1
|
Kumar AM, Hussein MA, Abdelrahim F, Ko N, Ramakrishna S, Saravanan S, Javid M, Oh SJ. Multifunctional Polymeric Bioactive Coatings on Ti Implants through the Drug Delivery Approach: In Vitro Corrosion Resistance, Biocompatibility, and Antibacterial Characteristics. ACS APPLIED BIO MATERIALS 2025; 8:2800-2812. [PMID: 40116332 DOI: 10.1021/acsabm.4c01337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2025]
Abstract
In the current study, we developed a controlled drug delivery system using a polymeric matrix composed of biopolymer poly(vinylidene fluoride) (PVDF) and ciprofloxacin (CPF)-loaded titanium (Ti) nanotubes (TNTs) on Ti substrates for biomedical applications. The TNT arrays over the Ti surface were obtained through an anodization route. The PVDF coatings were dip-coated on TNT-Ti loaded with CPF. The chemical, microstructure, and surface properties of the TNTs and coated surfaces were characterized using FTIR, XRD, transmission electron microscopy (TEM), scanning electron microscopy (SEM)/energy-dispersive X-ray spectroscopy (EDS), and surface hydrophilicity analyses. The performance of the implant surfaces was evaluated through in vitro corrosion studies in simulated body fluid (SBF), biocompatibility with MG63 cells, and antibacterial properties. The results revealed that the PVDF/0.1CPF coatings exhibited sustained release of CPF from the polymer matrix at a linear rate and releasing profile for 168 h. PVDF/0.1CPF coating showed decreased corrosion current density (4.457 × 10-9 A/cm2) by 2 orders of magnitude than that of the Ti substrate, indicating enhanced corrosion protection in the SBF. PVDF/0.1CPF coating showed an antibacterial efficacy of 84.44% against Escherichia coli and 88.33% against Bacillus licheniformis after 24 h. The biocompatibility result showed that after 5 days of culturing, the PVDF/0.1CPF was pointedly higher than that of the pure PVDF and uncoated specimens. Additionally, after 7 days of culture, the quantity of cells on the PVDF/0.1CPF coating continued to increase significantly, whereas the bare specimens and pristine PVDF showed a lower rate of proliferation. The proposed biocompatible polymeric coatings hold synergic antibacterial and corrosion-resistant potential for biomedical applications.
Collapse
Affiliation(s)
- A Madhan Kumar
- Interdisciplinary Research Center for Advanced Materials and Department of Aerospace Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - M A Hussein
- Interdisciplinary Research Center for Advanced Materials and Department of Aerospace Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
- Department of Mechanical Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Faisal Abdelrahim
- Interdisciplinary Research Center for Advanced Materials and Department of Aerospace Engineering, King Fahd University of Petroleum & Minerals (KFUPM), Dhahran 31261, Saudi Arabia
| | - Nare Ko
- Biomedical Research Center, Asan Institute for Life Sciences, Seoul 05505, South Korea
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| | - Suresh Ramakrishna
- Graduate School of Biomedical Science and Engineering, Hanyang University, Seoul 04763, South Korea
- College of Medicine, Hanyang University, Seoul 04763, South Korea
| | - S Saravanan
- Department of Life Science, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Mohamed Javid
- Core Research Facilities, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
| | - Seung Jun Oh
- Department of Nuclear Medicine, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, South Korea
| |
Collapse
|
2
|
Durdu S, Caglar Y, Ozcan K, Saka ET. Antibacterial and surface properties of post-light-activated metal-free phthalocyanine-deposited TiO 2 nanotube smart surfaces. Dalton Trans 2025; 54:3323-3334. [PMID: 39831820 DOI: 10.1039/d4dt03192j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
The utilisation of implantable medical devices has become safer and more prevalent since the establishment of sterilisation methods and techniques a century ago. Nevertheless, device-associated infections remain a significant and growing concern, particularly in light of the continued rise in the number of medical device implantations. This underscores the imperative for the development of efficacious prevention and treatment strategies for device-associated infections, as well as further investigation into the design of innovative antibacterial surfaces for medical device applications. The motivation of this work is to investigate the post-light-activated antibacterial photosensitive surfaces fabricated on medical titanium (Ti) surfaces. Thus, in this work, metal-free phthalocyanine (H2Pc)-deposited TiO2 nanotube (TNT) array smart photosensitive surfaces were fabricated on titanium (Ti) surfaces for medical device applications. First, well-ordered nanotube surfaces were produced on titanium using an anodic oxidation (AO) process. Then, H2Pc was accumulated onto TNT surfaces using a physical vapour deposition (PVD-TE) process. H2Pc-deposited TNT surfaces were fabricated on Ti substrates by combining AO and physical vapour deposition (PVD-TE) processes in this work for the first time in the literature. H2Pc was largely coated onto TNT arrays and exhibited elemental homogeneity throughout the whole surface. The contact angle of H2Pc-deposited TNT surfaces was about 89° whereas other Ti and TNT surfaces demonstrated hydrophilic characteristics. Therefore, they exhibited remarkable hydrophobic behavior in terms of antibacterial properties. Importantly, compared to Ti and TNT surfaces, the bacterial inhibition on sunlight-activated H2Pc-deposited TNT surfaces was 94.9% for S. aureus and 97.3% for E. coli, respectively. According to these results, H2Pc-deposited TNT innovative surfaces provided superior antibacterial activity post-light-activation under sunlight due to their photosensitive character.
Collapse
Affiliation(s)
- Salih Durdu
- The Department of Industrial Engineering, Giresun University, 28200, Giresun, Turkey.
- The Department of Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Yasemin Caglar
- The Department of Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Kadriye Ozcan
- The Department of Genetics and Bioengineering, Giresun University, 28200, Giresun, Turkey
| | - Ece Tugba Saka
- The Department of Chemistry, Karadeniz Technical University, 61080, Trabzon, Turkey.
| |
Collapse
|
3
|
Onyenso G, Vakamulla Raghu SN, Hartwich P, Killian MS. Modulated-Diameter Zirconia Nanotubes for Controlled Drug Release-Bye to the Burst. J Funct Biomater 2025; 16:37. [PMID: 39997571 PMCID: PMC11856647 DOI: 10.3390/jfb16020037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 01/08/2025] [Accepted: 01/11/2025] [Indexed: 02/26/2025] Open
Abstract
The performance of an orthopedic procedure depends on several tandem functionalities. Such characteristics include materials' surface properties and subsequent responses. Implant surfaces are typically roughened; this roughness can further be optimized to a specific morphology such as nanotubular roughness (ZrNTs) and the surfaces can further be used as static drug reservoirs. ZrNTs coatings are attracting interest due to their potential to improve the success rate of implant systems, by means of better physical affixation and also micro/nano physio-chemical interaction with the extracellular matrix (ECM). Effective control over the drug release properties from such coatings has been the subject of several published reports. In this study, a novel and simple approach to extending drug release time and limiting the undesirable burst release from zirconia nanotubes (ZrNTs) via structural modification was demonstrated. The latter involved fabricating a double-layered structure with a modulated diameter and was achieved by varying the voltage and time during electrochemical anodization. The structurally modified ZrNTs and their homogenous equivalents were characterized via SEM and ToF-SIMS, and their drug release properties were monitored and compared using UV-Vis spectroscopy. We report a significant reduction in the initial burst release phenomenon and enhanced overall release time. The simple structural modification of ZrNTs can successfully enhance drug release performance, allowing for flexibility in designing drug delivery coatings for specific implant challenges, and offering a new horizon for smart biomaterials based on metal oxide nanostructures.
Collapse
Affiliation(s)
| | - Swathi Naidu Vakamulla Raghu
- Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany; (G.O.); (P.H.)
| | | | - Manuela Sonja Killian
- Chemistry and Structure of Novel Materials, University of Siegen, Paul-Bonatz-Str. 9-11, 57076 Siegen, Germany; (G.O.); (P.H.)
| |
Collapse
|
4
|
Otadi M, Borhani E, Faghihi S. Combined bulk nanostructuring and surface modifications of titanium substrate for improved corrosion behavior. SURFACE AND COATINGS TECHNOLOGY 2024; 493:131229. [DOI: 10.1016/j.surfcoat.2024.131229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Hassan N, Krieg T, Kopp A, Bach AD, Kröger N. Challenges and Pitfalls of Research Designs Involving Magnesium-Based Biomaterials: An Overview. Int J Mol Sci 2024; 25:6242. [PMID: 38892430 PMCID: PMC11172609 DOI: 10.3390/ijms25116242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024] Open
Abstract
Magnesium-based biomaterials hold remarkable promise for various clinical applications, offering advantages such as reduced stress-shielding and enhanced bone strengthening and vascular remodeling compared to traditional materials. However, ensuring the quality of preclinical research is crucial for the development of these implants. To achieve implant success, an understanding of the cellular responses post-implantation, proper model selection, and good study design are crucial. There are several challenges to reaching a safe and effective translation of laboratory findings into clinical practice. The utilization of Mg-based biomedical devices eliminates the need for biomaterial removal surgery post-healing and mitigates adverse effects associated with permanent biomaterial implantation. However, the high corrosion rate of Mg-based implants poses challenges such as unexpected degradation, structural failure, hydrogen evolution, alkalization, and cytotoxicity. The biocompatibility and degradability of materials based on magnesium have been studied by many researchers in vitro; however, evaluations addressing the impact of the material in vivo still need to be improved. Several animal models, including rats, rabbits, dogs, and pigs, have been explored to assess the potential of magnesium-based materials. Moreover, strategies such as alloying and coating have been identified to enhance the degradation rate of magnesium-based materials in vivo to transform these challenges into opportunities. This review aims to explore the utilization of Mg implants across various biomedical applications within cellular (in vitro) and animal (in vivo) models.
Collapse
Affiliation(s)
- Nourhan Hassan
- Department of Plastic, Reconstructive and Aesthetic Surgery, University Hospital Cologne, 50937 Cologne, Germany
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Biotechnology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Thomas Krieg
- Translational Matrix Biology, Medical Faculty, University of Cologne, 50937 Cologne, Germany
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, 50937 Cologne, Germany
- Center for Molecular Medicine (CMMC), University of Cologne, 50937 Cologne, Germany
| | | | - Alexander D. Bach
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| | - Nadja Kröger
- Institute for Laboratory Animal Science and Experimental Surgery, University of Aachen Medical Center, Faculty of Medicine, RWTH-Aachen University, 52074 Aachen, Germany
- Department of Plastic, Aesthetic and Hand Surgery, St. Antonius Hospital Eschweiler, 52249 Eschweiler, Germany
| |
Collapse
|
6
|
Bissenova M, Umirzakov A, Mit K, Mereke A, Yerubayev Y, Serik A, Kuspanov Z. Synthesis and Study of SrTiO 3/TiO 2 Hybrid Perovskite Nanotubes by Electrochemical Anodization. Molecules 2024; 29:1101. [PMID: 38474612 DOI: 10.3390/molecules29051101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/23/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024] Open
Abstract
Layers of TiO2 nanotubes formed by the anodization process represent an area of active research in the context of innovative energy conversion and storage systems. Titanium nanotubes (TNTs) have attracted attention because of their unique properties, especially their high surface-to-volume ratio, which makes them a desirable material for various technological applications. The anodization method is widely used to produce TNTs because of its simplicity and relative cheapness; the method enables precise control over the thickness of TiO2 nanotubes. Anodization can also be used to create decorative and colored coatings on titanium nanotubes. In this study, a combined structure including anodic TiO2 nanotubes and SrTiO3 particles was fabricated using chemical synthesis techniques. TiO2 nanotubes were prepared by anodizing them in ethylene glycol containing NH4F and H2O while applying a voltage of 30 volts. An anode nanotube array heat-treated at 450 °C was then placed in an autoclave filled with dilute SrTiO3 solution. Scanning electron microscopy (SEM) analysis showed that the TNTs were characterized by clear and open tube ends, with an average outer diameter of 1.01 μm and an inner diameter of 69 nm, and their length is 133 nm. The results confirm the successful formation of a structure that can be potentially applied in a variety of applications, including hydrogen production by the photocatalytic decomposition of water under sunlight.
