1
|
Ramírez-Torres CE, Gómez FCE, Morales-Mávil JE, Mendoza-López MR, Laska M, Hernández-Salazar LT. Salivary response of Geoffroy's spider monkeys ( Ateles geoffroyi) to consumption of plant secondary metabolites. PeerJ 2025; 13:e19354. [PMID: 40492204 PMCID: PMC12147766 DOI: 10.7717/peerj.19354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 04/01/2025] [Indexed: 06/11/2025] Open
Abstract
Geoffroy's spider monkeys (Ateles geoffroyi) can modulate the acidity-alkalinity (pH) and salivary expression of total proteins (TP) and proline-rich proteins (PRPs) depending on the concentration of tannins in their diet, helping to counteract negative post-ingestive effects. Besides tannins, plants produce a wide variety of secondary metabolites like flavonoids and alkaloids that elicit a bitter taste. Geoffroy's spider monkeys feed on various plant species and consume different concentrations of secondary metabolites. However, it is unclear whether there is salivary modulation of pH, TP, and PRPs to secondary metabolites other than tannins, or whether this effect also occurs towards bitter substances not associated with secondary metabolites. Therefore, we assessed if there are changes in salivary pH, TP, and PRPs expression towards bitter substances or if spider monkeys display a specific response to secondary metabolites present in their diet and substances not associated with secondary metabolites. We determined the concentration of tannic acid, caffeine and rutin in fruits and leaves in different maturity stages reported as a part of the diet of Geoffroy's spider monkeys. We presented six adults Geoffroy's spider monkeys with different concentrations of tannic acid, caffeine, and rutin (0.1, 0.3, 0.6 and one mM) and denatonium benzoate (0.001, 0.003, 0.006 and 0.01 mM) dissolved in a 30 mM sucrose solution. We administered each concentration and collected saliva using swabs (SalivaBio). We used test paper strips to measure the pH and determined the TP concentration using the Bradford method at 595 nm. We also determined the percentage of PRPs using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The results showed marked differences in tannic acid, caffeine and rutin concentration depending on the plant part and species. We found an increase in salivary pH in response to consumption of secondary metabolites, no variations in TP concentration, variations in the percentage of PRPs associated with tannic acid concentrations, and no significant changes when the animals consumed denatonium benzoate. Our results showed that spider monkeys specifically modulate acidity-alkalinity towards secondary metabolites and salivary PRPs expression towards tannic acid in their diet, and that they do not have a generalized salivary response to bitter compounds that are typically considered as toxic substances.
Collapse
Affiliation(s)
| | - Fabiola Carolina Espinosa Gómez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Popular Autonóma del Estado de Puebla, Puebla, Puebla, Mexico
- Consejo de Ciencia y Tecnología del Estado de Puebla, Puebla, México, Puebla, Puebla, Mexico
| | | | | | - Matthias Laska
- Department of Physics, Chemistry and Biology, IFM, Biology, Linkoping University, Linkoping, Linkoping, Sweden
| | | |
Collapse
|
2
|
Cheng T, Sun Z, Zheng X, Zhang J, Hu Z, Liu R, Guo Z, Wang Z. Explore the binding mechanism and dynamic variation of pea protein isolate-rutin complexes to effectively improve the foam performance of pea protein isolate. Food Chem 2025; 487:144718. [PMID: 40398222 DOI: 10.1016/j.foodchem.2025.144718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 04/28/2025] [Accepted: 05/10/2025] [Indexed: 05/23/2025]
Abstract
Expanding the utilization of pea protein isolate (PPI)-rutin (Ru) complexes in aerated foods requires a comprehensive understanding of the molecular mechanisms governing their interactions. This study was conducted using multi-spectroscopic techniques, molecular docking, and molecular dynamics simulations and found that the binding mechanism of PPI with Ru involved static quenching. A change in the hydrophobic microenvironment of tryptophan was also confirmed. The primary factors driving the interaction between PPI and Ru were hydrophobic interactions, followed by hydrogen bonding and electrostatic interaction. The most significant contributors to the binding of PPI and Ru were 59ASN, 60LYS, and 63ARG, and their binding promoted the partial unfolding of the secondary structure of PPI. The structural flexibility and surface hydrophobicity of PPI were effectively improved when Ru concentration was 0.1024 mM. The produced foam was characterized by a thicker air/water interfacial film, smaller size, and denser arrangement, resulting in the best foaming properties.
Collapse
Affiliation(s)
- Tianfu Cheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhigang Sun
- Analysis and Testing Shared Center, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Xueting Zheng
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Jiayu Zhang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Zhaodong Hu
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China
| | - Ruili Liu
- Guangzhou F-Hunt Bio-Tech Co. Ltd., Guangzhou, Guangdong 510000, China
| | - Zengwang Guo
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China.
| | - Zhongjiang Wang
- College of Food Science, Northeast Agricultural University, Harbin, Heilongjiang 150030, China; National Grain Industry Technology Innovation Center, Harbin, Heilongjiang 150030, China.
| |
Collapse
|
3
|
Thakur P, Mittal N, Chaudhary J, Kamboj S, Jain A. Unveiling the substantial role of rutin in the management of drug-induced nephropathy using network pharmacology and molecular docking. Int Immunopharmacol 2025; 146:113911. [PMID: 39733639 DOI: 10.1016/j.intimp.2024.113911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 11/12/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
INTRODUCTION Flavonoids including quercetin, kaempferol, myricetin, rutin etc. have always been a part of traditional Chinese medicine for the treatment of several ailments. Rutin (RT), also known as rutoside, sophorin is one of the flavanol glycoside having structure resemblance with quercetin. It is found to exhibit several biological activities viz. anti-inflammatory, anticancer, antioxidant, cardioprotective, antidepressant, neuroprotective etc. but the mechanisms by which it exhibits these effects is still under research. AIM The protective effects of rutin against drug induced nephropathy have already been discovered. Therefore, in this study, the main focus is to explore the mechanism by which rutin provides protection against drug-induced nephropathy using modern method like network pharmacology and molecular docking. MATERIALS AND METHODS Genes linked to drug-induced nephropathy and targets connected with rutin were obtained by searching through a number of extensive databases, including David software, Venn plot database, Swiss target prediction database, String database, Gene card & OMIM database, and Pubchem. In order to locate mapping targets, the acquired targets were examined and intersected. A protein-protein interaction (PPI) network was then built to find potential targets. RESULTS From the KEGG pathway, the target pathway responsible for drug-induced nephropathy were found to be XDH, HSD17B2, MET, PRKCB, CD38, ALDH2, CDK1, PTK2, CYP19A1, TNF, F2, PTGS2, ESR1, GSK3B, GLO1, ALOX12, MMP3, PRKCZ, CXCR1, CA4, EGFR, PDE5A, F10, AKR1B1, DRD4, TERT, CA3, PLG, TP53, PRKCH, PIK3R1, PRKACA, CYP1B1, ALOX5, PLK1, CHEK1, KCNH2, PRKCD, MAPT, MPO, NOX4, AVPR2, ACHE, MCL1, KDR, ABCG2, CCR1, PIK3CG, FLT3, ADORA1, IL2, SYK, IGF1R, CA2, SERPINE1, INSR, PRKCA, APP, MMP9. From these identified targets, the 14 selected pathways which have major role in providing protection in drug-induced nephropathy have been discussed. CONCLUSION As RT can inhibit various metabolic and proinflammatory pathways involved, it can help in prevention and treatment of drug-induced nephropathy. FUTURE ASPECTS The revelation of mode of action of bioactive constituent rutin against drug-induced nephropathy provides a theoretical basis for designing more promising compounds in future for treatment of nephropathy.
Collapse
Affiliation(s)
- Prashant Thakur
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, India
| | - Nitish Mittal
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, India
| | - Jasmine Chaudhary
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, India
| | - Sonia Kamboj
- Ch. Devi Lal College of Pharmacy, Jagadhri, Haryana, India
| | - Akash Jain
- M. M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University) Mullana, Ambala, Haryana, India.
| |
Collapse
|
4
|
Kasmara DP, Abdullah E, Harun Z, Sari FN, Abd Rashid N, Teoh SL. Mini review of plant products as food supplement against MSG-induced liver injury: antioxidant, oxidative stress and histological prospects. Front Pharmacol 2025; 16:1522814. [PMID: 39925850 PMCID: PMC11802444 DOI: 10.3389/fphar.2025.1522814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/02/2025] [Indexed: 02/11/2025] Open
Abstract
Monosodium glutamate (MSG) is an odorless white solid crystalline derived from the amino acid glutamic acid. It is widely used as a flavor enhancer, but its excessive consumption has been associated with toxicity to various organs. In MSG-induced liver injury, few mechanisms have been identified, which started with the generation of reactive oxygen species that leads to oxidative stress which further causes liver injury. In response to this health concern, there is growing interest in various plant products such as plant extracts, flavonoids and phenolic compounds that were able to minimize oxidative stress, serum transaminases and scavenge free radicals in the liver after MSG administration. This review explores the potential of various plant products as dietary supplements to MSG-induced liver injury, focusing on their antioxidant activities, modulatory effects on liver function markers, and histological outcomes. By compiling this evidence, this review provides insights into their potential as preventive strategies against MSG-related liver toxicity, supporting their inclusion in dietary regimens for the maintenance of liver function.
Collapse
Affiliation(s)
- Dwi Pratiwi Kasmara
- Department of Biomedical Science, School of Nursing and Applied Science, Lincoln University College, Petaling Jaya, Selangor, Malaysia
| | - Erlina Abdullah
- Department of Biotechnology, School of Nursing and Applied Science, Lincoln University College, Petaling Jaya, Selangor, Malaysia
| | - Zaliha Harun
- Department of Nutrition, School of Nursing and Applied Science, Lincoln University College, Petaling Jaya, Selangor, Malaysia
| | - Fatmi Nirmala Sari
- Department of Biomedical Science, School of Nursing and Applied Science, Lincoln University College, Petaling Jaya, Selangor, Malaysia
| | - Norhashima Abd Rashid
- Department of Biomedical Science, School of Nursing and Applied Science, Lincoln University College, Petaling Jaya, Selangor, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Deng X, Cheng L, Qiao Y, Liu X, Zhou Y, Liu H, Wang L. Rutin ameliorates HCD-induced cholesterol metabolism disorder in zebrafish larvae revealed by transcriptome and metabolome analysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156058. [PMID: 39341124 DOI: 10.1016/j.phymed.2024.156058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 08/26/2024] [Accepted: 09/14/2024] [Indexed: 09/30/2024]
Abstract
Changes in modern lifestyles have led to an increase in obesity rates. Excessive lipid accumulation leads to abnormal cholesterol metabolism, and maintaining a balanced cholesterol metabolism is essential for the normal functioning of cells and the body. Rutin belongs to the group of flavonoids with hypolipidemic, anti-inflammatory and antioxidant effects. The aim of this study was to investigate the role of rutin in cholesterol metabolism disorders induced by a high cholesterol diet in zebrafish larvae. The trial was divided into five groups: Normal diet (ND), 5 % high cholesterol diet (HCD), 5 % high cholesterol diet with 80 μg/g ezetimibe diet (EZE), 5 % high cholesterol diet with 5 % rutin diet (RL-HCD), and 5 % high cholesterol diet with 10 % rutin diet (RH-HCD). Zebrafish larvae at 5 dpf were randomly divided into five groups and continuously fed different diets for 10 days, after 10 days zebrafish samples were collected for subsequent experiments. Body length, body width, oil red O, and Nile red staining were measured to detect biochemical indexes, analyze inflammatory response and lipid accumulation. Vascular endothelial injury was assessed by stereofluorescence microscopy and ELISA. In order to study the protective effect of rutin in zebrafish with cholesterol metabolism disorder induced by HCD, RNA-seq and LC-MS/MS nontargeted metabolomics were employed. The results indicate that HCD led to an increase in the body length and width of zebrafish. The HCD group induced an increase in body length and width, lipid accumulation, and exacerbated inflammation. Additionally, vascular damage and abnormal expression of endothelial cell markers were observed. Rutin lowered lipid levels in zebrafish fed an HCD, reduced inflammation, and protected endothelial cells. The RNA-seq and metabolomic analysis combined demonstrated that rutin effectively ameliorates the disorder of cholesterol metabolism in vivo by reducing cholesterol synthesis and promoting cholesterol transport.
