1
|
Zhai X, Guo H, Li X, Zhang Y, Cheng W, Wang Y, Huynh TP, Wang T, Xuan F, Li J, Shi G, Zhang M. Spatiotemporal E-Nose with Laser Tailoring and Chromatography Inspiration. ACS Sens 2025; 10:3530-3538. [PMID: 40302040 DOI: 10.1021/acssensors.5c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2025]
Abstract
The study introduces a spatiotemporal chromatography-mimicking (SCM) e-nose that integrates laser-tailored graphene paper with a microchamber for precise volatile organic compound (VOC) discrimination. The SCM e-nose overcomes traditional array limitations with a single multifunctional component capable of accurate VOC differentiation via chromatography-mimic features. Advanced laser-engraving techniques fabricate a gas-permeable interdigitated electrode from graphene paper as the sieving framework. Key achievements include its single multifunctional component, economical and scalable design, distinct response patterns for different VOCs, remarkable ability to discriminate mixed VOCs, versatility for diverse applications including real-time on-site analysis, and ease of integration with electronic systems. The SCM e-nose represents a significant advancement in electronic nose technology, offering a compact, cost-effective solution for precise VOC detection and analysis.
Collapse
Affiliation(s)
- Xingchun Zhai
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Haowen Guo
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Xiaolu Li
- School of Mathematical Sciences, Key Laboratory of Mathematics and Engineering Applications (MOE), Shanghai Key Laboratory of Pure Mathematics and Mathematical Practice, East China Normal University, Shanghai 200241, China
| | - Yongheng Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Weiwei Cheng
- School of Materials Science and Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Yitong Wang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Tan-Phat Huynh
- Laboratory of Molecular Science and Engineering, Faculty of Science and Engineering, Åbo Akademi University, FI-20500 Turku, Finland
| | - Tao Wang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Fuzhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Junjie Li
- Key Laboratory of Cigarette Smoke for Tobacco Industry, Shanghai Tobacco Group Co. LTD, Shanghai 201315, China
| | - Guoyue Shi
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| |
Collapse
|
2
|
Li S, Wu Z, Fan H, Zhong M, Xing X, Wang Y, Yang H, Liu Q, Zhang D. Flexible Stretchable Strain Sensor Based on LIG/PDMS for Real-Time Health Monitoring of Test Pilots. SENSORS (BASEL, SWITZERLAND) 2025; 25:2884. [PMID: 40363320 PMCID: PMC12074438 DOI: 10.3390/s25092884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 04/25/2025] [Accepted: 05/01/2025] [Indexed: 05/15/2025]
Abstract
In the rapidly advancing era of intelligent technology, flexible strain sensors are emerging as a key component in wearable electronics. Laser-induced graphene (LIG) stands out as a promising fabrication method due to its rapid processing, environmental sustainability, low cost, and superior physicochemical properties. However, the stretchability and conformability of LIG are often limited by the substrate material, hindering its application in scenarios requiring high deformation. To address this issue, we propose a high-performance flexible and stretchable strain sensor fabricated by generating graphene on a polyimide (PI) substrate using laser induction and subsequently transferred onto a polydimethylsiloxane (PDMS). The resultant sensor demonstrates an ultra-low detection limit (0.1%), a rapid response time (150 ms), a wide strain range (40%), and retains stable performance after 1000 stretching cycles. Notably, this sensor has been successfully applied to the real-time monitoring of civil aviation test pilots during flight for the first time, enabling the accurate detection of physiological signals such as pulse, hand movements, and blink frequency. This study introduces a unique and innovative solution for the real-time health monitoring of civil aviation test pilots, with significant implications for enhancing flight safety.
Collapse
Affiliation(s)
- Shouqing Li
- Civil Aviation Administration of China Academy, Civil Aviation Flight University of China, Deyang 618307, China;
| | - Zhanghui Wu
- College of Aviation and Electronics and Electrical, Civil Aviation Flight University of China, Deyang 618307, China; (Z.W.); (H.F.); (X.X.); (D.Z.)
| | - Hongyun Fan
- College of Aviation and Electronics and Electrical, Civil Aviation Flight University of China, Deyang 618307, China; (Z.W.); (H.F.); (X.X.); (D.Z.)
| | - Mian Zhong
- College of Aviation and Electronics and Electrical, Civil Aviation Flight University of China, Deyang 618307, China; (Z.W.); (H.F.); (X.X.); (D.Z.)
- Key Laboratory of Flight Techniques and Flight Safety, Civil Aviation Administration of China, Deyang 618307, China
| | - Xiaoqing Xing
- College of Aviation and Electronics and Electrical, Civil Aviation Flight University of China, Deyang 618307, China; (Z.W.); (H.F.); (X.X.); (D.Z.)
- Key Laboratory of Flight Techniques and Flight Safety, Civil Aviation Administration of China, Deyang 618307, China
| | - Yongzheng Wang
- Civil Aviation Flight Test Institute, Civil Aviation Flight University of China, Deyang 618307, China;
| | - Huaxiao Yang
- Mianyang Branch, Civil Aviation Flight University of China, Mianyang 621000, China;
| | - Qijian Liu
- College of Computer Science, Civil Aviation Flight University of China, Deyang 618307, China;
| | - Deyin Zhang
- College of Aviation and Electronics and Electrical, Civil Aviation Flight University of China, Deyang 618307, China; (Z.W.); (H.F.); (X.X.); (D.Z.)
| |
Collapse
|
3
|
Sharma A, Hossain NI, Thomas A, Sonkusale S. Saliva-Sensing Dental Floss: An Innovative Tool for Assessing Stress via On-Demand Salivary Cortisol Measurement with Molecularly Imprinted Polymer and Thread Microfluidics Integration. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25083-25096. [PMID: 40244717 DOI: 10.1021/acsami.5c02988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2025]
Abstract
On-demand dental-floss-based point-of-care platform is developed for the noninvasive and real-time quantification of salivary cortisol utilizing redox-molecule embedded molecularly imprinted polymer structures and thread microfluidics. Herein, we explore the high-surface-area graphene-based electrode substrate for electrochemically synthesizing selective cortisol MIPs and integrate it with thread microfluidics to build a highly sensitive cortisol-sensing platform for stress monitoring. This platform uses flossing to collect and transport saliva to a flexible electrochemical sensor via capillary microfluidics, where cortisol, a stress biomarker, is measured. This strategy allowed us to detect cortisol as low as 0.048 pg mL-1 in real-time with a detection range of 0.10-10,000 pg mL-1 (R2 = 0.9916). The saliva-sensing dental floss provides results within 11-12 min. The thread-based microfluidic design minimizes interference and ensures consistent repeatability when testing both artificial and actual human saliva samples, yielding 98.64-102.4% recoveries with a relative standard deviation of 5.01%, demonstrating high accuracy and precision. For the human saliva sample (as part of the stress study), the platform showed a high correlation (r = 0.9910) against conventional ELISA assays. Combined with a wireless readout, this saliva floss offers a convenient way to monitor daily stress levels. It can be extended to detect other critical salivary biomarkers with high sensitivity and selectivity in complex environments.
Collapse
Affiliation(s)
- Atul Sharma
- Sonkusale Research Laboratories (SRLs), Advanced Technology Laboratory, Tufts University, Medford, Massachusetts 02155, United States
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Nafize Ishtiaque Hossain
- Sonkusale Research Laboratories (SRLs), Advanced Technology Laboratory, Tufts University, Medford, Massachusetts 02155, United States
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
| | - Ayanna Thomas
- Department of Psychology, Tufts University, Medford, Massachusetts 02155, United States
| | - Sameer Sonkusale
- Sonkusale Research Laboratories (SRLs), Advanced Technology Laboratory, Tufts University, Medford, Massachusetts 02155, United States
- Department of Electrical and Computer Engineering, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
4
|
Lazaro A, Cujilema MR, Villarino R, Lazaro M, Girbau D. A novel approach for wine anti-counterfeiting using laser-induced graphene chipless RFID tags on cork. Sci Rep 2025; 15:12750. [PMID: 40222990 PMCID: PMC11994788 DOI: 10.1038/s41598-025-97613-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Accepted: 04/07/2025] [Indexed: 04/15/2025] Open
Abstract
This work introduces novel, non-cloneable chipless RFID tags designed for authentication, offering a solution to protect product brands, such as wine, liquor, oil, and other liquid products, from counterfeit practices. A unique spectral response of the embedded tag, created by depositing various conductive layers, can be achieved by combining its shape and sheet resistance. To accomplish this, a laser-induced graphene (LIG) layer is formed on a cork substrate (used as a graphene precursor), followed by an electroplating process to enhance conductivity. This paper presents a prototype scanner, designed to characterize the electromagnetic signature of the tags, compatible variable-sized wine bottles and cork stoppers. Preliminary results obtained with complex logo images demonstrate the feasibility of this technology.
Collapse
Grants
- This research was funded by the projects PID2021-122399OB-I00 MICIU/AEI/10.13039/501100011033/FEDER, UE, and TED2021-130307B-I00 MICIU/AEI/10.13039/501100011033/ European Union NextGenerationEU/PRTR, and the grants PRE2019-089028 and PRE2022-103744. Ministerio de Ciencia, Innovación y Universidades
- This research was funded by the projects PID2021-122399OB-I00 MICIU/AEI/10.13039/501100011033/FEDER, UE, and TED2021-130307B-I00 MICIU/AEI/10.13039/501100011033/ European Union NextGenerationEU/PRTR, and the grants PRE2019-089028 and PRE2022-103744. Ministerio de Ciencia, Innovación y Universidades
- This research was funded by the projects PID2021-122399OB-I00 MICIU/AEI/10.13039/501100011033/FEDER, UE, and TED2021-130307B-I00 MICIU/AEI/10.13039/501100011033/ European Union NextGenerationEU/PRTR, and the grants PRE2019-089028 and PRE2022-103744. Ministerio de Ciencia, Innovación y Universidades
- This research was funded by the projects PID2021-122399OB-I00 MICIU/AEI/10.13039/501100011033/FEDER, UE, and TED2021-130307B-I00 MICIU/AEI/10.13039/501100011033/ European Union NextGenerationEU/PRTR, and the grants PRE2019-089028 and PRE2022-103744. Ministerio de Ciencia, Innovación y Universidades
- This research was funded by the projects PID2021-122399OB-I00 MICIU/AEI/10.13039/501100011033/FEDER, UE, and TED2021-130307B-I00 MICIU/AEI/10.13039/501100011033/ European Union NextGenerationEU/PRTR, and the grants PRE2019-089028 and PRE2022-103744. Ministerio de Ciencia, Innovación y Universidades
Collapse
Affiliation(s)
- Antonio Lazaro
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, Tarragona, 43007, Spain.
| | - Marco Rodrigo Cujilema
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, Tarragona, 43007, Spain
| | - Ramon Villarino
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, Tarragona, 43007, Spain
| | - Marc Lazaro
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, Tarragona, 43007, Spain
| | - David Girbau
- Department of Electronics, Electrics and Automatic Control Engineering, Rovira i Virgili University, Tarragona, 43007, Spain
| |
Collapse
|
5
|
Jin J, Ma H, Liang H, Zhang Y. Biopolymer-Derived Carbon Materials for Wearable Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2414620. [PMID: 39871757 DOI: 10.1002/adma.202414620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/01/2024] [Indexed: 01/29/2025]
Abstract
Advanced carbon materials are widely utilized in wearable electronics. Nevertheless, the production of carbon materials from fossil-based sources raised concerns regarding their non-renewability, high energy consumption, and the consequent greenhouse gas emissions. Biopolymers, readily available in nature, offer a promising and eco-friendly alternative as a carbon source, enabling the sustainable production of carbon materials for wearable electronics. This review aims to discuss the carbonization mechanisms, carbonization techniques, and processes, as well as the diverse applications of biopolymer-derived carbon materials (BioCMs) in wearable electronics. First, the characteristics of four representative biopolymers, including cellulose, lignin, chitin, and silk fibroin, and their carbonization processes are discussed. Then, typical carbonization techniques, including pyrolysis carbonization, laser-induced carbonization, Joule heating carbonization, hydrothermal transformation, and salt encapsulation carbonization are discussed. The influence of the processes on the morphology and properties of the resultant BioCMs are summarized. Subsequently, applications of BioCMs in wearable devices, including physical sensors, chemical sensors, energy devices, and display devices are discussed. Finally, the challenges currently facing the field and the future opportunities are discussed.
