1
|
Muthurasu A, Natarajan L, Kim TW, Ko TH, Lee YJ, Kim HY. Engineering Efficient Bifunctional Electrocatalyst of Ruthenium Nanocluster Heterointerface Integrated Nickel-Iron Diselenide for Alkaline Freshwater and Seawater Electrolysis. ACS APPLIED MATERIALS & INTERFACES 2025; 17:25237-25252. [PMID: 40234216 DOI: 10.1021/acsami.4c22733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
It is essential to develop effective and long-lasting electrocatalysts for seawater splitting to prevent the unwanted chlorine evolution reaction and withstand the corrosive nature of seawater in seawater electrolysis technology. In this study, a unique transition metal catalyst is developed to enhance seawater splitting. The catalyst is composed of a ruthenium (Ru) nanocluster anchored onto nickel-iron diselenide nanosheet arrays grown on nickel foam (Ru-MOF NixFe1-xSe2/NF). The Ru nanocluster and metal-organic framework-based Ni and Fe diselenide heterogeneous catalysts exhibit exceptional performance in sustaining high-current-density hydrogen evolution reactions (HERs) and oxygen evolution reactions (OERs) during seawater electrolysis. Consequently, OER requires minimal overpotentials of 250, 290, and 310, 390 mV, while HER needs overpotentials of 130, 199, and 189, 315 mV to attain current densities of 100 and 500 mA cm-2 in 1.0 M KOH and 1.0 M KOH + natural seawater. Moreover, it maintains stability for 100 h at a steady current density of 100 or 500 mA cm-2. Theoretical calculations indicate that including nanocluster Ru enhances the Gibbs free energy of adsorption for H2O molecules and intermediates in the HER/OER on metal selenide sites. This optimization leads to improved electrocatalytic water/seawater splitting. In the context of overall water splitting, the composite is an effective catalyst for both anode and cathode, needing voltages of 1.61, 1.68, and 1.71 V to obtain a current density of 100 mA cm-2 in alkaline freshwater, simulated seawater, and natural seawater. Particularly, it retains consistent performance during a 100 h test period, indicating a promising future for practical applications.
Collapse
Affiliation(s)
- Alagan Muthurasu
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Logeshwaran Natarajan
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Tae Woo Kim
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Tae Hoon Ko
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| | - Young Jun Lee
- Carbon Composite Materials Research Center, Korea Institute of Science and Technology, 92 Chudong-ro, Bongdong-eup, Wanju-gun, Jeonbuk 55324, Republic of Korea
| | - Hak Yong Kim
- Department of Organic Materials and Fiber Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju 561-756, Republic of Korea
| |
Collapse
|
2
|
Jiang Y, Qiu P, Liu Q, Li P, Chen S. Electric-Double-Layer Mechanism of Surface Oxophilicity in Regulating the Alkaline Hydrogen Electrocatalytic Kinetics. J Am Chem Soc 2025; 147:14122-14130. [PMID: 40243362 DOI: 10.1021/jacs.4c14511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
Regulating the surface oxophilicity of the electrocatalyst is known as an efficient strategy to mitigate the order-of-magnitude kinetic slowdown of hydrogen electrocatalysis in a base, which is of great scientific and technological significance. So far, its mechanistic origin remains mainly ascribed to the bifunctional or electronic effects that revolve around the catalyst-intermediate interactions and is under extensive debate. In addition, the understanding from the perspective of interfacial electric-double-layer (EDL) structures, which should also strongly depend on the electrode property, is still lacking. Here, by decorating a Pt electrode with Mo, Ru, Rh, and Au metal atoms to tune surface oxophilicity and systematically combining electrochemical activity tests, in situ surface-enhanced infrared absorption spectroscopy, density functional theory calculation, and ab initio molecular dynamics simulation, we found that there exist consistent volcano-type relationships between *OH adsorption strength and alkaline hydrogen evolution activity, the stretching/bending vibration information on interfacial water, and the potential of zero charge (PZC) of the electrode. This demonstrates that the origin of surface oxophilicity in impacting the alkaline hydrogen electrocatalytic activity lies in its modification toward the electrode PZC, which thereby dictates the electric field strength, rigidity, and hydrogen bonding network structure in EDL and ultimately governs the interfacial proton transfer kinetics. These findings emphasize the importance of focusing on electrocatalytic interface structures to understand electrode property-dependent reaction kinetics.
Collapse
Affiliation(s)
- Yaling Jiang
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Peimeng Qiu
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Qinghua Liu
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China
| | - Peng Li
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| | - Shengli Chen
- Hubei Key Laboratory of Electrochemical Power Sources, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China
| |
Collapse
|
3
|
Cha DC, Seok JH, Cho SC, Singh M, Singh TI, Lee SU, Lee S. Tunable B-Doped Cobalt Phosphide Nanosheets Engineered via Phosphorus Activation of Co-MOFs for High Efficiency Alkaline Water-Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500334. [PMID: 40103501 DOI: 10.1002/smll.202500334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Revised: 02/24/2025] [Indexed: 03/20/2025]
Abstract
Introducing secondary heteroatoms and simultaneous in situ surface modification can enhance electrocatalysts by affecting their porosity for adjusting electrochemically active surface area (ECSA), number of active sites, and electronic properties, thus mitigating the sluggish kinetics of oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline media. Here, mesoporous 3D heterostructures of boron-doped cobalt phosphide@nitrogen-doped carbon nanosheet network arrays are successfully grown on Ni foam as free-standing bifunctional electrocatalysts with controlled phosphorous levels (B-CoPx@NC/NF, x = 0.25, 0.5, and 1). Boron doping induces the Co active sites to bind O* and OOH* intermediates. Meanwhile, an optimal phosphorous content also leads to ideal adsorption strength at each reaction step, satisfying the Sabatier principle well. The optimal B-CoP0.5@NC/NF requires low overpotentials of 248 mV for OER and 95 mV for HER with long-term stability. The B-CoP0.5@NC/NF (+/-) electrolyzer exhibits a low cell potential of 1.59 V at 10 mA cm-2 for overall water-splitting, with superior activity compared to the RuO2/NF(+)//20%Pt/NF(-) electrolyzer at high current densities above 50 mA cm-2. Such exceptional bifunctional activities are attributed to the modulated electronic structure, lower charge-transfer resistance, higher ECSA, and inductive effect of B-doping, thus boosting both OER and HER activities in alkaline media.