Collapse
Affiliation(s)
- Xinxin Deng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Lin Cheng
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Ying Qiao
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Xuan Liu
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Yongbing Zhou
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China
| | - Hui Liu
- Bengbu Medical University Key Laboratory of Cancer Research and Clinical Laboratory Diagnosis, Department of Biochemistry and Molecular Biology, School of Laboratory Medicine, Bengbu Medical University, Bengbu 233030, PR China.
| | - Li Wang
- School of Public Health, Bengbu Medical University, Bengbu 233030, PR China.
| |
Collapse
|
6
|
Li L, Li J, Wang H, Li Y, Dong R, Pang B. Comparative Transcriptome Analysis of the Pest Galeruca daurica (Coleoptera: Chrysomelidae) Larvae in Response to Six Main Metabolites from Allium mongolicum (Liliaceae). INSECTS 2024; 15:847. [PMID: 39590446 PMCID: PMC11594626 DOI: 10.3390/insects15110847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/28/2024]
Abstract
Plants are important ecological factors and food resources, which can significantly affect the occurrence and distribution of insects. The metabolites in host plants can affect the feeding, spawning, and avoidance behaviors of herbivorous insects. Galeruca daurica (Joannis) is a phytophagous pest that has seriously occurred in the desert steppe of Inner Mongolia in recent years, only infesting the leaves of Allium plants. In order to clarify the effects of plant metabolites on the gene expression in G. daurica larvae at the transcriptome level, we fed the larvae of G. daurica with Allium tuberosum leaves soaked in 10% DMSO solutions containing d-galactose, β-d-glucopyranose, l-rhamnose, isoquercitrin, isoflavone, and rutin, respectively, used the larvae fed on A. tuberosum leaves soaked in a 10% DMSO solution as the control, and screened out the differentially expressed genes (DEGs) by performing high-throughput transcriptome sequencing. The results showed that a total of 291 DEGs were identified compared to the solvent control (DMSO), including 130, 34, 29, 21, 72, and 97 in the isoquercitrin, isoflavone, rutin, d-galactose, β-d-glucopyranose, and l-rhamnose treatment groups, respectively. GO and KEGG enrichment analysis showed that most DEGs were enriched in various metabolic pathways, implying that these six main primary and secondary metabolites in Allium plants may affect various metabolic processes in the larvae of G. daurica.
Collapse
Affiliation(s)
- Ling Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China; (J.L.); (H.W.); (Y.L.); (B.P.)
| | - Jinwei Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China; (J.L.); (H.W.); (Y.L.); (B.P.)
| | - Haichao Wang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China; (J.L.); (H.W.); (Y.L.); (B.P.)
| | - Yanyan Li
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China; (J.L.); (H.W.); (Y.L.); (B.P.)
| | - Ruiwen Dong
- Siziwang Grassland Station in Wulanchabu City, Ulanqab 011800, China;
| | - Baoping Pang
- Research Center for Grassland Entomology, Inner Mongolia Agricultural University, Hohhot 010020, China; (J.L.); (H.W.); (Y.L.); (B.P.)
| |
Collapse
|
7
|
Ma L, Zhou B, Liu H, Chen S, Zhang J, Wang T, Wang C. Dietary rutin improves the antidiarrheal capacity of weaned piglets by improving intestinal barrier function, antioxidant capacity and cecal microbiota composition. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:6262-6275. [PMID: 38466088 DOI: 10.1002/jsfa.13456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND Early weaning is prone to damage intestinal barrier function, resulting in diarrhea, whereas rutin, as a natural flavonoid with multiple biological functions, shows potential in piglets. Therefore, the effects of dietary rutin on growth, antidiarrheal, barrier function, antioxidant status and cecal microbiota of weaned piglets were investigated with the control group (CON) (basal diet) and Rutin (basal diet+500 mg kg-1 rutin) groups fed for 14 days. RESULTS The results showed that dietary 500 mg kg-1 rutin significantly decreased diarrhea index, serum diamine oxidase activity and total aerobic bacterial population in mesenteric lymph nodes, whereas it significantly increased the gain-to-feed ratio (G:F) and serum growth hormone content, jejunal villus height and villus height to crypt depth ratio, and also enhanced jejunal claudin-1 and zonula occludens-1 mRNA and protein expression. Meanwhile, dietary rutin significantly decreased inflammation-associated mRNA expression, malondialdehyde (MDA) content, swollen mitochondrial number and mitochondrial area in the jejunum, whereas it increased the total superoxide dismutase (T-SOD) and glutathione peroxidase activities and activated the Nrf2 signaling pathway. Moreover, dietary rutin significantly increased Firmicutes abundance and decreased Campylobacterota abundance, which were closely associated with the decreased diarrhea index and MDA content or increased Claudin-1 expression and T-SOD activity. CONCLUSION Dietary 500 mg kg-1 rutin increased G:F by improving intestinal morphology, and alleviated diarrhea by enhancing intestinal barrier, which might be associated with the enhanced antioxidant capacity via activating the Nrf2/Keap1 signaling pathway and the improved cecal microbial composition in weaned piglets. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Longfei Ma
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Binbin Zhou
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Huijuan Liu
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Shun Chen
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Jiaqi Zhang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tian Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Chao Wang
- College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
8
|
Tang H, Li X, Liu X, Xu Y, Shen J. Rutin intake mitigates the injury of blue light irradiation by altering aging rates of mortality in Drosophila model. Photochem Photobiol 2024; 100:524-529. [PMID: 37665025 DOI: 10.1111/php.13848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/27/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Blue light is known as one of the harmful light pollution that has complex effects on organisms. The massive use of LED lights in cities has greatly increased the frequency of human exposure to blue light, and therefore the hazards of blue light are receiving widespread attention. In our study, Drosophila was used as the model organism to explore the ability of the flavonoid rutin to resist blue light damage under the intensity of 3000 Lux. Siler model analysis was performed. Our results showed sex-specific pattern of rutin as an effective antioxidant. Rutin could help female flies to reduce the initial adult mortality and male flies to slow the increase of adult mortality under blue light irradiation, thus prolonging their average lifespan. Furthermore, after the intake of rutin, the locomotor activity of Drosophila under blue light irradiation was significantly increased, and the total sleep time was significantly decreased. In summary, our results provide preliminary support for exploring the mechanism of rutin against blue light damage.
Collapse
Affiliation(s)
- Hao Tang
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Xiangyu Li
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Xingyou Liu
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Yifan Xu
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| | - Jie Shen
- College of Artificial Intelligence, Hangzhou Dianzi University, Hangzhou, China
| |
Collapse
|
9
|
Roohi TF, Mehdi S, Aarfi S, Krishna KL, Pathak S, Suhail SM, Faizan S. Biomarkers and signaling pathways of diabetic nephropathy and peripheral neuropathy: possible therapeutic intervention of rutin and quercetin. Diabetol Int 2024; 15:145-169. [PMID: 38524936 PMCID: PMC10959902 DOI: 10.1007/s13340-023-00680-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/30/2023] [Indexed: 03/26/2024]
Abstract
Diabetic nephropathy and peripheral neuropathy are the two main complications of chronic diabetes that contribute to high morbidity and mortality. These conditions are characterized by the dysregulation of multiple molecular signaling pathways and the presence of specific biomarkers such as inflammatory cytokines, indicators of oxidative stress, and components of the renin-angiotensin system. In this review, we systematically collected and collated the relevant information from MEDLINE, EMBASE, ELSEVIER, PUBMED, GOOGLE, WEB OF SCIENCE, and SCOPUS databases. This review was conceived with primary objective of revealing the functions of these biomarkers and signaling pathways in the initiation and progression of diabetic nephropathy and peripheral neuropathy. We also highlighted the potential therapeutic effectiveness of rutin and quercetin, two plant-derived flavonoids known for their antioxidant and anti-inflammatory properties. The findings of our study demonstrated that both flavonoids can regulate important disease-promoting systems, such as inflammation, oxidative stress, and dysregulation of the renin-angiotensin system. Importantly, rutin and quercetin have shown protective benefits against nephropathy and neuropathy in diabetic animal models, suggesting them as potential therapeutic agents. These findings provide a solid foundation for further comprehensive investigations and clinical trials to evaluate the potential of rutin and quercetin in the management of diabetic nephropathy and peripheral neuropathy. This may contribute to the development of more efficient and comprehensive treatment approaches for diabetes-associated complications.
Collapse
Affiliation(s)
- Tamsheel Fatima Roohi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Seema Mehdi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Sadaf Aarfi
- Department of Pharmaceutics, Amity University, Lucknow, Uttar Pradesh India
| | - K. L. Krishna
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Suman Pathak
- Department of Dravyaguna, Govt. Ayurvedic Medical College, Shimoga, Karnataka 577 201 India
| | - Seikh Mohammad Suhail
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| | - Syed Faizan
- Department of Pharmaceutical Chemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysore, Karnataka 570015 India
| |
Collapse
|
10
|
Sayed H, Zhang Q, Tang Y, Wang Y, Guo Y, Zhang J, Ji C, Ma Q, Zhao L. Alleviative Effect of Rutin on Zearalenone-Induced Reproductive Toxicity in Male Mice by Preventing Spermatogenic Cell Apoptosis and Modulating Gene Expression in the Hypothalamic-Pituitary-Gonadal Axis. Toxins (Basel) 2024; 16:121. [PMID: 38535787 PMCID: PMC10974791 DOI: 10.3390/toxins16030121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/10/2024] [Indexed: 04/25/2025] Open
Abstract
Zearalenone (ZEN) is a non-steroidal estrogenic mycotoxin found in many agricultural products and can cause reproductive disorders, mainly affecting spermatogenesis in male animals. Rutin (RUT) is a natural flavonoid compound recognized for its significant antioxidant, anti-inflammatory and estrogenic properties. The present study aimed to determine the protective role of RUT against ZEN-induced reproductive toxicity in male mice. Twenty-four adult Kunming male mice were divided into four groups: control, RUT (500 mg/kg RUT), ZEN (10 mg/kg ZEN), ZEN + RUT (500 mg/kg RUT + 10 mg/kg ZEN), with six replicates per treatment. The results indicated that RUT mitigated ZEN-induced disruption in spermatogenic cell arrangement, decreased spermatozoa count, and increased sperm mortality in the testes. RUT significantly restored ZEN-induced reduction in T, FSH, LH, and E2 serum levels. Moreover, RUT mitigated ZEN-induced apoptosis by increasing the mRNA expression level of bcl-2, decreasing the mRNA expression level of kiss1-r, and decreasing the protein expression level of caspase 8 in reproductive tissues. These findings indicate the protective role of RUT against ZEN-induced reproductive toxicity in male mice by regulating gonadotropin and testosterone secretions to maintain normal spermatogenesis via the HPG axis, which may provide a new application direction for RUT as a therapeutic agent to mitigate ZEN-induced reproductive toxicity.
Collapse
Affiliation(s)
- Hira Sayed
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| | - Qiongqiong Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| | - Yu Tang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| | - Yanan Wang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| | - Yongpeng Guo
- College of Animal Science and Technology, Henan Agricultural University, Zhengzhou 450046, China;
| | - Jianyun Zhang
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| | - Cheng Ji
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| | - Qiugang Ma
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| | - Lihong Zhao
- State Key Laboratory of Animal Nutrition and Feeding, Poultry Nutrition and Feed Technology Innovation Team, College of Animal Science and Technology, China Agricultural University, No. 2. West Road Yuanming Yuan, Beijing 100193, China; (H.S.); (Q.Z.); (Y.T.); (Y.W.); (J.Z.); (C.J.); (Q.M.)
| |
Collapse
|
11
|
Li D, Yin W, Xu C, Feng Y, Huang X, Hao J, Zhu C. Rutin promotes osteogenic differentiation of mesenchymal stem cells (MSCs) by increasing ECM deposition and inhibiting p53 expression. Aging (Albany NY) 2024; 16:3583-3595. [PMID: 38349887 PMCID: PMC10929794 DOI: 10.18632/aging.205546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 01/09/2024] [Indexed: 02/15/2024]
Abstract
Mesenchymal stem cells (MSCs) are an important source of cells for bone regeneration. Although the utilization of MSCs along with growth factors and scaffolds is a beneficial clinical approach for bone tissue engineering, there is need for improvement on the effectiveness of MSC osteogenesis and differentiation. Rutin is a natural flavonoid and a major component for cell proliferation and bone development. However, studies on the mechanism through which rutin regulates osteogenesis and MSC differentiation are limited. Therefore, this study aimed to investigate the effect and mechanisms of rutin on osteogenic differentiation of MSCs. MSCs were extracted from umbilical cords and treated with rutin, followed by the examination of osteogenesis-related markers. Rutin treatment promoted the differentiation of MSCs towards the osteogenic lineage rather than the adipogenic lineage and increased the expression of osteogenic markers. RNA sequencing and bioinformatic analysis indicated that rutin regulated p53, a key gene in regulating the osteogenic differentiation of MSCs. Additionally, cellular experiments showed that rutin-induced decrease in p53 expression increased the formation of extracellular matrix (ECM) by promoting p65 phosphorylation and caspase-3 cleavage. Conclusively, this study demonstrates the importance of rutin in osteogenesis and indicates that rutin possesses potential pharmaceutical application for bone regeneration and bone tissue engineering.