Collapse
Affiliation(s)
- Jiongke Jin
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Haoxuan Ma
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Huarun Liang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yingying Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Ding X, Chen R, Xu J, Hu J, Zhao Z, Zhang C, Zheng L, Cheng H, Weng Z, Wu L. Highly stable scalable production of porous graphene-polydopamine nanocomposites for drug molecule sensing. Talanta 2025; 282:126990. [PMID: 39406085 DOI: 10.1016/j.talanta.2024.126990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/27/2024] [Accepted: 10/03/2024] [Indexed: 11/20/2024]
Abstract
As atenolol overdosing can lead to severe health complications, the rapid detection of atenolol intake in point-of-care settings is highly desirable. The recent advancement of redox analytical methodologies has facilitated the efficacious quantification of these compounds for drug analysis, but their performance still presents challenges in practical applications. This study addresses these challenges by controlling the electropolymerization of polydopamine (PDA) on highly porous laser-induced graphene (LIG) electrodes with enhanced electrochemical redox activity for the detection of drug molecules such as atenolol, with minimized interference with the other active substances to induce variation of electrochemical behavior. The enhanced sensitivity of atenolol is attributed to the superhydrophilicity and increased number of active surface sites and -NH2 groups in the PDA polymer through a controlled polymerization process. Moreover, the simulation results further reveal that highly sensitive sensing of atenolol molecules relies on optimal adsorption of the atenolol molecule on dopamine or dopaminequinone structural units. The resulting sensors with high repeatability and reproducibility can achieve a low detection limit of 80 μM and a sensitivity of 0.020 ± 0.04 μA/μM within a linear range from 100 to 800 μM. The materials and surface chemistry in the electrode design based on highly porous LIG provide insights into the integration and application of future scalable and cost-effective electrochemical sensors for use in point-of-care or in-field applications.
Collapse
Affiliation(s)
- Xiaohong Ding
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resources Engineering, Wuyi University, 354300, Wuyishan, China; CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China; Department of Engineering Science and Mechanics, Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA
| | - Ruiqiang Chen
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resources Engineering, Wuyi University, 354300, Wuyishan, China
| | - Jie Xu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resources Engineering, Wuyi University, 354300, Wuyishan, China
| | - Jiapeng Hu
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resources Engineering, Wuyi University, 354300, Wuyishan, China
| | - Zhixuan Zhao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Cheng Zhang
- Fujian Key Laboratory of Functional Marine Sensing Materials, College of Material and Chemical Engineering, Minjiang University, Fuzhou, 350108, China
| | - Longhui Zheng
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resources Engineering, Wuyi University, 354300, Wuyishan, China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, Materials Research Institute, Pennsylvania State University, University Park, PA, 16802, USA.
| | - Zixiang Weng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Lixin Wu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China.
| |
Collapse
|
7
|
Zhou Z, He X, Xiao J, Pan J, Li M, Xu T, Zhang X. Machine learning-powered wearable interface for distinguishable and predictable sweat sensing. Biosens Bioelectron 2024; 265:116712. [PMID: 39208509 DOI: 10.1016/j.bios.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/29/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
The constrained resources on wearable devices pose a challenge in meeting the demands for comprehensive sensing information, and current wearable non-enzymatic sensors face difficulties in achieving specific detection in biofluids. To address this issue, we have developed a highly selective non-enzymatic sweat sensor that seamlessly integrates with machine learning, ensuring reliable sensing and physiological monitoring of sweat biomarkers during exercise. The sensor consists of two electrodes supported by a microsystem that incorporates signal processing and wireless communication. The device generates four explainable features that can be used to accurately predict tyrosine and tryptophan concentrations, as well as sweat pH. The reliability of this device has been validated through rigorous statistical analysis, and its performance has been tested in subjects with and without supplemental amino acid intake during cycling trials. Notably, a robust linear relationship has been identified between tryptophan and tyrosine concentrations in the collected samples, irrespective of the pH dimension. This innovative sensing platform is highly portable and has significant potential to advance the biomedical applications of non-enzymatic sensors. It can markedly improve accuracy while decreasing costs.
Collapse
Affiliation(s)
- Zhongzeng Zhou
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering of Health Science Center, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Xuecheng He
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering of Health Science Center, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jingyu Xiao
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering of Health Science Center, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Jiuxiang Pan
- College of Materials Science and Engineering, Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Mengmeng Li
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering of Health Science Center, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, China
| | - Tailin Xu
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering of Health Science Center, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, China.
| | - Xueji Zhang
- College of Chemistry and Environmental Engineering, School of Biomedical Engineering of Health Science Center, The Institute for Advanced Study (IAS), Shenzhen University, Shenzhen, Guangdong, 518060, China
| |
Collapse
|
8
|
Fantinelli Franco F, Malik MH, Manjakkal L, Roshanghias A, Smith CJ, Gauchotte-Lindsay C. Optimizing Carbon Structures in Laser-Induced Graphene Electrodes Using Design of Experiments for Enhanced Electrochemical Sensing Characteristics. ACS APPLIED MATERIALS & INTERFACES 2024; 16:65489-65502. [PMID: 39539231 PMCID: PMC11615855 DOI: 10.1021/acsami.4c13124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/28/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024]
Abstract
In this study, we explored the morphological and electrochemical properties of carbon-based electrodes derived from laser-induced graphene (LIG) and compared them to commercially available graphene-sheet screen-printed electrodes (GS-SPEs). By optimizing the laser parameters (average laser power, speed, and focus) using a design of experiments response surface (DoE-RS) approach, binder-free LIG electrodes were achieved in a single-step process. Traditional trial-and-error methods can be time-consuming and may not capture the interactions between all variables effectively. To address this, we focused on linear resistance and substrate delamination to streamline the DoE-RS optimization process. Two LIGs, designated LIG A and LIG B, were fabricated using distinct and optimized laser settings, which resulted in a sheet resistance of 25 ± 2 Ω/sq and 21 ± 1 Ω/sq, respectively. These LIGs, characterized by scanning electron microscopy, Raman spectroscopy, and contact angle analysis, exhibited a highly porous morphology with 13% pore coverage and a contact angle <50°, which significantly increased their hydrophilicity when compared to the GS-SPE. For the electrochemical studies, the oxidation of NO2- ion by the graphene-based working electrodes was investigated, as it allowed for the direct comparison of the LIGs to the GS-SPE. These included cyclic voltammetry, electrochemical impedance spectroscopy, and differential pulsed voltammetry studies, which revealed that LIG electrodes displayed a remarkable 500% increase in peak current during NO2- oxidation compared to the GS-SPE. The LIGs also demonstrated improved stability and sensitivity (420 ± 30 and 570 ± 10 nAμM-1 cm-2) compared to the GS-SPE (73 ± 4 nAμM-1 cm-2) in the oxidation of NO2- ions; however, LIG B was more susceptible to ionic interference than LIG A. These findings highlight the value of applying statistical approaches such as DoE-RS to systematically improve the LIG fabrication process, enabling the rapid production of optimized LIGs that outperform conventional carbon-based electrodes.
Collapse
Affiliation(s)
- Fabiane Fantinelli Franco
- Water
and Environment Group, Infrastructure and Environment Division, James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8LT, U.K.
| | | | - Libu Manjakkal
- School
of Computing and Engineering & the Built Environment, Edinburgh Napier University, Merchiston Campus, Edinburgh EH10 5DT, U.K.
| | - Ali Roshanghias
- Silicon
Austria Laboratories GmbH, Europastrasse 12, A-9524 Villach, Austria
| | - Cindy J. Smith
- Water
and Environment Group, Infrastructure and Environment Division, James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8LT, U.K.
| | - Caroline Gauchotte-Lindsay
- Water
and Environment Group, Infrastructure and Environment Division, James
Watt School of Engineering, University of
Glasgow, Glasgow G12 8LT, U.K.
| |
Collapse
|
9
|
Liu L, Cai C, Qian Z, Li P, Zhu F. Application of Laser-Induced Graphene Flexible Sensor in Monitoring Large Deformation of Reinforced Concrete Structure. SENSORS (BASEL, SWITZERLAND) 2024; 24:7444. [PMID: 39685981 DOI: 10.3390/s24237444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 11/12/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024]
Abstract
When cracks appear in reinforced concrete (RC) structures, the tensile load will be borne by steel bars with high ductility, resulting in a large deformation. Traditional strain sensors have difficulties in achieving good performance for large deformations in concrete structures. In this paper, based on a laser-induced graphene (LIG) technique, a flexible sensor is proposed for monitoring large deformations of concrete structures. Polyimide film is used as the carbon precursor to prepare LIG through laser scanning and then LIG is transferred onto a polydimethylsiloxane (PDMS) substrate to form the flexible sensor. The calibration and performance verification of the flexible sensor are completed through tensile tests. The applicability of the flexible sensor in monitoring large deformations of concrete is verified through beam bending experiments. The fatigue resistance of the flexible sensor is verified through fatigue tests on a full-scale beam. The experimental results showed that the flexible sensor has the advantages of low cost, simple preparation, and stable performance, making it suitable for applications in the field of large deformation monitoring of RC structures.
Collapse
Affiliation(s)
- Lina Liu
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- College of Air Transport and Engineering, Nanhang Jincheng College, Nanjing 211156, China
| | - Chenning Cai
- College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
| | - Zhenghua Qian
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen 518057, China
| | - Peng Li
- College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
- Shenzhen Research Institute, Nanjing University of Aeronautics and Astronautics, Shenzhen 518057, China
| | - Feng Zhu
- College of General Aviation and Flight, Nanjing University of Aeronautics and Astronautics, Liyang 213300, China
| |
Collapse
|
10
|
Yu W, Xu X, Cao T, Wei Z, Tang J, Zhang M. Laser-induced graphene/gold nanoparticle hybrid sensor for enhanced electrochemical detection of paracetamol. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:7527-7533. [PMID: 39370962 DOI: 10.1039/d4ay01627k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This research presents a highly sensitive and selective electrochemical sensor for detecting paracetamol. The sensor is created using laser direct-writing on a flexible PI substrate to form LIG electrodes. Gold nanoparticles (AuNPs) are then synthesized on the working electrode through secondary laser reduction, resulting in an AuNPs/LIG composite. This combination enhances the sensor's electrochemical activity, electron transfer rate, and adsorption capacity. The sensor exhibits a linear response to paracetamol concentrations with a detection limit of 0.086 μM. Testing on Tylenol tablets and tap water showed good recovery rates. The sensor displays strong anti-interference, reproducibility, and stability, making it a promising tool for effective paracetamol monitoring in real-world situations.
Collapse
Affiliation(s)
- Wenbang Yu
- Jinhua University of Vocational Technology, Jinhua 321000, China.
| | - Xiaotian Xu
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Tian Cao
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | - Zihan Wei
- Shanghai Rongxiang Biotechnology Co., Ltd, Shanghai 201100, China
| | - Jing Tang
- The Obstetrics & Gynecology Hospital of Fudan University, 419 Fangxie Road, Shanghai, 200011, China.
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| |
Collapse
|
11
|
Li Z, Huang L, Cheng L, Guo W, Ye R. Laser-Induced Graphene-Based Sensors in Health Monitoring: Progress, Sensing Mechanisms, and Applications. SMALL METHODS 2024; 8:e2400118. [PMID: 38597770 PMCID: PMC11579578 DOI: 10.1002/smtd.202400118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Indexed: 04/11/2024]
Abstract
The rising global population and improved living standards have led to an alarming increase in non-communicable diseases, notably cardiovascular and chronic respiratory diseases, posing a severe threat to human health. Wearable sensing devices, utilizing micro-sensing technology for real-time monitoring, have emerged as promising tools for disease prevention. Among various sensing platforms, graphene-based sensors have shown exceptional performance in the field of micro-sensing. Laser-induced graphene (LIG) technology, a cost-effective and facile method for graphene preparation, has gained particular attention. By converting polymer films directly into patterned graphene materials at ambient temperature and pressure, LIG offers a convenient and environmentally friendly alternative to traditional methods, opening up innovative possibilities for electronic device fabrication. Integrating LIG-based sensors into health monitoring systems holds the potential to revolutionize health management. To commemorate the tenth anniversary of the discovery of LIG, this work provides a comprehensive overview of LIG's evolution and the progress of LIG-based sensors. Delving into the diverse sensing mechanisms of LIG-based sensors, recent research advances in the domain of health monitoring are explored. Furthermore, the opportunities and challenges associated with LIG-based sensors in health monitoring are briefly discussed.