Collapse
Affiliation(s)
- Dun Chan Cha
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | - Jun Ho Seok
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seong Chan Cho
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Manjinder Singh
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| | | | - Sang Uck Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Seunghyun Lee
- Center for Bionano Intelligence Education and Research, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Applied Chemistry, Hanyang University ERICA, Ansan, 15588, Republic of Korea
- Department of Chemical and Molecular Engineering, Hanyang University ERICA, Ansan, 15588, Republic of Korea
| |
Collapse
|
4
|
Shaik S, Kim J, Kabiraz MK, Aziz F, Park JY, Anne BR, Li M, Huang H, Nam KM, Jo D, Choi SI. Rapid Outgassing of Hydrophilic TiO 2 Electrodes Achieves Long-Term Stability of Anion Exchange Membrane Water Electrolyzers. NANO-MICRO LETTERS 2025; 17:186. [PMID: 40080227 PMCID: PMC11906940 DOI: 10.1007/s40820-025-01696-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/15/2025] [Indexed: 03/15/2025]
Abstract
The state-of-the-art anion-exchange membrane water electrolyzers (AEMWEs) require highly stable electrodes for prolonged operation. The stability of the electrode is closely linked to the effective evacuation of H2 or O2 gas generated from electrode surface during the electrolysis. In this study, we prepared a super-hydrophilic electrode by depositing porous nickel-iron nanoparticles on annealed TiO2 nanotubes (NiFe/ATNT) for rapid outgassing of such nonpolar gases. The super-hydrophilic NiFe/ATNT electrode exhibited an overpotential of 235 mV at 10 mA cm-2 for oxygen evolution reaction in 1.0 M KOH solution, and was utilized as the anode in the AEMWE to achieve a current density of 1.67 A cm-2 at 1.80 V. In addition, the AEMWE with NiFe/ATNT electrode, which enables effective outgassing, showed record stability for 1500 h at 0.50 A cm-2 under harsh temperature conditions of 80 ± 3 °C.
Collapse
Affiliation(s)
- Shajahan Shaik
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, South Korea
| | - Jeonghyeon Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, South Korea
| | - Mrinal Kanti Kabiraz
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, South Korea
| | - Faraz Aziz
- Department of Mechanical Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Joon Yong Park
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, South Korea
| | - Bhargavi Rani Anne
- Department of Metallurgical and Materials Engineering, National Institute of Technology, Raipur, 492010, India
| | - Mengfan Li
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China
| | - Hongwen Huang
- College of Materials Science and Engineering, Hunan University, Changsha, 410082, Hunan, People's Republic of China
| | - Ki Min Nam
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan, 46241, South Korea
| | - Daeseong Jo
- Department of Mechanical Engineering, Kyungpook National University, Daegu, 41566, South Korea
| | - Sang-Il Choi
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu, 41566, South Korea.
| |
Collapse
|
5
|
Xu L, Zheng L, Xu Y, Hao C, Hu X, Wang Y. Reinforced interfacial coupling effect of NiO/Ni 2P by Fe doping for boosting water splitting. J Colloid Interface Sci 2025; 679:109-118. [PMID: 39357221 DOI: 10.1016/j.jcis.2024.09.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 09/25/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Nickel-based catalysts are suitable for water splitting to generate hydrogen. However, the low conductivity and weak stability have always been urgent issues to be addressed in nickel-based catalysts. Fe-doped nickel oxide/nickel phosphide (Fe-NiO/Ni2P) was prepared as a bifunctional electrocatalyst by doping metal and constructing heterogeneous interface. The introduction of Fe contributed to the reinforced interfacial coupling effect of NiO/Ni2P to promote charge transfer and accelerate reaction kinetics. The heterojunction regulated the interfacial charge density between NiO and Ni2P to improve the electronic environment of Ni2+ and enhance conductivity. The O-Fe-P bond at the heterogeneous interface induced the directional transfer of electrons and ensured the structure stability. The synergistic effect of Fe doping and heterogeneous interface increased the adsorption energy of *O and coordinated the adsorption energy of *H, advancing the catalytic performance. Fe-NiO/Ni2P exhibited the overpotential of 242 mV and 141 mV at 10 mA cm-2 for oxygen and hydrogen evolution, respectively.
Collapse
Affiliation(s)
- Lin Xu
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China
| | - Lei Zheng
- MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, Jiangsu, China
| | - Yixue Xu
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China
| | - Chenyang Hao
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China
| | - Xuemin Hu
- School of Material Engineering, Jinling Institute of Technology, Nanjing 211169, China.
| | - Yuqiao Wang
- Research Center for Nano Photoelectrochemistry and Devices, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, China; Yangtze River Delta Carbon Neutrality Strategy Development Institute, Southeast University, Nanjing 210096, China.
| |
Collapse
|
6
|
Zhu X, Ji Z, Wan W, Zhu Y, Lang X, Jiang Q. Vacancy-rich heterogeneous MnCo 2O 4.5@NiS electrocatalyst for highly efficient overall water splitting. J Colloid Interface Sci 2025; 678:878-884. [PMID: 39270388 DOI: 10.1016/j.jcis.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024]
Abstract
Alkaline water electrolysis is regarded as a promising technology for sustainable energy conversion. Spinel oxides have attracted considerable attention as potential catalysts because of their diverse metal valence states. However, achieving the required current densities at low voltages is a challenge due to its limited active sites and suboptimal electron transport. In this study, we present a novel bifunctional catalyst composed of MnCo2O4.5 nanoneedles grown on NiS nanosheets for water electrolysis. Remarkably, MnCo2O4.5@NiS demonstrates exceptional catalytic activity, requiring 187 and 288 mV to achieve a current density of 100 mA cm-2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. The impressive performance of MnCo2O4.5@NiS is demonstrated by the lower value of voltage 1.44 V needed to deliver the current density of 10 mA cm-2, which outperformed the 1.66 V required for a commercial Pt/C||RuO2 system. Detailed structure analysis and density functional theory (DFT) calculations reveal that the MnCo2O4.5@NiS heterostructure enhances electron transfer at the interface, promotes the formation of oxygen vacancies and tunes the electronic structures of Mn and Co. These findings underscore the potential of MnCo2O4.5@NiS as an efficient and cost-effective electrocatalyst for hydrogen production.
Collapse
Affiliation(s)
- Xingxing Zhu
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Zhengtong Ji
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Wubin Wan
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan 442002, China
| | - Yongfu Zhu
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China.
| | - Xingyou Lang
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials, Department of Materials Science and Engineering, Jilin University, Changchun 130025, China
| |
Collapse
|
7
|
Yadav A, Das MR, Deka S. Fine Tuning of Torus-Shaped Mo-Doped Ni 2P Nanorings for Enhanced Seawater Electrolysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408036. [PMID: 39580698 DOI: 10.1002/smll.202408036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/06/2024] [Indexed: 11/26/2024]
Abstract
Seawater, as one of nature's most plentiful resources, provides a virtually inexhaustible source for generating hydrogen via water electrolysis. Developing an efficient bifunctional electrocatalyst for direct seawater splitting is challenging but highly desirable. Herein, a donut-shaped Mo-doped Ni2P nanoring electrocatalyst is developed, which is promising for direct overall seawater splitting. The optimized Mo0.1Ni1.9P catalyst shows low overpotentials and Tafel slopes in addition to high turnover frequencies, mass activities, and exchange current densities. The Mo0.1Ni1.9P||Mo0.1Ni1.9P couple-based electrolyzer requires a cell voltage of only 1.45 V in 1.0 m KOH and 1.47 V in untreated alkaline real seawater electrolysis at 10 mA cm-2 current density. Industrially required current densities of 500 and 1000 mA cm-2 are achieved at record low voltages of 1.81 and 1.86 V, respectively, at 25 °C and 1.77 and 1.82 V, respectively, at 75 °C for overall alkaline seawater splitting. The catalyst exhibited long-term stability at 400 mA cm-2 during alkaline seawater electrolysis. The synergy between Mo ions with multiple oxidation states and Ni ions, and nanoring morphology play a crucial role in increasing active sites for enhanced seawater dissociation. This work highlights the potential of Mo-doped Ni2P nanorings as unique catalysts for seawater electrolysis.