Collapse
Affiliation(s)
- Dongyang Li
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Naval Medical University, Shanghai 201805, China
- Department of Science and Education, Jinqiu Hospital of Liaoning Province, Shenyang, Liaoning 110016, China
| | - Wanru Yin
- Department of Dermatology, Shenyang Medical University, Shenyang 110034, China
| | - Chao Xu
- Department of Digestive Ward, Shenyang Red Cross Society Hospital China, Shenyang 110013, China
| | - Yongmin Feng
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
| | - Xin Huang
- Department of General Practice Medicine, Shengjing Hospital of China Medical University, Shenyang 110022, China
- Department of Nephrology, The First Affiliated Hospital of China Medical University, Shenyang 110000, China
| | - Junfeng Hao
- Department of Nephrology, and Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, China
- Department of General Practice Medicine, Shengjing Hospital of China Medical University, Shenyang 110022, China
| | - Chao Zhu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital of Naval Medical University, Shanghai 201805, China
| |
Collapse
|
12
|
Shekhar A, Maddheshiya N, Adit, Rastogi V, Ramalingam K. Anti-inflammatory Role of Trypsin, Rutoside, and Bromelain Combination in Temporomandibular Joint Osteoarthritis: A Systematic Review. Cureus 2024; 16:e51749. [PMID: 38322061 PMCID: PMC10846757 DOI: 10.7759/cureus.51749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2024] [Indexed: 02/08/2024] Open
Abstract
The objective of this systematic review was to assess the effectiveness, acceptability, and safety of systemic enzyme therapy, consisting of trypsin, bromelain, and rutoside trihydrate, as an anti-inflammatory agent, either when utilized independently or in conjunction with non-steroidal anti-inflammatory drugs (NSAIDs). This systematic review adhered to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Two studies met the inclusion criteria and were assessed in the review. The bias risk was evaluated using the risk-of-bias tool for randomized trials (RoB 2). Both studies revealed highly significant results for the study population. Individuals receiving oral enzymes and diclofenac sodium combination therapy showed a significant improvement in pain reduction, better eating, and mouth opening, as well as a decrease in joint noise and jerky mandibular motions. Patients receiving systemic enzyme therapy with diclofenac combinations performed better than those receiving NSAIDs alone, and the differences were quite substantial. For the treatment of internal derangement of the temporomandibular joint (TMJ), we recommend combining enzymes and diclofenac. Systemic enzyme therapy can be used in the treatment of TMJ osteoarthritis, as it shows a highly significant result in the study population.
Collapse
Affiliation(s)
- Amlendu Shekhar
- Oral Medicine and Radiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | - Nisha Maddheshiya
- Oral Medicine and Radiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | - Adit
- Oral Medicine and Radiology, Faculty of Dental Sciences, Institute of Medical Sciences, Banaras Hindu University, Varanasi, IND
| | - Varun Rastogi
- Oral Pathology, Universal College of Medical Sciences and Teaching Hospital, Bhairahawa, NPL
| | - Karthikeyan Ramalingam
- Oral Pathology and Microbiology, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
13
|
Rana N, Gupta P, Singh H, Nagarajan K. Role of Bioactive Compounds, Novel Drug Delivery Systems, and Polyherbal Formulations in the Management of Rheumatoid Arthritis. Comb Chem High Throughput Screen 2024; 27:353-385. [PMID: 37711009 DOI: 10.2174/1386207326666230914103714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/04/2023] [Accepted: 07/24/2023] [Indexed: 09/16/2023]
Abstract
Rheumatoid Arthritis (RA) is an autoimmune disorder that generally causes joint synovial inflammation as well as gradual cartilage and degenerative changes, resulting in progressive immobility. Cartilage destruction induces synovial inflammation, including synovial cell hyperplasia, increased synovial fluid, and synovial pane development. This phenomenon causes articular cartilage damage and joint alkalosis. Traditional medicinal system exerts their effect through several cellular mechanisms, including inhibition of inflammatory mediators, oxidative stress suppression, cartilage degradation inhibition, increasing antioxidants and decreasing rheumatic biomarkers. The medicinal plants have yielded a variety of active constituents from various chemical categories, including alkaloids, triterpenoids, steroids, glycosides, volatile oils, flavonoids, lignans, coumarins, terpenes, sesquiterpene lactones, anthocyanins, and anthraquinones. This review sheds light on the utilization of medicinal plants in the treatment of RA. It explains various phytoconstituents present in medicinal plants and their mechanism of action against RA. It also briefs about the uses of polyherbal formulations (PHF), which are currently in the market and the toxicity associated with the use of medicinal plants and PHF, along with the limitations and research gaps in the field of PHF. This review paper is an attempt to understand various mechanistic approaches employed by several medicinal plants, their possible drug delivery systems and synergistic effects for curing RA with minimum side effects.
Collapse
Affiliation(s)
- Neha Rana
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| | - Piyush Gupta
- Department of Chemistry, SRM Institute of Science and Technology, Faculty of Engineering and Technology, NCR Campus, Delhi-NCR Campus, Delhi-Meerut Road, Modinagar, 201204, Ghaziabad, Uttar Pradesh, India
| | - Hridayanand Singh
- Dr. K. N. Modi Institute of Pharmaceutical Education and Research, Modinagar, 201204, Uttar Pradesh, India
| | - Kandasamy Nagarajan
- KIET School of Pharmacy, KIET Group of Institutions, Delhi-NCR, Ghaziabad, 201206, Uttar Pradesh, India
| |
Collapse
|
14
|
Gan Y, Yu B, Liu R, Shu B, Liang Y, Zhao Y, Qiu Z, Yan S, Cao B. Systematic analysis of the UDP-glucosyltransferase family: discovery of a member involved in rutin biosynthesis in Solanum melongena. FRONTIERS IN PLANT SCIENCE 2023; 14:1310080. [PMID: 38197083 PMCID: PMC10774229 DOI: 10.3389/fpls.2023.1310080] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/21/2023] [Indexed: 01/11/2024]
Abstract
Eggplant (Solanum melongena) is an economically important crop and rich in various nutrients, among which rutin that has positive effects on human health is found in eggplant. Glycosylation mediated by UDP-glycosyltransferases (UGTs) is a key step in rutin biosynthesis. However, the UGT gene has not been reported in eggplant to date. Herein, 195 putative UGT genes were identified in eggplant by genome-wide analysis, and they were divided into 17 subgroups (Group A-P and Group R) according to the phylogenetic evolutionary tree. The members of Groups A, B, D, E and L were related to flavonol biosynthesis, and rutin was the typical flavonol. The expression profile showed that the transcriptional levels of SmUGT genes in Clusters 7-10 were closely related to those of rutin biosynthetic pathway genes. Notably, SmUGT89B2 was classified into Cluster 7 and Group B; its expression was consistent with rutin accumulation in different tissues and different leaf stages of eggplant. SmUGT89B2 was located in the nucleus and cell membrane. Virus-induced gene silencing (VIGS) and transient overexpression assays showed that SmUGT89B2 can promote rutin accumulation in eggplant. These findings provide new insights into the UGT genes in eggplant, indicating that SmUGT89B2 is likely to encode the final enzyme in rutin biosynthesis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuangshuang Yan
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Bihao Cao
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs/Guangdong Vegetable Engineering and Technology Research Center/College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
15
|
Challal S, Skiba A, Langlois M, Esguerra CV, Wolfender JL, Crawford AD, Skalicka-Woźniak K. Natural product-derived therapies for treating drug-resistant epilepsies: From ethnopharmacology to evidence-based medicine. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116740. [PMID: 37315641 DOI: 10.1016/j.jep.2023.116740] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/17/2023] [Accepted: 06/04/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Epilepsy is one of the most prevalent neurological human diseases, affecting 1% of the population in all age groups. Despite the availability of over 25 anti-seizure medications (ASMs), which are approved in most industrialized countries, approximately 30% of epilepsy patients still experience seizures that are resistant to these drugs. Since ASMs target only limited number of neurochemical mechanisms, drug-resistant epilepsy (DRE) is not only an unmet medical need, but also a formidable challenge in drug discovery. AIM In this review, we examine recently approved epilepsy drugs based on natural product (NP) such as cannabidiol (CBD) and rapamycin, as well as NP-based epilepsy drug candidates still in clinical development, such as huperzine A. We also critically evaluate the therapeutic potential of botanical drugs as polytherapy or adjunct therapy specifically for DRE. METHODS Articles related to ethnopharmacological anti-epileptic medicines and NPs in treating all forms of epilepsy were collected from PubMed and Scopus using keywords related to epilepsy, DRE, herbal medicines, and NPs. The database clinicaltrials.gov was used to find ongoing, terminated and planned clinical trials using herbal medicines or NPs in epilepsy treatment. RESULTS A comprehensive review on anti-epileptic herbal drugs and natural products from the ethnomedical literature is provided. We discuss the ethnomedical context of recently approved drugs and drug candidates derived from NPs, including CBD, rapamycin, and huperzine A. Recently published studies on natural products with preclinical efficacy in animal models of DRE are summarized. Moreover, we highlight that natural products capable of pharmacologically activating the vagus nerve (VN), such as CBD, may be therapeutically useful to treat DRE. CONCLUSIONS The review highlights that herbal drugs utilized in traditional medicine offer a valuable source of potential anti-epileptic drug candidates with novel mechanisms of action, and with clinical promise for the treatment of drug-resistant epilepsy (DRE). Moreover, recently developed NP-based anti-seizure medications (ASMs) indicate the translational potential of metabolites of plant, microbial, fungal and animal origin.
Collapse
Affiliation(s)
- Soura Challal
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland
| | - Adrianna Skiba
- Department of Natural Product Chemistry, Medical University of Lublin, Poland
| | - Mélanie Langlois
- Luxembourg Centre for Systems Biomedicine (LCSB), Belval, Luxembourg
| | - Camila V Esguerra
- Centre for Molecular Medicine Norway (NCMM), University of Oslo, Norway
| | - Jean-Luc Wolfender
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, Switzerland
| | - Alexander D Crawford
- Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences (NMBU), Ås, Norway; Institute for Orphan Drug Discovery, Bremerhavener Innovations- und Gründerzentum (BRIG), Bremerhaven, Germany
| | | |
Collapse
|
16
|
Noor G, Badruddeen, Akhtar J, Singh B, Ahmad M, Khan MI. An outlook on the target-based molecular mechanism of phytoconstituents as immunomodulators. Phytother Res 2023; 37:5058-5079. [PMID: 37528656 DOI: 10.1002/ptr.7969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 07/05/2023] [Accepted: 07/11/2023] [Indexed: 08/03/2023]
Abstract
The immune system is one of the essential defense mechanisms. Immune system inadequacy increases the risk of infections and cancer diseases, whereas over-activation of the immune system causes allergies or autoimmune disorders. Immunomodulators have been used in the treatment of immune-related diseases. There is growing interest in using herbal medicines as multicomponent agents to modulate the complex immune system in immune-related diseases. Many therapeutic phytochemicals showed immunomodulatory effects by various mechanisms. This mechanism includes stimulation of lymphoid cell, phagocytosis, macrophage, and cellular immune function enhancement. In addition increased antigen-specific immunoglobulin production, total white cell count, and inhibition of TNF-α, IFN-γ, NF-kB, IL-2, IL-6, IL-1β, and other cytokines that influenced the immune system. This review aims to overview, widely investigated plant-derived phytoconstituents by targeting cells to modulate cellular and humoral immunity in in vivo and in vitro. However, further high-quality research is needed to confirm the clinical efficacy of plant-based immunomodulators.
Collapse
Affiliation(s)
- Gazala Noor
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Badruddeen
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Juber Akhtar
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Bhuwanendra Singh
- Department of Pharmacognosy, S.D. College of Pharmacy and Vocational Studies, Muzaffarnagar, India
| | - Mohammad Ahmad
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| | - Mohammad Irfan Khan
- Department of Pharmacy, Faculty of Pharmacy, Integral University, Lucknow, India
| |
Collapse
|
17
|
Omi N, Yamamoto H, Yamaguchi T, Tsukiashi M, Yamamoto T, Tanaka R, Watanabe K, Maruki-Uchida H, Kawama T. Enzymatically modified isoquercitrin in soy protein temporarily enhanced the plasma amino-acid concentrations, antioxidant index, and plasma hormone levels: a randomized, double-blind cross-over trial. Amino Acids 2023:10.1007/s00726-023-03267-4. [PMID: 37154870 DOI: 10.1007/s00726-023-03267-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 04/10/2023] [Indexed: 05/10/2023]
Abstract
This study investigated the effects of a dietary protein supplement containing enzymatically modified isoquercitrin (EMIQ) on plasma amino-acid levels in healthy people. A randomized double-blind cross-over trial (UMIN000044791) was conducted with a sample of nine healthy individuals. These participants ingested soy protein with or without 42 mg EMIQ for 7 days after performing mild exercise. Plasma amino-acid levels were measured before ingestion and at 15, 30, 45, 60, 90, 120, 180, and 240 min after ingestion on the last day. The concentrations of total amino acids at 0 and 120 min and easily oxidized amino acids at 120 min were significantly higher in the plasma of individuals who consumed 42 mg EMIQ. Oxidative stress levels were lower and plasma testosterone levels were higher in participants who ingested soy protein with 42 mg EMIQ than in those who did not. These results suggest that daily ingestion of soy protein with 42 mg EMIQ can be useful for effective protein absorption.