Collapse
Affiliation(s)
- Zihao Li
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
| | - Libei Huang
- Division of Science, Engineering and Health StudySchool of Professional Education and Executive DevelopmentThe Hong Kong Polytechnic University (PolyU SPEED)KowloonHong Kong999077China
| | - Le Cheng
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
| | - Weihua Guo
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
| | - Ruquan Ye
- Department of ChemistryState Key Laboratory of Marine PollutionCity University of Hong KongKowloonHong Kong999077China
- City University of Hong Kong Shenzhen Research InstituteShenzhen518057China
| |
Collapse
|
12
|
Aftab S, Koyyada G, Mukhtar M, Kabir F, Nazir G, Memon SA, Aslam M, Assiri MA, Kim JH. Laser-Induced Graphene for Advanced Sensing: Comprehensive Review of Applications. ACS Sens 2024; 9:4536-4554. [PMID: 39284075 DOI: 10.1021/acssensors.4c01717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Laser-induced graphene (LIG) and Laser-scribed graphene (LSG) are both advanced materials with significant potential in various applications, particularly in the field of sustainable sensors. The practical uses of LIG (LSG), which include gas detection, biological process monitoring, strain assessment, and environmental variable tracking, are thoroughly examined in this review paper. Its tunable characteristics distinguish LIG (LSG), which is developed from accurate laser beam modulation on polymeric substrates, and they are essential in advancing sensing technologies in many applications. The recent advances in LIG (LSG) applications include energy storage, biosensing, and electronics by steadily advancing efficiency and versatility. The remarkable flexibility of LIG (LSG) and its transformative potential in regard to sensor manufacturing and utilization are highlighted in this manuscript. Moreover, it thoroughly examines the various fabrication methods used in LIG (LSG) production, highlighting precision and adaptability. This review navigates the difficulties that are encountered in regard to implementing LIG sensors and looks ahead to future developments that will propel the industry forward. This paper provides a comprehensive summary of the latest research in LIG (LSG) and elucidates this innovative material's advanced and sustainable elements.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul 05006, Republic of Korea
| | - Ganesh Koyyada
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
- Department of Chemistry, School of Sciences, SR University, Warangal 506371, Telangana, India
| | - Maria Mukhtar
- Department of Semiconductor Systems Engineering and Clean Energy, Sejong University, Seoul 05006, Republic of Korea
- Department of Artificial Intelligence and Robotics, Sejong University, Seoul 05006, Republic of Korea
| | - Fahmid Kabir
- School of Engineering Science, Simon Fraser University, Burnaby, V5A 1S6 British Columbia, Canada
| | - Ghazanfar Nazir
- Department of Nanotechnology and Advanced Materials Engineering, Hybrid Materials Research Center (HMC), Sejong University, Seoul 05006, Republic of Korea
| | - Sufyan Ali Memon
- Defense Systems Engineering Sejong University, Seoul 05006, South Korea
| | - Muhammad Aslam
- Institute of Physics and Technology, Ural Federal University, Mira Street 19, Ekaterinburg 620002, Russia
| | - Mohammed A Assiri
- Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha 61413, Saudi Arabia
| | - Jae Hong Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
13
|
Adil O, Adeyeye C, Shamsi MH. Electrografted Laser-Induced Graphene: Direct Detection of Neurodegenerative Disease Biomarker in Cerebrospinal Fluid. ACS Sens 2024; 9:4748-4757. [PMID: 39145609 DOI: 10.1021/acssensors.4c01150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
There are more than 50 neurodegenerative disorders, and amyotrophic lateral sclerosis (ALS) is one of the most common disorders that poses diagnostic and treatment challenges. The poly glycine-proline (polyGP) dipeptide repeat is a toxic protein that has been recognized as a pharmacodynamic biomarker of C9orf72-associated (c9+) ALS, a subtype of ALS that originates from genetic mutation. Early detection of polyGP will help healthcare providers start timely gene therapy. Herein, we developed a label-free electrochemical immunoassay for the simple detection of polyGP in unprocessed cerebrospinal fluid (CSF) samples collected from ALS patients in the National ALS Biorepository. For the first time, an electrografted laser-induced graphene (E-LIG) electrode system was employed in a sandwich format to detect polyGP using a label-free electrochemical impedance technique. The results show that the E-LIG-modified surface exhibited high sensitivity and selectivity in buffer and CSF media with limit of detection values of 0.19 and 0.27 ng/mL, respectively. The precision of the calibration model was better in CSF than in the buffer. The E-LIG immunosensor can easily select polyGP targets in the presence of other dipeptide proteins translated from the c9 gene. Further study with CSF samples from ALS patients demonstrated that the label-free E-LIG-based immunosensor not only quantified polyGP in the complex CSF matrix but also distinguished between c9+ and non-c9- ALS patients.
Collapse
Affiliation(s)
- Omair Adil
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, United States
| | - Comfort Adeyeye
- School of Biological Sciences, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, United States
| | - Mohtashim H Shamsi
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, United States
| |
Collapse
|
14
|
Xie B, Guo Y, Chen Y, Zhang H, Xiao J, Hou M, Liu H, Ma L, Chen X, Wong C. Advances in Graphene-Based Electrode for Triboelectric Nanogenerator. NANO-MICRO LETTERS 2024; 17:17. [PMID: 39327371 PMCID: PMC11448509 DOI: 10.1007/s40820-024-01530-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/05/2024] [Indexed: 09/28/2024]
Abstract
With the continuous development of wearable electronics, wireless sensor networks and other micro-electronic devices, there is an increasingly urgent need for miniature, flexible and efficient nanopower generation technology. Triboelectric nanogenerator (TENG) technology can convert small mechanical energy into electricity, which is expected to address this problem. As the core component of TENG, the choice of electrode materials significantly affects its performance. Traditional metal electrode materials often suffer from problems such as durability, which limits the further application of TENG. Graphene, as a novel electrode material, shows excellent prospects for application in TENG owing to its unique structure and excellent electrical properties. This review systematically summarizes the recent research progress and application prospects of TENGs based on graphene electrodes. Various precision processing methods of graphene electrodes are introduced, and the applications of graphene electrode-based TENGs in various scenarios as well as the enhancement of graphene electrodes for TENG performance are discussed. In addition, the future development of graphene electrode-based TENGs is also prospectively discussed, aiming to promote the continuous advancement of graphene electrode-based TENGs.
Collapse
Affiliation(s)
- Bin Xie
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yuanhui Guo
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Yun Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Hao Zhang
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Jiawei Xiao
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Maoxiang Hou
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Huilong Liu
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Li Ma
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Xin Chen
- State Key Laboratory of Precision Electronic Manufacturing Technology and Equipment, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou, 510006, People's Republic of China
| | - Chingping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
15
|
Qu M, Guo Y, Cai Y, Nie Z, Zhang C. Upgrading Polyolefin Plastic Waste into Multifunctional Porous Graphene using Silicone-Assisted Direct Laser Writing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310273. [PMID: 38794868 DOI: 10.1002/smll.202310273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 05/07/2024] [Indexed: 05/26/2024]
Abstract
The widespread use of plastics, especially polyolefin including polyethylene and polypropylene, has led to severe environmental crises. Chemical recycling, a promising solution for extracting value from plastic waste, however, is underutilized due to its complexity. Here, a simple approach, silicone-assisted direct laser writing (SA-DLW) is developed, to upgrade polyolefin plastic waste into multifunctional porous graphene, called laser-induced graphene (LIG). This method involves infiltrating polyolefins with silicone, which retards ablation during the DLW process and supplies additional carbon atoms, as confirmed by experimental and molecular dynamic results. A remarkable conversion yield of 38.3% is achieved. The upgraded LIG exhibited a porous structure and high conductivity, which is utilized for the fabrication of diverse energy and electronic devices with commendable performance. Furthermore, the SA-DLW technique is versatile for upgrading plastic waste in various types and forms. Upgrading plastic waste in the form of fabric has significantly simplified pre-treatment. Finally, a wearable flex sensor is fabricated on the non-woven fabric of a discarded medical mask, which is applied for gesture monitoring. This work offers a simple but effective solution to upgrade plastic waste into valuable products, contributing to the mitigation of environmental challenges posed by plastic pollution.
Collapse
Affiliation(s)
- Menglong Qu
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Yani Guo
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, 211816, China
- Sinopec Nanjing Engineering & Construction Incorporation, Nanjing, 210049, China
| | - Yahan Cai
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| | - Zhengwei Nie
- School of Mechanical and Power Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Cheng Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, 210031, China
| |
Collapse
|
16
|
Su R, Liang M, Yuan Y, Huang C, Xing W, Bian X, Lian Y, Wang B, You Z, You R. High-Performance Sensing Platform Based on Morphology/Lattice Collaborative Control of Femtosecond-Laser-Induced MXene-Composited Graphene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404889. [PMID: 39041832 PMCID: PMC11423250 DOI: 10.1002/advs.202404889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/29/2024] [Indexed: 07/24/2024]
Abstract
Flexible sensors based on laser-induced graphene (LIG) are widely used in wearable personal devices, with the morphology and lattice arrangement of LIG the key factors affecting their performance in various applications. In this study, femtosecond-laser-induced MXene-composited graphene (LIMG) is used to improve the electrical conductivity of graphene by incorporating MXene, a 2D material with a high concentration of free electrons, into the LIG structure. By combining pump-probe detection, laser-induced breakdown spectroscopy (LIBS), and density functional theory (DFT) calculations, the morphogenesis and lattice structuring principles of LIMG is explored, with the results indicating that MXene materials are successfully embedded in the graphene lattice, altering both their morphology and electrical properties. The structural sparsity and electrical conductivity of LIMG composites (up to 3187 S m-1) are significantly enhanced compared to those of LIG. Based on these findings, LIMG has been used in wearable electronics. LIMG electrodes are used to detect uric acid, with a minimum detection limit of 2.48 µM. Additionally, LIMG-based pressure and bending sensors have been successfully used to monitor human limb movement and pulse. The direct in situ femtosecond laser patterning synthesis of LIMG has significant implications for developing flexible wearable electronic sensors.
Collapse
Affiliation(s)
- Ruige Su
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Misheng Liang
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Yongjiu Yuan
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Chaojun Huang
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Wenqiang Xing
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Xiaomeng Bian
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| | - Yiling Lian
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bo Wang
- Institute of Medical Equipment Science and Engineering, Huazhong University of Science and Technology, Wuhan, 430074, P. R. China
| | - Zheng You
- State Key Laboratory of Precision Testing Technology and Instruments, Tsinghua University, Beijing, 100084, P. R. China
| | - Rui You
- Laboratory of the Intelligent Microsystem, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
- School of Instrument Science and Opto-Electronics Engineering, Beijing Information Science and Technology University, Beijing, 100192, P. R. China
| |
Collapse
|
17
|
Park H, Park JJ, Bui PD, Yoon H, Grigoropoulos CP, Lee D, Ko SH. Laser-Based Selective Material Processing for Next-Generation Additive Manufacturing. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307586. [PMID: 37740699 DOI: 10.1002/adma.202307586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/14/2023] [Indexed: 09/25/2023]
Abstract
The connection between laser-based material processing and additive manufacturing is quite deeply rooted. In fact, the spark that started the field of additive manufacturing is the idea that two intersecting laser beams can selectively solidify a vat of resin. Ever since, laser has been accompanying the field of additive manufacturing, with its repertoire expanded from processing only photopolymer resin to virtually any material, allowing liberating customizability. As a result, additive manufacturing is expected to take an even more prominent role in the global supply chain in years to come. Herein, an overview of laser-based selective material processing is presented from various aspects: the physics of laser-material interactions, the materials currently used in additive manufacturing processes, the system configurations that enable laser-based additive manufacturing, and various functional applications of next-generation additive manufacturing. Additionally, current challenges and prospects of laser-based additive manufacturing are discussed.