Collapse
Affiliation(s)
- Madina Bissenova
- Institute of Physics and Technology, Almaty 050032, Kazakhstan
- Institute of Nuclear Physics, Almaty 050032, Kazakhstan
| | - Arman Umirzakov
- Institute of Physics and Technology, Almaty 050032, Kazakhstan
- Institute of Nuclear Physics, Almaty 050032, Kazakhstan
- Department of Materials Science, Nanotechnology and Engineering Physics, Satbaev University, Almaty 050032, Kazakhstan
| | - Konstantin Mit
- Institute of Physics and Technology, Almaty 050032, Kazakhstan
| | - Almaz Mereke
- Institute of Physics and Technology, Almaty 050032, Kazakhstan
- Department of Materials Science, Nanotechnology and Engineering Physics, Satbaev University, Almaty 050032, Kazakhstan
| | - Yerlan Yerubayev
- Department of Mechanics and Mechanical Engineering, M.Kh. Dulaty Taraz Regional University, Taraz 080000, Kazakhstan
| | - Aigerim Serik
- Institute of Nuclear Physics, Almaty 050032, Kazakhstan
- Department of Materials Science, Nanotechnology and Engineering Physics, Satbaev University, Almaty 050032, Kazakhstan
| | - Zhengisbek Kuspanov
- Institute of Nuclear Physics, Almaty 050032, Kazakhstan
- Department of Materials Science, Nanotechnology and Engineering Physics, Satbaev University, Almaty 050032, Kazakhstan
| |
Collapse
|
7
|
Ugolotti A, Dolce M, Di Valentin C. Vitamin C Affinity to TiO 2 Nanotubes: A Computational Study by Hybrid Density Functional Theory Calculations. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:261. [PMID: 38334532 PMCID: PMC10856687 DOI: 10.3390/nano14030261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/10/2024]
Abstract
Titanium dioxide nanotubes (TNT) have been extensively studied because of their unique properties, which make such systems ideal candidates for biomedical application, especially for the targeted release of drugs. However, knowledge about the properties of TiO2 nanotubes with typical dimensions of the order of the nanometer is limited, especially concerning the adsorption of molecules that can be potentially loaded in actual devices. In this work, we investigate, by means of simulations based on hybrid density functional theory, the adsorption of Vitamin C molecules on different nanotubes through a comparative analysis of the properties of different structures. We consider two different anatase TiO2 surfaces, the most stable (101) and the more reactive (001)A; we evaluate the role of the curvature, the thickness and of the diameter as well as of the rolling direction of the nanotube. Different orientations of the molecule with respect to the surface are studied in order to identify any trends in the adsorption mechanism. Our results show that there is no preferential functional group of the molecule interacting with the substrate, nor any definite spatial dependency, like a rolling orientation or the concavity of the nanotube. Instead, the adsorption is driven by geometrical factors only, i.e., the favorable matching of the position and the alignment of any functional groups with undercoordinated Ti atoms of the surface, through the interplay between chemical and hydrogen bonds. Differently from flat slabs, thicker nanotubes do not improve the stability of the adsorption, but rather develop weaker interactions, due to the enhanced curvature of the substrate layers.
Collapse
Affiliation(s)
- Aldo Ugolotti
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy; (A.U.)
| | - Mirko Dolce
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy; (A.U.)
| | - Cristiana Di Valentin
- Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy; (A.U.)
- BioNanoMedicine Center NANOMIB, Università di Milano-Bicocca, via Follereau 3, 20854 Vedano al Lambro, Italy
| |
Collapse
|
8
|
Nahum EZ, Lugovskoy A, Lugovskoy S, Sobolev A. Synthesis of Titanium Oxide Nanotubes Loaded with Hydroxyapatite. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2743. [PMID: 37887894 PMCID: PMC10609259 DOI: 10.3390/nano13202743] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/08/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
A simple method of synthesis of TiO2 nanotubes (TiNT) loaded with hydroxyapatite (HAP) is described. Such nanotubes find wide applications in various fields, including biomedicine, solar cells, and drug delivery, due to their bioactivity and potential for osseointegration. The Cp-Ti substrate was anodized at a constant voltage of 40 V, with the subsequent heat treatment at 450 °C. The resulting TiNT had a diameter of 100.3 ± 2.8 nm and a length of 3.5 ± 0.04 μm. The best result of the growth rate of HAP in Hanks' balanced salt solution (Hanks' BSS) was obtained in calcium glycerophosphate (CG = 0.1 g/L) when precipitates formed on the bottom and walls of the nanotubes. Structural properties, surface wettability, corrosion resistance, and growth rate of HAP as an indicator of the bioactivity of the coating have been studied. X-ray diffraction (XRD), scanning electron microscope (SEM), energy dispersive spectroscopy (EDS), potentiodynamic polarization test (PPC), electrochemical impedance spectroscopy (EIS), and contact angle (CA) measurements were used to characterize HAP-loaded nanotubes (HAP-TiNT). The CA, also serving as an indirect indicator of bioactivity, was 30.4 ± 1.1° for the TiNT not containing HAP. The contact angle value for HAP-TiNT produced in 0.1 g/L CG was 18.2 ± 1.2°, and for HAP-TiNT exposed to Hanks' BSS for 7 days, the CA was 7.2 ± 0.5°. The corrosion studies and measurement of HAP growth rates after a 7-day exposure to Hanks' BSS confirmed the result that TiNT processed in 0.1 g/L of CG exhibited the most significant capacity for HAP formation compared to the other tested samples.
Collapse
Affiliation(s)
| | | | | | - Alexander Sobolev
- Department of Chemical Engineering, Ariel University, Ariel 4070000, Israel; (E.Z.N.); (A.L.); (S.L.)
| |
Collapse
|
9
|
Czerwiński M, del Olmo Martinez R, Michalska-Domańska M. Application of Anodic Titanium Oxide Modified with Silver Nanoparticles as a Substrate for Surface-Enhanced Raman Spectroscopy. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5696. [PMID: 37629988 PMCID: PMC10456277 DOI: 10.3390/ma16165696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/10/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023]
Abstract
The formation of nanostructured anodic titanium oxide (ATO) layers was explored on pure titanium by conventional anodizing under two different operating conditions to form nanotube and nanopore morphologies. The ATO layers were successfully developed and showed optimal structural integrity after the annealing process conducted in the air atmosphere at 450 °C. The ATO nanopore film was thinner (1.2 +/- 0.3 μm) than the ATO nanotube layer (3.3 +/- 0.6 μm). Differences in internal pore diameter were also noticeable, i.e., 88 +/- 9 nm and 64 +/- 7 nm for ATO nanopore and nanotube morphology, respectively. The silver deposition on ATO was successfully carried out on both ATO morphologies by silver electrodeposition and Ag colloid deposition. The most homogeneous silver deposit was prepared by Ag electrodeposition on the ATO nanopores. Therefore, these samples were selected as potential surface-enhanced Raman spectroscopy (SERS) substrate, and evaluation using pyridine (aq.) as a testing analyte was conducted. The results revealed that the most intense SERS signal was registered for nanopore ATO/Ag substrate obtained by electrodeposition of silver on ATO by 2.5 min at 1 V from 0.05M AgNO3 (aq.) (analytical enhancement factor, AEF ~5.3 × 104) and 0.025 M AgNO3 (aq.) (AEF ~2.7 × 102). The current findings reveal a low-complexity and inexpensive synthesis of efficient SERS substrates, which allows modification of the substrate morphology by selecting the parameters of the synthesis process.
Collapse
Affiliation(s)
- Mateusz Czerwiński
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland;
| | | | - Marta Michalska-Domańska
- Institute of Optoelectronics, Military University of Technology, Kaliskiego 2, 00-908 Warsaw, Poland;
| |
Collapse
|
10
|
Tang K, Su H, Qu Z. Preparation of honokiol-loaded titanium dioxide nanotube drug delivery system and its effect on CAL-27 cells. Front Bioeng Biotechnol 2023; 11:1249349. [PMID: 37600298 PMCID: PMC10435746 DOI: 10.3389/fbioe.2023.1249349] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 07/26/2023] [Indexed: 08/22/2023] Open
Abstract
Background: Tongue cancer is the most common type of oral cancer, and patients have a poor prognosis and quality of life after conventional surgical treatment. Honokiol (HNK) is a kind of lignan extracted from Chinese herbal medicine Houpu, many domestic and international experiments have demonstrated its anti-tumor effect. Titanium dioxide nanotube (TNTs) is a kind of nanomaterial which can be used as drug carrier. The purpose of this study is to explore the effects of HNK-loaded TNTs delivery system (HNK-TNTs) on anti-tumor. Methods: TNTs were prepared by anodic oxidation method, and HNK was loaded onto TNTs by physical adsorption. The effect of HNK-TNTs on the proliferation, migration and apoptosis of CAL-27 cells were explored by CCK-8 experiment, scratch assay, live and dead staining and cellular immunofluorescence analysis. Results: The material characterization test results showed that we had successfully prepared HNK-TNTs. CCK-8 experiment, scratch assay showed that the proliferation and migration ability of CAL-27 cells were significantly weakened after treatment with HNK-TNTs, and their cell proliferation rates significantly decreased. Live/dead staining, cell immunofluorescence analysis showed that HNK-TNTs could promote CAL-27 cells apoptosis by increasing the expression levels of the apoptosis-related protein Bax and Fas. Conclusion: In this experiment, we had successfully prepared Honokiol-loaded titanium dioxide nanotube drug delivery system (HNK-TNTs) and compared the effects of single drug HNK and HNK-TNTs on the proliferation, apoptosis and migration of tongue cancer CAL-27 cells. This experiment showed that HNK-TNTs had greater anti-proliferative, apoptosis-promoting and migration-inhibiting effects than the HNK as a single drug.
Collapse
Affiliation(s)
| | | | - Zhi Qu
- Second Affiliated Hospital of Jinzhou Medical University, Jinzhou, China
| |
Collapse
|
11
|
Yang G, Liu H, Li A, Liu T, Lu Q, He F. Antibacterial Structure Design of Porous Ti6Al4V by 3D Printing and Anodic Oxidation. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5206. [PMID: 37569910 PMCID: PMC10420244 DOI: 10.3390/ma16155206] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/18/2023] [Accepted: 06/27/2023] [Indexed: 08/13/2023]
Abstract
Titanium alloy Ti6Al4V is a commonly used bone implant material, primarily prepared as a porous material to better match the elastic modulus of human bone. However, titanium alloy is biologically inert and does not have antibacterial properties. At the same time, the porous structure with a large specific surface area also increases the risk of infection, leading to surgical failure. In this paper, we prepared three porous samples with different porosities of 60%, 75%, and 85%, respectively (for short, 3D-60, 3D-75, and 3D-85) using 3D printing technology and clarified the mechanical properties. Through tensile experiments, when the porosity was 60%, the compressive modulus was within the elastic modulus of human bone. Anodic oxidation technology carried out the surface modification of a 3D-printed porous titanium alloy with 60% porosity. Through change, the different voltages and times on the TiO2 oxide layer on the 3D-printed porous titanium alloy are different, and it reveals the growth mechanism of the TiO2 oxide layer on a 3D-printed unique titanium alloy. The surface hydrophilic and antibacterial properties of 3D-printed porous titanium alloy were significantly improved after modification by anodic oxidation.