Collapse
Affiliation(s)
- Naomi Omi
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Japan.
- Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Japan.
| | - Hayata Yamamoto
- Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Japan
| | - Taketo Yamaguchi
- Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Japan
| | - Motoki Tsukiashi
- Health Science Research Center, R&D Institute, Morinaga & Co., Ltd, 2-1-1 Shimosueyoshi, Tsurumi-Ku, Yokohama, 230-8504, Japan
| | - Takayuki Yamamoto
- Health Science Research Center, R&D Institute, Morinaga & Co., Ltd, 2-1-1 Shimosueyoshi, Tsurumi-Ku, Yokohama, 230-8504, Japan
| | - Ryo Tanaka
- Health Science Research Center, R&D Institute, Morinaga & Co., Ltd, 2-1-1 Shimosueyoshi, Tsurumi-Ku, Yokohama, 230-8504, Japan
| | - Koichi Watanabe
- Faculty of Health and Sport Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Japan
- Graduate School of Comprehensive Human Science, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, 305-8574, Japan
| | - Hiroko Maruki-Uchida
- Health Science Research Center, R&D Institute, Morinaga & Co., Ltd, 2-1-1 Shimosueyoshi, Tsurumi-Ku, Yokohama, 230-8504, Japan
| | - Toshihiro Kawama
- Health Science Research Center, R&D Institute, Morinaga & Co., Ltd, 2-1-1 Shimosueyoshi, Tsurumi-Ku, Yokohama, 230-8504, Japan
| |
Collapse
|
18
|
Dutta A, Dahiya A. Quercetin 3-O rutinoside prevents gastrointestinal injury through regulation of apoptosis in 7.5 Gy total body irradiated mice. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154692. [PMID: 36863087 DOI: 10.1016/j.phymed.2023.154692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 01/02/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Despite the heightened threat to unforeseen nuclear/radiological exposures worldwide, no countermeasures are currently approved to prevent gastrointestinal (GI) toxicity induced by radiation in humans. PURPOSE In this study, we aim to establish the gastroprotective role of flavonoid, Quercetin-3-O-rutinoside (Q-3-R) against 7.5 Gy total body gamma radiation dose that contributes to the hematopoietic syndrome. METHODS Q-3-R (10 mg/kg body weight) was administered intramuscularly to C57BL/6 male mice before exposure to 7.5 Gy and monitored for morbidity and mortality. The GI protection against radiation was ascertained by histopathological and xylose absorption studies. Intestinal apoptosis, crypt proliferation and apoptotic signaling were also investigated in different treatment groups. RESULTS We found that Q-3-R prevented the radiation-induced loss of mitochondrial membrane potential, maintained ATP levels, regulated the apoptotic pathway, and activated crypt cell proliferation in the intestine. Radiation-induced villi and crypt damage as well as mal-absorption were significantly minimized in the Q-3-R treated group. We observed 100% survival post Q-3-R administration against 33.3% lethality in 7.5 Gy (LD33.3/30) exposed C57BL/6 mice. The Q-3-R pre-treated mice that survived the 7.5 Gy dose revealed no pathological changes related to the development of fibrosis in the intestine and thickened mucosal wall till 4 months post irradiation. Complete hematopoietic recovery was observed in these surviving mice when compared to age matched control. CONCLUSION The findings revealed that Q-3-R regulated the apoptotic process to achieve GI protection against LD33.3/30 dose (7.5 Gy) that primarily caused death due to hematopoietic failure. The recovery observed in mice survivors suggested that this molecule may also have the potential to minimize side effects on normal tissues during radiotherapy.
Collapse
Affiliation(s)
- Ajaswrata Dutta
- Division of CBRN, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K Mazumdar Marg, Timarpur, Delhi 110054, India.
| | - Akshu Dahiya
- Division of CBRN, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K Mazumdar Marg, Timarpur, Delhi 110054, India
| |
Collapse
|
19
|
Handa K, Jindal R. Mitigating the nephrotoxic impact of hexavalent chromium in Ctenopharyngodon idellus (grass carp) with Boerhavia diffusa (punarnava) leaf extract. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:42399-42415. [PMID: 36648730 DOI: 10.1007/s11356-022-24931-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
In Ctenopharyngodon idellus, the ameliorative influence of rutin-containing leaf extract of Boerhavia diffusa was assessed against chronic exposure to hexavalent chromium. For this, alterations in chromium accumulation, oxidative stress, kidney function markers, histopathology (light and transmission electron microscopy), and transcriptional profiling (Nrf2 and MT2) were examined. RP-HPLC analysis confirmed the presence of rutin (90.45 ± 0.98 mg/g) in the ethanolic leaf extract of the plant. LD50 of the extract to the fish was beyond 5000 mg/kg b.w. The fish was subjected to a sublethal concentration of hexavalent chromium (5.30 mg/L) accompanied by a dose of 250 mg/kg b.w./day of extract in the diet for the experimental duration of 45 days. The extract alone did not generate any adverse consequences in the nephric tissue. Chronic exposure to hexavalent chromium damaged tissue irreparably, demonstrated by elevated levels of kidney function markers (blood urea nitrogen and creatinine) and altered histoarchitecture (DTC value of 78.02 ± 10.5). The metal exposure increased chromium accumulation and malondialdehyde (MDA) and decreased the reduced glutathione (GSH) levels, the activity of antioxidant enzymes (superoxide dismutase, catalase and glutathione-S-transferase) and gene expression in the tissue. The co-supplementation of leaf extract with metal exposure revealed a tissue architecture with normal to slight modifications, and the level of kidney markers, antioxidants, and genes expressed in a normalized range. Principal component analysis created two components with antioxidants (GSH, SOD, CAT, and GST) revealing a negative correlation with the second component comprising MDA, DTC, and chromium concentration. It can be concluded that B. diffusa leaves are safe additives in the fish diet and possess an ameliorative capacity for renal injury incurred by hexavalent chromium.
Collapse
Affiliation(s)
- Kriti Handa
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India
| | - Rajinder Jindal
- Aquatic Biology Laboratory, Department of Zoology, Panjab University, Chandigarh, 160014, India.
| |
Collapse
|
20
|
Xiong HH, Lin SY, Chen LL, Ouyang KH, Wang WJ. The Interaction between Flavonoids and Intestinal Microbes: A Review. Foods 2023; 12:foods12020320. [PMID: 36673411 PMCID: PMC9857828 DOI: 10.3390/foods12020320] [Citation(s) in RCA: 58] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/27/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
In recent years, research on the interaction between flavonoids and intestinal microbes have prompted a rash of food science, nutriology and biomedicine, complying with future research trends. The gut microbiota plays an essential role in the maintenance of intestinal homeostasis and human health, but once the intestinal flora dysregulation occurs, it may contribute to various diseases. Flavonoids have shown a variety of physiological activities, and are metabolized or biotransformed by gut microbiota, thereby producing new metabolites that promote human health by modulating the composition and structure of intestinal flora. Herein, this review demonstrates the key notion of flavonoids as well as intestinal microbiota and dysbiosis, aiming to provide a comprehensive understanding about how flavonoids regulate the diseases by gut microbiota. Emphasis is placed on the microbiota-flavonoid bidirectional interaction that affects the metabolic fate of flavonoids and their metabolites, thereby influencing their metabolic mechanism, biotransformation, bioavailability and bioactivity. Potentially by focusing on the abundance and diversity of gut microbiota as well as their metabolites such as bile acids, we discuss the influence mechanism of flavonoids on intestinal microbiota by protecting the intestinal barrier function and immune system. Additionally, the microbiota-flavonoid bidirectional interaction plays a crucial role in regulating various diseases. We explain the underlying regulation mechanism of several typical diseases including gastrointestinal diseases, obesity, diabetes and cancer, aiming to provide a theoretical basis and guideline for the promotion of gastrointestinal health as well as the treatment of diseases.
Collapse
Affiliation(s)
- Hui-Hui Xiong
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Su-Yun Lin
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ling-Li Chen
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
| | - Ke-Hui Ouyang
- College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wen-Jun Wang
- College of Food Science and Engineering, Jiangxi Agricultural University, Nanchang 330045, China
- Correspondence: ; Tel.: +86-791-83813655
| |
Collapse
|
21
|
Normalization of HPA Axis, Cholinergic Neurotransmission, and Inhibiting Brain Oxidative and Inflammatory Dynamics Are Associated with The Adaptogenic-like Effect of Rutin Against Psychosocial Defeat Stress. J Mol Neurosci 2023; 73:60-75. [PMID: 36580190 DOI: 10.1007/s12031-022-02084-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 11/15/2022] [Indexed: 12/30/2022]
Abstract
Social defeat stress (SDS) due to changes in biochemical functions has been implicated in the pathogenesis of affective and cognitive disorders. Employing pharmacological approach with adaptogens in the management and treatment of psychosocial stress is increasingly receiving scientific attention. In this study, we investigated the neuroprotective effect of rutin, a bioflavonoid with neuroprotective and anti-inflammatory functions on neurobehavioral and neuro-biochemical changes in mice exposed to SDS. Groups of mice named the intruder mice received normal saline (10 mL/kg), rutin (5, 10, and 20 mg/kg, i.p.), and ginseng (50 mg/kg, i.p.) daily for 14 days, and then followed by 10 min daily SDS (physical/psychological) exposures to aggressor mice from days 7-14. Investigations consisting of neurobehavioral (locomotion, memory, anxiety, and depression) phenotypes, neuro-biochemical (oxidative, nitrergic, cholinergic, and pro-inflammatory cytokines) levels in discrete brain regions, and hypothalamic-pituitary-adrenal (HPA) axis consisting adrenal weight, corticosterone, and glucose concentrations were assessed. Rutin restored the neurobehavioral deficits and reduced the activity of acetylcholinesterase in the brains. Adrenal hypertrophy, increased serum glucose and corticosterone levels were significantly attenuated by rutin. SDS-induced release of tumor necrosis factor-alpha and interleukin-6 in the striatum, prefrontal cortex, and hippocampus were also suppressed by rutin in a brain-region-dependent manner. Moreover, SDS-induced oxidative stress characterized by low antioxidants (glutathione, superoxide-dismutase, catalase) and lipid peroxidation and nitrergic stress were reversed by rutin in discrete brain regions. Collectively, our data suggest that rutin possesses an adoptogenic potential in mice exposed to SDS via normalization of HPA, oxidative/nitrergic, and neuroinflammatory inhibitions. Thus, may be adopted in the management of neuropsychiatric syndrome due to psychosocial stress.
Collapse
|
22
|
Bazyar H, Moradi L, Zaman F, Zare Javid A. The effects of rutin flavonoid supplement on glycemic status, lipid profile, atherogenic index of plasma, brain-derived neurotrophic factor (BDNF), some serum inflammatory, and oxidative stress factors in patients with type 2 diabetes mellitus: A double-blind, placebo-controlled trial. Phytother Res 2023; 37:271-284. [PMID: 36101997 DOI: 10.1002/ptr.7611] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/06/2022] [Accepted: 08/20/2022] [Indexed: 01/19/2023]
Abstract
This study aimed to investigate the effects of rutin flavonoid in type 2 diabetes mellitus (T2DM) patients. In this trial (double-blind, placebo-controlled), 50 T2DM patients (supplement, n = 25 and placebo, n = 25) were randomized and supplemented with 500 mg rutin or placebo per day for 3-months. At the beginning and at the end of the study, metabolic parameters including fasting blood glucose (FBG), insulin, glycosylated hemoglobin (HbA1c), homeostasis model assessment of insulin resistance (HOMO-IR), quantitative insulin sensitivity check index (QUICKI), homeostasis model assessment of β-cell function (HOMA-β), triglyceride (TG), total cholesterol (CHOL), high-density and low-density lipoprotein cholesterol (HDL-c and LDL-c), and atherogenic index of plasma (AIP), inflammatory and oxidative stress markers such as interleukin 6 (IL-6), total antioxidant capacity (TAC), and malondialdehyde (MDA) and brain-derived neurotrophic factor (BDNF) were assessed. The results showed a significant decrease in FBG, insulin, HbA1c, HOMO-IR, LDL-c, TG, VLDL, CHOL, LDL-c.HDL-c ratio, AIP, IL-6, and MDA and a significant increase in HDL-c, QUICKI index, BDNF, and TAC compared with the initial value (p for all <.05). In the adjusted model, the mean changes of FBG, insulin, HbA1c, HOMO-IR, LDL-c, CHOL, LDL.HDL ratio, AIP, MDA, and IL-6 were significantly lower and mean changes of QUICKI index, HDL-c, and TAC were significantly higher in the rutin group compared with the placebo group (adjusted p for all <.05). It seems that rutin may have beneficial effects on improving metabolic parameters, BDNF, and inflammatory and oxidative stress factors in T2DM patients.