Collapse
Affiliation(s)
- Abhinav Yadav
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| | - Manash R Das
- Advanced Materials Group, Materials Sciences and Technology Division, CSIR-North East Institute of Science and Technology, Jorhat, Assam, 785006, India
| | - Sasanka Deka
- Department of Chemistry, University of Delhi, North Campus, Delhi, 110007, India
| |
Collapse
|
8
|
Wang P, Wang P, Wu T, Sun X, Zhang Y. Bimetal Metaphosphate/Molybdenum Oxide Heterostructure Nanowires for Boosting Overall Freshwater/Seawater Splitting at High Current Densities. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407892. [PMID: 39348244 PMCID: PMC11600247 DOI: 10.1002/advs.202407892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/22/2024] [Indexed: 10/02/2024]
Abstract
Exploring excellent non-noble bifunctional electrocatalysts for freshwater/seawater splitting at high current densities has attracted extensive interest owing to strong anodic oxidation and severe chloride corrosion challenges. Herein, hierarchical bimetal Ni-Co metaphosphate/molybdenum oxide heterostructure nanowires (NiCoMoPO) are rationally designed and fabricated to efficiently boost oxygen evolution reaction (OER) and hydrogen evolution reaction (HER) in alkaline freshwater/seawater, where the favorable electronic structure from heterostructures, signified by X-ray absorption spectra, endows NiCoMoPO with the enhanced intrinsic activity, while its hierarchical nanowire structure and heterostructures provide abundant active sites. Additionally, the PO3 - improves the chloride-corrosion resistance and efficiently facilitates the OER kinetics verified by theoretical and experimental studies. Therefore, NiCoMoPO drives 1000 mA cm-2 at low overpotentials of 467 and 442 mV for OER and HER in alkaline freshwater respectively, as well as a small cell voltage of 2.135 V for overall freshwater splitting with robust durability of 300 h. Impressively, due to the strong corrosion resistance, at 500 mA cm-2 of overall seawater splitting, NiCoMoPO maintains almost 2.096 V for 1200 h, indicating promising practical applications. This work sheds light on the rational design and fabrication of outstanding electrocatalysts at high current densities of seawater/freshwater splitting.
Collapse
Affiliation(s)
- Pan Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
- School of Materials and EnergyGuangdong University of TechnologyGuangzhou510006China
| | - Pai Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Tongwei Wu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| | - Xuping Sun
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
- College of Chemistry Chemical Engineering and Materials ScienceShandong Normal UniversityJinan250014China
| | - Yanning Zhang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054China
| |
Collapse
|
9
|
Wang T, Li B, Wang P, Xu M, Wang D, Wang Y, Zhang W, Qu C, Feng M. Modulation of electronic structure of Ni 3S 2 via Fe and Mo co-doping to enhance the bifunctional electrocatalytic activities for HER and OER. J Colloid Interface Sci 2024; 672:715-723. [PMID: 38870762 DOI: 10.1016/j.jcis.2024.06.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/25/2024] [Accepted: 06/08/2024] [Indexed: 06/15/2024]
Abstract
Heazlewoodite nickel sulfide (Ni3S2) is advocated as a promising nonnoble catalyst for electrochemical water splitting because of its unique structure configuration and high conductivity. However, the low active sites and strong sulfur-hydrogen bonds (S-Hads) formed on Ni3S2 surface greatly inhibit the desorption of Hads and reduce the hydrogen and oxygen evolution reaction (HER and OER) activity. Doping is a valid strategy to stimulate the intrinsic catalytic activity of pristine Ni3S2 via modifying the active site. Herein, the Ni foam supported Fe and Mo co-doped Ni3S2 electrocatalysts (Fe-MoS2/Ni3S2@NF) have been constructed using Keplerate polyoxomolybdate {Mo72F30} as precursor through a facile hydrothermal process. Experimental results certificate that Fe and Mo co-doping can effectively tune the local electronic structure, facilitate the interfacial electron transfer, and improve the intrinsic activity. Consequently, the Fe-MoS2/Ni3S2@NF display more excellent HER and OER activity than MoS2/Ni3S2@NF and bare Ni3S2@NF by delivering the 10 and 50 mA cm-2 current densities at ultra-low overpotentials of 74/175 and 80/160 mV for HER and OER. Moreover, when coupled in an alkaline electrolyzer, Fe-MoS2/Ni3S2@NF approached the current of 10 mA cm-2 under a cell voltage of 1.60 V and exhibit excellent stability. The strategy to realize tunable catalytic behaviors via foreign metal doping provides a new avenue to optimize the water splitting catalysts.
Collapse
Affiliation(s)
- Ting Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Bowen Li
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Ping Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Ming Xu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Dandan Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Yuqi Wang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Wenjing Zhang
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China
| | - Chaoqun Qu
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| | - Ming Feng
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, Changchun 130103, PR China.
| |
Collapse
|
10
|
Deshmukh MA, Bakandritsos A, Zbořil R. Bimetallic Single-Atom Catalysts for Water Splitting. NANO-MICRO LETTERS 2024; 17:1. [PMID: 39317789 PMCID: PMC11422407 DOI: 10.1007/s40820-024-01505-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/10/2024] [Indexed: 09/26/2024]
Abstract
Green hydrogen from water splitting has emerged as a critical energy vector with the potential to spearhead the global transition to a fossil fuel-independent society. The field of catalysis has been revolutionized by single-atom catalysts (SACs), which exhibit unique and intricate interactions between atomically dispersed metal atoms and their supports. Recently, bimetallic SACs (bimSACs) have garnered significant attention for leveraging the synergistic functions of two metal ions coordinated on appropriately designed supports. BimSACs offer an avenue for rich metal-metal and metal-support cooperativity, potentially addressing current limitations of SACs in effectively furnishing transformations which involve synchronous proton-electron exchanges, substrate activation with reversible redox cycles, simultaneous multi-electron transfer, regulation of spin states, tuning of electronic properties, and cyclic transition states with low activation energies. This review aims to encapsulate the growing advancements in bimSACs, with an emphasis on their pivotal role in hydrogen generation via water splitting. We subsequently delve into advanced experimental methodologies for the elaborate characterization of SACs, elucidate their electronic properties, and discuss their local coordination environment. Overall, we present comprehensive discussion on the deployment of bimSACs in both hydrogen evolution reaction and oxygen evolution reaction, the two half-reactions of the water electrolysis process.
Collapse
Affiliation(s)
- Megha A Deshmukh
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic
| | - Aristides Bakandritsos
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| | - Radek Zbořil
- Nanotechnology Centre, Centre for Energy and Environmental Technologies, VŠB-Technical University of Ostrava, 17. listopadu 2172/15, 708 00, Ostrava-Poruba, Czech Republic.