Collapse
Affiliation(s)
- Guijun Yang
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (G.Y.); (H.L.); (A.L.)
- College of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Houjiang Liu
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (G.Y.); (H.L.); (A.L.)
| | - Ang Li
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (G.Y.); (H.L.); (A.L.)
| | - Tiansheng Liu
- Tianjin Hospital, Tianjin University, Tianjin 300211, China
| | - Qiqin Lu
- College of Chemical Engineering, Qinghai University, Xining 810016, China
| | - Fang He
- School of Materials Science and Engineering, Tianjin University, Tianjin 300072, China; (G.Y.); (H.L.); (A.L.)
| |
Collapse
|
12
|
Muresan LM. Nanocomposite Coatings for Anti-Corrosion Properties of Metallic Substrates. MATERIALS (BASEL, SWITZERLAND) 2023; 16:5092. [PMID: 37512373 PMCID: PMC10384308 DOI: 10.3390/ma16145092] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023]
Abstract
Nanocomposites are high-performance materials with exceptional characteristics that possess properties that their individual constituents, by themselves, cannot provide. They have useful applications in many fields, ranging from membrane processes to fuel cells, biomedical devices, and anti-corrosion protection. Well-tailored nanocomposites are promising materials for anti-corrosion coatings on metals and alloys, exhibiting simple barrier protection or even smart auto-responsive and self-healing functionalities. Nanocomposite coatings can be prepared by using a large variety of matrices and reinforcement materials, often acting in synergy. In this context, recent advances in the preparation and characterization of corrosion-resistant nanocomposite coatings based on metallic, polymeric, and ceramic matrices, as well as the incorporation of various reinforcement materials, are reviewed. The review presents the most important materials used as matrices for nanocomposites (metals, polymers, and ceramics), the most popular fillers (nanoparticles, nanotubes, nanowires, nanorods, nanoplatelets, nanosheets, nanofilms, or nanocapsules), and their combinations. Some of the most important characteristics and applications of nanocomposite coatings, as well as the challenges for future research, are briefly discussed.
Collapse
Affiliation(s)
- Liana Maria Muresan
- Department of Chemical Engineering, Faculty of Chemistry and Chemical Engineering, "Babes-Bolyai" University, 400028 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Shojai S, Meftahi M, Yousefi R, Moosavi-Movahedi AA, Haeri-Rohani A, Habibi-Rezaei M. Cellulose membrane coated Mo-doped TiO 2nanotube sheets for sustained oxidation of biomolecules. NANOTECHNOLOGY 2023; 34:315101. [PMID: 37141862 DOI: 10.1088/1361-6528/acd258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 05/04/2023] [Indexed: 05/06/2023]
Abstract
Titanium dioxide nanotubes (TNT) are widely researched materials for the photocatalytic generation of free radicals, which are useful in wastewater treatment. We aimed to prepare Mo-doped TNT sheets, covered with a cellulose membrane to avoid TNT surface inactivation by protein adsorption. We studied the susceptibility of serum albumin (SA) bound to different molar ratios of palmitic acid (PA) to denaturation and fibrillation by this system, which is meant to mimic oxidative stress conditions such as non-alcoholic fatty liver disease. The results demonstrated that cellulose membrane-covered TNT successfully oxidized the SA, identified by structural changes to the protein. Increasing the molar ratio of PA to protein-enhanced thiol group oxidation while protecting the protein against structural changes. Finally, we propose that in this photocatalyzed oxidation system, the protein is oxidized by a non-adsorptive mechanism mediated by H2O2. Therefore, we suggest that this system could be used as a sustained oxidation system to oxidize biomolecules as well as potentially in wastewater treatment.
Collapse
Affiliation(s)
- Sajjad Shojai
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Mohammad Meftahi
- School of Biology, College of Science, University of Tehran, Tehran, Iran
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Reza Yousefi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
| | - Ali A Moosavi-Movahedi
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran
- UNESCO Chair on Interdisciplinary Research in Diabetes, University of Tehran, Tehran 1417466191, Iran
| | - Ali Haeri-Rohani
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | | |
Collapse
|
14
|
Alsrhani A, Elderdery AY, Alzahrani B, Alzerwi NAN, Althobiti MM, Rayzah M, Idrees B, Elkhalifa AME, Subbiah SK, Mok PL. Therapeutic Potential of Albumin Nanoparticles Encapsulated Visnagin in MDA-MB-468 Triple-Negative Breast Cancer Cells. Molecules 2023; 28:molecules28073228. [PMID: 37049991 PMCID: PMC10096807 DOI: 10.3390/molecules28073228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/28/2023] [Accepted: 03/28/2023] [Indexed: 04/14/2023] Open
Abstract
Breast cancer is among the most recurrent malignancies, and its prevalence is rising. With only a few treatment options available, there is an immediate need to search for better alternatives. In this regard, nanotechnology has been applied to develop potential chemotherapeutic techniques, particularly for cancer therapy. Specifically, albumin-based nanoparticles are a developing platform for the administration of diverse chemotherapy drugs owing to their biocompatibility and non-toxicity. Visnagin, a naturally derived furanochromone, treats cancers, epilepsy, angina, coughs, and inflammatory illnesses. In the current study, the synthesis and characterization of albumin visnagin (AV) nanoparticles (NPs) using a variety of techniques such as transmission electron microscopy, UV-visible, Fourier transform infrared, energy dispersive X-ray composition analysis, field emission scanning electron microscopy, photoluminescence, X-Ray diffraction, and dynamic light scattering analyses have been carried out. The MTT test, dual AO/EB, DCFH-DA, Annexin-V-FITC/PI, Propidium iodide staining techniques as well as analysis of apoptotic proteins, antioxidant enzymes, and PI3K/Akt/mTOR signaling analysis was performed to examine the NPs' efficacy to suppress MDA-MB-468 cell lines. The NPs decreased cell viability increased the amount of ROS in the cells, disrupted membrane integrity, decreased the level of antioxidant enzymes, induced cell cycle arrest, and activated the PI3K/Akt/mTOR signaling cascade, ultimately leading to cell death. Thus, AV NPs possesses huge potential to be employed as a strong anticancer therapy alternative.
Collapse
Affiliation(s)
- Abdullah Alsrhani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Abozer Y Elderdery
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Badr Alzahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Jouf University, Sakaka 72388, Saudi Arabia
| | - Nasser A N Alzerwi
- Department of Surgery, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Maryam Musleh Althobiti
- Department of Clinical Laboratory Science, College of Applied Medical Science, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Musaed Rayzah
- Department of Surgery, College of Medicine, Majmaah University, Al-Majmaah 11952, Saudi Arabia
| | - Bandar Idrees
- Department of Surgery, Prince Sultan Military Medical City in Riyadh, Makkah Al Mukarramah Rd, As Sulimaniyah 12233, Saudi Arabia
| | - Ahmed M E Elkhalifa
- Department of Public Health, College of Health Sciences, Saudi Electronic University, Riyadh 11673, Saudi Arabia
- Department of Haematology, Faculty of Medical Laboratory Sciences, University of El Imam El Mahdi, Kosti 1158, Sudan
| | - Suresh K Subbiah
- Centre for Materials Engineering and Regenerative Medicine, Bharath Institute of Higher Education and Research, Chennai 600073, India
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine & Health Sciences, Universiti Putra Malaysia, Serdang UPM 43400, Malaysia
| |
Collapse
|
15
|
Nurdin M, Ilham I, Maulidiyah M, Muzakkar MZ, Wibowo D, Arham Z, Salim LOA, Irwan I, Bijang C, Umar AA. Enhanced Photoelectrocatalytic Performance Using Chalcogenide Te/TiO2/Ti Nanotube Array Based on COD Analyses for Water Treatment Applications. Electrocatalysis (N Y) 2023. [DOI: 10.1007/s12678-023-00820-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
16
|
Mbatha LS, Akinyelu J, Chukwuma CI, Mokoena MP, Kudanga T. Current Trends and Prospects for Application of Green Synthesized Metal Nanoparticles in Cancer and COVID-19 Therapies. Viruses 2023; 15:741. [PMID: 36992450 PMCID: PMC10054370 DOI: 10.3390/v15030741] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/07/2023] [Indexed: 03/16/2023] Open
Abstract
Cancer and COVID-19 have been deemed as world health concerns due to the millions of lives that they have claimed over the years. Extensive efforts have been made to develop sophisticated, site-specific, and safe strategies that can effectively diagnose, prevent, manage, and treat these diseases. These strategies involve the implementation of metal nanoparticles and metal oxides such as gold, silver, iron oxide, titanium oxide, zinc oxide, and copper oxide, formulated through nanotechnology as alternative anticancer or antiviral therapeutics or drug delivery systems. This review provides a perspective on metal nanoparticles and their potential application in cancer and COVID-19 treatments. The data of published studies were critically analysed to expose the potential therapeutic relevance of green synthesized metal nanoparticles in cancer and COVID-19. Although various research reports highlight the great potential of metal and metal oxide nanoparticles as alternative nanotherapeutics, issues of nanotoxicity, complex methods of preparation, biodegradability, and clearance are lingering challenges for the successful clinical application of the NPs. Thus, future innovations include fabricating metal nanoparticles with eco-friendly materials, tailor making them with optimal therapeutics for specific disease targeting, and in vitro and in vivo evaluation of safety, therapeutic efficiency, pharmacokinetics, and biodistribution.