Collapse
Affiliation(s)
- Hadi Bazyar
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Student Research Committee, Ahvaz Jundishapur University of Medical Science, Ahvaz, Iran
| | - Leila Moradi
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ferdows Zaman
- Health Research Institute, Diabetes Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Ahmad Zare Javid
- Nutrition and Metabolic Diseases Research Center, Clinical Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.,Department of Nutrition, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
23
|
Chen S, Liu H, Zhang J, Zhou B, Zhuang S, He X, Wang T, Wang C. Effects of different levels of rutin on growth performance, immunity, intestinal barrier and antioxidant capacity of broilers. ITALIAN JOURNAL OF ANIMAL SCIENCE 2022. [DOI: 10.1080/1828051x.2022.2116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Shun Chen
- College of Animal Science and Technology, National Experimental Teaching Demonstration Centre of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Huijuan Liu
- College of Animal Science and Technology, National Experimental Teaching Demonstration Centre of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Jiaqi Zhang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Centre of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Binbin Zhou
- College of Animal Science and Technology, National Experimental Teaching Demonstration Centre of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Su Zhuang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Centre of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Xiaofang He
- Co-Innovation Center for School of Animal Science and Food Engineering, Jinling Institute of Technology, Nanjing, China
| | - Tian Wang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Centre of Animal Science, Nanjing Agricultural University, Nanjing, China
| | - Chao Wang
- College of Animal Science and Technology, National Experimental Teaching Demonstration Centre of Animal Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
24
|
Huang Y, Si X, Han M, Bai C. Rapid and Sensitive Detection of Rutin in Food Based on Nitrogen-Doped Carbon Quantum Dots as Fluorescent Probe. Molecules 2022; 27:molecules27248834. [PMID: 36557970 PMCID: PMC9784171 DOI: 10.3390/molecules27248834] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of this study was to establish a rapid detection method of rutin in food based on nitrogen-doped carbon quantum dots (N-CDs) as the fluorescent probe. N-CDs were prepared via a single-step hydrothermal process using citric acid as the carbon source and thiourea as the nitrogen source. The optical properties of N-CDs were characterized using an electron transmission microscope, X-ray diffractometer, Fourier-transform infrared spectrometer, and nanoparticle size potential analyzer. The UV/Vis absorption property and fluorescence intensity of N-CDs were also characterized using the respective spectroscopy techniques. On this basis, the optimal conditions for the detection of rutin by N-CDs fluorescent probes were also explored. The synthesized N-CDs were amorphous carbon structures with good water solubility and optical properties, and the quantum yield was 24.1%. In phosphate-buffered solution at pH = 7.0, Rutin had a strong fluorescence-quenching effect on N-CDs, and the method showed good linearity (R2 = 0.9996) when the concentration of Rutin was in the range of 0.1-400 μg/mL, with a detection limit of 0.033 μg/mL. The spiked recoveries in black buckwheat tea and wolfberry were in the range of 93.98-104.92%, the relative standard deviations (RSD) were in the range of 0.35-4.11%. The proposed method is simple, rapid, and sensitive, and it can be used for the rapid determination of rutin in food.
Collapse
|
25
|
Rational design of hexagonal zinc oxide/boron-doped g-C3N4 nanosheets as efficient electrocatalyst for enhanced sensing of rutin in fruit samples. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Tang X, Zhao Y, Wang X, Ye C, Feng B, Tang C, Lu X. Polyketides with anti-inflammatory activity from Rhodiola tibetica endophytic fungus Alternaria sp. HJT-Y7. PHYTOCHEMISTRY 2022; 203:113383. [PMID: 36007665 DOI: 10.1016/j.phytochem.2022.113383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/11/2022] [Accepted: 08/14/2022] [Indexed: 06/15/2023]
Abstract
Seven undescribed polyketides with particular ortho-trisubstituted benzo[c]furan and benzo[c]oxepin spiro structures were isolated from Rhodiola tibetica endophytic fungus Alternaria sp. HJT-Y7. Structural elucidations of these compounds were determined mainly by NMR and HR-ESI-MS analysis. An assumed polyketide biosynthetic pathway of these isolates was proposed. Two undescribed compounds and four known compounds showed significant inhibitory effects on LPS-induced NO production in RAW 264.7 cells without cytotoxicity at their effective concentrations.
Collapse
Affiliation(s)
- Xiaoyuan Tang
- College of Life Health, Dalian University, Dalian, 116622, People's Republic of China
| | - Yuxuan Zhao
- College of Life Health, Dalian University, Dalian, 116622, People's Republic of China
| | - Xude Wang
- College of Medicine, Dalian University, Dalian, 116622, People's Republic of China
| | - Chongtao Ye
- College of Medicine, Dalian University, Dalian, 116622, People's Republic of China
| | - Baomin Feng
- College of Life Health, Dalian University, Dalian, 116622, People's Republic of China
| | - Chuan Tang
- College of Life Health, Dalian University, Dalian, 116622, People's Republic of China
| | - Xuan Lu
- College of Life Health, Dalian University, Dalian, 116622, People's Republic of China.
| |
Collapse
|
27
|
Chen M, Liu P, Zhou H, Huang C, Zhai W, Xiao Y, Ou J, He J, El-Nezami H, Zheng J. Formation and metabolism of 6-(1-acetol)-8-(1-acetol)-rutin in foods and in vivo, and their cytotoxicity. Front Nutr 2022; 9:973048. [PMID: 35983484 PMCID: PMC9378861 DOI: 10.3389/fnut.2022.973048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/12/2022] [Indexed: 11/13/2022] Open
Abstract
Methylglyoxal (MGO) is a highly reactive precursor which forms advanced glycation end-products (AGEs) in vivo, which lead to metabolic syndrome and chronic diseases. It is also a precursor of various carcinogens, including acrylamide and methylimidazole, in thermally processed foods. Rutin could efficiently scavenge MGO by the formation of various adducts. However, the metabolism and safety concerns of the derived adducts were paid less attention to. In this study, the optical isomers of di-MGO adducts of rutin, namely 6-(1-acetol)-8-(1-acetol)-rutin, were identified in foods and in vivo. After oral administration of rutin (100 mg/kg BW), these compounds reached the maximum level of 15.80 μg/L in plasma at 15 min, and decreased sharply under the quantitative level in 30 min. They were detected only in trace levels in kidney and fecal samples, while their corresponding oxidized adducts with dione structures presented as the predominant adducts in kidney, heart, and brain tissues, as well as in urine and feces. These results indicated that the unoxidized rutin-MGO adducts formed immediately after rutin ingestion might easily underwent oxidation, and finally deposited in tissues and excreted from the body in the oxidized forms. The formation of 6-(1-acetol)-8-(1-acetol)-rutin significantly mitigated the cytotoxicity of MGO against human gastric epithelial (GES-1), human colon carcinoma (Caco-2), and human umbilical vein endothelial (HUVEC) cells, which indicated that rutin has the potential to be applied as a safe and effective MGO scavenger and detoxifier, and AGEs inhibitor.
Collapse
Affiliation(s)
- Min Chen
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Pengzhan Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou, China
| | - Hua Zhou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Caihuan Huang
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
| | - Weiye Zhai
- Dongguan Silang Foods Co., Ltd., Dongguan, China
| | - Yuantao Xiao
- Dongguan Silang Foods Co., Ltd., Dongguan, China
| | - Juanying Ou
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou, China
| | - Jun He
- Institute of Laboratory Animal Science, Jinan University, Guangzhou, China
| | - Hani El-Nezami
- School of Biological Sciences, University of Hong Kong, Pok Fu Lam, Hong Kong SAR, China.,School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Kuopio, Finland
| | - Jie Zheng
- Department of Food Science and Engineering, Jinan University, Guangzhou, China.,Guangdong-Hong Kong Joint Innovation Platform for the Safety of Bakery Products, Guangzhou, China
| |
Collapse
|
28
|
Chen P, Liu S, Yin Z, Liang P, Wang C, Zhu H, Liu Y, Ou S, Li G. Rutin alleviated acrolein-induced cytotoxicity in Caco-2 and GES-1 cells by forming a cyclic hemiacetal product. Front Nutr 2022; 9:976400. [PMID: 36051900 PMCID: PMC9424909 DOI: 10.3389/fnut.2022.976400] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Acrolein (ACR), an α, β-unsaturated aldehyde, is a toxic compound formed during food processing, and the use of phenolics derived from dietary materials to scavenge ACR is a hot spot. In this study, rutin, a polyphenol widely present in various dietary materials, was used to investigate its capacity to scavenge ACR. It was shown that more than 98% of ACR was eliminated under the conditions of reaction time of 2 h, temperature of 80 °C, and molar ratio of rutin/ACR of 2/1. Further structural characterization of the formed adduct revealed that the adduct of rutin to ACR to form a cyclic hemiacetal compound (RAC) was the main scavenging mechanism. Besides, the stability of RAC during simulated in vitro digestion was evaluated, which showed that more than 83.61% of RAC was remained. Furthermore, the cytotoxicity of RAC against Caco-2 and GES-1 cells was significantly reduced compared with ACR, where the IC50 values of ACR were both below 20 μM while that of RAC were both above 140 μM. And the improvement of the loss of mitochondrial membrane potential (MMP) by RAC might be one of the detoxification pathways. The present study indicated that rutin was one of the potential ACR scavengers among natural polyphenols.
Collapse
Affiliation(s)
- Peifang Chen
- Department of Food Science, Foshan University, Foshan, China
| | - Shuang Liu
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Zhao Yin
- Department of Hematology, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Pengjie Liang
- Department of Food Science, Foshan University, Foshan, China
| | - Chunhua Wang
- Department of Food Science, Foshan University, Foshan, China
| | - Hanyue Zhu
- Department of Food Science, Foshan University, Foshan, China
| | - Yang Liu
- Department of Food Science, Foshan University, Foshan, China
| | - Shiyi Ou
- Department of Food Science and Engineering, Jinan University, Guangzhou, China
- Shiyi Ou
| | - Guoqiang Li
- Department of Food Science, Foshan University, Foshan, China
- Guangdong Provincial Key Laboratory of Intelligent Food Manufacturing, Foshan University, Foshan, China
- South China National Center for Food Safety Research and Development, Foshan University, Foshan, China
- *Correspondence: Guoqiang Li
| |
Collapse
|
29
|
Ali WA, Moselhy WA, Ibrahim MA, Amin MM, Kamel S, Eldomany EB. Protective effect of rutin and β-cyclodextrin against hepatotoxicity and nephrotoxicity induced by lambda-cyhalothrin in Wistar rats: biochemical, pathological indices and molecular analysis. Biomarkers 2022; 27:625-636. [PMID: 35658761 DOI: 10.1080/1354750x.2022.2087003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND This study aimed to assess hepatotoxicity and nephrotoxicity of Lambda-cyhalothrin (LCT) and the protective effect of rutin alone and in combination with β-cyclodextrin (β-CD). MATERIALS AND METHODS Male Wistar rats were divided into five groups: Group 1: was used as a control and received a standard diet and water. Group 2, 3, 4 and 5 were orally administered with LCT (7.6 mg/kg body weight), rutin (200 mg/kg body weight) LCT and rutin (at the same doses as in Group 2 and Group 3), and LCT and a mixture of rutin with β-CD (400 mg/kg body weight), respectively. All experimental animals were orally gavaged 5 days/week for 60 days. RESULTS Our data revealed that LCT-induced liver and kidney injuries were related to the up-regulated expression of TNF-α and down-regulated expression of NRF-2 genes mRNA, whereas these effects were reversed with rutin treatment. LCT-induced oxidative stress altered the histological picture, and the hematological and biochemical parameters. CONCLUSION Treatment with a rutin-β-CD complex had preventive potential against LCT via suppression of oxidative stress and augmentation of the antioxidant defense system.