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute (CATRIN), Palacký University Olomouc, Šlechtitelů 241/27, 783 71, Olomouc - Holice, Czech Republic.
| |
Collapse
|
11
|
Lu Y, Li J, Bao X, Zhang L, Jing M, Wang K, Luo Q, Gou L, Fan X. Confined growth of Ultrathin, nanometer-sized FeOOH/CoP heterojunction nanosheet arrays as efficient self-supported electrode for oxygen evolution reaction. J Colloid Interface Sci 2024; 667:597-606. [PMID: 38657543 DOI: 10.1016/j.jcis.2024.04.084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Self-supported electrodes, featuring abundant active species and rapid mass transfer, are promising for practical applications in water electrolysis. However, constructing efficient self-supported electrodes with a strong affinity between the catalytic components and the substrate is of great challenge. In this study, by combining the ideas of in-situ construction and space-confined growth, we designed a novel self-supported FeOOH/cobalt phosphide (CoP) heterojunctions grown on a carefully modified commercial Ni foam (NF) with three-dimensional (3D) hierarchically porous Ni skeleton (FeOOH/CoP/3D NF). The specific porous structure of 3D NF directs the confined growth of FeOOH/CoP catalyst into ultra-thin and small-sized nanosheet arrays with abundant edge active sites. The active FeOOH/CoP component is stably anchored on the rough pore wall of 3D NF support, leading to superior stability and improved conductivity. These structural advantages contributed to a highly facilitated oxygen evolution reaction (OER) activity and enhanced durability of the FeOOH/CoP/3D NF electrode. Herein, the FeOOH/CoP/3D NF electrode afforded a low overpotential of 234 mV at 10 mA cm-2 (41 mV smaller than FeOOH/CoP grown on unmodified Ni foam) and high stability for over 90 h, which is among the top reported OER catalysts. Our study provides an effective idea and technique for the construction of active and robust self-supported electrodes for water electrolysis.
Collapse
Affiliation(s)
- Yao Lu
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Julong Li
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Xiaobing Bao
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China.
| | - Lulu Zhang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Maosen Jing
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Kaixin Wang
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Qiaomei Luo
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China
| | - Lei Gou
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China.
| | - Xiaoyong Fan
- School of Materials Science and Engineering, Chang'an University, Xi'an 710061, China.
| |
Collapse
|
12
|
Gao T, An Q, Tang X, Yue Q, Zhang Y, Li B, Li P, Jin Z. Recent progress in energy-saving electrocatalytic hydrogen production via regulating the anodic oxidation reaction. Phys Chem Chem Phys 2024; 26:19606-19624. [PMID: 39011574 DOI: 10.1039/d4cp01680g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Hydrogen energy with its advantages of high calorific value, renewable nature, and zero carbon emissions is considered an ideal candidate for clean energy in the future. The electrochemical decomposition of water, powered by renewable and clean energy sources, presents a sustainable and environmentally friendly approach to hydrogen production. However, the traditional electrochemical overall water-splitting reaction (OWSR) is limited by the anodic oxygen evolution reaction (OER) with sluggish kinetics. Although important advances have been made in efficient OER catalysts, the theoretical thermodynamic difficulty predetermines the inevitable large potential (1.23 V vs. RHE for the OER) and high energy consumption for the conventional water electrolysis to obtain H2. Besides, the generation of reactive oxygen species at high oxidation potentials can lead to equipment degradation and increase maintenance costs. Therefore, to address these challenges, thermodynamically favorable anodic oxidation reactions with lower oxidation potentials than the OER are used to couple with the cathodic hydrogen evolution reaction (HER) to construct new coupling hydrogen production systems. Meanwhile, a series of robust catalysts applied in these new coupled systems are exploited to improve the energy conversion efficiency of hydrogen production. Besides, the electrochemical neutralization energy (ENE) of the asymmetric electrolytes with a pH gradient can further promote the decrease in application voltage and energy consumption for hydrogen production. In this review, we aim to provide an overview of the advancements in electrochemical hydrogen production strategies with low energy consumption, including (1) the traditional electrochemical overall water splitting reaction (OWSR, HER-OER); (2) the small molecule sacrificial agent oxidation reaction (SAOR) and (3) the electrochemical oxidation synthesis reaction (EOSR) coupling with the HER (HER-SAOR, HER-EOSR), respectively; (4) regulating the pH gradient of the cathodic and anodic electrolytes. The operating principle, advantages, and the latest progress of these hydrogen production systems are analyzed in detail. In particular, the recent progress in the catalytic materials applied to these coupled systems and the corresponding catalytic mechanism are further discussed. Furthermore, we also provide a perspective on the potential challenges and future directions to foster advancements in electrocatalytic green sustainable hydrogen production.
Collapse
Affiliation(s)
- Taotao Gao
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qi An
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Xiangmin Tang
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Qu Yue
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Yang Zhang
- Institute for Advanced Study and School of Mechanical Engineering, Chengdu University, Chengdu, 610106, P. R. China
| | - Bing Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine, Shiyan, 442000, P. R. China
| | - Panpan Li
- College of Materials Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Zhaoyu Jin
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, P. R. China.
| |
Collapse
|
13
|
Zha D, Wang R, Tian S, Jiang ZJ, Xu Z, Qin C, Tian X, Jiang Z. Defect Engineering and Carbon Supporting to Achieve Ni-Doped CoP 3 with High Catalytic Activities for Overall Water Splitting. NANO-MICRO LETTERS 2024; 16:250. [PMID: 39023812 PMCID: PMC11258119 DOI: 10.1007/s40820-024-01471-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
This work reports the use of defect engineering and carbon supporting to achieve metal-doped phosphides with high activities and stabilities for the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER) in alkaline media. Specifically, the nitrogen-doped carbon nanofiber-supported Ni-doped CoP3 with rich P defects (Pv·) on the carbon cloth (p-NiCoP/NCFs@CC) is synthesized through a plasma-assisted phosphorization method. The p-NiCoP/NCFs@CC is an efficient and stable catalyst for the HER and the OER. It only needs overpotentials of 107 and 306 mV to drive 100 mA cm-2 for the HER and the OER, respectively. Its catalytic activities are higher than those of other catalysts reported recently. The high activities of the p-NiCoP/NCFs@CC mainly arise from its peculiar structural features. The density functional theory calculation indicates that the Pv· richness, the Ni doping, and the carbon supporting can optimize the adsorption of the H atoms at the catalyst surface and promote the strong electronic couplings between the carbon nanofiber-supported p-NiCoP with the surface oxide layer formed during the OER process. This gives the p-NiCoP/NCFs@CC with the high activities for the HER and the OER. When used in alkaline water electrolyzers, the p-NiCoP/NCFs@CC shows the superior activity and excellent stability for overall water splitting.
Collapse
Affiliation(s)
- Daowei Zha
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Department of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, People's Republic of China
| | - Ruoxing Wang
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
- Department of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, People's Republic of China
| | - Shijun Tian
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Zhong-Jie Jiang
- Guangzhou Key Laboratory for Surface Chemistry of Energy Materials, Guangdong Engineering and Technology Research Center for Surface Chemistry of Energy Materials, College of Environment and Energy, South China University of Technology, Guangzhou, 510006, People's Republic of China.
| | - Zejun Xu
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Chu Qin
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Xiaoning Tian
- Department of Materials and Chemical Engineering, Ningbo University of Technology, Ningbo, 315211, People's Republic of China.
| | - Zhongqing Jiang
- Department of Physics, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China.
| |
Collapse
|
14
|
Gao X, Chen Y, Wang Y, Zhao L, Zhao X, Du J, Wu H, Chen A. Next-Generation Green Hydrogen: Progress and Perspective from Electricity, Catalyst to Electrolyte in Electrocatalytic Water Splitting. NANO-MICRO LETTERS 2024; 16:237. [PMID: 38967856 PMCID: PMC11226619 DOI: 10.1007/s40820-024-01424-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/22/2024] [Indexed: 07/06/2024]
Abstract
Green hydrogen from electrolysis of water has attracted widespread attention as a renewable power source. Among several hydrogen production methods, it has become the most promising technology. However, there is no large-scale renewable hydrogen production system currently that can compete with conventional fossil fuel hydrogen production. Renewable energy electrocatalytic water splitting is an ideal production technology with environmental cleanliness protection and good hydrogen purity, which meet the requirements of future development. This review summarizes and introduces the current status of hydrogen production by water splitting from three aspects: electricity, catalyst and electrolyte. In particular, the present situation and the latest progress of the key sources of power, catalytic materials and electrolyzers for electrocatalytic water splitting are introduced. Finally, the problems of hydrogen generation from electrolytic water splitting and directions of next-generation green hydrogen in the future are discussed and outlooked. It is expected that this review will have an important impact on the field of hydrogen production from water.