Collapse
Affiliation(s)
- Londiwe Simphiwe Mbatha
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| | - Jude Akinyelu
- Department of Biochemistry, Federal University Oye-Ekiti, Private Mail Bag 373, Ekiti State 370111, Nigeria
| | - Chika Ifeanyi Chukwuma
- Centre for Quality of Health and Living, Faculty of Health and Environmental Sciences, Central University of Technology, Private Bag X20539, Bloemfontein 9301, South Africa
| | - Mduduzi Paul Mokoena
- Department of Pathology, Pre-Clinical Sciences Division, University of Limpopo, Private Bag X1106, Sovenga 0727, South Africa
| | - Tukayi Kudanga
- Department of Biotechnology and Food Science, Durban University of Technology, P.O. Box 1334, Durban 4000, South Africa
| |
Collapse
|
17
|
Heydariyan Z, Soofivand F, Dawi EA, Abd Al-Kahdum SA, Hameed NM, Salavati-Niasari M. A comprehensive review: Different approaches for encountering of bacterial infection of dental implants and improving their properties. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
18
|
Asli NA, Zainol SZ, Yusoff KM, Azhar NEA, Nurfazianawatie MZ, Omar H, Rosman NF, Malek NSA, Md Akhir R, Buniyamin I, Khusaimi Z, Malek MF, Md Sin ND, Rusop M. Performance of Pandannus amaryllifolius dye on zinc oxide nanoflakes synthesized via electrochemical anodization method. INORG NANO-MET CHEM 2023. [DOI: 10.1080/24701556.2023.2172583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- N. A. Asli
- NANO-SciTech Lab, Functional Materials and Nanotechnology Centre, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - S. Z. Zainol
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - K. M. Yusoff
- NANO-SciTech Lab, Functional Materials and Nanotechnology Centre, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - N. E. A. Azhar
- NANO-SciTech Lab, Functional Materials and Nanotechnology Centre, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - M. Z. Nurfazianawatie
- NANO-SciTech Lab, Functional Materials and Nanotechnology Centre, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - H. Omar
- NANO-SciTech Lab, Functional Materials and Nanotechnology Centre, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - N. F. Rosman
- NANO-SciTech Lab, Functional Materials and Nanotechnology Centre, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - N. S. A. Malek
- NANO-SciTech Lab, Functional Materials and Nanotechnology Centre, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - R. Md Akhir
- NANO-SciTech Lab, Functional Materials and Nanotechnology Centre, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - I. Buniyamin
- NANO-SciTech Lab, Functional Materials and Nanotechnology Centre, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Z. Khusaimi
- NANO-SciTech Lab, Functional Materials and Nanotechnology Centre, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - M. F. Malek
- NANO-SciTech Lab, Functional Materials and Nanotechnology Centre, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- Faculty of Applied Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - N. D. Md Sin
- School of Electrical Engineering, College of Engineering, Universiti Teknologi MARA, Masai, Johor, Malaysia
| | - M. Rusop
- NANO-SciTech Lab, Functional Materials and Nanotechnology Centre, Institute of Science, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
- NANO-ElecTronic Centre, Faculty of Electrical Engineering, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| |
Collapse
|
19
|
Daniel M, Eleršič Filipič K, Filová E, Judl T, Fojt J. Modelling the role of membrane mechanics in cell adhesion on titanium oxide nanotubes. Comput Methods Biomech Biomed Engin 2023; 26:281-290. [PMID: 35380071 DOI: 10.1080/10255842.2022.2058875] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Titanium surface treated with titanium oxide nanotubes was used in many studies to quantify the effect of surface topography on cell fate. However, the predicted optimal diameter of nanotubes considerably differs among studies. We propose a model that explains cell adhesion to a nanostructured surface by considering the deformation energy of cell protrusions into titanium nanotubes and the adhesion to the surface. The optimal surface topology is defined as a geometry that gives the membrane a minimum energy shape. A dimensionless parameter, the cell interaction index, was proposed to describe the interplay between the cell membrane bending, the intrinsic curvature, and the strength of cell adhesion. Model simulation shows that an optimal nanotube diameter ranging from 20 nm to 100 nm (cell interaction index between 0.2 and 1, respectively) is feasible within a certain range of parameters describing cell membrane adhesion and bending. The results indicate a possibility to tune the topology of a nanostructural surface in order to enhance the proliferation and differentiation of cells mechanically compatible with the given surface geometry while suppressing the growth of other mechanically incompatible cells.
Collapse
Affiliation(s)
- Matej Daniel
- Faculty of Mechanical Engineering, Czech Technical University in Prague, Prague, Czechia
| | | | - Eva Filová
- Institute of Experimental Medicine of the Czech Academy of Sciences, Prague, Czechia
| | | | - Jaroslav Fojt
- Faculty of Chemical Technology, University of Chemistry and Technology Prague, Prague, Czechia
| |
Collapse
|
20
|
Erdogan Y, Ercan B. Anodized Nanostructured 316L Stainless Steel Enhances Osteoblast Functions and Exhibits Anti-Fouling Properties. ACS Biomater Sci Eng 2023; 9:693-704. [PMID: 36692948 PMCID: PMC9930089 DOI: 10.1021/acsbiomaterials.2c01072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Poor osseointegration and infection are among the major challenges of 316L stainless steel (SS) implants in orthopedic applications. Surface modifications to obtain a nanostructured topography seem to be a promising method to enhance cellular interactions of 316L SS implants. In this study, arrays of nanodimples (NDs) having controlled feature sizes between 25 and 250 nm were obtained on 316L SS surfaces by anodic oxidation (anodization). Results demonstrated that the fabrication of NDs increased the surface area and, at the same time, altered the surface chemistry of 316L SS to provide chromium oxide- and hydroxide-rich surface oxide layers. In vitro experiments showed that ND surfaces promoted up to a 68% higher osteoblast viability on the fifth day of culture. Immunofluorescence images confirmed a well-spread cytoskeleton organization on the ND surfaces. In addition, higher alkaline phosphate activity and calcium mineral synthesis were observed on the ND surfaces compared to non-anodized 316L SS. Furthermore, a 71% reduction in Staphylococcus aureus (S. aureus) and a 58% reduction in Pseudomonas aeruginosa (P. aeruginosa) colonies were observed on the ND surfaces having a 200 nm feature size compared to non-anodized surfaces at 24 h of culture. Cumulatively, the results showed that a ND surface topography fabricated on 316L SS via anodization upregulated the osteoblast viability and functions while preventing S. aureus and P. aeruginosa biofilm synthesis.
Collapse
Affiliation(s)
- Yasar
Kemal Erdogan
- Biomedical
Engineering Program, Middle East Technical
University, Ankara 06800, Turkey,Department
of Biomedical Engineering, Isparta University
of Applied Science, Isparta 32260, Turkey
| | - Batur Ercan
- Biomedical
Engineering Program, Middle East Technical
University, Ankara 06800, Turkey,Department
of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Turkey,BIOMATEN,
METU Center of Excellence in Biomaterials and Tissue Engineering, Ankara 06800, Turkey,. Phone: +90 (312) 210-2513
| |
Collapse
|
21
|
Siuzdak K, Wawrzyniak J, Haryński Ł, Bielan Z, Grochowska K. The Impact of Side-Selective Laser Tailoring of Titania Nanotubes on Changes in Photoelectrocatalytic Activity. MICROMACHINES 2023; 14:274. [PMID: 36837973 PMCID: PMC9965222 DOI: 10.3390/mi14020274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Over the last few decades, titanium(IV) oxide-based materials have gained particular attention due to their stability, corrosion resistance, photocatalytic activity under UV light, and possibilities for modification. Among various structures, TiO2 nanotubes (NTs) grown on Ti foil or glass substrates and obtained through a simple anodization process are widely used as photocatalysts or photoanodes. During the anodization process, the geometry of the nanotubes (length, distribution, diameter, wall thickness, etc.) is easily controlled, though the obtained samples are amorphous. Heat treatment is required to transform the amorphous material into crystalline material. However, instead of time- and cost-consuming furnace treatment, fast and precise laser annealing is applied as a promising alternative. Nonetheless, laser treatment can result in geometry changes of TiO2 NTs, consequently altering, their electrochemical activity. Moreover, modification of the TiO2 NTs surfaces with transition metals and further laser treatment can result in materials with unique photoelectrochemical properties. In this regard, we gathered the latest achievements in the field of laser-treated titania for this review paper. We mainly focused on single structural and morphological changes resulting from pulsed laser annealing and their influence on the electrochemical properties of titania. Finally, the theoretical basis for and combination of laser- and metal-modifications and their impact on the resulting possibilities for electrochemical water splitting are also discussed.
Collapse
|
22
|
Effendy WNFWE, S. M. N. Mydin RB, Gazzali AM, Sreekantan S. Localised Delivery of Cisplatin from Chitosan-Coated Titania Nanotube Array Nanosystems Targeting Nasopharyngeal Carcinoma. Adv Pharm Bull 2023; 13:104-112. [PMID: 36721810 PMCID: PMC9871279 DOI: 10.34172/apb.2023.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 10/01/2021] [Accepted: 12/31/2021] [Indexed: 02/03/2023] Open
Abstract
Pupose: Cisplatin (CDDP), while amongst the recognised chemotherapeutic drugs currently available, is known to have limitations; the lack of a single treatment approach and non-specific targeted therapies. Therefore, the development of an innovative strategy that could achieve localised CDDP treatment is an urgent undertaking. Recent advances in titania nanotube arrays (TNAs) technology have demonstrated promising applications for localised chemotherapeutic drug treatment. The present work investigated the efficiency of a TNA nanosystem for the localised CDDP treatment of nasopharyngeal carcinoma (NPC). Methods: Two models of the TNA nanosystem were prepared: CDDP loaded onto the TNA nanosystem surface (CDDP-TNA) and the other consisted of chitosan-coated CDDP-TNA. CDDP release from these two nanosystems was comprehensively tested on the NPC cells NPC/HK-1 and C666-1. The NPC cytotoxicity profile of the two CDDP-TNA nanosystems was evaluated after incubation for 24, 48 and 72 hours. Intracellular damage profiles were studied using fluorescence microscopy analysis with Hoechst 33342, acridine orange and propidium iodide. Results: The half-maximal inhibitory concentrations (IC50) of CDDP at 24 hours were 0.50 mM for NPC/HK-1 and 0.05 mM for C666-1. CDDP in the CDDP-TNA and chitosan-coated CDDPTNA models presented a significant degree of NPC inhibition (P<0.05) after 24, 48 and 72 hours of exposure. The outcome revealed cellular damage and shrinkage of the cell membranes after 48 hours of exposure to CDDP-TNA. Conclusion: This in vitro work demonstrated the effectiveness of TNA nanosystems for the localised CDDP treatment of NPC cells. Further in vivo studies are needed to support the findings.
Collapse
Affiliation(s)
| | - Rabiatul Basria S. M. N. Mydin
- Department of Biomedical Science, Advanced Medical and Dental Institute, Universiti Sains Malaysia, 13200 Bertam, Kepala Batas, Pulau Pinang, Malaysia.,Corresponding Author: Rabiatul Basria S. M. N. Mydin,
| | - Amirah Mohd Gazzali
- School of Pharmaceutical Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Srimala Sreekantan
- School of Materials and Mineral Resources Engineering, Universiti Sains Malaysia, Engineering Campus, 14300, Nibong Tebal, Pulau Pinang, Malaysia
| |
Collapse
|
23
|
Chojenka J, Zarzycki A, Perzanowski M, Krupiński M, Fodor T, Vad K, Marszałek M. Tuning of the Titanium Oxide Surface to Control Magnetic Properties of Thin Iron Films. MATERIALS (BASEL, SWITZERLAND) 2022; 16:289. [PMID: 36614641 PMCID: PMC9822368 DOI: 10.3390/ma16010289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 06/17/2023]
Abstract
We describe the magnetic properties of thin iron films deposited on the nanoporous titanium oxide templates and analyze their dependance on nanopore radius. We then compare the results to a continuous iron film of the same thickness. Additionally, we investigate the evolution of the magnetic properties of these films after annealing. We demonstrate that the M(H) loops consist of two magnetic phases originating from the iron layer and iron oxides formed at the titanium oxide/iron interface. We perform deconvolution of hysteresis loops to extract information for each magnetic phase. Finally, we investigate the magnetic interactions between the phases and verify the presence of exchange coupling between them. We observe the altering of the magnetic properties by the nanopores as a magnetic hardening of the magnetic material. The ZFC-FC (Zero-field cooled/field cooled) measurements indicate the presence of a disordered glass state below 50 K, which can be explained by the formation of iron oxide at the titanium oxide-iron interface with a short-range magnetic order.
