Dentistry, Department of Periodontics, San Antonio, TX, USA
| | | | - John D Lambris
- University of Pennsylvania, Perelman School of Medicine, Department of Pathology and Laboratory Medicine, Philadelphia, PA, USA
| | - George Hajishengallis
- University of Pennsylvania, Penn Dental Medicine, Department of Basic and Translational Sciences, Philadelphia, PA, USA.
| |
Collapse
|
49
|
The Antimicrobial Susceptibility of Porphyromonas gingivalis: Genetic Repertoire, Global Phenotype, and Review of the Literature. Antibiotics (Basel) 2021; 10:antibiotics10121438. [PMID: 34943650 PMCID: PMC8698109 DOI: 10.3390/antibiotics10121438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/19/2021] [Accepted: 11/20/2021] [Indexed: 11/16/2022] Open
Abstract
The in vitro antimicrobial susceptibility of 29 strains of the major periodontal pathogen Porphyromonas gingivalis and three P. gulae (as an ancestor) to nine antibiotics (amoxicillin, amoxicillin/clavulanate, clindamycin, metronidazole, moxifloxacin, doxycycline, azithromycin, imipenem, and cefoxitin) was evaluated by E-testing of minimal inhibitory concentration (MIC) according to international standards. The results were compared with 16 international studies reporting MICs from 1993 until recently. In addition, 77 currently available P. gingivalis genomes were screened for antimicrobial resistance genes. E-testing revealed a 100% sensitivity of P. gingivalis and P. gulae to all antibiotics. This was independent of the isolation year (1970 until 2021) or region, including rural areas in Indonesia and Africa. Regarding studies worldwide (675 strains), several method varieties regarding medium, McFarland inoculation standards (0.5-2) and incubation time (48-168 h) were used for MIC-testing. Overall, no resistances have been reported for amoxicillin + clavulanate, cefoxitin, and imipenem. Few strains showed intermediate susceptibility or resistance to amoxicillin and metronidazole, with the latter needing both confirmation and attention. The only antibiotics which might fail in the treatment of P. gingivalis-associated mixed anaerobic infections are clindamycin, macrolides, and tetracyclines, corresponding to the resistance genes erm(B), erm(F), and tet(Q) detected in our study here, as well as fluoroquinolones. Periodical antibiotic susceptibility testing is necessary to determine the efficacy of antimicrobial agents and to optimize antibiotic stewardship.
Collapse
|
50
|
Tetrahydroimidazo[4,5- c]pyridine-Based Inhibitors of Porphyromonas gingivalis Glutaminyl Cyclase. Pharmaceuticals (Basel) 2021; 14:ph14121206. [PMID: 34959608 PMCID: PMC8709289 DOI: 10.3390/ph14121206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 01/05/2023] Open
Abstract
Periodontitis is a severe yet underestimated oral disease. Since it is linked to several systemic diseases, such as diabetes, artheriosclerosis, and even Alzheimer’s disease, growing interest in treating periodontitis has emerged recently. The major cause of periodontitis is a shift in the oral microbiome. A keystone pathogen that is associated with this shift is Porphyromonas gingivalis. Hence, targeting P. gingivalis came into focus of drug discovery for the development of novel antiinfective compounds. Among others, glutaminyl cyclases (QCs) of oral pathogens might be promising drug targets. Here, we report the discovery and structure–activity relationship of a novel class of P. gingivalis QC inhibitors according to a tetrahydroimidazo[4,5-c]pyridine scaffold. Some compounds exhibited activity in the lower nanomolar range and thus were further characterized with regard to their selectivity and toxicity.
Collapse
|