Collapse
Affiliation(s)
- Xueqing Gao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yutong Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Yujun Wang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Luyao Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Xingyuan Zhao
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Juan Du
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Haixia Wu
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China
| | - Aibing Chen
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang, 050018, People's Republic of China.
| |
Collapse
|
15
|
Bookholt T, Qin X, Lilli B, Enke D, Huck M, Balkenhohl D, Rüwe K, Brune J, Klare JP, Küpper K, Schuster A, Bergjan J, Steinhart M, Gröger H, Daum D, Schäfer H. Increased Readiness for Water Splitting: NiO-Induced Weakening of Bonds in Water Molecules as Possible Cause of Ultra-Low Oxygen Evolution Potential. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310665. [PMID: 38386292 DOI: 10.1002/smll.202310665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/08/2024] [Indexed: 02/23/2024]
Abstract
The development of non-precious metal-based electrodes that actively and stably support the oxygen evolution reaction (OER) in water electrolysis systems remains a challenge, especially at low pH levels. The recently published study has conclusively shown that the addition of haematite to H2SO4 is a highly effective method of significantly reducing oxygen evolution overpotential and extending anode life. The far superior result is achieved by concentrating oxygen evolution centres on the oxide particles rather than on the electrode. However, unsatisfactory Faradaic efficiencies of the OER and hydrogen evolution reaction (HER) parts as well as the required high haematite load impede applicability and upscaling of this process. Here it is shown that the same performance is achieved with three times less metal oxide powder if NiO/H2SO4 suspensions are used along with stainless steel anodes. The reason for the enormous improvement in OER performance by adding NiO to the electrolyte is the weakening of the intramolecular O─H bond in the water molecules, which is under the direct influence of the nickel oxide suspended in the electrolyte. The manipulation of bonds in water molecules to increase the tendency of the water to split is a ground-breaking development, as shown in this first example.
Collapse
Affiliation(s)
- Tom Bookholt
- University of Osnabrück, The Electrochemical Energy and Catalysis Group, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Xian Qin
- Strait Institute of Flexible Electronics (SIFE, Future Technologies), Fujian Key Laboratory of Flexible Electronics, Fujian Normal University and Strait Laboratory of Flexible Electronics (SLoFE), Fuzhou, 350117, P. R. China
| | - Bettina Lilli
- University of Leipzig, Institute of Chemical Technology, 04103, Leipzig, Germany
| | - Dirk Enke
- University of Leipzig, Institute of Chemical Technology, 04103, Leipzig, Germany
| | - Marten Huck
- University of Osnabrück, The Electrochemical Energy and Catalysis Group, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Danni Balkenhohl
- University of Osnabrück, The Electrochemical Energy and Catalysis Group, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Klara Rüwe
- University of Osnabrück, The Electrochemical Energy and Catalysis Group, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Julia Brune
- University of Osnabrück, The Electrochemical Energy and Catalysis Group, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Johann P Klare
- University of Osnabrück Department of Physics, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Karsten Küpper
- University of Osnabrück Department of Physics, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Anja Schuster
- University of Osnabrück, Inorganic Chemistry II, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Jenrik Bergjan
- University of Osnabrück, Physical Chemistry, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Martin Steinhart
- University of Osnabrück, Physical Chemistry, Barbarastrasse 7, 49076, Osnabrück, Germany
| | - Harald Gröger
- Bielefeld University, Chair of Industrial Organic Chemistry and Biotechnology, Faculty of Chemistry, Universitätsstraße 25, 33615, Bielefeld, Germany
| | - Diemo Daum
- Osnabrück University of Applied Sciences, Faculty of Agricultural Science and Landscape Architecture, Laboratory of Plant Nutrition and Chemistry, Am Krümpel 31, 49090, Osnabrück, Germany
| | - Helmut Schäfer
- University of Osnabrück, The Electrochemical Energy and Catalysis Group, Barbarastrasse 7, 49076, Osnabrück, Germany
| |
Collapse
|
16
|
Li C, Zhang W, Cao Y, Ji J, Li Z, Han X, Gu H, Braunstein P, Lang J. Interfacial Electronic Interactions Between Ultrathin NiFe-MOF Nanosheets and Ir Nanoparticles Heterojunctions Leading to Efficient Overall Water Splitting. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401780. [PMID: 38666391 PMCID: PMC11267393 DOI: 10.1002/advs.202401780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/05/2024] [Indexed: 07/25/2024]
Abstract
Creating specific noble metal/metal-organic framework (MOF) heterojunction nanostructures represents an effective strategy to promote water electrolysis but remains rather challenging. Herein, a heterojunction electrocatalyst is developed by growing Ir nanoparticles on ultrathin NiFe-MOF nanosheets supported by nickel foam (NF) via a readily accessible solvothermal approach and subsequent redox strategy. Because of the electronic interactions between Ir nanoparticles and NiFe-MOF nanosheets, the optimized Ir@NiFe-MOF/NF catalyst exhibits exceptional bifunctional performance for the hydrogen evolution reaction (HER) (η10 = 15 mV, η denotes the overpotential) and oxygen evolution reaction (OER) (η10 = 213 mV) in 1.0 m KOH solution, superior to commercial and recently reported electrocatalysts. Density functional theory calculations are used to further investigate the electronic interactions between Ir nanoparticles and NiFe-MOF nanosheets, shedding light on the mechanisms behind the enhanced HER and OER performance. This work details a promising approach for the design and development of efficient electrocatalysts for overall water splitting.