Collapse
Affiliation(s)
- Juliusz Chojenka
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Arkadiusz Zarzycki
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Marcin Perzanowski
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Michał Krupiński
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| | - Tamás Fodor
- Institute for Nuclear Research, Hungarian Academy of Science, Bem tér 18/C, H-4026 Debrecen, Hungary
| | - Kálmán Vad
- Institute for Nuclear Research, Hungarian Academy of Science, Bem tér 18/C, H-4026 Debrecen, Hungary
| | - Marta Marszałek
- Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Krakow, Poland
| |
Collapse
|
24
|
Lin Y, Qian Q, Chen Z, Feng D, Tuan PD, Yin F. Surface Modification of TiO 2 Nanotubes Prepared by Porous Titanium Anodization via Hydrothermal Reaction: A Method for Synthesis High-Efficiency Adsorbents of Recovering Sr Ions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11354-11361. [PMID: 36074906 DOI: 10.1021/acs.langmuir.2c01645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The recycling of strontium ions (Sr2+) from sea water has been well known for its good cost-effectiveness and environment friendliness. Herein, we modified the surface of TiO2 nanotubes (TNTs) prepared by porous titanium anodization via hydrothermal (HT) reaction and synthesized a highly efficient adsorbent for the repeated recycling of Sr2+. TNTs with a high specific surface area were manufactured on porous titanium by internal anodic oxidation. The as-prepared TNTs were treated by HT method to synthesize adsorption materials with a tubular bottom and grass-type top structure loaded with Na+. The surface cracks were eliminated by annealing pretreatment, and the investigation found that the 6 h HT reaction most effectively increased the Na+ content in the adsorbent. The as-synthesized adsorbents (HT-6TNTs) were used to recover Sr2+, and the maximum adsorption efficiency (approximately 100%) and adsorption equilibrium were observed within 10 h. Meanwhile, three consecutive cycles of adsorption experiments proved the uniform behavior of the HT-6TNTs in the reproducible recycling of Sr2+. In addition, by increasing the anodization time of TNTs from 0.5 to 3 h, the maximum adsorption capacity can be increased from 4.68 to 36.15 mg·unit-1, approximately 7.7 times higher.
Collapse
Affiliation(s)
- Yue Lin
- Merchant Marine College, Shanghai Maritime University, Shanghai 201306, P. R. China
| | - Qun Qian
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, P. R. China
| | - Zhenhui Chen
- Merchant Marine College, Shanghai Maritime University, Shanghai 201306, P. R. China
| | - Daolun Feng
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, P. R. China
| | - Phan Dinh Tuan
- Research Institute of Sustainable Development, Hochiminh City University of Natural Resources and Environment, Hochiminh City 70000, Vietnam
| | - Fang Yin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, P. R. China
| |
Collapse
|
25
|
Karuppusamy I, Seenuvasaperumal P, Surendiran M, Shanmugam S, Chinnathambi A, Alahmadi TA, Brindhadevi K, Lan Chi NT, Pugazhendhi A. Fabrication of near superhydrophobic Pt-TiO 2 hybrid nanoflake composite as food sensor in food processing industry. Food Chem Toxicol 2022; 169:113411. [PMID: 36087621 DOI: 10.1016/j.fct.2022.113411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/27/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022]
Abstract
The current finding reports on the development of highly ordered closely packed TiO2 nanotube arrays on Ti substrate via two-step anodization process. The nanotubes developed by second anodization step (TNT2) were encapsulated with Pt nanoflakes using electro-deposition followed by hydrothermal treatment process. The FE-SEM, FTIR, XRD and contact angle measurement, respectively were done to find out the morphological, functional group, phase structural and wettability of the samples. The tube diameter and length were found to be 110-120 and 50-100 nm and 437 and 682, respectively for first (TNT1) and second anodization. The structural order of the TNT has enhanced in the second anodization process. Chronoamperometric results showed that the Pt-TNT2 exhibited enhanced and steady state electro-catalytic activity than Pt-TNT1. Pt-TNT2 nanoflake composite showed near SHP behaviour than the TNT without Pt. The food processing machinery developed using near SHP Pt-TNT2 could be cleaned easily due to its high non-wettability. Hence, Pt-TNT2 can be used for making food processing equipment.
Collapse
Affiliation(s)
- Indira Karuppusamy
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - P Seenuvasaperumal
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India
| | - M Surendiran
- Department of Chemistry, School of Arts and Sciences, Vinayaka Mission's Research Foundation - Aarupadai Veedu (VMRF-AV) Campus, Paiyanoor, Chennai, 603104, Tamil Nadu, India
| | - Sabarathinam Shanmugam
- Biosystems Engineering, Institute of Forestry and Engineering, Estonian University of Lifescience, Kreutzwaldi 56, 51014, Tartu, Estonia
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Tahani Awad Alahmadi
- Department of Pediatrics, College of Medicine and King Khalid University Hospital, King Saud University, Medical City, PO Box-2925, Riyadh, 11461, Saudi Arabia
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Nguyen Thuy Lan Chi
- School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| | - Arivalagan Pugazhendhi
- Emerging Materials for Energy and Environmental Applications Research Group, School of Engineering and Technology, Van Lang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
26
|
Lincho J, Zaleska-Medynska A, Martins RC, Gomes J. Nanostructured photocatalysts for the abatement of contaminants by photocatalysis and photocatalytic ozonation: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155776. [PMID: 35537515 DOI: 10.1016/j.scitotenv.2022.155776] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 06/14/2023]
Abstract
The water scarcity, the presence of different contaminants in the worldwide waters and wastewaters and their impacts should motivate their good elimination and water management. With this, photocatalysis and photocatalytic ozonation are strong solutions to obtain good quality reclaimed water, for different applications. Nanostructured supported photo-active catalysts, such as the TiO2, WO3 or ZnO can positively affect the performance of such technologies. Therefore, different semiconductors materials have been aroused the interest of the scientific community, mainly due to its functional properties as well as characteristics imposed by the different nanostructures. With this, this work overviews different works and perspective on the TiO2 nanotubes and other semiconductors nanostructures, with the analysis of different works from 2001 to 2022. Aspects as the substrate effect, electrolyte nature, aspect ratio, electrolyte aging, and annealing treatment but also the effect of morphology, anodization time, applied voltage, temperature and viscosity are discussed. Modification of TiO2 nanotubes is also presented in this paper. The main objective of this work is to present and discuss the key parameters and their effects on the anodization of different semiconductors, as well as the results obtained until today on the degradation of different contaminants by photocatalysis and photocatalytic ozonation, as well as their use on the treatment of real wastewater. TiO2 nanotubes present unique properties and highly ordered configuration, which motivate their use on photo-driven technologies for the pollutant's abatement, even when compared to other nanostructures. However, photocatalysts with activity on the visible range and solar radiation, such as the WO3, can present higher performance and can decrease operational costs, and must be an important source and a key to find efficient and cost-friendly solutions.
Collapse
Affiliation(s)
- João Lincho
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| | - Adriana Zaleska-Medynska
- Faculty of Chemistry, Department of Environmental Technology, University of Gdansk, 80-308 Gdańsk, Poland
| | - Rui C Martins
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal.
| | - João Gomes
- University of Coimbra, CIEPQPF - Chemical Engineering Processes and Forest Products Research Center, Department of Chemical Engineering, Faculty of Sciences and Technology, Rua Sílvio Lima, Polo II, 3030-790 Coimbra, Portugal
| |
Collapse
|
27
|
Navarro-Gázquez PJ, Muñoz-Portero MJ, Blasco-Tamarit E, Sánchez-Tovar R, García-Antón J. Synthesis and applications of TiO 2/ZnO hybrid nanostructures by ZnO deposition on TiO 2 nanotubes using electrochemical processes. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In recent years, TiO2/ZnO hybrid nanostructures have been attracting the interest of the scientific community due to their excellent photoelectrochemical properties. The main advantage of TiO2/ZnO hybrid nanostructures over other photocatalysts based on semiconductor materials lies in their ability to form heterojunctions in which the valence and conduction bands of both semiconductors are intercalated. This factor produces a decrease in the band gap and the recombination rate and an increase in the light absorption range. The aim of this review is to perform a revision of the main methods to synthesise TiO2/ZnO hybrid nanostructures by ZnO deposition on TiO2 nanotubes using electrochemical processes. Electrochemical synthesis methods provide an easy, fast, and highly efficient route to carry out the synthesis of nanostructures such as nanowires, nanorods, nanotubes, etc. They allow us to control the stoichiometry, thickness and structure mainly by controlling the voltage, time, temperature, composition of the electrolyte, and concentration of monomers. In addition, a study of the most promising applications for TiO2/ZnO hybrid nanostructures has been carried out. In this review, the applications of dye-sensitised solar cell, photoelectrocatalytic degradation of organic compounds, photoelectrochemical water splitting, gas sensors, and lithium-ion batteries have been highlighted.
Collapse
Affiliation(s)
- Pedro José Navarro-Gázquez
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM) , Universitat Politècnica de València , Camino de Vera s/n, 46022 Valencia , Spain
| | - Maria J. Muñoz-Portero
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM) , Universitat Politècnica de València , Camino de Vera s/n, 46022 Valencia , Spain
| | - Encarna Blasco-Tamarit
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM) , Universitat Politècnica de València , Camino de Vera s/n, 46022 Valencia , Spain
| | - Rita Sánchez-Tovar
- Departamento de Ingeniería Química, Universitat de Valencia , Av. de las Universitats, s/n, 46100 Burjassot , Spain
| | - José García-Antón
- Instituto Universitario de Seguridad Industrial, Radiofísica y Medioambiental (ISIRYM) , Universitat Politècnica de València , Camino de Vera s/n, 46022 Valencia , Spain
| |
Collapse
|
28
|
David TM, Dev PR, Wilson P, Sagayaraj P, Mathews T. A critical review on the variations in anodization parameters toward microstructural formation of TiO
2
nanotubes. ELECTROCHEMICAL SCIENCE ADVANCES 2022. [DOI: 10.1002/elsa.202100083] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- T. Manovah David
- Thin Films and Coatings Section Surface Nanoscience Division Materials Science Group Indira Gandhi Centre for Atomic Research (IGCAR) Kalpakkam India
| | - Priya Ranjan Dev
- Department of Chemistry Madras Christian College (Autonomous) University of Madras Chennai India
| | - P. Wilson
- Department of Chemistry Madras Christian College (Autonomous) University of Madras Chennai India
| | - P. Sagayaraj
- Department of Physics, Loyola College (Autonomous) Chennai India
| | - Tom Mathews
- Thin Films and Coatings Section Surface Nanoscience Division Materials Science Group Indira Gandhi Centre for Atomic Research (IGCAR) Kalpakkam India
| |
Collapse
|
29
|
Kunrath MF, Correia A, Teixeira ER, Hubler R, Dahlin C. Superhydrophilic Nanotextured Surfaces for Dental Implants: Influence of Early Saliva Contamination and Wet Storage. NANOMATERIALS 2022; 12:nano12152603. [PMID: 35957034 PMCID: PMC9370139 DOI: 10.3390/nano12152603] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 12/02/2022]
Abstract
Hydrophilic and nanotextured surfaces for dental implants have been reported as relevant properties for early osseointegration. However, these surface characteristics are quite sensitive to oral interactions. Therefore, this pilot study aimed to investigate the superficial alterations caused on hydrophilic nanotubular surfaces after early human saliva interaction. Titanium disks were treated using an anodization protocol followed by reactive plasma application in order to achieve nanotopography and hydrophilicity, additionally; surfaces were stored in normal atmospheric oxygen or wet conditioning. Following, samples were interacted with saliva for 10 min and analyzed regarding physical–chemical properties and cellular viability. Saliva interaction did not show any significant influence on morphological characteristics, roughness measurements and chemical composition; however, hydrophilicity was statistically altered compromising this feature when the samples were stored in common air. Cellular viability tested with pre-osteoblasts cell line (MC3T3-E1) reduced significantly at 48 h on the samples without wet storage after saliva contamination. The applied wet-storage methodology appears to be effective in maintaining properties such as hydrophilicity during saliva interaction. In conclusion, saliva contamination might impair important properties of hydrophilic nanotubular surfaces when not stored in wet conditions, suggesting the need of saliva-controlled sites for oral application of hydrophilic surfaces and/or the use of modified-package methods associated with their wet storage.