Collapse
Affiliation(s)
- Huijae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Jung Jae Park
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Phuong-Danh Bui
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Hyeokjun Yoon
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| | - Costas P Grigoropoulos
- Laser Thermal Lab, Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, 94720, USA
| | - Daeho Lee
- Laser and Thermal Engineering Lab, Department of Mechanical Engineering, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam, 13120, South Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, South Korea
| |
Collapse
|
18
|
Li L, Zhang J, Song Y, Dan R, Xia X, Zhao J, Xu R. Flexible Humidity Sensor Based on a Graphene Oxide-Carbon Nanotube-Modified Co 3O 4 Nanoparticle-Embedded Laser-Induced Graphene Electrode. ACS APPLIED MATERIALS & INTERFACES 2024; 16:33981-33992. [PMID: 38897966 DOI: 10.1021/acsami.4c05993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
To meet evolving humidity monitoring needs, the development of flexible, high-performance humidity sensors is crucial. This study introduces an innovative flexible humidity sensor using a single-step laser scribing technique to fabricate a flexible in situ Co3O4 nanoparticle-embedded laser-induced graphene (Co3O4-LIG) composite electrode. Compared to conventional LIG electrodes, the Co3O4-LIG electrode exhibits improved conductivity and hydrophilicity, enhancing charge transfer and water molecule affinity. The unique two-dimensional structure and exceptional water permeability of graphene oxide (GO) combine with the rapid water response and high specific surface area of carboxylated multiwalled carbon nanotubes (MWCNTs), thereby assuming a crucial function in the modification and optimization of the performance of humidity sensors. Through the application of a homogenously blended aqueous solution comprising GO and MWCNTs in precise proportions onto the Co3O4-LIG composite electrode, an excellent humidity-responsive layer is established, culminating in the realization of a cutting-edge GO-MWCNTs@Co3O4-LIG flexible humidity sensor. Noteworthy attributes of this sensor include a heightened sensitivity [959.1% (ΔR/R0)], rapid response and recovery times (within 5 and 26 s, respectively), and a noteworthy linearity (R2 = 0.994) across a relative humidity range of 14 to 95%. The findings presented herein offer valuable insights and a practical blueprint for the design and production of flexible humidity sensors.
Collapse
Affiliation(s)
- Lei Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
- Nanjing University of Science and Technology Zijin College, 89 Wenlan Road, Nanjing 210023, P. R. China
| | - Jiaming Zhang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Yang Song
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Ronghui Dan
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Xiaojuan Xia
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Jiang Zhao
- College of Integrated Circuit Science and Engineering, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| | - Rongqing Xu
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, P. R. China
| |
Collapse
|
19
|
Qian H, Moreira G, Vanegas D, Tang Y, Pola C, Gomes C, McLamore E, Bliznyuk N. Improving high throughput manufacture of laser-inscribed graphene electrodes via hierarchical clustering. Sci Rep 2024; 14:7980. [PMID: 38575717 PMCID: PMC10995179 DOI: 10.1038/s41598-024-57932-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/22/2024] [Indexed: 04/06/2024] Open
Abstract
Laser-inscribed graphene (LIG), initially developed for graphene supercapacitors, has found widespread use in sensor research and development, particularly as a platform for low-cost electrochemical sensing. However, batch-to-batch variation in LIG fabrication introduces uncertainty that cannot be adequately tracked during manufacturing process, limiting scalability. Therefore, there is an urgent need for robust quality control (QC) methodologies to identify and select similar and functional LIG electrodes for sensor fabrication. For the first time, we have developed a statistical workflow and an open-source hierarchical clustering tool for QC analysis in LIG electrode fabrication. The QC process was challenged with multi-operator cyclic voltammetry (CV) data for bare and metalized LIG. As a proof of concept, we employed the developed QC process for laboratory-scale manufacturing of LIG-based biosensors. The study demonstrates that our QC process can rapidly identify similar LIG electrodes from large batches (n ≥ 36) of electrodes, leading to a reduction in biosensor measurement variation by approximately 13% compared to the control group without QC. The statistical workflow and open-source code presented here provide a versatile toolkit for clustering analysis, opening a pathway toward scalable manufacturing of LIG electrodes in sensing. In addition, we establish a data repository for further study of LIG variation.
Collapse
Affiliation(s)
- Hanyu Qian
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Geisianny Moreira
- Department of Agricultural Sciences, Clemson University, Clemson, SC, 29634, USA
| | - Diana Vanegas
- Environmental Engineering and Earth Sciences Department of Engineering, Clemson University, Clemson, SC, 29634, USA
| | - Yifan Tang
- Department of Plant and Environmental Science, Clemson University, Clemson, SC, 29634, USA
| | - Cicero Pola
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Carmen Gomes
- Department of Mechanical Engineering, Iowa State University, Ames, IA, 50011, USA
| | - Eric McLamore
- Department of Agricultural Sciences, Clemson University, Clemson, SC, 29634, USA.
- Environmental Engineering and Earth Sciences Department of Engineering, Clemson University, Clemson, SC, 29634, USA.
| | - Nikolay Bliznyuk
- Department of Agricultural and Biological Engineering, University of Florida, Gainesville, FL, 32611, USA.
- Departments of Statistics, Biostatistics and Electrical and Computer Engineering, University of Florida, Gainesville, FL, 32611, USA.
| |
Collapse
|
20
|
Lee JH, Cho K, Kim JK. Age of Flexible Electronics: Emerging Trends in Soft Multifunctional Sensors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2310505. [PMID: 38258951 DOI: 10.1002/adma.202310505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/27/2023] [Indexed: 01/24/2024]
Abstract
With the commercialization of first-generation flexible mobiles and displays in the late 2010s, humanity has stepped into the age of flexible electronics. Inevitably, soft multifunctional sensors, as essential components of next-generation flexible electronics, have attracted tremendous research interest like never before. This review is dedicated to offering an overview of the latest emerging trends in soft multifunctional sensors and their accordant future research and development (R&D) directions for the coming decade. First, key characteristics and the predominant target stimuli for soft multifunctional sensors are highlighted. Second, important selection criteria for soft multifunctional sensors are introduced. Next, emerging materials/structures and trends for soft multifunctional sensors are identified. Specifically, the future R&D directions of these sensors are envisaged based on their emerging trends, namely i) decoupling of multiple stimuli, ii) data processing, iii) skin conformability, and iv) energy sources. Finally, the challenges and potential opportunities for these sensors in future are discussed, offering new insights into prospects in the fast-emerging technology.
Collapse
Affiliation(s)
- Jeng-Hun Lee
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Kilwon Cho
- Department of Chemical Engineering, Pohang University of Science and Technology, Pohang, 37673, South Korea
| | - Jang-Kyo Kim
- Department of Mechanical Engineering, Khalifa University, P. O. Box 127788, Abu Dhabi, United Arab Emirates
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
21
|
Xu L, Zhou X, Zhao F, Fu Y, Tang L, Zeng Y, Chen G, Wu C, Wang L, Chen Q, Yang K, Sun D, Hai Z. Rapid laser fabrication of indium tin oxide and polymer-derived ceramic composite thin films for high-temperature sensors. J Colloid Interface Sci 2024; 658:913-922. [PMID: 38157615 DOI: 10.1016/j.jcis.2023.12.119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/29/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
Thin-film sensors are essential for real-time monitoring of components in high-temperature environments. Traditional fabrication methods often involve complicated fabrication steps or require prolonged high-temperature annealing, limiting their practical applicability. Here, we present an approach using direct ink writing and laser scanning (DIW-LS) to fabricate high-temperature functional thin films. An indium tin oxide (ITO)/preceramic polymer (PP) ink suitable for DIW was developed. Under LS, the ITO/PP thin film shrank in volume. Meanwhile, the rapid pyrolysis of PP into amorphous precursor-derived ceramic (PDC) facilitated the faster sintering of ITO nanoparticles and improved the densification of the thin film. This process realized the formation of a conductive network of interconnected ITO nanoparticles. The results show that the ITO/PDC thin film exhibits excellent stability, with a drift rate of 4.7 % at 1000 °C for 25 h, and withstands temperatures up to 1250 °C in the ambient atmosphere. It is also sensitive to strain, with a maximum gauge factor of -6.0. As a proof of concept, we have used DIW-LS technology to fabricate a thin-film heat flux sensor on the surface of the turbine blade, capable of measuring heat flux densities over 1 MW/m2. This DIW-LS process provides a viable approach for the integrated, rapid, and flexible fabrication of thin film sensors for harsh environments.
Collapse
Affiliation(s)
- Lida Xu
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Xiong Zhou
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Fuxin Zhao
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Yanzhang Fu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Lantian Tang
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Yingjun Zeng
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Guochun Chen
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Chao Wu
- Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Lingyun Wang
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Qinnan Chen
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China
| | - Kai Yang
- China Aerodynamics Research and Development Center, Mianyang 621000, China.
| | - Daoheng Sun
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China.
| | - Zhenyin Hai
- Discipline of Intelligent Instrument and Equipment, Xiamen University, Xiamen 361102, China; Department of Mechanical and Electrical Engineering, Xiamen University, Xiamen 361102, China; Fujian Micro/nano Manufacturing Engineering Technology Research Center, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
22
|
Lin Z, Duan S, Liu M, Dang C, Qian S, Zhang L, Wang H, Yan W, Zhu M. Insights into Materials, Physics, and Applications in Flexible and Wearable Acoustic Sensing Technology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306880. [PMID: 38015990 DOI: 10.1002/adma.202306880] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/22/2023] [Indexed: 11/30/2023]
Abstract
Sound plays a crucial role in the perception of the world. It allows to communicate, learn, and detect potential dangers, diagnose diseases, and much more. However, traditional acoustic sensors are limited in their form factors, being rigid and cumbersome, which restricts their potential applications. Recently, acoustic sensors have made significant advancements, transitioning from rudimentary forms to wearable devices and smart everyday clothing that can conform to soft, curved, and deformable surfaces or surroundings. In this review, the latest scientific and technological breakthroughs with insightful analysis in materials, physics, design principles, fabrication strategies, functions, and applications of flexible and wearable acoustic sensing technology are comprehensively explored. The new generation of acoustic sensors that can recognize voice, interact with machines, control robots, enable marine positioning and localization, monitor structural health, diagnose human vital signs in deep tissues, and perform organ imaging is highlighted. These innovations offer unique solutions to significant challenges in fields such as healthcare, biomedicine, wearables, robotics, and metaverse. Finally, the existing challenges and future opportunities in the field are addressed, providing strategies to advance acoustic sensing technologies for intriguing real-world applications and inspire new research directions.
Collapse
Affiliation(s)
- Zhiwei Lin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Shengshun Duan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Mingyang Liu
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Chao Dang
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Shengtai Qian
- School of Electrical and Electronic Engineering, Nanyang Technological University (NTU), Singapore, 639798, Singapore
| | - Luxue Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Hailiang Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Wei Yan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, China
| |
Collapse
|
23
|
Zhang Z, Huang L, Chen Y, Qiu Z, Meng X, Li Y. Portable glucose sensing analysis based on laser-induced graphene composite electrode. RSC Adv 2024; 14:1034-1050. [PMID: 38174264 PMCID: PMC10759202 DOI: 10.1039/d3ra06947h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
In this work, a portable electrochemical glucose sensor was studied based on a laser-induced graphene (LIG) composite electrode. A flexible graphene electrode was prepared using LIG technology. Poly(3,4-ethylene dioxythiophene) (PEDOT) and gold nanoparticles (Au NPs) were deposited on the electrode surface by potentiostatic deposition to obtain a composite electrode with good conductivity and stability. Glucose oxidase (GOx) was then immobilized using glutaraldehyde (GA) to create an LIG/PEDOT/Au/GOx micro-sensing interface. The concentration of glucose solution is directly related to the current value by chronoamperometry. Results show that the sensor based on the LIG/PEDOT/Au/GOx flexible electrode can detect glucose solutions within a concentration range of 0.5 × 10-5 to 2.5 × 10-3 mol L-1. The modified LIG electrode provides the resulting glucose sensor with an excellent sensitivity of 341.67 μA mM-1 cm-2 and an ultra-low limit of detection (S/N = 3) of 0.2 × 10-5 mol L-1. The prepared sensor exhibits high sensitivity, stability, and selectivity, making it suitable for analyzing biological fluid samples. The composite electrode is user-friendly, and can be built into a portable biosensor device through smartphone detection. Thus, the developed sensor has the potential to be applied in point-of-care platforms such as environmental monitoring, public health, and food safety.