Collapse
Affiliation(s)
- Cong Li
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhouJiangsu215123P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032P. R. China
| | - Wei Zhang
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Yongyong Cao
- College of BiologicalChemical Science and EngineeringJiaxing UniversityJiaxingZhejiang314001P. R. China
| | - Jun‐Yang Ji
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Zhao‐Chen Li
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Xu Han
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Hongwei Gu
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhouJiangsu215123P. R. China
| | - Pierre Braunstein
- Université de Strasbourg – CNRSInstitut de Chimie (UMR 7177 CNRS)4 rue Blaise Pascal‐CS 90032Strasbourg67081France
| | - Jian‐Ping Lang
- College of ChemistryChemical Engineering and Materials ScienceSoochow UniversitySuzhouJiangsu215123P. R. China
- State Key Laboratory of Organometallic ChemistryShanghai Institute of Organic ChemistryChinese Academy of SciencesShanghai200032P. R. China
| |
Collapse
|
17
|
Jiang J, Xi C, Zhou S, Chen X, Wei Y, Han S. Fe 7S 8 coupled with VS 4 heterogeneous interface engineering driven by FeV bimetallic MOFs: An efficient all-pH and durable hydrogen evolution. J Colloid Interface Sci 2024; 674:913-924. [PMID: 38959737 DOI: 10.1016/j.jcis.2024.06.220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 06/20/2024] [Accepted: 06/27/2024] [Indexed: 07/05/2024]
Abstract
Rational design and preparation of a multiphase electrocatalyst for hydrogen evolution reaction (HER) has become a hot research topic, while applicable and pH versatility of vanadium tetrasulfide (VS4) and heptairon octasulfide (Fe7S8) composites have rarely been reported. Here, the facile topological sulfide self-template sacrifice method using FeV bimetallic MOFs is designed to obtain Fe7S8 coupled with VS4 heterostructures, enhancing the electron precipitation in the catalysts and attracts electrons to migrate. According to DFT simulations, the electronic coupling at the atomic orbital level and the modulation of interfacial electrons among various interfaces play a crucial role in enhancing the intermediate state process of the hydrogen evolution reaction (HER) across the entire pH range, promoting the optimal d-band centroid value (εd). Reassuringly, the prepared 3D Fe7S8/VS4 electrodes possessed excellent performances of η10 = 53 mV, η10 = 135 mV and η10 = 38 mV in a conventional three-electrode configuration in a 1 M KOH, 1 M Na2SO4, and 0.5 M H2SO4, and the stabilized currents can all be maintained for 48 h. This innovative design of in situ heterostructured materials constructed from dual transition metal sulfides provides inspiring ideas for the preparation of all-pH catalysts.
Collapse
Affiliation(s)
- Jibo Jiang
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China.
| | - Chang Xi
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Shaobo Zhou
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Xiaomin Chen
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Ying Wei
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China
| | - Sheng Han
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Haiquan Road 100, 201418 Shanghai, PR China.
| |
Collapse
|
18
|
Chen B, Liu T, Zhang J, Zhao S, Yue R, Wang S, Wang L, Chen Z, Feng Y, Huang J, Yin Y, Guiver MD. Interface-Engineered NiFe/Ni-S Nanoparticles for Reliable Alkaline Oxygen Production at Industrial Current: A Sulfur Source Confinement Strategy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2310737. [PMID: 38396324 DOI: 10.1002/smll.202310737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/04/2024] [Indexed: 02/25/2024]
Abstract
Using powder-based ink appears to be the most suitable candidate for commercializing the membrane electrode assembly (MEA), while research on the powder-based NPM catalyst for anion exchange membrane water electrolyzer (AEMWE) is currently insufficient, especially at high current density. Herein, a sulfur source (NiFe Layered double hydroxide adsorbedSO 4 2 - ${\mathrm{SO}}_4^{2 - }$ ) confinement strategy is developed to integrate Ni3S2 onto the surface of amorphous/crystalline NiFe alloy nanoparticles (denoted NiFe/Ni-S), achieving advanced control over the sulfidation process for the formation of metal sulfides. The constructed interface under the sulfur source confinement strategy generates abundant active sites that increase electron transport at the electrode-electrolyte interface and improve ability over an extended period at a high current density. Consequently, the constructed NiFe/Ni-S delivers an ultra-low overpotential of 239 mV at 10 mA cm-2 and 0.66 mAcm ECSA - 2 ${\mathrm{cm}}_{{\mathrm{ECSA}}}^{ - 2}$ under an overpotential of 300 mV. The AEMWE with NiFe/Ni-S anode exhibits a cell voltage of 1.664 V @ 0.5 A cm-2 and a 400 h stability at 1.0 A cm-2.
Collapse
Affiliation(s)
- Bin Chen
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Tao Liu
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Junfeng Zhang
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Shuo Zhao
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Runfei Yue
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Sipu Wang
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Lianqin Wang
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Zhihao Chen
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
| | - Yingjie Feng
- Department of Catalytic Science, SINOPEC (Beijing) Research Institute of Chemical Industry Co., Ltd., Beijing, 100013, China
| | - Jun Huang
- Institute of Energy and Climate Research, Theory and Computation of Energy Materials (IEK 13), Forschungszentrum Jülich, D-52425, Lulich, Germany
| | - Yan Yin
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| | - Michael D Guiver
- State Key Laboratory of Engines, School of Mechanical Engineering, Tianjin University, Tianjin, 300350, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
19
|
Yang L, Wang M, Shan H, Ma Y, Peng Y, Hu K, Deng C, Yu H, Lv J. Generic heterostructure interfaces bound to Co 9S 8 for efficient overall water splitting supported by photothermal. J Colloid Interface Sci 2024; 662:748-759. [PMID: 38377694 DOI: 10.1016/j.jcis.2024.02.126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 02/15/2024] [Indexed: 02/22/2024]
Abstract
The increase of reaction temperature of electrocatalysts and the construction of heterogeneous structures is regarded as an efficient method to improve the electrocatalytic water splitting activity. Here, we report an approach to enhance the local heat and active sites of the catalyst by building a heterostructure with Co9S8 to significantly improve its electrocatalytic performance. The as-fabricated Co9S8@Ce-NiCo LDH/NF electrode possesses a notable photothermal ability, as it effectively converts near-infrared (NIR) light into the local heat, owing to its significant optical absorption. Leveraging these favorable qualities, the prepared Co9S8@Ce-NiCo LDH/NF electrode showed impressive performance in both hydrogen evolution reaction (HER) (η100 = 144 mV) and oxygen evolution reaction (OER) (η100 = 229 mV) under NIR light. Compared to the absence of the NIR light, the presence of NIR irradiation leads to a 24.6 % increase in catalytic efficiency for HER and a 15.8 % increase for OER. Additionally, other dual-functional electrocatalysts like NiCo-P, NiFeMo, and NiFe(OH)x also demonstrated significantly enhanced photothermal effects and improved catalytic performance owing to the augmented photothermal conversion when combined with Co9S8. This work offers novel pathways for the development of photothermal-electrocatalytic systems that facilitate economically efficient and energy-conserving overall water splitting processes.
Collapse
Affiliation(s)
- Lei Yang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China; Key Laboratory of Materials and Technologies for Advanced Batteries, Hefei University, Hefei 230601, China.
| | - Mengxiang Wang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China; Key Laboratory of Materials and Technologies for Advanced Batteries, Hefei University, Hefei 230601, China
| | - Hai Shan
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China; Key Laboratory of Materials and Technologies for Advanced Batteries, Hefei University, Hefei 230601, China
| | - Yiming Ma
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Yujie Peng
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Kunhong Hu
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China
| | - Chonghai Deng
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei 230601, China; Key Laboratory of Materials and Technologies for Advanced Batteries, Hefei University, Hefei 230601, China
| | - Hai Yu
- School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China
| | - Jianguo Lv
- School of Physics and Materials Engineering, Hefei Normal University, Hefei 230601, China.
| |
Collapse
|
20
|
Hou Z, Fan F, Wang Z, Du Y. A stable N-doped NiMoO 4/NiO 2 electrocatalyst for efficient oxygen evolution reaction. Dalton Trans 2024; 53:7430-7435. [PMID: 38591122 DOI: 10.1039/d3dt04034h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Recently, there has been a significant interest in the study of highly active and stable transition metal-based electrocatalysts for the oxygen evolution reaction (OER). Non-noble metal nanocatalysts with excellent inherent activity, many exposed active centers, rapid electron transfer, and excellent structural stability are especially promising for the displacement of precious-metal catalysts for the production of sustainable and "clean" hydrogen gas through water-splitting. Herein, efficient electrocatalyst N-doped nickel molybdate nanorods were synthesized on Ni foam by a hydrothermal process and effortless chemical vapor deposition. The heterostructure interface of N-NiMoO4/NiO2 led to strong electronic interactions, which were beneficial for enhancing the OER activity of the catalyst. Excellent OER catalytic activity in 1.0 M KOH was shown, which offered a small overpotential of 185.6 mV to acquire a current density of 10 mA cm-2 (superior to the commercial benchmark material RuO2 under the same condition). This excellent electrocatalyst was stable for 90 h at a constant current density of 10 mA cm-2. We created an extremely reliable and effective OER electrocatalyst without the use of noble metals by doping a nonmetal element with nanostructured heterojunctions of various active components.