Collapse
Affiliation(s)
- Marcel F. Kunrath
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30 Göteborg, Sweden
- Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
- Correspondence: (M.F.K.); (C.D.); Tel.: +46-0722063757 (M.F.K.)
| | - André Correia
- Universidade Católica Portuguesa, Faculty of Dental Medicine, Centre for Interdisciplinary Research in Health, 3504-505 Viseu, Portugal;
| | - Eduardo R. Teixeira
- Department of Dentistry, School of Health and Life Sciences, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
| | - Roberto Hubler
- Materials and Nanoscience Laboratory, Pontifical Catholic University of Rio Grande do Sul (PUCRS), Porto Alegre 90619-900, Brazil;
| | - Christer Dahlin
- Department of Biomaterials, Institute of Clinical Sciences, The Sahlgrenska Academy at University of Gothenburg, P.O. Box 412, SE 405 30 Göteborg, Sweden
- Correspondence: (M.F.K.); (C.D.); Tel.: +46-0722063757 (M.F.K.)
| |
Collapse
|
30
|
Porous vs. Nanotubular Anodic TiO2: Does the Morphology Really Matters for the Photodegradation of Caffeine? COATINGS 2022. [DOI: 10.3390/coatings12071002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Herein, the preparation of nanotubular and porous TiO2 structures (TNS) is presented for photocatalytic applications. Different TNS were prepared in three different types of glycerol- and ethylene glycol-based electrolytes on a large area (approx. 20 cm2) via anodization using different conditions (applied potential, fluoride concentration). Morphology, structure, and optical properties of TNS were characterized by Scanning Electron Microscopy (SEM), X-ray Diffractometry (XRD), and Diffuse Reflectance Spectroscopy (DRS), respectively. All TNS possess optical band-gap energy (EBG) in the range from 3.1 eV to 3.2 eV. Photocatalytic degradation of caffeine was conducted to evaluate the efficiency of TNS. Overall, nanotubular TiO2 possessed enhanced degradation efficiencies (up to 50% degradation) compared to those of porous TiO2 (up to 30% degradation). This is due to the unique properties of nanotubular TiO2, e.g., improved incident light utilization. As the anodization of large areas is, nowadays, becoming a trend, we show that both nanotubular and porous TiO2 are promising for their use in photocatalysis and could be potentially applicable in photoreactors for wastewater treatment. We believe this present work can be the foundation for future development of efficient TiO2 nanostructures for industrial applications.
Collapse
|
31
|
Dick TA, Sone ED, Uludağ H. Mineralized vectors for gene therapy. Acta Biomater 2022; 147:1-33. [PMID: 35643193 DOI: 10.1016/j.actbio.2022.05.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 11/01/2022]
Abstract
There is an intense interest in developing materials for safe and effective delivery of polynucleotides using non-viral vectors. Mineralization of organic templates has long been used to produce complex materials with outstanding biocompatibility. However, a lack of control over mineral growth has limited the applicability of mineralized materials to a few in vitro applications. With better control over mineral growth and surface functionalization, mineralized vectors have advanced significantly in recent years. Here, we review the recent progress in chemical synthesis, physicochemical properties, and applications of mineralized materials in gene therapy, focusing on structure-function relationships. We contrast the classical understanding of the mineralization mechanism with recent ideas of mineralization. A brief introduction to gene delivery is summarized, followed by a detailed survey of current mineralized vectors. The vectors derived from calcium phosphate are articulated and compared to other minerals with unique features. Advanced mineral vectors derived from templated mineralization and specialty coatings are critically analyzed. Mineral systems beyond the co-precipitation are explored as more complex multicomponent systems. Finally, we conclude with a perspective on the future of mineralized vectors by carefully demarcating the boundaries of our knowledge and highlighting ambiguous areas in mineralized vectors. STATEMENT OF SIGNIFICANCE: Therapy by gene-based medicines is increasingly utilized to cure diseases that are not alleviated by conventional drug therapy. Gene medicines, however, rely on macromolecular nucleic acids that are too large and too hydrophilic for cellular uptake. Without tailored materials, they are not functional for therapy. One emerging class of nucleic acid delivery system is mineral-based materials. The fact that they can undergo controlled dissolution with minimal footprint in biological systems are making them attractive for clinical use, where safety is utmost importance. In this submission, we will review the emerging synthesis technology and the range of new generation minerals for use in gene medicines.
Collapse
|
32
|
Fanton L, Loria F, Amores M, Pazos MR, Adán C, García-Muñoz RA, Marugán J. Proliferation of osteoblast precursor cells on the surface of TiO 2 nanowires anodically grown on a β-type biomedical titanium alloy. Sci Rep 2022; 12:7895. [PMID: 35551497 PMCID: PMC9098445 DOI: 10.1038/s41598-022-11981-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Studies have shown that anodically grown TiO2 nanotubes (TNTs) exhibit excellent biocompatibility. However, TiO2 nanowires (TNWs) have received less attention. The objective of this study was to investigate the proliferation of osteoblast precursor cells on the surfaces of TNWs grown by electrochemical anodization of a Ti-35Nb-7Zr-5Ta (TNZT) alloy. TNT and flat TNZT surfaces were used as control samples. MC3T3-E1 cells were cultured on the surfaces of the samples for up to 5 days, and cell viability and proliferation were investigated using fluorescence microscopy, colorimetric assay, and scanning electron microscopy. The results showed lower cell proliferation rates on the TNW surface compared to control samples without significant differences in cell survival among experimental conditions. Contact angles measurements showed a good level of hydrophilicity for the TNWs, however, their relatively thin diameter and their high density may have affected cell proliferation. Although more research is necessary to understand all the parameters affecting biocompatibility, these TiO2 nanostructures may represent promising tools for the treatment of bone defects and regeneration of bone tissue, among other applications.
Collapse
Affiliation(s)
- Leonardo Fanton
- School of Mechanical Engineering, University of Campinas (Unicamp), Rua Mendeleyev, 200, Campinas, São Paulo, 13083-860, Brazil.,Department of Chemical and Environmental Technology, Universidad Rey Juan Carlos, C/ Tulipán S/N, Móstoles, 28933, Madrid, Spain
| | - Frida Loria
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, C/ Budapest 1, Alcorcón, 28922, Madrid, Spain
| | - Mario Amores
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, C/ Budapest 1, Alcorcón, 28922, Madrid, Spain
| | - M Ruth Pazos
- Laboratorio de Apoyo a la Investigación, Hospital Universitario Fundación Alcorcón, C/ Budapest 1, Alcorcón, 28922, Madrid, Spain
| | - Cristina Adán
- Department of Chemical and Environmental Technology, Universidad Rey Juan Carlos, C/ Tulipán S/N, Móstoles, 28933, Madrid, Spain
| | - Rafael A García-Muñoz
- Department of Chemical and Environmental Technology, Universidad Rey Juan Carlos, C/ Tulipán S/N, Móstoles, 28933, Madrid, Spain
| | - Javier Marugán
- Department of Chemical and Environmental Technology, Universidad Rey Juan Carlos, C/ Tulipán S/N, Móstoles, 28933, Madrid, Spain.
| |
Collapse
|
33
|
Ribeiro B, Offoiach R, Rossetti S, Salatin E, Lekka M, Fedrizzi L. On Growth and Morphology of TiO2 Nanotubes on CP-Ti by Anodic Oxidation in Ethylene Glycol Electrolyte: Influence of Electrolyte Aging and Anodization Parameters. MATERIALS 2022; 15:ma15093338. [PMID: 35591670 PMCID: PMC9105292 DOI: 10.3390/ma15093338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/30/2022] [Accepted: 05/03/2022] [Indexed: 11/29/2022]
Abstract
Anodic oxidation of CP-Ti, for production of TiO2 nanotubes, has been extensively described in terms of the electrochemical mechanism of tubular growth or the effect of the parameters on the final tube morphology. Recently, a kinetic growth model was proposed to describe the distinct morphologies of the anodic oxide layer as phases of the nanotubular development process, offering a new perspective for the tuning of nanotube production. In this work, the anodizing behavior of a CP-Ti alloy in an ethylene glycol electrolyte was investigated in light of this new model. The final morphology of the nanotubes was characterized by SEM, considering the effects of electrolyte aging, the microstructure, the applied potential difference and time on the morphological development of nanotubes. Electrolyte aging was shown to lead to a decreased dissolution effect on the oxide. The applied potential difference was shown to lead to an increased dissolution effect and more rapid nanotube growth kinetics, while time resulted in extended dissolution. Moreover, the obtained results were analyzed considering a previous study focused on the anodizing behavior of the α- and β-phases of Ti6Al4V alloy. Overall, the tube morphology resembled that obtained for the Al-containing α-phase of the Ti6Al4V alloy, but the growth kinetics were considerably slower on CP-Ti.
Collapse
Affiliation(s)
- Bruno Ribeiro
- Lima Corporate, Via Nazionale 52, 33038 San Daniele del Friuli, Italy;
- Polytechnic Department of Engineering and Architecture, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (R.O.); (S.R.); (L.F.)
- Correspondence: ; Tel.: +34-91-549-34-22
| | - Ruben Offoiach
- Polytechnic Department of Engineering and Architecture, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (R.O.); (S.R.); (L.F.)
| | - Stefano Rossetti
- Polytechnic Department of Engineering and Architecture, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (R.O.); (S.R.); (L.F.)
| | - Elisa Salatin
- Lima Corporate, Via Nazionale 52, 33038 San Daniele del Friuli, Italy;
| | - Maria Lekka
- CIDETEC, Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 Donostia-San Sebastián, Spain;
| | - Lorenzo Fedrizzi
- Polytechnic Department of Engineering and Architecture, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (R.O.); (S.R.); (L.F.)
| |
Collapse
|
34
|
Lin Y, Qian Q, Chen Z, Dinh Tuan P, Feng D. Fabrication of high specific surface area TiO2 nanopowders by anodization of porous titanium. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107234] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
35
|
Im S, Saad S, Park Y. Facilitated series electrochemical hydrogenation of oxalic acid to glycolic acid using TiO2 nanotubes. Electrochem commun 2022. [DOI: 10.1016/j.elecom.2022.107204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
36
|
Santos JS, Fereidooni M, Marquez V, Arumugam M, Tahir M, Praserthdam S, Praserthdam P. Single-step fabrication of highly stable amorphous TiO 2 nanotubes arrays (am-TNTA) for stimulating gas-phase photoreduction of CO 2 to methane. CHEMOSPHERE 2022; 289:133170. [PMID: 34875298 DOI: 10.1016/j.chemosphere.2021.133170] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/14/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
This study investigates the facile fabrication of interfacial defects assisted amorphous TiO2 nanotubes arrays (am-TNTA) for promoting gas-phase CO2 photoreduction to methane. The am-TNTA catalyst was fabricated via a one-step synthesis, without heat treatment, by anodization of Titanium in Ethylene glycol-based electrolyte in a shorter anodizing time. The samples presented a TiO2 nanostructured array with a nanotubular diameter of 100 ± 10 nm, a wall thickness of 26 ± 5 nm, and length of 3.7 ± 0.3 μm, resulting in a specific surface of 0.75 m2 g. The am-TNTA presented prolonged chemical stability, a high exposed surface area, and a large number of surface traps that can reduce the recombination of the charge carriers. The am-TNTA showed promising photoactivity when tested in the CO2 reduction reaction with water under UV irradiation with a methane production rate of 14.0 μmol gcat-1 h-1 for a pure TiO2 material without any modification procedure. This enhanced photocatalytic activity can be explained in terms of surface defects of the amorphous structure, mainly OH groups that can act as electron traps for increasing the electron lifetime. The CO2 interacts directly with those traps, forming carbonate species, which favors the catalytic conversion to methane. The am-TNTA also exhibited a high stability during six reaction cycles. The photocatalytic activity, the significantly reduced time for synthesis, and high stability for continuous CH4 production make this nanomaterial a potential candidate for a sustainable CO2 reduction process and can be employed for other energy applications.