Collapse
Affiliation(s)
- Walaa A Ali
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Walaa A Moselhy
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt.,Toxicology and Forensic Medicine Department, Faculty of Veterinary Medicine, Beni-Suef University, Beni-Suef, Egypt
| | - Marwa A Ibrahim
- Department of Biochemistry and Molecular biology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Maha M Amin
- Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Shaimaa Kamel
- Department of Biochemistry and Molecular biology, Faculty of Veterinary Medicine, Cairo University, Cairo, Egypt
| | - Ehab B Eldomany
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
30
|
Abdul-Fattah Baraka N, Fathallah Ahmed N, Ismail Hussein S. The effect of Rutin hydrate on Glucocorticoids induced osteoporosis in mandibular alveolar bone in Albino rats (Radiological, histological and histochemical study). Saudi Dent J 2022; 34:464-472. [PMID: 36092520 PMCID: PMC9453515 DOI: 10.1016/j.sdentj.2022.06.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/19/2022] [Accepted: 06/23/2022] [Indexed: 11/29/2022] Open
Abstract
Background Glucocorticoids are used in different conditions such as autoimmune disorders and organ transplantation and their administration is the most common cause of secondary osteoporosis. Rutin is a flavonoid found in many plants. Flavonoids are natural products with various therapeutic and biological effects. Objective Is to investigate the effect of Rutin Hydrate as a form of Rutin on glucocorticoid induced osteoporosis in mandibular alveolar bone radiologically, histologically and histochemically. Methods Twenty-one adult male Albino rats were randomly divided into three groups. Group I (control), group II (osteoporotic) and group III (Rutin Hydrate treated). In both group II and III rats received 21 mg/kg of methylprednisolone daily for four weeks. Then group III received 50 mg/kg of rutin hydrate in distilled water daily for another four weeks. At the end of the experiment, mandibles were dissected for radiographic assessment, then processed for histological and histochemical examination and statistical analysis. Results Radiologically, administration of Rutin Hydrate was able to enhance bone density than osteoporotic group. Histological examination revealed preserved cortical bone thickness that had been statistically proved. Apparently normal sized marrow cavities, some plump osteoblasts and normal osteocytes were seen in group III. Histochemical examination showed statistical increase in the area percentage of newly formed collagen in group III than group II. Conclusions Rutin Hydrate was able to modify the radiological and histological picture of osteoporotic alveolar bone. This was achieved by the ability of Rutin Hydrate to increase bone density, preserve cortical plates thickness and enhance new collagen formation that was proved histochemically.
Collapse
|
31
|
Identification and cytotoxic evaluation of the novel rutin-methylglyoxal adducts with dione structures in vivo and in foods. Food Chem 2022; 377:132008. [PMID: 34999458 DOI: 10.1016/j.foodchem.2021.132008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 11/17/2021] [Accepted: 12/12/2021] [Indexed: 11/24/2022]
Abstract
Flavonoids with meta-hydroxyl groups have been proven to react with methylglyoxal (MGO) and form mono- and di-MGO adducts via nucleophilic addition reactions. Rutin, a rutinoside of quercetin with typical meta-phenol structure, is widely distributed in plant-sourced materials. Interestingly, different from the adducts reported between flavonoids and MGO, new rutin-MGO adducts with dione structures on the moiety of MGO were identified and proven to occur in various foods (0.66-6.58 mg/kg in total) and in vivo (up to 5.01 μg/L in plasma of rats administered with 100 mg/kg bodyweight of rutin). The three adducts discovered were assigned as 6-(1,2-propanedione)-8-(1-acetol)-rutin, 6-(1-acetol)-8-(1,2-propanedione)-rutin, and 6-(1,2-propanedione)-8-(1,2-propanedione)-rutin. Cytotoxicity evaluation in different cell lines indicated that the formation of these rutin-MGO adducts remarkably reduced the toxicity of MGO, which provide further promise for the application of rutin as a scavenger of dicarbonyl compounds by dietary supplement and addition in foods.
Collapse
|
32
|
Kiriacos CJ, Khedr MR, Tadros M, Youness RA. Prospective Medicinal Plants and Their Phytochemicals Shielding Autoimmune and Cancer Patients Against the SARS-CoV-2 Pandemic: A Special Focus on Matcha. Front Oncol 2022; 12:837408. [PMID: 35664773 PMCID: PMC9157490 DOI: 10.3389/fonc.2022.837408] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 03/21/2022] [Indexed: 12/12/2022] Open
Abstract
Background Being "positive" has been one of the most frustrating words anyone could hear since the end of 2019. This word had been overused globally due to the high infectious nature of SARS-CoV-2. All citizens are at risk of being infected with SARS-CoV-2, but a red warning sign has been directed towards cancer and immune-compromised patients in particular. These groups of patients are not only more prone to catch the virus but also more predisposed to its deadly consequences, something that urged the research community to seek other effective and safe solutions that could be used as a protective measurement for cancer and autoimmune patients during the pandemic. Aim The authors aimed to turn the spotlight on specific herbal remedies that showed potential anticancer activity, immuno-modulatory roles, and promising anti-SARS-CoV-2 actions. Methodology To attain the purpose of the review, the research was conducted at the States National Library of Medicine (PubMed). To search databases, the descriptors used were as follows: "COVID-19"/"SARS-CoV-2", "Herbal Drugs", "Autoimmune diseases", "Rheumatoid Arthritis", "Asthma", "Multiple Sclerosis", "Systemic Lupus Erythematosus" "Nutraceuticals", "Matcha", "EGCG", "Quercetin", "Cancer", and key molecular pathways. Results This manuscript reviewed most of the herbal drugs that showed a triple action concerning anticancer, immunomodulation, and anti-SARS-CoV-2 activities. Special attention was directed towards "matcha" as a novel potential protective and therapeutic agent for cancer and immunocompromised patients during the SARS-CoV-2 pandemic. Conclusion This review sheds light on the pivotal role of "matcha" as a tri-acting herbal tea having a potent antitumorigenic effect, immunomodulatory role, and proven anti-SARS-CoV-2 activity, thus providing a powerful shield for high-risk patients such as cancer and autoimmune patients during the pandemic.
Collapse
Affiliation(s)
- Caroline Joseph Kiriacos
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Monika Rafik Khedr
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Miray Tadros
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
| | - Rana A. Youness
- Molecular Genetics Research Team (MGRT), Pharmaceutical Biology Department, Faculty of Pharmacy and Biotechnology, German University in Cairo, Cairo, Egypt
- Biology and Biochemistry Department, School of Life and Medical Sciences, University of Hertfordshire Hosted by Global Academic Foundation, Cairo, Egypt
| |
Collapse
|
33
|
Sandholzer-Yilmaz AS, Kroeber ES, Ayele W, Frese T, Kantelhardt EJ, Unverzagt S. Randomised controlled trials on prevention, diagnosis and treatment of diabetes in African countries: a systematic review. BMJ Open 2022; 12:e050021. [PMID: 35545395 PMCID: PMC9096485 DOI: 10.1136/bmjopen-2021-050021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
OBJECTIVES The epidemiological transition from infectious to chronic diseases leads to novel challenges in African health systems. The prevalence of diabetes mellitus (DM) is increasing dramatically. Undiagnosed and undertreated DM leads to numerous complications including end-organ damage and death. Our objectives were to collect the best locally generated evidence on DM interventions, identify knowledge gaps and determine underexplored research areas. DESIGN A systematic review and meta-analysis of randomised controlled trials. PARTICIPANTS AND SETTING African patients in primary, secondary and tertiary prevention, diagnosis and treatment DM type 1 (DM1), type 2 (DM2) and gestational DM (GDM). OUTCOME All-cause mortality, glycaemic control, complications, quality of life, hospital admission, treatment adherence and costs. DATA SOURCES Articles published in MEDLINE Ovid, CENTRAL, CINAHL, African Journals Online and African Index Medicus and the International Clinical Trials Registry Platform in English language without time restrictions. The systematic search was last updated in October 2020. RESULTS Out of 3736 identified publications, we included 60 eligible studies conducted in 15 countries, 75% were conducted in urban healthcare settings, including 10 112 participants. We included 8 studies on DM1, 6 on GDM, 2 on pre-DM, 37 on mainly DM2 including 7 on DM-related complications. The design of the studied intervention was heterogeneous with a focus on educational strategies. The other studies investigated the efficacy of nutritional strategies including food supplementations, pharmacological strategies and strategies to enhance physical activity. Seven studies included interventions on DM-related complications. CONCLUSIONS Research activities increased in recent years, but available evidence is still not representative for all African countries. There is a big lack of evidence in primary healthcare and rural settings, implementation research, pharmacological interventions, especially in poorer countries. Nevertheless, the identified studies offer a variety of effective interventions that can inform medical care and future research. PROSPERO REGISTRATION NUMBER CRD42019122785.
Collapse
Affiliation(s)
- Angelika Sabine Sandholzer-Yilmaz
- Institute of General Practice and Family Medicine, Center of Health Sciences, Martin Luther University of Halle Wittenberg Faculty of Medicine, Halle, Germany
- Department of Haematology and Oncology, University of Göttingen, Gottingen, Germany
| | - Eric Sven Kroeber
- Institute of General Practice and Family Medicine, Center of Health Sciences, Martin Luther University of Halle Wittenberg Faculty of Medicine, Halle, Germany
| | - Wondimu Ayele
- Department of Preventive Medicine, Addis Ababa University, Addis Ababa, Ethiopia
| | - T Frese
- Institute of General Practice and Family Medicine, Center of Health Sciences, Martin Luther University of Halle Wittenberg Faculty of Medicine, Halle, Germany
| | - Eva Johanna Kantelhardt
- Institute for Medical Epidemiology, Biostatistics and Informatics, Center of Health Sciences, Martin-Luther-University Halle-Wittenberg Medical Faculty, Halle, Germany
| | - Susanne Unverzagt
- Institute of General Practice and Family Medicine, Center of Health Sciences, Martin Luther University of Halle Wittenberg Faculty of Medicine, Halle, Germany
- University Leipzig, Department of General Practice, Leipzig, Germany
| |
Collapse
|
34
|
Simple and affordable graphene nano-platelets and carbon nanocomposite surface decorated with cetrimonium bromide as a highly responsive electrochemical sensor for rutin detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Suvarna V, Bore B, Bhawar C, Mallya R. Complexation of phytochemicals with cyclodextrins and their derivatives- an update. Biomed Pharmacother 2022; 149:112862. [PMID: 35339826 DOI: 10.1016/j.biopha.2022.112862] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/13/2022] [Accepted: 03/22/2022] [Indexed: 11/02/2022] Open
Abstract
Bioactive phytochemicals from natural source have gained tremendous interest over several decades due to their wide and diverse therapeutic activities playing key role as functional food supplements, pharmaceutical and nutraceutical products. Nevertheless, their application as therapeutically active moieties and formulation into novel drug delivery systems are hindered due to major drawbacks such as poor solubility, bioavailability and dissolution rate and instability contributing to reduction in bioactivity. These drawbacks can be effectively overcome by their complexation with different cyclodextrins. Present article discusses complexation of phytochemicals varying from flavonoids, phenolics, triterpenes, and tropolone with different natural and synthetic cyclodextrins. Moreover, the article summarizes complexation methods, complexation efficiency, stability, stability constants and enhancement in rate and extent of dissolution, bioavailability, solubility, in vivo and in vitro activities of reported complexed phytochemicals. Additionally, the article presents update of published patent details comprising of complexed phytochemicals of therapeutic significance. Thus, phytochemical cyclodextrin complexes have tremendous potential for transformation into drug delivery systems as substantiated by significant outcome of research findings.
Collapse
Affiliation(s)
- Vasanti Suvarna
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India.
| | - Bhunesh Bore
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Chaitanya Bhawar
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| | - Rashmi Mallya
- Department of Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V.L. Mehta Road, Vile Parle (West), Mumbai 400056, Maharashtra, India
| |
Collapse
|
36
|
Nasir B, Khan AU, Baig MW, Althobaiti YS, Faheem M, Haq IU. Datura stramonium Leaf Extract Exhibits Anti-inflammatory Activity in CCL 4-Induced Hepatic Injury Model by Modulating Oxidative Stress Markers and iNOS/Nrf2 Expression. BIOMED RESEARCH INTERNATIONAL 2022; 2022:1382878. [PMID: 35342748 PMCID: PMC8942637 DOI: 10.1155/2022/1382878] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/07/2022] [Indexed: 12/17/2022]
Abstract
Background Inflammation is a frequent phenomenon in the pathogenesis of hepatic disorders leading to fibrosis and cirrhosis. Phytopharmaceuticals developed from traditional medicine can provide effective therapeutic alternatives to conventional medications. Datura stramonium (DS) has reported traditional uses in inflammatory diseases. In this study, we have tried to validate its potential as a source of anti-inflammatory agents. Methods Powdered leaf part of DS was extracted using ethyl acetate (EA) to provide the extract (DSL-EA). Lymphocyte and macrophage viability and acute toxicity assays established the safety profile, while nitric oxide (NO) scavenging assay estimated the in vitro anti-inflammatory potential. Noninvasive anti-inflammatory, antidepressant, and antinociceptive activities were monitored using BALB/c mice using low and high doses (150 and 250 mg/kg). Major inflammatory studies were performed on Sprague-Dawley male rats using CCl4-induced liver injury model. Disease induction was initiated by intraperitoneal injections of CCl4 (1 mL/kg of 30% CCl4 in olive oil). The rats were divided into six groups. The anti-inflammatory potential of DSL-EA in low and high doses (150 and 300 mg/kg, respectively) was assessed through hematological, biochemical, liver antioxidant defense, oxidative stress markers, and histological studies as well as the expression of Nrf2 and iNOS. Results DSL-EA exhibited prominent in vitro NO scavenging (IC50: 7.625 ± 0.51 μg/mL) and in vivo anti-inflammatory activity in paw and anal edema models. In CCl4 model, hematological investigations revealed vasotonic effects. Liver functionality was significantly (P < 0.001 - 0.05) improved in DSL-EA-treated rats. The activity level of endogenous antioxidant enzymes in liver tissues was improved in a manner identical to silymarin. The extract reduced the percent concentration of oxidative stress markers in liver tissues. Furthermore, DSL-EA displayed restorative effects on histological parameters (H and E and Masson's trichrome staining). Immunohistochemistry studies showed marked decline in Nrf2 expression, while overexpression of iNOS was also observed in disease control rats. The damage was distinctly reversed by the extract.