Collapse
Affiliation(s)
- Zhengfang Hou
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Fangyuan Fan
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Zhe Wang
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| | - Yeshuang Du
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, College of Chemistry and Chemical Engineering, Hubei Normal University, Huangshi 435002, China.
| |
Collapse
|
21
|
Zhang Y, Wang T, Mei L, Yang R, Guo W, Li H, Zeng Z. Rational Design of Cost-Effective Metal-Doped ZrO 2 for Oxygen Evolution Reaction. NANO-MICRO LETTERS 2024; 16:180. [PMID: 38662149 PMCID: PMC11045712 DOI: 10.1007/s40820-024-01403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 03/30/2024] [Indexed: 04/26/2024]
Abstract
The design of cost-effective electrocatalysts is an open challenging for oxygen evolution reaction (OER) due to the "stable-or-active" dilemma. Zirconium dioxide (ZrO2), a versatile and low-cost material that can be stable under OER operating conditions, exhibits inherently poor OER activity from experimental observations. Herein, we doped a series of metal elements to regulate the ZrO2 catalytic activity in OER via spin-polarized density functional theory calculations with van der Waals interactions. Microkinetic modeling as a function of the OER activity descriptor (GO*-GHO*) displays that 16 metal dopants enable to enhance OER activities over a thermodynamically stable ZrO2 surface, among which Fe and Rh (in the form of single-atom dopant) reach the volcano peak (i.e. the optimal activity of OER under the potential of interest), indicating excellent OER performance. Free energy diagram calculations, density of states, and ab initio molecular dynamics simulations further showed that Fe and Rh are the effective dopants for ZrO2, leading to low OER overpotential, high conductivity, and good stability. Considering cost-effectiveness, single-atom Fe doped ZrO2 emerged as the most promising catalyst for OER. This finding offers a valuable perspective and reference for experimental researchers to design cost-effective catalysts for the industrial-scale OER production.
Collapse
Affiliation(s)
- Yuefeng Zhang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, People's Republic of China
| | - Tianyi Wang
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan
| | - Liang Mei
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, People's Republic of China
| | - Ruijie Yang
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, People's Republic of China
| | - Weiwei Guo
- Shanxi Supercomputing Center, Lvliang, 033000, Shanxi, People's Republic of China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR), Tohoku University, Sendai, 980-8577, Japan.
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, and State Key Laboratory of Marine Pollution, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, 999077, Hong Kong, People's Republic of China.
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, People's Republic of China.
| |
Collapse
|
22
|
Fan Y, Zhang J, Han J, Zhang M, Bao W, Su H, Wang N, Zhang P, Luo Z. In situ self-reconstructed hierarchical bimetallic oxyhydroxide nanosheets of metallic sulfides for high-efficiency electrochemical water splitting. MATERIALS HORIZONS 2024; 11:1797-1807. [PMID: 38318724 DOI: 10.1039/d3mh02090h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
The advancement of economically efficient electrocatalysts for alkaline water oxidation based on transition metals is essential for hydrogen production through water electrolysis. In this investigation, a straightforward one-step solvent method was utilized to spontaneously cultivate bimetallic sulfide S-FeCo1 : 1/NIF on the surface of a nickel-iron foam (NIF). Capitalizing on the synergistic impact between the bimetallic constituents and the highly active species formed through electrochemical restructuring, S-FeCo1 : 1/NIF exhibited remarkable oxygen evolution reaction (OER) performance, requiring only a 310 mV overpotential based on 500 mA cm-2 current density. Furthermore, it exhibited stable operation at 200 mA cm-2 for 275 h. Simultaneously, the catalyst demonstrated excellent hydrogen evolution reaction (HER) and overall water-splitting capabilities. It only requires an overpotential of 191 mV and a potential of 1.81 V to drive current densities of 100 and 50 mA cm-2. Density functional theory (DFT) calculations were also employed to validate the impact of the bimetallic synergistic effect on the catalytic activity of sulfides. The results indicate that the coupling between bimetallic components effectively reduces the energy barrier required for the rate-determining step in water oxidation, enhancing the stability and activity of bimetallic sulfides. The exploration of bimetallic coupling to improve the OER performance holds theoretical significance in the rational design of advanced electrocatalysts.
Collapse
Affiliation(s)
- Yaning Fan
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
| | - Junjun Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
| | - Jie Han
- National & Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Material Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, P. R. China.
| | - Mengyuan Zhang
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Weiwei Bao
- National & Local Joint Engineering Laboratory for Slag Comprehensive Utilization and Environmental Technology, School of Material Science and Engineering, Shaanxi University of Technology, Hanzhong, Shaanxi, 723000, P. R. China.
| | - Hui Su
- Department of Chemistry, FRQNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke Street W., Montreal, QC H3A 0B8, Canada
| | - Nailiang Wang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
| | - Pengfei Zhang
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| | - Zhenghong Luo
- State Key Laboratory of High-Efficiency Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, China.
- School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China.
| |
Collapse
|
23
|
Dong S, Xu H, Jia B, Meng Q, Yan T, Wang Z, Yao S, Lu X, Tian J. Spaced-Confined Janus Engineering Enables Controlled Ion Transport Channels and Accelerated Kinetics for Secondary Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:2438-2448. [PMID: 38180810 DOI: 10.1021/acsami.3c17563] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The large grain boundary resistance between different components of the anode electrode easily leads to the low ion transport efficiency and poor electrochemical performance of lithium-/sodium-ion batteries (LIBs/SIBs). To address the issue, a Janus heterointerface with a Mott-Schottky structure is proposed to optimize the interface atomic structure, weaken interatomic resistance, and improve ion transport kinetics. Herein, Janus Co/Co2P@carbon-nanotubes@core-shell (Janus Co/Co2P@CNT-CS) refined urchin-like architecture derived from metal-organic frameworks is reported via a coating-phosphating process, where the Janus Co/Co2P heterointerface nanoparticles are confined in carbon nanotubes and a core-shell polyhedron. Such a Janus Co/Co2P heterointerface shows the strong built-in electric field, facilitating the controllable ion transport channels and the high ion transport efficiency. The Janus Co/Co2P@CNT-CS refined urchin-like architecture composed of a core-shell structure and the grafting carbon nanotubes enhances the structure stability and electronic conductivity. Benefiting from the spaced-confined Janus heterointerface engineering and synergistic effects between the core-shell structure and the grafting carbon nanotubes, the Janus Co/Co2P@CNT-CS refined urchin-like architecture demonstrates the fast ion transport rate and excellent pseudocapacitance performance for LIBs/SIBs. In this case, the Janus Co/Co2P@CNT-CS refined urchin-like architecture shows high specific capacities of 709 mA h g-1 (200 cycles) and 203 mA h g-1 (300 cycles) at a current density of 500 mA g-1 for LIBs/SIBs, respectively.