Collapse
Affiliation(s)
- Zhaokang Zhang
- College of Chemical Engineering, Fuzhou University Fuzhou 350108 China
| | - Lu Huang
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| | - Yiting Chen
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| | - Zhenli Qiu
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| | - Xiangying Meng
- School of Medical Laboratory, Weifang Medical University Weifang 261053 China
| | - Yanxia Li
- College of Materials and Chemical Engineering, Minjiang University Fuzhou 350108 China
| |
Collapse
|
24
|
Fiodorov V, Trusovas R, Mockus Z, Ratautas K, Račiukaitis G. Laser-Induced Graphene Formation on Polyimide Using UV to Mid-Infrared Laser Radiation. Polymers (Basel) 2023; 15:4229. [PMID: 37959913 PMCID: PMC10650728 DOI: 10.3390/polym15214229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Our study presents laser-assisted methods to produce conductive graphene layers on the polymer surface. Specimens were treated using two different lasers at ambient and nitrogen atmospheres. A solid-state picosecond laser generating 355 nm, 532 nm, or 1064 nm wavelengths and a CO2 laser generating mid-infrared 10.6 µm wavelength radiation operating in a pulsed regime were used in experiments. Sheet resistance measurements and microscopic analysis of treated sample surfaces were made. The chemical structure of laser-treated surfaces was investigated using Raman spectroscopy, and it showed the formation of high-quality few-layer graphene structures on the PI surface. The intensity ratios I(2D)/I(G) and I(D)/I(G) of samples treated with 1064 nm wavelength in nitrogen atmosphere were 0.81 and 0.46, respectively. After laser treatment, a conductive laser-induced graphene layer with a sheet resistance as low as 5 Ω was formed. Further, copper layers with a thickness of 3-10 µm were deposited on laser-formed graphene using a galvanic plating. The techniques of forming a conductive graphene layer on a polymer surface have a great perspective in many fields, especially in advanced electronic applications to fabricate copper tracks on 3D materials.
Collapse
Affiliation(s)
- Vitalij Fiodorov
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania; (R.T.); (K.R.); (G.R.)
| | - Romualdas Trusovas
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania; (R.T.); (K.R.); (G.R.)
| | - Zenius Mockus
- Department of Chemical Engineering and Technology, Center for Physical Sciences and Technology, Sauletekio Ave. 3, LT-10257 Vilnius, Lithuania;
| | - Karolis Ratautas
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania; (R.T.); (K.R.); (G.R.)
| | - Gediminas Račiukaitis
- Department of Laser Technologies, Center for Physical Sciences and Technology, Savanoriu Ave. 231, LT-02300 Vilnius, Lithuania; (R.T.); (K.R.); (G.R.)
| |
Collapse
|
25
|
Yang D, Nam HK, Le TSD, Yeo J, Lee Y, Kim YR, Kim SW, Choi HJ, Shim HC, Ryu S, Kwon S, Kim YJ. Multimodal E-Textile Enabled by One-Step Maskless Patterning of Femtosecond-Laser-Induced Graphene on Nonwoven, Knit, and Woven Textiles. ACS NANO 2023; 17:18893-18904. [PMID: 37643475 DOI: 10.1021/acsnano.3c04120] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Personal wearable devices are considered important in advanced healthcare, military, and sports applications. Among them, e-textiles are the best candidates because of their intrinsic conformability without any additional device installation. However, e-textile manufacturing to date has a high process complexity and low design flexibility. Here, we report the direct laser writing of e-textiles by converting raw Kevlar textiles to electrically conductive laser-induced graphene (LIG) via femtosecond laser pulses in ambient air. The resulting LIG has high electrical conductivity and chemical reliability with a low sheet resistance of 2.86 Ω/□. Wearable multimodal e-textile sensors and supercapacitors are realized on different types of Kevlar textiles, including nonwoven, knit, and woven structures, by considering their structural textile characteristics. The nonwoven textile exhibits high mechanical stability, making it suitable for applications in temperature sensors and micro-supercapacitors. On the other hand, the knit textile possesses inherent spring-like stretchability, enabling its use in the fabrication of strain sensors for human motion detection. Additionally, the woven textile offers special sensitive pressure-sensing networks between the warp and weft parts, making it suitable for the fabrication of bending sensors used in detecting human voices. This direct laser synthesis of arbitrarily patterned LIGs from various textile structures could result in the facile realization of wearable electronic sensors and energy storage.
Collapse
Affiliation(s)
- Dongwook Yang
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Han Ku Nam
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Truong-Son Dinh Le
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Jinwook Yeo
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Younggeun Lee
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Young-Ryeul Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Seung-Woo Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Hak-Jong Choi
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery & Materials, 156, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, South Korea
| | - Hyung Cheoul Shim
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery & Materials, 156, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, South Korea
| | - Seunghwa Ryu
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| | - Soongeun Kwon
- Nano-Convergence Manufacturing Systems Research Division, Korea Institute of Machinery & Materials, 156, Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, South Korea
| | - Young-Jin Kim
- Department of Mechanical Engineering, Korea Advanced Institute of Science and Technology (KAIST), Science Town, Daejeon 34141, South Korea
| |
Collapse
|
26
|
Devi M, Wang H, Moon S, Sharma S, Strauss V. Laser-Carbonization - A Powerful Tool for Micro-Fabrication of Patterned Electronic Carbons. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211054. [PMID: 36841955 DOI: 10.1002/adma.202211054] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Fabricating electronic devices from natural, renewable resources is a common goal in engineering and materials science. In this regard, carbon is of special significance due to its biocompatibility combined with electrical conductivity and electrochemical stability. In microelectronics, however, carbon's device application is often inhibited by tedious and expensive preparation processes and a lack of control over processing and material parameters. Laser-assisted carbonization is emerging as a tool for the precise and selective synthesis of functional carbon-based materials for flexible device applications. In contrast to conventional carbonization via in-furnace pyrolysis, laser-carbonization is induced photo-thermally and occurs on the time-scale of milliseconds. By careful selection of the precursors and process parameters, the properties of this so-called laser-patterned carbon (LP-C) such as porosity, surface polarity, functional groups, degree of graphitization, charge-carrier structure, etc. can be tuned. In this critical review, a common perspective is generated on laser-carbonization in the context of general carbonization strategies, fundamentals of laser-induced materials processing, and flexible electronic applications, like electrodes for sensors, electrocatalysts, energy storage, or antennas. An attempt is made to have equal emphasis on material processing and application aspects such that this emerging technology can be optimally positioned in the broader context of carbon-based microfabrication.
Collapse
Affiliation(s)
- Mamta Devi
- School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175075, India
| | - Huize Wang
- Department Kolloidchemie, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Sanghwa Moon
- Department Kolloidchemie, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Swati Sharma
- School of Mechanical and Materials Engineering, Indian Institute of Technology Mandi, Kamand, Himachal Pradesh, 175075, India
| | - Volker Strauss
- Department Kolloidchemie, Max-Planck-Institut für Kolloid- und Grenzflächenforschung, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
27
|
Zou Y, Zhong M, Li S, Qing Z, Xing X, Gong G, Yan R, Qin W, Shen J, Zhang H, Jiang Y, Wang Z, Zhou C. Flexible Wearable Strain Sensors Based on Laser-Induced Graphene for Monitoring Human Physiological Signals. Polymers (Basel) 2023; 15:3553. [PMID: 37688180 PMCID: PMC10490020 DOI: 10.3390/polym15173553] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Flexible wearable strain sensors based on laser-induced graphene (LIG) have attracted significant interest due to their simple preparation process, three-dimensional porous structure, excellent electromechanical characteristics, and remarkable mechanical robustness. In this study, we demonstrated that LIG with various defects could be prepared on the surface of polyimide (PI) film, patterned in a single step by adjusting the scanning speed while maintaining a constant laser power of 12.4 W, and subjected to two repeated scans under ambient air conditions. The results indicated that LIG produced at a scanning speed of 70 mm/s exhibited an obvious stacked honeycomb micropore structure, and the flexible strain sensor fabricated with this material demonstrated stable resistance. The sensor exhibited high sensitivity within a low strain range of 0.4-8.0%, with the gauge factor (GF) reaching 107.8. The sensor demonstrated excellent stability and repeatable response at a strain of 2% after approximately 1000 repetitions. The flexible wearable LIG-based sensor with a serpentine bending structure could be used to detect various physiological signals, including pulse, finger bending, back of the hand relaxation and gripping, blinking eyes, smiling, drinking water, and speaking. The results of this study may serve as a reference for future applications in health monitoring, medical rehabilitation, and human-computer interactions.
Collapse
Affiliation(s)
- Yao Zou
- Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Deyang 618307, China; (Y.Z.); (S.L.); (Z.Q.); (X.X.); (J.S.); (H.Z.); (C.Z.)
| | - Mian Zhong
- Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Deyang 618307, China; (Y.Z.); (S.L.); (Z.Q.); (X.X.); (J.S.); (H.Z.); (C.Z.)
- Institute of Civil Aviation Intelligent Sensing and Advanced Detection Technology, Civil Aviation Flight University of China, Deyang 618307, China
| | - Shichen Li
- Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Deyang 618307, China; (Y.Z.); (S.L.); (Z.Q.); (X.X.); (J.S.); (H.Z.); (C.Z.)
| | - Zehao Qing
- Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Deyang 618307, China; (Y.Z.); (S.L.); (Z.Q.); (X.X.); (J.S.); (H.Z.); (C.Z.)
| | - Xiaoqing Xing
- Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Deyang 618307, China; (Y.Z.); (S.L.); (Z.Q.); (X.X.); (J.S.); (H.Z.); (C.Z.)
| | - Guochong Gong
- College of Aviation Engineering, Civil Aviation Flight University of China, Deyang 618307, China; (G.G.); (R.Y.); (W.Q.)
| | - Ran Yan
- College of Aviation Engineering, Civil Aviation Flight University of China, Deyang 618307, China; (G.G.); (R.Y.); (W.Q.)
| | - Wenfeng Qin
- College of Aviation Engineering, Civil Aviation Flight University of China, Deyang 618307, China; (G.G.); (R.Y.); (W.Q.)
| | - Jiaqing Shen
- Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Deyang 618307, China; (Y.Z.); (S.L.); (Z.Q.); (X.X.); (J.S.); (H.Z.); (C.Z.)
| | - Huazhong Zhang
- Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Deyang 618307, China; (Y.Z.); (S.L.); (Z.Q.); (X.X.); (J.S.); (H.Z.); (C.Z.)
| | - Yong Jiang
- School of Mathematics and Physics, Southwest University of Science and Technology, Mianyang 621010, China;
| | - Zhenhua Wang
- Institute of Electronic and Electrical Engineering, Northwestern Polytechnical University, Xi’an 710129, China
| | - Chao Zhou
- Institute of Electronic and Electrical Engineering, Civil Aviation Flight University of China, Deyang 618307, China; (Y.Z.); (S.L.); (Z.Q.); (X.X.); (J.S.); (H.Z.); (C.Z.)
- Institute of Civil Aviation Intelligent Sensing and Advanced Detection Technology, Civil Aviation Flight University of China, Deyang 618307, China
| |
Collapse
|
28
|
Bruckschlegel C, Schlosser M, Wongkaew N. Investigating nanocatalyst-embedding laser-induced carbon nanofibers for non-enzymatic electrochemical sensing of hydrogen peroxide. Anal Bioanal Chem 2023; 415:4487-4499. [PMID: 36933056 PMCID: PMC10329077 DOI: 10.1007/s00216-023-04640-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/16/2023] [Accepted: 02/28/2023] [Indexed: 03/19/2023]
Abstract
In this present study, we explored the catalytic behaviors of the in situ generated metal nanoparticles, i.e., Pt/Ni, embedded in laser-induced carbon nanofibers (LCNFs) and their potential for H2O2 detection under physiological conditions. Furthermore, we demonstrate current limitations of laser-generated nanocatalyst embedded within LCNFs as electrochemical detectors and possible strategies to overcome the issues. Cyclic voltammetry revealed the distinctive electrocatalytic behaviors of carbon nanofibers embedding Pt and Ni in various ratios. With chronoamperometry at +0.5 V, it was found that modulation of Pt and Ni content affected only current related to H2O2 but not other interfering electroactive substances, i.e., ascorbic acid (AA), uric acid (UA), dopamine (DA), and glucose. This implies that the interferences react to the carbon nanofibers regardless of the presence of metal nanocatalysts. Carbon nanofibers loaded only with Pt and without Ni performed best in H2O2 detection in phosphate-buffered solution with a limit of detection (LOD) of 1.4 µM, a limit of quantification (LOQ) of 5.7 µM, a linear range from 5 to 500 µM, and a sensitivity of 15 µA mM-1 cm-2. By increasing Pt loading, the interfering signals from UA and DA could be minimized. Furthermore, we found that modification of electrodes with nylon improves the recovery of H2O2 spiked in diluted and undiluted human serum. The study is paving the way for the efficient utilization of laser-generated nanocatalyst-embedding carbon nanomaterials for non-enzymatic sensors, which ultimately will lead to inexpensive point-of-need devices with favorable analytical performance.