Collapse
Affiliation(s)
- Janaina S Santos
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Mohammad Fereidooni
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Victor Marquez
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Malathi Arumugam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Muhammad Tahir
- Chemical and Petroleum Engineering Department, UAE University, P.O. Box 15551, Al Ain, United Arab Emirates; Chemical Reaction Engineering Group (CREG), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310, UTM, Johor Bahru, Johor, Malaysia
| | - Supareak Praserthdam
- High-Performance Computing Unit (CECC-HCU), Center of Excellence on Catalysis and Catalytic Reaction Engineering (CECC), Chulalongkorn University, Bangkok, 10330, Thailand
| | - Piyasan Praserthdam
- Center of Excellence on Catalysis and Catalytic Reaction Engineering, Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
37
|
Electrochemical Surface Biofunctionalization of Titanium through Growth of TiO2 Nanotubes and Deposition of Zn Doped Hydroxyapatite. COATINGS 2022. [DOI: 10.3390/coatings12010069] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The current research aim is to biofunctionalize pure titanium (Ti, grade IV) substrate with titania nanotubes and Zn doped hydroxyapatite-based coatings by applying a duplex electrochemical treatment, and to evaluate the influence of Zn content on the physico-chemical properties of hydroxyapatite (HAp). The obtained nanostructured surfaces were covered with HAp-based coatings doped with Zn in different concentrations by electrochemical deposition in pulsed galvanostatic mode. The obtained surfaces were characterized in terms of morphology, elemental and phasic composition, chemical bonds, roughness, and adhesion. The nanostructured surface consisted of titania nanotubes (NT), aligned, vertically oriented, and hollow, with an inner diameter of ~70 nm. X-ray Diffraction (XRD) analysis showed that the nanostructured surface consists of an anatase phase and some rutile peaks as a secondary phase. The morphology of all coatings consisted of ribbon like-crystals, and by increasing the Zn content the coating became denser due to the decrement of the crystals’ dimensions. The elemental and phase compositions evidenced that HAp was successfully doped with Zn through the pulsed galvanostatic method on the Ti nanostructured surfaces. Fourier Transform Infrared spectroscopy (FTIR) and XRD analysis confirmed the presence of HAp in all coatings, while the adhesion test showed that the addition of a high quantity leads to some delamination. Based on the obtained results, it can be said that the addition of Zn enhances the properties of HAp, and through proper experimental design, the concentration of Zn can be modulated to achieve coatings with tunable features.
Collapse
|
38
|
Makarova MV, Amano F, Nomura S, Tateishi C, Fukuma T, Takahashi Y, Korchev YE. Direct Electrochemical Visualization of the Orthogonal Charge Separation in Anatase Nanotube Photoanodes for Water Splitting. ACS Catal 2022. [DOI: 10.1021/acscatal.1c04910] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Marina V. Makarova
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Institute of Physics CAS, Na Slovance, 2, Prague 18200, Czech Republic
| | - Fumiaki Amano
- Department of Chemical and Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Shinpei Nomura
- Department of Chemical and Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Chihiro Tateishi
- Department of Chemical and Environmental Engineering, The University of Kitakyushu, 1-1 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0135, Japan
| | - Takeshi Fukuma
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
| | - Yasufumi Takahashi
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Yuri E. Korchev
- Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Department of Medicine, Imperial College London, London W12 0NN, United Kingdom
- National University of Science and Technology (MISiS), Leninskiy prospect 4, Moscow 119049, Russia
| |
Collapse
|
39
|
Šihor M, Hanif MB, Thirunavukkarasu GK, Liapun V, Edelmannova MF, Roch T, Satrapinskyy L, Plecenik T, Rauf S, Hensel K, Monfort O, Motola M. Emerging Investigator Series Anodization of large area Ti: versatile material for caffeine photodegradation and hydrogen production. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00593j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Facile, single-step, and scalable fabrication of large-area (i.e., ~20 cm2) TiO2 nanostructures (TNS) with excellent photocatalytic activity under UVA-light were prepared via electrochemical anodization. Anodization in glycerol-based electrolyte containing fluoride...
Collapse
|
40
|
Plasmonic Spherical Nanoparticles Coupled with Titania Nanotube Arrays Prepared by Anodization as Substrates for Surface-Enhanced Raman Spectroscopy Applications: A Review. Molecules 2021; 26:molecules26247443. [PMID: 34946522 PMCID: PMC8705377 DOI: 10.3390/molecules26247443] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 12/17/2022] Open
Abstract
As surface-enhanced Raman spectroscopy (SERS) continues developing to be a powerful analytical tool for several probes, four important aspects to make it more accessible have to be addressed: low-cost, reproducibility, high sensibility, and recyclability. Titanium dioxide nanotubes (TiO2 NTs) prepared by anodization have attracted interest in this field because they can be used as safe solid supports to deposit metal nanoparticles to build SERS substrate nanoplatforms that meet these four desired aspects. TiO2 NTs can be easily prepared and, by varying different synthesis parameters, their dimensions and specific features of their morphology can be tuned allowing them to support metal nanoparticles of different sizes that can achieve a regular dispersion on their surface promoting high enhancement factors (EF) and reproducibility. Besides, the TiO2 photocatalytic properties enable the substrate's self-cleaning property for recyclability. In this review, we discuss the different methodological strategies that have been tested to achieve a high performance of the SERS substrates based on TiO2 NTs as solid support for the three main noble metal nanoparticles mainly studied for this purpose: Ag, Au, and Pt.
Collapse
|
41
|
Isa N, Mohamad Nor N, Wan Kamis WZ, Tan WK, Kawamura G, Matsuda A, Lockman Z. Anodized TiO2 nanotubes using Ti wire in fluorinated ethylene glycol with air bubbles for removal of methylene blue dye. J APPL ELECTROCHEM 2021. [DOI: 10.1007/s10800-021-01644-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Titania Nanotube Architectures Synthesized on 3D-Printed Ti-6Al-4V Implant and Assessing Vancomycin Release Protocols. MATERIALS 2021; 14:ma14216576. [PMID: 34772102 PMCID: PMC8585365 DOI: 10.3390/ma14216576] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/20/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023]
Abstract
The aim of this study is to synthesize Titania nanotubes (TNTs) on the 3D-printed Ti-6Al-4V surface and investigate the loading of antibacterial vancomycin drug dose of 200 ppm for local drug treatment application for 24 h. The antibacterial drug release from synthesized nanotubes evaluated via the chemical surface measurement and the linear fitting of Korsmeyer–Peppas model was also assessed. The TNTs were synthesized on the Ti-6Al-4V surface through the anodization process at different anodization time. The TNTs morphology was characterized using field emission scanning electron microscope (FESEM). The wettability and the chemical composition of the Ti-6Al-4V surface and the TNTs were assessed using the contact angle meter, Fourier transform infrared spectrophotometer (FTIR) and the X-ray photoelectron spectroscopy (XPS). The vancomycin of 200 ppm release behavior under controlled atmosphere was measured by the high-performance liquid chromatography (HPLC) and hence, the position for retention time at 2.5 min was ascertained. The FESEM analysis confirmed the formation of nanostructured TNTs with vertically oriented, closely packed, smooth and unperforated walls. The maximum cumulative vancomycin release of 34.7% (69.5 ppm) was recorded at 24 h. The wetting angle of both Ti-6Al-4V implant and the TNTs were found below 90 degrees. This confirmed their excellent wettability.
Collapse
|
43
|
Navidpour AH, Hosseinzadeh A, Zhou JL, Huang Z. Progress in the application of surface engineering methods in immobilizing TiO 2 and ZnO coatings for environmental photocatalysis. CATALYSIS REVIEWS 2021. [DOI: 10.1080/01614940.2021.1983066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Amir H. Navidpour
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia
| | - Ahmad Hosseinzadeh
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia
| | - John L. Zhou
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia
| | - Zhenguo Huang
- Centre for Green Technology, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW, Australia
| |
Collapse
|
44
|
Enhanced Photocatalytic and Biological Observations of Green Synthesized Activated Carbon, Activated Carbon Doped Silver and Activated Carbon/Silver/Titanium Dioxide Nanocomposites. J Inorg Organomet Polym Mater 2021. [DOI: 10.1007/s10904-021-02096-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
45
|
Cherian AM, Nair SV, Maniyal V, Menon D. Surface engineering at the nanoscale: A way forward to improve coronary stent efficacy. APL Bioeng 2021; 5:021508. [PMID: 34104846 PMCID: PMC8172248 DOI: 10.1063/5.0037298] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022] Open
Abstract
Coronary in-stent restenosis and late stent thrombosis are the two major inadequacies of vascular stents that limit its long-term efficacy. Although restenosis has been successfully inhibited through the use of the current clinical drug-eluting stent which releases antiproliferative drugs, problems of late-stent thrombosis remain a concern due to polymer hypersensitivity and delayed re-endothelialization. Thus, the field of coronary stenting demands devices having enhanced compatibility and effectiveness to endothelial cells. Nanotechnology allows for efficient modulation of surface roughness, chemistry, feature size, and drug/biologics loading, to attain the desired biological response. Hence, surface topographical modification at the nanoscale is a plausible strategy to improve stent performance by utilizing novel design schemes that incorporate nanofeatures via the use of nanostructures, particles, or fibers, with or without the use of drugs/biologics. The main intent of this review is to deliberate on the impact of nanotechnology approaches for stent design and development and the recent advancements in this field on vascular stent performance.