Collapse
Affiliation(s)
- Bakht Nasir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Ashraf Ullah Khan
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
- Faculty of Pharmaceutical Sciences, Abasyn University Peshawar, Peshawar 25000, Pakistan
| | - Muhammad Waleed Baig
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| | - Yusuf S. Althobaiti
- Department of Pharmacology and Toxicology, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
- Addiction and Neuroscience Research Unit, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Muhammad Faheem
- Riphah Institute of Pharmaceutical Sciences, Riphah International University, Islamabad 45320, Pakistan
| | - Ihsan-Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
37
|
Uthra C, Reshi MS, Jaswal A, Yadav D, Shrivastava S, Sinha N, Shukla S. Protective efficacy of rutin against acrylamide-induced oxidative stress, biochemical alterations and histopathological lesions in rats. Toxicol Res (Camb) 2022; 11:215-225. [PMID: 35237426 PMCID: PMC8882811 DOI: 10.1093/toxres/tfab125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 10/11/2021] [Accepted: 12/12/2021] [Indexed: 01/28/2023] Open
Abstract
Acrylamide is a well-known neurotoxicant and carcinogen. Apart from industrial exposure, acrylamide is also found in different food products. The present study deals with in vivo experiment to test the protective effect of rutin against acrylamide induced toxicity in rats. The study was carried out on female rats with exposure of acrylamide at the dose of 38.27 mg/kg body weight, orally for 10 days followed by the therapy of rutin (05, 10, 20 and 40 mg/kg orally), for three consecutive days. All animals were sacrificed after 24 h of last treatment and various biochemical parameters in blood and tissue were investigated. Histopathology of liver, kidney and brain was also done. On administration of acrylamide for 10 days, neurotoxicity was observed in terms of decreased acetylcholinesterase activity and oxidative stress was observed in terms of increased lipid peroxidation, declined level of reduced glutathione, antioxidant enzymes (superoxide dismutase and catalase) in liver, kidney and brain. Acrylamide exposure increased the activities of serum transaminases, lipid profile, bilirubin, urea, uric acid and creatinine in serum indicating damage. Our experimental results conclude that rutin showed remarkable protection against oxidative DNA damage induced by acrylamide, which may be due to its antioxidant potential.
Collapse
Affiliation(s)
- Chhavi Uthra
- Correspondence address. Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India. Tel: 9755952336 (M); E-mail:
| | - Mohd Salim Reshi
- Toxicology and Pharmacology Lab, Department of Zoology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu & Kashmir, 185234, India
| | - Amita Jaswal
- Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India
| | - Deepa Yadav
- Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India
| | - Sadhana Shrivastava
- Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India
| | - Neelu Sinha
- Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India
| | - Sangeeta Shukla
- Reproductive Biology and Toxicology Laboratory, UNESCO-Trace Element Satellite Centre, School of Studies in Zoology, Jiwaji University, Gwalior, Madhya Pradesh, 474011, India
| |
Collapse
|
38
|
Promising Strategies in Plant-Derived Treatments of Psoriasis-Update of In Vitro, In Vivo, and Clinical Trials Studies. Molecules 2022; 27:molecules27030591. [PMID: 35163855 PMCID: PMC8839811 DOI: 10.3390/molecules27030591] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/04/2023] Open
Abstract
Psoriasis is a common, chronic systemic inflammatory disease affecting 125 million people worldwide. It is associated with several important conditions, including psoriatic arthritis, cardiometabolic syndrome, and depression, leading to a significant reduction in patients’ quality of life. Current treatments only reduce symptoms, not cure. This review discusses the mechanisms involved in the initiation and development of the disease, the role of oxidative stress in this autoimmune disease, as well as potential therapeutic options with substances of natural origin. The main aim of the study is intended to offer a review of the literature to present plants and phytochemicals that can represent potential remedies in the fight against psoriasis. We identified many in vitro, in vivo, and clinical trials studies that evaluated the relationship between chosen natural substances and immune system response in the course of psoriasis. We sought to find articles about the efficacy of potential natural-derived drugs in controlling symptoms and their ability to maintain long-term disease inactivity without side effects, and the result of our work is a review, which highlights the effectiveness of plant-derived drugs in controlling the inflammatory burden on psoriatic patients by decreasing the oxidative stress conditions.
Collapse
|
39
|
Zhang H, Gao S, Zhang X, Meng N, Chai X, Wang Y. Fermentation characteristics and the dynamic trend of chemical components during fermentation of Massa Medicata Fermentata. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2021.103472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
40
|
Changes in the Polyphenolic Profile and Antioxidant Activity of Wheat Bread after Incorporating Quinoa Flour. Antioxidants (Basel) 2021; 11:antiox11010033. [PMID: 35052536 PMCID: PMC8773021 DOI: 10.3390/antiox11010033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 12/21/2021] [Accepted: 12/22/2021] [Indexed: 02/07/2023] Open
Abstract
Quinoa is a trend and a promising functional food ingredient. Following previous research into the impact of incorporating quinoa flour on the polyphenol content and antioxidant activity of bread, this study aimed to bridge an existing gap about the qualitative and quantitative polyphenolic profiles of such bread. The UPLC-MS/MS analysis showed that quinoa bread, made with 25% quinoa flour of a black variety, presented more compounds than refined-wheat bread, and levels were remarkably higher in many cases. Consequently, the quinoa bread presented clearly improved polyphenolic content than the wheat bread (12.8-fold higher considering the sum of extractable and hydrolyzable polyphenols), as supported by greater antioxidant activity (around 3-fold). The predominant compounds in the extractable fraction of quinoa bread were p-hydroxybenzoic acid and quercetin (50- and 64-fold higher than in wheat bread, respectively) and rutin (not detected in wheat bread), while ferulic and sinapic acids were the most abundant compounds in the hydrolyzable fraction (7.6- and 13-fold higher than in wheat bread, respectively). The bread-making impact was estimated, and a different behavior for phenolic acids and flavonoids was observed. Extractable phenolic acids were the compounds that decreased the most; only 2 of 12 compounds were enhanced (p-hydroxybenozoic and rosmarinic acid with increments of 64% and 435%, respectively). Flavonoids were generally less affected, and their concentrations considerably rose after the bread-making process (7 of the 13 compounds were enhanced in the extractable fraction) with especially noticeably increases in some cases; e.g., apigenin (876%), kaempferol (1304%), luteolin (580%) and quercetin (4762%). Increments in some extractable flavonoids might be explained as a consequence of the release of the corresponding hydrolyzable forms. The present study provides new information on the suitability of quinoa-containing bread as a suitable vehicle to enhance polyphenols intake and, hence, the antioxidant activity in daily diets.
Collapse
|
41
|
Abualhasan M, Assali M, Mahmoud A, Zaid AN, Malkieh N. Synthesis of rutin derivatives to enhance lipid solubility and development of topical formulation with a validated analytical method. Curr Drug Deliv 2021; 19:117-128. [PMID: 34931961 DOI: 10.2174/1567201819666211220162535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 11/17/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Rutin is available on the market as a topical formulation for the treatment of several conditions, such as internal bleeding, hemorrhoids, and varicose veins. However, these gels have low solubility and limited bioavailability due to their decreased lipid solubility. OBJECTIVE In this study, we aimed to synthesize potentially novel lipophilic rutin prodrugs. The suggested library of these rutin prodrugs includes changing the solubility profile to facilitate rutin transport across biological barriers, thereby improving drug delivery through topical application. METHODS Six rutin derivatives were synthesized based on the ester prodrug strategy. The synthesized compounds were formulated as topical ointments, and their permeability via Franz diffusion was measured. An ultraviolet (UV) analytical method was developed in our laboratories to quantify rutin derivatives both as raw materials and in final dosage forms. The analytical method was then validated. RESULT The results of Franz diffusion analyses showed that transdermal permeability increased by 10_Fo.jpgl height=""d for decaacetylated rutin compared to the other esterified rutins. A simple analytical method for the analysis of the formulated rutin ester was developed and validated. Moreover, the formulated ointment of decaacetylated rutin in our research laboratory was found to be stable under stability accelerated conditions. Synthesis of potentially more lipophilic compounds would yield novel rutin prodrugs suitable for topical formulation. CONCLUSION This project provides a synthetic approach for many similar natural products. The research idea and strategy followed in this research project could be adapted by pharmaceutical and herbal establishments.
Collapse
Affiliation(s)
- Murad Abualhasan
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus. Palestinian Territory, Occupied
| | - Mohyeddin Assali
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus. Palestinian Territory, Occupied
| | - Abeer Mahmoud
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus. Palestinian Territory, Occupied
| | - Abdel Naser Zaid
- Department of Pharmacy, Faculty of Medicine and Health Sciences, An-Najah National University, P.O. Box 7, Nablus. Palestinian Territory, Occupied
| | - Numan Malkieh
- Jerusalem Pharmaceuticals Co, Al Bireh-Ramallah. Palestinian Territory, Occupied
| |
Collapse
|
42
|
Development of bioflavonoid containing chemotherapeutic delivery systems for UV-damaged skin and kangri cancer. FORUM OF CLINICAL ONCOLOGY 2021. [DOI: 10.2478/fco-2021-0012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Abstract
Background
The lower abdomen and inner thighs are most likely to become affected by kangri cancer because those areas are exposed to continuous exposure to kangri.
Objective
In this article, formulation and characterization of a water-in-oil microemulsion of 5-fluorouracil with rutin (R-5FU) for better skin penetration and inhibition of kangri cancer (skin cancer surfactant) is discussed.
Method
To produce R-5-FU microemulsions, surfactant-cosurfactant was mixed with oil. Distilled water was added dropwise with the help of a burette by gentle stirring at a constant temperature. The surfactant and co-surfactant were mixed into three particular ratios 1:1, 2:1, and 3:1. Further characterizations were performed, such as visual inspection and thermodynamic stability including a stress test and centrifugation. In visual inspection included assessment of the colour, homogeneity, and odour of the formulation of FU microemulsion.
Result
All three microemulsions, labeled RME1, RME2, and RME3, are highly stable. An oval shape of surface morphology of 5-FU was noticed by using a TEM image. The viscosity of RME3 was found to be 17.25±0.22 pa-s. The average globule size was 100–300 nm for all three RME. The results of human cadaver skin permeability are almost of the same pattern, butRME3 indicates the best skin permeability with negligible side effects on the skin.
Conclusion
The quantity of 5-FU released from all formulations at 3-hr ranged from 95.57% to 83.67%. None of the three formulations resulted in skin irritation, with irritancy score of zero (IS=0). Observation revealed no lysis, hemorrhage, or coagulation after application.
Collapse
|
43
|
de Oliveira DAF, Diniz SN, Pereira RMS, Gonçalves ID, Rennó AL, Gorjão R, Vieira EG, da C Ferreira AM, Okuyama CE. Effectiveness of a new rutin Cu(II) complex in the prevention of lipid peroxidation and hepatotoxicity in hypercholesterolemic rats. J Food Biochem 2021; 46:e13999. [PMID: 34747031 DOI: 10.1111/jfbc.13999] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/26/2021] [Accepted: 10/19/2021] [Indexed: 01/04/2023]
Abstract
A new rutin copper(II) complex (R-Cu2) was prepared and characterized by spectroscopic methods and elemental analysis. The effects of rutin and R-Cu2 were evaluated on the prevention of hypercholesterolemia in animals feed with high-cholesterol diet (HCD) for 8 weeks. The animals (n = 5) were neither fed with HCD nor treated (control group), or were treated with vehicle, 10 mg/kg simvastatin, rutin (16 and 160 μmol/kg), and R-Cu2 (16 and 160 μmol/kg) administered orally. Total cholesterol (TC) levels were significantly increased (p < .01) in all HCD groups. In rutin and R-Cu2 groups, it was observed a discrete, but not significant, TC and LDL-induced increase inhibition compared with vehicle-treated group. R-Cu2 treatment significantly decreased (p < .05) plasma triglycerides compared with the vehicle-treated group. All groups receiving treatments maintained the malondialdehyde at normal levels. Serum NO levels were reduced in animals treated with rutin and R-Cu2 compared with the vehicle-treated group. In addition, the results also showed that the groups treated with rutin and R-Cu2 reduced significantly (p < .01), the number of neutrophils and prevented histological changes in all evaluated liver zones. R-Cu2 group maintained the ALT, AST, and ALP enzymes at normal levels. Thus, the effects of R-Cu2 in modulating inflammation and protecting liver damage were confirmed. PRACTICAL APPLICATIONS: Rutin, a plant-derived flavonoid, is one of phenolic compounds well known as a nutraceutical due to its antioxidant and anti-inflammatory properties. Findings of this study demonstrate the effects of both rutin and R-Cu2 in modulating inflammation and protecting liver damage in hypercholesterolemic rats. However, some effects analyzed became more evident in R-Cu2. Thereby, it was shown that the synthesis of a new flavonoid compound (R-Cu2) could be applied as a nutraceutical benefit option to prevent hypercholesterolemia condition.