Collapse
Affiliation(s)
- Christoph Bruckschlegel
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Marc Schlosser
- Institute of Inorganic Chemistry, University of Regensburg, 93053, Regensburg, Germany
| | - Nongnoot Wongkaew
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
| |
Collapse
|
29
|
Huang L, Cheng L, Ma T, Zhang JJ, Wu H, Su J, Song Y, Zhu H, Liu Q, Zhu M, Zeng Z, He Q, Tse MK, Yang DT, Yakobson BI, Tang BZ, Ren Y, Ye R. Direct Synthesis of Ammonia from Nitrate on Amorphous Graphene with Near 100% Efficiency. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211856. [PMID: 36799267 DOI: 10.1002/adma.202211856] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 02/12/2023] [Indexed: 06/16/2023]
Abstract
Ammonia is an indispensable commodity in the agricultural and pharmaceutical industries. Direct nitrate-to-ammonia electroreduction is a decentralized route yet challenged by competing side reactions. Most catalysts are metal-based, and metal-free catalysts with high nitrate-to-ammonia conversion activity are rarely reported. Herein, it is shown that amorphous graphene synthesized by laser induction and comprising strained and disordered pentagons, hexagons, and heptagons can electrocatalyze the eight-electron reduction of NO3 - to NH3 with a Faradaic efficiency of ≈100% and an ammonia production rate of 2859 µg cm-2 h-1 at -0.93 V versus reversible hydrogen electrode. X-ray pair-distribution function analysis and electron microscopy reveal the unique molecular features of amorphous graphene that facilitate NO3 - reduction. In situ Fourier transform infrared spectroscopy and theoretical calculations establish the critical role of these features in stabilizing the reaction intermediates via structural relaxation. The enhanced catalytic activity enables the implementation of flow electrolysis for the on-demand synthesis and release of ammonia with >70% selectivity, resulting in significantly increased yields and survival rates when applied to plant cultivation. The results of this study show significant promise for remediating nitrate-polluted water and completing the NOx cycle.
Collapse
Affiliation(s)
- Libei Huang
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
- Division of Science, Engineering and Health Study, School of Professional Education and Executive Development (PolyU SPEED), The Hong Kong Polytechnic University, Hong Kong, 999077, P. R. China
| | - Le Cheng
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Tinghao Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jun-Jie Zhang
- Department of Materials Science and Nano Engineering and Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Haikun Wu
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Jianjun Su
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Yun Song
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - He Zhu
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Qi Liu
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Minghui Zhu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Man-Kit Tse
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
| | - Deng-Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Boris I Yakobson
- Department of Materials Science and Nano Engineering and Department of Chemistry, Rice University, 6100 Main Street, Houston, TX, 77005, USA
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, P. R. China
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Hong Kong, 999077, P. R. China
- X-Ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, IL, 60439, USA
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong, 518057, China
| |
Collapse
|
30
|
Huang L, Liu Y, Li G, Song Y, Su J, Cheng L, Guo W, Zhao G, Shen H, Yan Z, Tang BZ, Ye R. Ultrasensitive, Fast-Responsive, Directional Airflow Sensing by Bioinspired Suspended Graphene Fibers. NANO LETTERS 2023; 23:597-605. [PMID: 36622320 DOI: 10.1021/acs.nanolett.2c04228] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The development of high-performance miniaturized and flexible airflow sensors is essential to meet the need of emerging applications. Graphene-based airflow sensors are hampered by the sluggish response and recovery speed and low sensitivity. Here we employ laser-induced graphene (LIG) with poststructural biomimicry for fabricating high-performance, flexible airflow sensors, including cotton-like porous LIG, caterpillar fluff-like vertical LIG fiber, and Lepidoptera scale-like suspended LIG fiber (SLIGF) structures. The structural engineering changes the deformation behavior of LIGs under stress, among which the synchronous propagation of the scale-like structure of SLIGF is the most conducive to airflow sensing. The SLIGF achieves the shortest average response time of 0.5 s, the highest sensitivity of 0.11 s/m, and a record-low detection threshold of 0.0023 m/s, benchmarked against the state-of-the-art airflow sensors. Furthermore, we showcase the SLIGF airflow sensors in weather forecasting, health, and communications applications. Our study will help develop next-generation waterflow, sound, and motion sensors.
Collapse
Affiliation(s)
- Libei Huang
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yong Liu
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Geng Li
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yun Song
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Jianjun Su
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Le Cheng
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Weihua Guo
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Ganggang Zhao
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Hanchen Shen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science, State Key Laboratory of Molecular Neuroscience, Guangdong-Hong Kong-Macau Joint Laboratory of Optoelectronic and Magnetic Functional Materials, The Hong Kong University of Science and Technology, Kowloon, Hong Kong 999077, China
| | - Zheng Yan
- Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, Missouri 65211, United States
- Department of Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Molecular Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ruquan Ye
- Department of Chemistry and State Key Laboratory of Marine Pollution, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
31
|
Butterfly pea flower as a stabilizer for shear exfoliated graphene: green material for motion monitoring and Morse code sensor. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-022-02738-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
32
|
Thaweeskulchai T, Schulte A. Diode Laser and Polyimide Tape Enables Cheap and Fast Fabrication of Flexible Microfluidic Sensing Devices. MICROMACHINES 2022; 13:mi13122214. [PMID: 36557513 PMCID: PMC9785473 DOI: 10.3390/mi13122214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/08/2022] [Accepted: 12/08/2022] [Indexed: 05/27/2023]
Abstract
Wearable devices are a new class of healthcare monitoring devices designed for use in close contact with the patient's body. Such devices must be flexible to follow the contours of human anatomy. With numerous potential applications, a wide variety of flexible wearable devices have been created, taking various forms and functions. Therefore, different fabrication techniques and materials are employed, resulting in fragmentation of the list of equipment and materials needed to make different devices. This study attempted to simplify and streamline the fabrication process of all key components, including microfluidic chip and flexible electrode units. A combination of diode laser CNC machine and polyimide tape is used to fabricate flexible microfluidic chip and laser-induced graphene (LIG) electrodes, to create flexible microfluidic sensing devices. Laser ablation on polyimide tape can directly create microfluidic features on either PDMS substrates or LIG electrodes. The two components can be assembled to form a flexible microfluidic sensing device that can perform basic electrochemical analysis and conform to curved surfaces while undergoing microfluidic flow. This study has shown that simple, commonly available equipment and materials can be used to fabricate flexible microfluidic sensing devices quickly and easily, which is highly suitable for rapid prototyping of wearable devices.
Collapse
|
33
|
Ben-Shimon Y, Sharma CP, Arnusch CJ, Ya'akobovitz A. Freestanding Laser-Induced Graphene Ultrasensitive Resonative Viral Sensors. ACS APPLIED MATERIALS & INTERFACES 2022; 14:44713-44723. [PMID: 36083630 DOI: 10.1021/acsami.2c08302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Early and reliable detection of an infectious viral disease is critical to accurately monitor outbreaks and to provide individuals and health care professionals the opportunity to treat patients at the early stages of a disease. The accuracy of such information is essential to define appropriate actions to protect the population and to reduce the likelihood of a possible pandemic. Here, we show the fabrication of freestanding laser-induced graphene (FLIG) flakes that are highly sensitive sensors for high-fidelity viral detection. As a case study, we show the detection of SARS-CoV-2 spike proteins. FLIG flakes are nonembedded porous graphene foams ca. 30 μm thick that are generated using laser irradiation of polyimide and can be fabricated in seconds at a low cost. Larger pieces of FLIG were cut forming a cantilever, used as suspended resonators, and characterized for their electromechanics behavior. Thermomechanical analysis showed FLIG stiffness comparable to other porous materials such as boron nitride foam, and electrostatic excitation showed amplification of the vibrations at frequencies in the range of several kilo-hertz. We developed a protocol for aqueous biological sensing by characterizing the wetting dynamic response of the sensor in buffer solution and in water, and devices functionalized with COVID-19 antibodies specifically detected SARS-CoV-2 spike protein binding, while not detecting other viruses such as MS2. The FLIG sensors showed a clear mass-dependent frequency response shift of ∼1 Hz/pg, and low nanomolar concentrations could be detected. Ultimately, the sensors demonstrated an outstanding limit of detection of 2.63 pg, which is equivalent to as few as ∼5000 SARS-CoV-2 viruses. Thus, the FLIG platform technology can be utilized to develop portable and highly accurate sensors, including biological applications where the fast and reliable protein or infectious particle detection is critical.
Collapse
Affiliation(s)
- Yahav Ben-Shimon
- Faculty of Engineering Sciences, Ben-Gurion University of the Negev, 8410501 Be'er Sheva, Israel
| | - Chetan Prakash Sharma
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990 Be'er Sheva, Israel
| | - Christopher J Arnusch
- Department of Desalination and Water Treatment, Zuckerberg Institute for Water Research, The Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 84990 Be'er Sheva, Israel
| | - Assaf Ya'akobovitz
- Faculty of Engineering Sciences, Ben-Gurion University of the Negev, 8410501 Be'er Sheva, Israel
| |
Collapse
|
34
|
Cheng L, Ma T, Zhang B, Huang L, Guo W, Hu F, Zhu H, Wang Z, Zheng T, Yang DT, Siu CK, Liu Q, Ren Y, Xia C, Tang BZ, Ye R. Steering the Topological Defects in Amorphous Laser-Induced Graphene for Direct Nitrate-to-Ammonia Electroreduction. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Le Cheng
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Tinghao Ma
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Binghao Zhang
- Department of Physics, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Libei Huang
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Weihua Guo
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Feijun Hu
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
| | - He Zhu
- Department of Physics, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Zhaoyu Wang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Tingting Zheng
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Deng-Tao Yang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi’an 710072, China
| | - Chi-Kit Siu
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Qi Liu
- Department of Physics, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Yang Ren
- Department of Physics, City University of Hong Kong, Hong Kong SAR 999077, China
- X-Ray Science Division, Argonne National Laboratory, 9700 S. Cass Ave., Argonne, Illinois 60439, United States
| | - Chuan Xia
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610000, China
| | - Ben Zhong Tang
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
| | - Ruquan Ye
- Department of Chemistry, State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
35
|
Wearable Sensors for Healthcare: Fabrication to Application. SENSORS 2022; 22:s22145137. [PMID: 35890817 PMCID: PMC9323732 DOI: 10.3390/s22145137] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 02/07/2023]
Abstract
This paper presents a substantial review of the deployment of wearable sensors for healthcare applications. Wearable sensors hold a pivotal position in the microelectronics industry due to their role in monitoring physiological movements and signals. Sensors designed and developed using a wide range of fabrication techniques have been integrated with communication modules for transceiving signals. This paper highlights the entire chronology of wearable sensors in the biomedical sector, starting from their fabrication in a controlled environment to their integration with signal-conditioning circuits for application purposes. It also highlights sensing products that are currently available on the market for a comparative study of their performances. The conjugation of the sensing prototypes with the Internet of Things (IoT) for forming fully functioning sensorized systems is also shown here. Finally, some of the challenges existing within the current wearable systems are shown, along with possible remedies.
Collapse
|
36
|
Research Progress on the Preparation and Applications of Laser-Induced Graphene Technology. NANOMATERIALS 2022; 12:nano12142336. [PMID: 35889560 PMCID: PMC9317010 DOI: 10.3390/nano12142336] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/03/2022] [Accepted: 07/03/2022] [Indexed: 11/17/2022]
Abstract
Graphene has been regarded as a potential application material in the field of new energy conversion and storage because of its unique two-dimensional structure and excellent physical and chemical properties. However, traditional graphene preparation methods are complicated in-process and difficult to form patterned structures. In recent years, laser-induced graphene (LIG) technology has received a large amount of attention from scholars and has a wide range of applications in supercapacitors, batteries, sensors, air filters, water treatment, etc. In this paper, we summarized a variety of preparation methods for graphene. The effects of laser processing parameters, laser type, precursor materials, and process atmosphere on the properties of the prepared LIG were reviewed. Then, two strategies for large-scale production of LIG were briefly described. We also discussed the wide applications of LIG in the fields of signal sensing, environmental protection, and energy storage. Finally, we briefly outlined the future trends of this research direction.