Collapse
Affiliation(s)
- Aleena Mary Cherian
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| | - Shantikumar V. Nair
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| | - Vijayakumar Maniyal
- Department of Cardiology, Amrita Institute of Medical Science
and Research Centre, Amrita Vishwa Vidyapeetham, Ponekkara P.O. Cochin
682041, Kerala, India
| | - Deepthy Menon
- Amrita Centre for Nanosciences and Molecular Medicine, Amrita
Vishwa Vidyapeetham, Ponekkara P.O. Cochin 682041, Kerala,
India
| |
Collapse
|
46
|
Ribeiro B, Offoiach R, Rahimi E, Salatin E, Lekka M, Fedrizzi L. On Growth and Morphology of TiO 2 Nanotubes on Ti6Al4V by Anodic Oxidation in Ethylene Glycol Electrolyte: Influence of Microstructure and Anodization Parameters. MATERIALS 2021; 14:ma14102540. [PMID: 34068384 PMCID: PMC8153604 DOI: 10.3390/ma14102540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/02/2021] [Accepted: 05/11/2021] [Indexed: 11/16/2022]
Abstract
Different studies demonstrated the possibility to produce TiO2 nanotubes (TNTs) on Ti6Al4V alloy by electrochemical anodization. However, the anodizing behavior of α and β-phases in organic electrolytes is not yet clarified. This study reports on the anodizing behavior of the two phases in an ethylene glycol electrolyte using different applied potentials and anodizing times. Atomic force and scanning electron microscopies were used to highlight the anodic oxides differences in morphology. It was demonstrated that the initial compact oxide grew faster over the β-phase as the higher Al content of the α-phase caused its re-passivation, and the higher solubility of the V-rich oxide led to earlier pores formation over the β-phase. The trend was inverted once the pores formed over the compact oxide of the α-phase. The growth rate of the α-phase TNTs was higher than that of the β-phase ones, leading to the formation of long and well defined nanotubes with thin walls and a honeycomb tubular structure, while the ones grown over the β-phase were individual, shorter, and with thicker walls.
Collapse
Affiliation(s)
- Bruno Ribeiro
- Lima Corporate, Via Nazionale 52, 33038 San Daniele del Friuli, Italy; (B.R.); (E.S.)
- Polytechnic Department of Engineering and Architecture, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (R.O.); (E.R.); (L.F.)
| | - Ruben Offoiach
- Polytechnic Department of Engineering and Architecture, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (R.O.); (E.R.); (L.F.)
| | - Ehsan Rahimi
- Polytechnic Department of Engineering and Architecture, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (R.O.); (E.R.); (L.F.)
| | - Elisa Salatin
- Lima Corporate, Via Nazionale 52, 33038 San Daniele del Friuli, Italy; (B.R.); (E.S.)
| | - Maria Lekka
- Polytechnic Department of Engineering and Architecture, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (R.O.); (E.R.); (L.F.)
- CIDETEC, Basque Research and Technology Alliance (BRTA), Po. Miramón 196, 20014 Donostia-San Sebastián, Spain
- Correspondence: ; Tel.: +34-943318212
| | - Lorenzo Fedrizzi
- Polytechnic Department of Engineering and Architecture, University of Udine, Via Cotonificio 108, 33100 Udine, Italy; (R.O.); (E.R.); (L.F.)
| |
Collapse
|
47
|
Abstract
The high specific strength, good corrosion resistance, and great biocompatibility make titanium and its alloys the ideal materials for biomedical metallic implants. Ti-6Al-4V alloy is the most employed in practical biomedical applications because of the excellent combination of strength, fracture toughness, and corrosion resistance. However, recent studies have demonstrated some limits in biocompatibility due to the presence of toxic Al and V. Consequently, scientific literature has reported novel biomedical β-Ti alloys containing biocompatible β-stabilizers (such as Mo, Ta, and Zr) studying the possibility to obtain similar performances to the Ti-6Al-4V alloys. The aim of this review is to highlight the corrosion resistance of the passive layers on biomedical Ti-6Al-4V and β-type Ti alloys in the human body environment by reviewing relevant literature research contributions. The discussion is focused on all those factors that influence the performance of the passive layer at the surface of the alloy subjected to electrochemical corrosion, among which the alloy composition, the method selected to grow the oxide coating, and the physicochemical conditions of the body fluid are the most significant.
Collapse
|
48
|
Sarraf M, Nasiri-Tabrizi B, Yeong CH, Madaah Hosseini HR, Saber-Samandari S, Basirun WJ, Tsuzuki T. Mixed oxide nanotubes in nanomedicine: A dead-end or a bridge to the future? CERAMICS INTERNATIONAL 2021; 47:2917-2948. [PMID: 32994658 PMCID: PMC7513735 DOI: 10.1016/j.ceramint.2020.09.177] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 05/12/2023]
Abstract
Nanomedicine has seen a significant rise in the development of new research tools and clinically functional devices. In this regard, significant advances and new commercial applications are expected in the pharmaceutical and orthopedic industries. For advanced orthopedic implant technologies, appropriate nanoscale surface modifications are highly effective strategies and are widely studied in the literature for improving implant performance. It is well-established that implants with nanotubular surfaces show a drastic improvement in new bone creation and gene expression compared to implants without nanotopography. Nevertheless, the scientific and clinical understanding of mixed oxide nanotubes (MONs) and their potential applications, especially in biomedical applications are still in the early stages of development. This review aims to establish a credible platform for the current and future roles of MONs in nanomedicine, particularly in advanced orthopedic implants. We first introduce the concept of MONs and then discuss the preparation strategies. This is followed by a review of the recent advancement of MONs in biomedical applications, including mineralization abilities, biocompatibility, antibacterial activity, cell culture, and animal testing, as well as clinical possibilities. To conclude, we propose that the combination of nanotubular surface modification with incorporating sensor allows clinicians to precisely record patient data as a critical contributor to evidence-based medicine.
Collapse
Key Words
- ALP, Alkaline Phosphatase
- APH, Anodization-Cyclic Precalcification-Heat Treatment
- Ag2O NPs, Silver Oxide Nanoparticles
- AgNPs, Silver Nanoparticles
- Anodization
- BIC, Bone-Implant Contact
- Bioassays
- CAGR, Compound Annual Growth Rate
- CT, Computed Tomography
- DMF, Dimethylformamide
- DMSO, Dimethyl Sulfoxide
- DRI, Drug-Releasing Implants
- E. Coli, Escherichia Coli
- ECs, Endothelial Cells
- EG, Ethylene Glycol
- Electrochemistry
- FA, Formamide
- Fe2+, Ferrous Ion
- Fe3+, Ferric Ion
- Fe3O4, Magnetite
- GEP, Gene Expression Programming
- GO, Graphene Oxide
- HA, Hydroxyapatite
- HObs, Human Osteoblasts
- HfO2 NTs, Hafnium Oxide Nanotubes
- IMCs, Intermetallic Compounds
- LEDs, Light emitting diodes
- MEMS, Microelectromechanical Systems
- MONs, Mixed Oxide Nanotubes
- MOPSO, Multi-Objective Particle Swarm Optimization
- MSCs, Mesenchymal Stem Cells
- Mixed oxide nanotubes
- NMF, N-methylformamide
- Nanomedicine
- OPC1, Osteo-Precursor Cell Line
- PSIs, Patient-Specific Implants
- PVD, Physical Vapor Deposition
- RF, Radio-Frequency
- ROS, Radical Oxygen Species
- S. aureus, Staphylococcus Aureus
- S. epidermidis, Staphylococcus Epidermidis
- SBF, Simulated Body Fluid
- TiO2 NTs, Titanium Dioxide Nanotubes
- V2O5, Vanadium Pentoxide
- VSMCs, Vascular Smooth Muscle Cells
- XPS, X-ray Photoelectron Spectroscopy
- ZrO2 NTs, Zirconium Dioxide Nanotubes
- hASCs, Human Adipose-Derived Stem Cells
Collapse
Affiliation(s)
- Masoud Sarraf
- Centre of Advanced Materials, Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur, Malaysia
- Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran
| | - Bahman Nasiri-Tabrizi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
- New Technologies Research Center, Amirkabir University of Technology, Tehran, Iran
| | - Chai Hong Yeong
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya, Malaysia
| | - Hamid Reza Madaah Hosseini
- Materials Science and Engineering Department, Sharif University of Technology, P.O. Box 11155-9466, Azadi Avenue, Tehran, Iran
| | | | - Wan Jefrey Basirun
- Department of Chemistry, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
| | - Takuya Tsuzuki
- Research School of Electrical Energy and Materials Engineering, College of Engineering and Computer Science, Australian National University, Canberra, 2601, Australia
| |
Collapse
|
49
|
Uslu E, Mimiroglu D, Ercan B. Nanofeature Size and Morphology of Tantalum Oxide Surfaces Control Osteoblast Functions. ACS APPLIED BIO MATERIALS 2021. [DOI: 10.1021/acsabm.0c01354] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Ece Uslu
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Çankaya, Turkey
| | - Didem Mimiroglu
- Biochemistry, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara 06800, Çankaya, Turkey
- Biochemistry, Faculty of Science, Sivas Cumhuriyet University, Sivas 58140, Turkey
| | - Batur Ercan
- Department of Metallurgical and Materials Engineering, Middle East Technical University, Ankara 06800, Çankaya, Turkey
- Biomedical Engineering Program, Middle East Technical University, Ankara 06800, Çankaya, Turkey
- BIOMATEN, Center of Excellence in Biomaterials and Tissue Engineering, Middle East Technical University, Ankara 06800, Çankaya, Turkey
| |
Collapse
|
50
|
Grochowska K, Nedyalkov N, Karczewski J, Haryński Ł, Śliwiński G, Siuzdak K. Anodic titania nanotubes decorated with gold nanoparticles produced by laser-induced dewetting of thin metallic films. Sci Rep 2020; 10:20506. [PMID: 33239673 PMCID: PMC7688952 DOI: 10.1038/s41598-020-77710-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/09/2020] [Indexed: 12/21/2022] Open
Abstract
Herein, we combine titania layers with gold species in a laser-supported process and report a substantial change of properties of the resulting heterostructures depending on the major processing parameters. Electrodes were fabricated via an anodisation process complemented with calcination to ensure a crystalline phase, and followed by magnetron sputtering of metallic films. The obtained TiO2 nanotubes with deposited thin (5, 10 nm) Au films were treated with a UV laser (355 nm) to form Au nanoparticles on top of the nanotubes. It was proven that selected laser working parameters ensure not only the formation of Au nanoparticles, but also simultaneously provide preservation of the initial tubular architecture, while above-threshold laser fluences result in partial destruction (melting) of the top layer of the nanotubes. For almost all of the samples, the crystalline phase of the nanotubes observed in Raman spectra was maintained independently of the laser processing parameters. Enhanced photoresponse up to ca 6 mA/cm2 was demonstrated by photoelectrochemical measurements on samples obtained by laser annealing of the 10 nm Au coating on a titania support. Moreover, a Mott-Schottky analysis indicated the dramatically increased (two orders of magnitude) concentration of donor density in the case of a laser-treated Au-TiO2 heterojunction compared to reference electrodes.
Collapse
Affiliation(s)
- Katarzyna Grochowska
- Centre of Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera St., 80-231, Gdańsk, Poland.
| | - Nikolay Nedyalkov
- Institute of Electronics, Bulgarian Academy of Sciences, 72 Tsarigradsko Shose Blvd., 1784, Sofia, Bulgaria
| | - Jakub Karczewski
- Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, 11/12 Narutowicza St., 80-233, Gdańsk, Poland
| | - Łukasz Haryński
- Centre of Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera St., 80-231, Gdańsk, Poland
| | - Gerard Śliwiński
- Centre of Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera St., 80-231, Gdańsk, Poland
| | - Katarzyna Siuzdak
- Centre of Plasma and Laser Engineering, The Szewalski Institute of Fluid-Flow Machinery, Polish Academy of Sciences, 14 Fiszera St., 80-231, Gdańsk, Poland
| |
Collapse
|