Collapse
Affiliation(s)
| | - Susana N Diniz
- Universidade Anhanguera de São Paulo (UNIAN), São Paulo, Brazil
| | | | | | - André L Rennó
- Faculty of Pharmacy, Centro Universitário de Jaguariúna (UNIFAJ), Jaguariúna, Brazil.,Faculty of Medicine, Faculdade São Leopoldo Mandic (SLM), Campinas, Brazil
| | - Renata Gorjão
- Program of Interdisciplinary Postgraduate in Health Sciences, Universidade Cruzeiro do Sul (UNICSUL), São Paulo, Brazil
| | - Eduardo G Vieira
- Institute of Chemistry, Universidade de São Paulo (USP), São Paulo, Brazil
| | | | | |
Collapse
|
44
|
Yahyazadeh R, Ghasemzadeh Rahbardar M, Razavi BM, Karimi G, Hosseinzadeh H. The effect of Elettaria cardamomum (cardamom) on the metabolic syndrome: Narrative review. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:1462-1469. [PMID: 35317114 PMCID: PMC8917848 DOI: 10.22038/ijbms.2021.54417.12228] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 07/12/2021] [Indexed: 12/20/2022]
Abstract
Metabolic syndrome (MetS), as a health-threatening factor, consists of various symptoms including insulin resistance, high blood sugar, hypertension, dyslipidemia, inflammation, and abdominal obesity that raise the risk of diabetes mellitus and cardiovascular disease. Cardiovascular diseases are important causes of mortality among the world population. Recently, there has been a growing interest in using phytomedicine and natural compounds in the prevention and treatment of various diseases. The data was gathered by searching various standard electronic databases (Google Scholar, Scopus, Web of Science, and PubMed) for English articles with no time limitations. All in vivo, in vitro, and clinical studies were included. Elettaria cardamomum (cardamom) is a rich source of phenolic compounds, volatile oils, and fixed oils. Cardamom and its pharmacologically effective substances have shown broad-spectrum activities including antihypertensive, anti-oxidant, lipid-modifying, anti-inflammatory, anti-atherosclerotic, anti-thrombotic, hepatoprotective, hypocholesterolemic, anti-obesity, and antidiabetic effects. This review aims to highlight the therapeutic effects of cardamom on MetS and its components including diabetes, hyperlipidemia, obesity, and high blood pressure as well as the underlying mechanisms in the management of MetS. Finally, it can be stated that cardamom has beneficial effects on the treatment of MetS and its complications.
Collapse
Affiliation(s)
- Roghayeh Yahyazadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Bibi Marjan Razavi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Karimi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.,Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
45
|
Wang J, Wang R, Li J, Yao Z. Rutin alleviates cardiomyocyte injury induced by high glucose through inhibiting apoptosis and endoplasmic reticulum stress. Exp Ther Med 2021; 22:944. [PMID: 34306208 PMCID: PMC8281503 DOI: 10.3892/etm.2021.10376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 03/18/2021] [Indexed: 12/15/2022] Open
Abstract
Diabetic cardiomyopathy is a common complication of diabetes, in which endoplasmic reticulum stress (ERS) serves an important role. Rutin can treat the myocardial dysfunction of diabetic rats. However, to the best of our knowledge, studies on the effects of Rutin on myocardial injury caused by diabetes from the perspective of ERS have not previously been reported. In the present study, the role of rutin in the regulation of ERS in myocardial injury was assessed. Different high glucose concentrations were used to treat H9C2 myoblast cells to establish a myocardial damage model. A cell counting kit-8 assay was used to determine cell viability. A lactate dehydrogenase kit was used to detect cytotoxicity. Apoptosis levels were determined using a TUNEL assay. Western blotting was used to determine the expression levels of apoptosis-related proteins and ERS-related proteins, including heat shock protein A family member 5, inositol-requiring enzyme-1α, X-box binding protein 1, activating transcription factor 6, C/EBP-homologous protein (CHOP), cleaved caspase-12 and caspase-12. The anti-apoptotic and anti-ERS effects of Rutin on H9C2 cardiac cells induced by high glucose were examined after the administration of the ERS activator thapsigargin (TG). The results indicated that rutin could dose-dependently inhibit the level of apoptosis and ERS induced by high glucose in H9C2 cells. After administration of the ERS activator TG, it was demonstrated that TG could reverse the anti-apoptotic and anti-ERS effects of rutin on H9C2 cells stimulated with high glucose. Collectively, the present results suggested that rutin may alleviate cardiomyocyte model cell injury induced by high glucose through the inhibition of apoptosis and ERS.
Collapse
Affiliation(s)
- Jing Wang
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Ru Wang
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Jiali Li
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| | - Zhuhua Yao
- Department of Cardiology, Tianjin Union Medical Center, Tianjin 300121, P.R. China
| |
Collapse
|
46
|
Aminifard T, Razavi BM, Hosseinzadeh H. The effects of ginseng on the metabolic syndrome: An updated review. Food Sci Nutr 2021; 9:5293-5311. [PMID: 34532035 PMCID: PMC8441279 DOI: 10.1002/fsn3.2475] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 06/30/2021] [Indexed: 12/13/2022] Open
Abstract
Metabolic syndrome is a group of risk factors including high blood glucose, dyslipidemia, high blood pressure, and high body weight. It can increase the risk of diabetes and cardiovascular disorders, which are the important reasons for death around the world. Nowadays, there are numerous demands for herbal medicine because of less harmful effects and more useful effects in comparison with chemical options. Ginseng is one of the most famous herbs used as a drug for a variety of disorders in humans. The antihyperlipidemia, antihypertension, antihyperglycemic, and anti-obesity effects of ginseng and its active constituents such as ginsenosides have been shown in different studies. In this review article, the different in vitro, in vivo, and human studies concerning the effects of ginseng and its active constituents in metabolic syndrome have been summarized. According to these studies, ginseng can control metabolic syndrome and related diseases.
Collapse
Affiliation(s)
- Tahereh Aminifard
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
| | - Bibi Marjan Razavi
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
- Targeted Drug Delivery Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Hossein Hosseinzadeh
- Department of Pharmacodynamics and ToxicologySchool of PharmacyMashhad University of Medical SciencesMashhadIran
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
47
|
Tunable electrochemical behavior of dicarboxylic acids anchored Co-MOF: Sensitive determination of rutin in pharmaceutical samples. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126667] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
48
|
Baicalein, Baicalin, and Wogonin: Protective Effects against Ischemia-Induced Neurodegeneration in the Brain and Retina. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8377362. [PMID: 34306315 PMCID: PMC8263226 DOI: 10.1155/2021/8377362] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/08/2021] [Accepted: 06/19/2021] [Indexed: 12/17/2022]
Abstract
Ischemia is a common pathological condition present in many neurodegenerative diseases, including ischemic stroke, retinal vascular occlusion, diabetic retinopathy, and glaucoma, threatening the sight and lives of millions of people globally. Ischemia can trigger excessive oxidative stress, inflammation, and vascular dysfunction, leading to the disruption of tissue homeostasis and, ultimately, cell death. Current therapies are very limited and have a narrow time window for effective treatment. Thus, there is an urgent need to develop more effective therapeutic options for ischemia-induced neural injuries. With emerging reports on the pharmacological properties of natural flavonoids, these compounds present potent antioxidative, anti-inflammatory, and antiapoptotic agents for the treatment of ischemic insults. Three major active flavonoids, baicalein, baicalin, and wogonin, have been extracted from Scutellaria baicalensis Georgi (S. baicalensis); all of which are reported to have low cytotoxicity. They have been demonstrated to exert promising pharmacological capabilities in preventing cell and tissue damage. This review focuses on the therapeutic potentials of these flavonoids against ischemia-induced neurotoxicity and damage in the brain and retina. The bioactivity and bioavailability of baicalein, baicalin, and wogonin are also discussed. It is with hope that the therapeutic potential of these flavonoids can be utilized and developed as natural treatments for ischemia-induced injuries of the central nervous system (CNS).
Collapse
|
49
|
Kale MB, Bajaj K, Umare M, Wankhede NL, Taksande BG, Umekar MJ, Upaganlawar A. Exercise and Nutraceuticals: Eminent approach for Diabetic Neuropathy. Curr Mol Pharmacol 2021; 15:108-128. [PMID: 34191703 DOI: 10.2174/1874467214666210629123010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/28/2021] [Accepted: 03/05/2021] [Indexed: 11/22/2022]
Abstract
Diabetic neuropathy is an incapacitating chronic pathological condition that encompasses a large group of diseases and manifestations of nerve damage. It affects approximately 50% of patients with diabetes mellitus. Autonomic, sensory, and motor neurons are affected. Disabilities are severe, along with poor recovery and diverse pathophysiology. Physical exercise and herbal-based therapies have the potential to decrease the disabilities associated with diabetic neuropathy. Aerobic exercises like walking, weight lifting, the use of nutraceuticals and herbal extracts are found to be effective. Literature from the public domain was studied emphasizing various beneficial effects of different exercises, use of herbal and nutraceuticals for their therapeutic action in diabetic neuropathy. Routine exercises and administration of herbal and nutraceuticals, either the extract of plant material containing the active phytoconstituent or isolated phytoconstituent at safe concentration, have been shown to have promising positive action in the treatment of diabetic neuropathy. Exercise has shown promising effects on vascular and neuronal health and has proven to be well effective in the treatment as well as prevention of diabetic neuropathy by various novel mechanisms, including herbal and nutraceuticals therapy is also beneficial for the condition. They primarily show the anti-oxidant effect, secretagogue, anti-inflammatory, analgesic, and neuroprotective action. Severe adverse events are rare with these therapies. The current review investigates the benefits of exercise and nutraceutical therapies in the treatment of diabetic neuropathy.
Collapse
Affiliation(s)
- Mayur Bhimrao Kale
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Komal Bajaj
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Mohit Umare
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Nitu L Wankhede
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | | | - Milind Janrao Umekar
- Shrimati Kishoritai Bhoyar College of Pharmacy, New Kamptee, Nagpur 441002, Maharashtra, India
| | - Aman Upaganlawar
- SNJB's Shriman Sureshdada Jain College of Pharmacy, Neminagar, Chandwad-42310, Nasik, Maharashtra, India
| |
Collapse
|
50
|
Nargeh H, Aliabadi F, Ajami M, Pazoki-Toroudi H. Role of Polyphenols on Gut Microbiota and the Ubiquitin-Proteasome System in Neurodegenerative Diseases. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:6119-6144. [PMID: 34038102 DOI: 10.1021/acs.jafc.1c00923] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Today, neurodegenerative diseases have become a remarkable public health challenge due to their direct relation with aging. Accordingly, understanding the molecular and cellular mechanisms occurring in the pathogenesis of them is essential. Both protein aggregations as a result of the ubiquitin-proteasome system (UPS) inefficiency and gut microbiota alternation are the main pathogenic hallmarks. Polyphenols upregulating this system may decrease the developing rate of neurodegenerative diseases. Most of the dietary intake of polyphenols is converted into other microbial metabolites, which have completely different biological properties from the original polyphenols and should be thoroughly investigated. Herein, several prevalent neurodegenerative diseases are pinpointed to explain the role of gut microbiota alternations and the role of molecular changes, especially UPS down-regulation in their pathogenesis. Some of the most important polyphenols found in our diet are explained along with their microbial metabolites in the body.
Collapse
Affiliation(s)
- Hanieh Nargeh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran 1417466191, Iran
| | - Fatemeh Aliabadi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Marjan Ajami
- Faculty of Nutrition Sciences & Food Technology, Shahid Beheshti University of Medical Sciences, 7th Floor, Bldg No. 2 SBUMS, Arabi Avenue, Daneshjoo Boulevard, Velenjak, Tehran 19839-63113, Iran
| | - Hamidreza Pazoki-Toroudi
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
- Department of Physiology and Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| |
Collapse
|