Collapse
|
37
|
Fernandes Loguercio L, Thesing A, da Silveira Noremberg B, Vasconcellos Lopes B, Kurz Maron G, Machado G, Pope MA, Lenin Villarreal Carreno N. Direct Laser Writing of Poly(furfuryl Alcohol)/Graphene Oxide Electrodes for Electrochemical Determination of Ascorbic Acid. ChemElectroChem 2022. [DOI: 10.1002/celc.202200334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Anderson Thesing
- Institute of Physics Universidade Federal do Rio Grande do Sul CEP 91501-970 Porto Alegre RS Brazil
| | - Bruno da Silveira Noremberg
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais Universidade Federal de Pelotas CEP 96010-000 Pelotas RS Brazil
| | - Bruno Vasconcellos Lopes
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais Universidade Federal de Pelotas CEP 96010-000 Pelotas RS Brazil
| | - Guilherme Kurz Maron
- Postgraduate Program in Biotechnology Technology Development Center Federal University of Pelotas CEP 96010-900 Capão do Leão RS Brazil
| | - Giovanna Machado
- Centro de Tecnologias Estratégicas do Nordeste CEP 50740-545 Recife PE Brazil
| | - Michael A. Pope
- Department of Chemical Engineering and Waterloo Institute for Nanotechnology University of Waterloo N2L 3G1 Ontario Canada
| | | |
Collapse
|
38
|
Ibrahim H, Yin S, Moru S, Zhu Y, Castellano MJ, Dong L. In Planta Nitrate Sensor Using a Photosensitive Epoxy Bioresin. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25949-25961. [PMID: 35638646 DOI: 10.1021/acsami.2c01988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nitrogen management through monitoring of crop nitrate status can improve agricultural productivity, profitability, and environmental performance. Current plant nitrate test methods require expensive instruments, time-intensive labor, and trained personnel. Frequent monitoring of in planta nitrate levels of the stalks in living plants can help to better understand the nitrogen cycle and the physiological responses to environmental variations. Although existing enzymatic electrochemical sensors provide high selectivity, they suffer from short shelf life, high cost, low-temperature storage requirement, and potential degradation over time. To overcome these issues, an artificial enzyme (vitamin B12 or VB12) and a two-dimensional material (graphene oxide or GO) are introduced into a conventional photoresist (SU8) to form a bioresin SU8-GO-VB12 that can be patterned with photolithography and laser-pyrolyzed into a carbon-based nanocomposite C-GO-VB12. The electrocatalytic activity of the cobalt factor in VB12, the surface enhancement properties of GO, and the porous feature of pyrolytic carbon are synergized through design to provide C-GO-VB12 with a superior ability to detect nitrate ions through redox reactions. In addition, laser writing-based selective pyrolysis allows applying thermal energy to target only SU8-GO-VB12 for selective pyrolysis of the bioresin into C-GO-VB12, thus reducing the total energy input and avoiding the thermal influence on the materials and structures in other areas of the substrate. The C-GO-VB12 nitrate sensor demonstrates a year-long shelf lifetime, high selectivity, and a wide dynamic range that enables a direct nitrate test for the extracted sap of maize stalk. For in situ monitoring of the nitrate level and dynamic changes in living maize plants, a microelectromechanical system-based needle sensor is formed with C-GO-VB12. The needle sensor allows direct insertion into the plant for in situ measurement of nitrate ions under different growth environments over time. The needle sensor represents a new method for monitoring in planta nitrate dynamics with no need for sample preparation, thus making a significant impact in plant sciences.
Collapse
Affiliation(s)
- Hussam Ibrahim
- Department of Electrical & Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics Research Center, Iowa State University, Ames, Iowa 50011, United States
| | - Shihao Yin
- Department of Electrical & Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics Research Center, Iowa State University, Ames, Iowa 50011, United States
| | - Satyanarayana Moru
- Department of Electrical & Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Yunjiao Zhu
- Agronomy Department, Iowa State University, Ames, Iowa 50011, United States
| | | | - Liang Dong
- Department of Electrical & Computer Engineering, Iowa State University, Ames, Iowa 50011, United States
- Microelectronics Research Center, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
39
|
Gao Y, Zhai Y, Wang G, Liu F, Duan H, Ding X, Luo S. 3D-Laminated Graphene with Combined Laser Irradiation and Resin Infiltration toward Designable Macrostructure and Multifunction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200362. [PMID: 35322597 PMCID: PMC9130875 DOI: 10.1002/advs.202200362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Macroscopic 3D graphene has become a significant topic for satisfying the continuously upgraded smart structures and devices. Compared with liquid assembling and catalytic templating methods, laser-induced graphene (LIG) is showing facile and scalable advantages but still faces limited sizes and geometries by using template induction or on-site lay-up strategies. In this work, a new LIG protocol is developed for facile stacking and shaping 3D LIG macrostructures by laminating layers of LIG papers (LIGPs) with combined resin infiltration and hot pressing. Specifically, the constructed 3D LIGP composites (LIGP-C) are compatible with large area, high thickness, and customizable flat or curved shapes. Additionally, systematic research is explored for investigating critical processing parameters on tuning its multifunctional properties. As the laminated layers are stacked from 1 to 10, it is discovered that piezoresistivity (i.e., gauge factor) of LIGP-C dramatically reflects an ≈3900% improvement from 0.39 to 15.7 while mechanical and electrical properties maintain simultaneously at the highest levels, attributed to the formation of densely packed fusion layers. Along with excellent durability for resisting multiple harsh environments, a sensor-array system with 5 × 5 LIGP-C elements is finally demonstrated on fiber-reinforced polymeric composites for accurate strain mapping.
Collapse
Affiliation(s)
- Yan Gao
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Yujiang Zhai
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Guantao Wang
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Fu Liu
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Haibin Duan
- School of Automation Science and Electrical EngineeringBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Xilun Ding
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| | - Sida Luo
- School of Mechanical Engineering & AutomationBeihang UniversityNo. 37 Xueyuan RoadBeijing100191China
| |
Collapse
|
40
|
Huang X, Li H, Li J, Huang L, Yao K, Yiu CK, Liu Y, Wong TH, Li D, Wu M, Huang Y, Gao Z, Zhou J, Gao Y, Li J, Jiao Y, Shi R, Zhang B, Hu B, Guo Q, Song E, Ye R, Yu X. Transient, Implantable, Ultrathin Biofuel Cells Enabled by Laser-Induced Graphene and Gold Nanoparticles Composite. NANO LETTERS 2022; 22:3447-3456. [PMID: 35411774 DOI: 10.1021/acs.nanolett.2c00864] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Transient power sources with excellent biocompatibility and bioresorablility have attracted significant attention. Here, we report high-performance, transient glucose enzymatic biofuel cells (TEBFCs) based on the laser-induced graphene (LIG)/gold nanoparticles (Au NPs) composite electrodes. Such LIG electrodes can be easily fabricated from polyimide (PI) with an infrared CO2 laser and exhibit a low impedance (16 Ω). The resulted TEBFC yields a high open circuit potential (OCP) of 0.77 V and a maximum power density of 483.1 μW/cm2. The TEBFC not only exhibits a quick response time that enables reaching the maximum OCP within 1 min but also owns a long lifetime over 28 days in vitro. The excellent biocompatibility and transient performance from in vitro and in vivo tests allow long-term implantation of TEBFCs in rats for energy harvesting. The TEBFCs with advanced processing methods provide a promising power solution for transient electronics.
Collapse
Affiliation(s)
- Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Hu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jiyu Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Libei Huang
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Chun Ki Yiu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Yiming Liu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Tsz Hung Wong
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Dengfeng Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Mengge Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Zhan Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jingkun Zhou
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Yuyu Gao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Jian Li
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Yanli Jiao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Rui Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
| | - Binbin Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
| | - Bofan Hu
- Department of Materials Science, State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China
| | - Qinglei Guo
- School of Microelectronics, Shandong University, Jinan 250100, China
| | - Enming Song
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, Fudan University, Shanghai 200433, China
| | - Ruquan Ye
- Department of Chemistry, City University of Hong Kong, Hong Kong 999077, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, Hong Kong 999077, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
41
|
Lv Y, Li Q, Shi J, Qin Z, Lei Q, Zhao B, Zhu L, Pan K. Graphene-Based Moisture Actuator with Oriented Microstructures Prepared by One-Step Laser Reduction for Accurately Controllable Responsive Direction and Position. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12434-12441. [PMID: 35254054 DOI: 10.1021/acsami.2c00873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Actuators with fast and precise controllable responses are highly in demand for implementing agilely accurate mechanical movements in smart robots, intelligent sensors, biomimetic devices, and so on. Here, we report a graphene-based moisture actuator with accurately controllable direction and position responses achieved by a fast, controlled, and even programmable one-step laser reduction method. The laser reduction-induced oriented microstructures help to precisely guide the direction and location of the moisture response in graphene-based Janus films. The excellent moisture-mechanical response behaviors in these novel moisture actuators originate from the Janus structures and the periodic microstructures of a line-scanned layer. Our customized complex intelligent devices such as drums, bands, and three-dimensional wave humidity drives can highly match and verify the finite element simulations, which will inspire the creation of further smart robot designs for accurate deformation.
Collapse
Affiliation(s)
- Yuhuan Lv
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qicong Li
- Department of Engineering Mechanics, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Jiaxin Shi
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zhen Qin
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qianjin Lei
- Department of Engineering Mechanics, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Biao Zhao
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Linli Zhu
- Department of Engineering Mechanics, and Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China
| | - Kai Pan
- Beijing Key Laboratory of Advanced Functional Polymer Composites, State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
42
|
He S, Zhang Y, Gao J, Nag A, Rahaman A. Integration of Different Graphene Nanostructures with PDMS to Form Wearable Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:950. [PMID: 35335764 PMCID: PMC8949288 DOI: 10.3390/nano12060950] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 02/07/2023]
Abstract
This paper presents a substantial review of the fabrication and implementation of graphene-PDMS-based composites for wearable sensing applications. Graphene is a pivotal nanomaterial which is increasingly being used to develop multifunctional sensors due to their enhanced electrical, mechanical, and thermal characteristics. It has been able to generate devices with excellent performances in terms of sensitivity and longevity. Among the polymers, polydimethylsiloxane (PDMS) has been one of the most common ones that has been used in biomedical applications. Certain attributes, such as biocompatibility and the hydrophobic nature of PDMS, have led the researchers to conjugate it in graphene sensors as substrates or a polymer matrix. The use of these graphene/PDMS-based sensors for wearable sensing applications has been highlighted here. Different kinds of electrochemical and strain-sensing applications have been carried out to detect the physiological signals and parameters of the human body. These prototypes have been classified based on the physical nature of graphene used to formulate the sensors. Finally, the current challenges and future perspectives of these graphene/PDMS-based wearable sensors are explained in the final part of the paper.
Collapse
Affiliation(s)
- Shan He
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (S.H.); (Y.Z.)
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park 5042, Australia
| | - Yang Zhang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (S.H.); (Y.Z.)
| | - Jingrong Gao
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China; (S.H.); (Y.Z.)
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Anindya Nag
- Faculty of Electrical and Computer Engineering, Technische Universität Dresden, 01062 Dresden, Germany
- Centre for Tactile Internet with Human-in-the-Loop (CeTI), Technische Universität Dresden, 01069 Dresden, Germany
| | - Abdul Rahaman
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
43
|
Electrochemical Biosensor Based on Laser-Induced Graphene for COVID-19 Diagnosing: Rapid and Low-Cost Detection of SARS-CoV-2 Biomarker Antibodies. SURFACES 2022. [DOI: 10.3390/surfaces5010012] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The severe acute respiratory syndrome originated by the new coronavirus (SARS-CoV-2) that emerged in late 2019, known to be a highly transmissible and pathogenic disease, has caused the COVID-19 global pandemic outbreak. Thus, diagnostic devices that help epidemiological public safety measures to reduce undetected cases and isolation of infected patients, in addition to significantly help to control the population’s immune response to vaccine, are required. To address the negative issues of clinical research, we developed a Diagnostic on a Chip platform based on a disposable electrochemical biosensor containing laser-induced graphene and a protein (SARS-CoV-2 specific antigen) for the detection of SARS-CoV-2 antibodies. The biosensors were produced via direct laser writing using a CO2 infrared laser cutting machine on commercial polyimide sheets. The presence of specific antibodies reacting with the protein and the K3[Fe(CN)6] redox indicator produced characteristic and concentration-dependent electrochemical signals, with mean current values of 9.6757 and 8.1812 µA for reactive and non-reactive samples, respectively, proving the effectiveness of testing in clinical samples of serum from patients. Thus, the platform is being expanded to be measured in a portable microcontrolled potentiostat to be applied as a fast and reliable monitoring and mapping tool, aiming to assess the vaccinal immune response of the population.
Collapse
|
44
|
Dixit N, Singh SP. Laser-Induced Graphene (LIG) as a Smart and Sustainable Material to Restrain Pandemics and Endemics: A Perspective. ACS OMEGA 2022; 7:5112-5130. [PMID: 35187327 PMCID: PMC8851616 DOI: 10.1021/acsomega.1c06093] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/19/2022] [Indexed: 05/02/2023]
Abstract
A healthy environment is necessary for a human being to survive. The contagious COVID-19 virus has disastrously contaminated the environment, leading to direct or indirect transmission. Therefore, the environment demands adequate prevention and control strategies at the beginning of the viral spread. Laser-induced graphene (LIG) is a three-dimensional carbon-based nanomaterial fabricated in a single step on a wide variety of low-cost to high-quality carbonaceous materials without using any additional chemicals potentially used for antiviral, antibacterial, and sensing applications. LIG has extraordinary properties, including high surface area, electrical and thermal conductivity, environmental-friendliness, easy fabrication, and patterning, making it a sustainable material for controlling SARS-CoV-2 or similar pandemic transmission through different sources. LIG's antiviral, antibacterial, and antibiofouling properties were mainly due to the thermal and electrical properties and texture derived from nanofibers and micropores. This perspective will highlight the conducted research and the future possibilities on LIG for its antimicrobial, antiviral, antibiofouling, and sensing applications. It will also manifest the idea of incorporating this sustainable material into different technologies like air purifiers, antiviral surfaces, wearable sensors, water filters, sludge treatment, and biosensing. It will pave a roadmap to explore this single-step fabrication technique of graphene to deal with pandemics and endemics in the coming future.
Collapse
Affiliation(s)
- Nandini Dixit
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P. Singh
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre
for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
- Interdisciplinary
Program in Climate Studies, Indian Institute
of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
45
|
Hayashi S, Tsunemitsu K, Terakawa M. Laser Direct Writing of Graphene Quantum Dots inside a Transparent Polymer. NANO LETTERS 2022; 22:775-782. [PMID: 34962395 DOI: 10.1021/acs.nanolett.1c04295] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Graphene quantum dots (GQDs) have emerged as a promising new class of environmentally friendly quantum dots with unique properties. However, the limitations of synthesis and patterning methods have hindered GQDs from displaying their true potentials to date. Here, we demonstrate the simultaneous synthesis and patterning of GQDs for the first time inside a transparent polymer, polydimethylsiloxane (PDMS), using femtosecond laser pulses. By focusing and scanning femtosecond laser pulses, arbitrary fluorescent patterns such as a concealed fluorescent QR code can be readily patterned without pre- and/or post-treatment. In addition, the proposed method is applied to the fabrication of fluorescent three-dimensional structures inside a transparent polymer via multiphoton interactions. The proposed method realizes single-stepped and spatially selective patterning of GQDs directly inside polymer substrates and expands the possibilities of GQDs for applications in novel flexible three-dimensional optoelectrical devices.
Collapse
|
46
|
Wang H, Zhao Z, Liu P, Guo X. Laser-Induced Graphene Based Flexible Electronic Devices. BIOSENSORS 2022; 12:55. [PMID: 35200316 PMCID: PMC8869335 DOI: 10.3390/bios12020055] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 05/05/2023]
Abstract
Since it was reported in 2014, laser-induced graphene (LIG) has received growing attention for its fast speed, non-mask, and low-cost customizable preparation, and has shown its potential in the fields of wearable electronics and biological sensors that require high flexibility and versatility. Laser-induced graphene has been successfully prepared on various substrates with contents from various carbon sources, e.g., from organic films, plants, textiles, and papers. This paper reviews the recent progress on the state-of-the-art preparations and applications of LIG including mechanical sensors, temperature and humidity sensors, electrochemical sensors, electrophysiological sensors, heaters, and actuators. The achievements of LIG based devices for detecting diverse bio-signal, serving as monitoring human motions, energy storage, and heaters are highlighted here, referring to the advantages of LIG in flexible designability, excellent electrical conductivity, and diverse choice of substrates. Finally, we provide some perspectives on the remaining challenges and opportunities of LIG.
Collapse
Affiliation(s)
| | | | | | - Xiaogang Guo
- Institute of Advanced Structure Technology, Beijing Institute of Technology, Beijing 100081, China; (H.W.); (Z.Z.); (P.L.)
| |
Collapse
|
47
|
Liu J, Ji H, Lv X, Zeng C, Li H, Li F, Qu B, Cui F, Zhou Q. Laser-induced graphene (LIG)-driven medical sensors for health monitoring and diseases diagnosis. Mikrochim Acta 2022; 189:54. [PMID: 35001163 PMCID: PMC8743164 DOI: 10.1007/s00604-021-05157-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/26/2021] [Indexed: 02/05/2023]
Abstract
Laser-induced graphene (LIG) is a class of three-dimensional (3D) porous carbon nanomaterial. It can be prepared by direct laser writing on some polymer materials in the air. Because of its features of simplicity, fast production, and excellent physicochemical properties, it was widely used in medical sensing devices. This minireview gives an overview of the characteristics of LIG and LIG-driven sensors. Various methods for preparing graphene were compared and discussed. The applications of the LIG in biochemical sensors for ions, small molecules, microRNA, protein, and cell detection were highlighted. LIG-based physical physiological sensors and wearable electronics for medical applications were also included. Finally, our insights into current challenges and prospects for LIG-based medical sensing devices were presented.
Collapse
Affiliation(s)
- Jianlei Liu
- Department of Laboratory Medicine and Pathology, Foshan Fosun Chancheng Hospital, Foshan, 528000, Guangdong, China
| | - Haijie Ji
- The Ministry of Education Key Laboratory of Clinical Diagnostics, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
| | - Xiaoyan Lv
- Department of Dermatology, West China Hospital, West China School of Medicine, Sichuan University, Chengdu, 610041, China
| | - Chijia Zeng
- Department of Laboratory Medicine and Pathology, Foshan Fosun Chancheng Hospital, Foshan, 528000, Guangdong, China
| | - Heming Li
- College of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China
| | - Fugang Li
- Shanghai Engineering Research Center of iPOCT Medicine, Shanghai Industry Technology Innovation Strategic Alliance of iPOCT Medicine, Shanghai Upper Bio Tech Pharma Co., Ltd., Shanghai, 201201, China
| | - Bin Qu
- Biophysics, Center for Integrative Physiology and Molecular Medicine (CIPMM), School of Medicine, Saarland University, 66421, Homburg, Germany
| | - Feiyun Cui
- The Ministry of Education Key Laboratory of Clinical Diagnostics, School of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China.
| | - Qin Zhou
- College of Basic Medical Sciences, Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
48
|
Balkourani G, Damartzis T, Brouzgou A, Tsiakaras P. Cost Effective Synthesis of Graphene Nanomaterials for Non-Enzymatic Electrochemical Sensors for Glucose: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2022; 22:355. [PMID: 35009895 PMCID: PMC8749877 DOI: 10.3390/s22010355] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/20/2021] [Accepted: 12/25/2021] [Indexed: 02/06/2023]
Abstract
The high conductivity of graphene material (or its derivatives) and its very large surface area enhance the direct electron transfer, improving non-enzymatic electrochemical sensors sensitivity and its other characteristics. The offered large pores facilitate analyte transport enabling glucose detection even at very low concentration values. In the current review paper we classified the enzymeless graphene-based glucose electrocatalysts' synthesis methods that have been followed into the last few years into four main categories: (i) direct growth of graphene (or oxides) on metallic substrates, (ii) in-situ growth of metallic nanoparticles into graphene (or oxides) matrix, (iii) laser-induced graphene electrodes and (iv) polymer functionalized graphene (or oxides) electrodes. The increment of the specific surface area and the high degree reduction of the electrode internal resistance were recognized as their common targets. Analyzing glucose electrooxidation mechanism over Cu- Co- and Ni-(oxide)/graphene (or derivative) electrocatalysts, we deduced that glucose electrochemical sensing properties, such as sensitivity, detection limit and linear detection limit, totally depend on the route of the mass and charge transport between metal(II)/metal(III); and so both (specific area and internal resistance) should have the optimum values.
Collapse
Affiliation(s)
- Georgia Balkourani
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos, Greece;
| | - Theodoros Damartzis
- Industrial Processes and Energy Systems Engineering, Institute of Mechanical Engineering, Sion, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland;
| | - Angeliki Brouzgou
- Department of Energy Systems, School of Technology, University of Thessaly, Geopolis, Regional Road Trikala-Larisa, 41500 Larisa, Greece
| | - Panagiotis Tsiakaras
- Laboratory of Alternative Energy Conversion Systems, Department of Mechanical Engineering, University of Thessaly, Pedion Areos, 38334 Volos, Greece;
- Laboratory of Materials and Devices for Electrochemical Power Engineering, Institute of Chemical Engineering, Ural Federal University, 19 Mira Str., 620002 Yekaterinburg, Russia
- Laboratory of Electrochemical Devices Based on Solid Oxide Proton Electrolytes, Institute of High Temperature Electrochemistry (RAS), 620990 Yekaterinburg, Russia
| |
Collapse
|
49
|
Kulakova II, Lisichkin GV. Biosensors Based on Graphene Nanomaterials. MOSCOW UNIVERSITY CHEMISTRY BULLETIN 2022; 77:307-321. [PMCID: PMC9488882 DOI: 10.3103/s0027131422060049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/12/2022] [Accepted: 05/14/2022] [Indexed: 03/08/2024]
Abstract
This review is devoted to the development, properties, and application of biosensors based on graphene nanomaterials. It is shown that such biosensors are characterized by their sensitivity, specificity of detection of analytes, high speed, and small size. Examples of the use of graphene biosensors for the detection of viruses, bacteria, markers of socially significant diseases, and various toxins are given.
Collapse
Affiliation(s)
- I. I. Kulakova
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia
| | - G. V. Lisichkin
- Department of Petroleum Chemistry and Organic Catalysis, Moscow State University, 119991 Moscow, Russia
| |
Collapse
|
50
|
Yang L, Zheng G, Cao Y, Meng C, Li Y, Ji H, Chen X, Niu G, Yan J, Xue Y, Cheng H. Moisture-resistant, stretchable NO x gas sensors based on laser-induced graphene for environmental monitoring and breath analysis. MICROSYSTEMS & NANOENGINEERING 2022; 8:78. [PMID: 35818382 PMCID: PMC9270215 DOI: 10.1038/s41378-022-00414-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/05/2022] [Accepted: 06/07/2022] [Indexed: 05/16/2023]
Abstract
The accurate, continuous analysis of healthcare-relevant gases such as nitrogen oxides (NOx) in a humid environment remains elusive for low-cost, stretchable gas sensing devices. This study presents the design and demonstration of a moisture-resistant, stretchable NOx gas sensor based on laser-induced graphene (LIG). Sandwiched between a soft elastomeric substrate and a moisture-resistant semipermeable encapsulant, the LIG sensing and electrode layer is first optimized by tuning laser processing parameters such as power, image density, and defocus distance. The gas sensor, using a needlelike LIG prepared with optimal laser processing parameters, exhibits a large response of 4.18‰ ppm-1 to NO and 6.66‰ ppm-1 to NO2, an ultralow detection limit of 8.3 ppb to NO and 4.0 ppb to NO2, fast response/recovery, and excellent selectivity. The design of a stretchable serpentine structure in the LIG electrode and strain isolation from the stiff island allows the gas sensor to be stretched by 30%. Combined with a moisture-resistant property against a relative humidity of 90%, the reported gas sensor has further been demonstrated to monitor the personal local environment during different times of the day and analyze human breath samples to classify patients with respiratory diseases from healthy volunteers. Moisture-resistant, stretchable NOx gas sensors can expand the capability of wearable devices to detect biomarkers from humans and exposed environments for early disease diagnostics.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Guanghao Zheng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Yaoqian Cao
- Department of Respiratory and Critical Care Medicine, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Chuizhou Meng
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Yuhang Li
- Institute of Solid Mechanics, Beihang University (BUAA), Beijing, 100191 China
| | - Huadong Ji
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Xue Chen
- School of Electrical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Guangyu Niu
- School of Architecture and Art Design, Hebei University of Technology, Tianjin, 300130 China
| | - Jiayi Yan
- School of Mechanical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Ye Xue
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA 16802 USA
| |
Collapse
|