Collapse
Affiliation(s)
- Shihua Dong
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - Haoran Xu
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - Bing Jia
- Qingdao Haiwan Technology Industry Research Institute Co., Ltd., Qingdao Haiwan Group Co., Ltd., Qingdao, Shandong 266061, P. R. China
| | - Qi Meng
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - Tengxin Yan
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - Ziyi Wang
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - Shuyu Yao
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - Xiao Lu
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| | - Jian Tian
- School of Materials Science and Engineering, College of Energy Storage Technology, Shandong University of Science and Technology, Qingdao, Shandong 266590, P. R. China
| |
Collapse
|
24
|
Hou ZQ, Hu WP, Yang GH, Zhang ZX, Cheng TY, Huang KJ. Improving the electrocatalytic hydrogen evolution reaction through a magnetic field and hydrogen peroxide production co-assisted Ni/Fe 3O 4@poly(3,4-ethylene-dioxythiophene)/Ni electrode. J Colloid Interface Sci 2024; 654:1303-1311. [PMID: 37913719 DOI: 10.1016/j.jcis.2023.10.151] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/06/2023] [Accepted: 10/28/2023] [Indexed: 11/03/2023]
Abstract
The production of high-purity hydrogen using surplus electrical energy and abundant water resources has immense potential in mitigating the fossil energy crisis, as hydrogen fuel holds clean, pollution-free, and high-energy characteristics. However, the practical application of large-scale hydrogen production from water faces challenges such as high overpotentials, sluggish dynamics, and limited electrocatalytic lifetime associated with the hydrogen evolution reaction (HER). Here, we fabricated the sandwich structure of a Ni/Fe3O4@poly(3,4-ethylene-dioxythiophene)/Ni (Ni/Fe3O4@PEDOT/Ni) electrode and employed a strong magnet to obtain a magnetic electrode capable of achieving high-activity and durability for HER. Electrochemical analysis reveals that the activated magnetic electrode displays a significantly reduced overpotential and an extended electrocatalytic lifetime of 10 days. Notably, its stability is higher than that of non-magnetic Ni/Fe3O4/Ni and Ni/Fe3O4@PEDOT/Ni electrodes, primarily due to the support from magnetic force and the protective PEDOT layer. Moreover, the minute atomized droplets can form the H2O2 species in a moist environment, facilitating the formation of the NiO layer on the Ni surface, which plays a vital role in boosting catalytic activity. In conclusion, our magnetic electrode strategy, combined with the emergence of the NiO layer, offers valuable insights for the development of advanced HER electrodes.
Collapse
Affiliation(s)
- Zhi-Qiang Hou
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Wen-Ping Hu
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Guo-Hua Yang
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Zi-Xuan Zhang
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Tian-Yi Cheng
- School of Chemistry and Chemical Engineering, Zhou Kou Normal University, Henan 466001, China
| | - Ke-Jing Huang
- Education Department of Guangxi Zhuang Autonomous Region, Key Laboratory of Applied Analytical Chemistry, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, School of Chemistry and Chemical Engineering, Guangxi Minzu University, Nanning 530006, China.
| |
Collapse
|
25
|
Huang Q, Yang M, Rani KK, Wang L, Wang R, Liu X, Huang D, Yang Z, Devasenathipathy R, Chen DH, Fan Y, Chen W. Sheet-Isolated MoS 2 Used for Dispersing Pt Nanoparticles and its Application in Methanol Fuel Cells. Chemistry 2024; 30:e202302934. [PMID: 37842799 DOI: 10.1002/chem.202302934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 10/17/2023]
Abstract
It is highly challenging to activate the basal plane and minimize the π-π stacking of MoS2 sheets, thus enhancing its catalytic performance. Here, we display an approach for making well-dispersed MoS2 . By using the N-doped multi-walled carbon nanotubes (NMWCNTs) as an isolation unit, the aggregation of MoS2 sheets was effectively reduced, favoring the dispersion of Pt nanoparticles (noted as Pt/NMWCNTs-isolated-MoS2 ). Excellent bifunctional catalytic performance for methanol oxidation and oxygen reduction reaction (MOR/ORR) were demonstrated by the produced Pt/NMWCNTs-isolated-MoS2 . In comparison to Pt nanoparticles supported on MoS2 (Pt/MoS2 ), the MOR activity (2314.14 mA mgpt -1 ) and stability (317.69 mA mgpt -1 after 2 h of operation) on Pt/NMWCNTs-isolatedMoS2 were 24 and 232 times higher, respectively. As for ORR, Pt/NMWCNTs-isolated-MoS2 holds large half-wave potential (0.88 V) and high stability (92.71 % after 22 h of operation). This work presents a tactic for activating the basal planes and reducing the π-π stacking of 2D materials to satisfy their applications in electrocatalysis. In addition, the proposed sheet-isolation method can be used for fabricating other 2D materials to promote the dispersion of nanoparticles, which assist its application in other fields of energy as well as the environment.
Collapse
Affiliation(s)
- Qiulan Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Mengping Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Karuppasamy Kohila Rani
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Limin Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Ruixiang Wang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Xiaotian Liu
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Dujuan Huang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Zhongyun Yang
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Rajkumar Devasenathipathy
- Key Laboratory of Flexible Electronics (KLOFE) and, Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Du-Hong Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Youjun Fan
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, China
| |
Collapse
|
26
|
Jin J, Wang X, Hu Y, Zhang Z, Liu H, Yin J, Xi P. Precisely Control Relationship between Sulfur Vacancy and H Absorption for Boosting Hydrogen Evolution Reaction. NANO-MICRO LETTERS 2024; 16:63. [PMID: 38168843 PMCID: PMC10761665 DOI: 10.1007/s40820-023-01291-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 11/21/2023] [Indexed: 01/05/2024]
Abstract
Effective and robust catalyst is the core of water splitting to produce hydrogen. Here, we report an anionic etching method to tailor the sulfur vacancy (VS) of NiS2 to further enhance the electrocatalytic performance for hydrogen evolution reaction (HER). With the VS concentration change from 2.4% to 8.5%, the H* adsorption strength on S sites changed and NiS2-VS 5.9% shows the most optimized H* adsorption for HER with an ultralow onset potential (68 mV) and has long-term stability for 100 h in 1 M KOH media. In situ attenuated-total-reflection Fourier transform infrared spectroscopy (ATR-FTIRS) measurements are usually used to monitor the adsorption of intermediates. The S- H* peak of the NiS2-VS 5.9% appears at a very low voltage, which is favorable for the HER in alkaline media. Density functional theory calculations also demonstrate the NiS2-VS 5.9% has the optimal |ΔGH*| of 0.17 eV. This work offers a simple and promising pathway to enhance catalytic activity via precise vacancies strategy.
Collapse
Affiliation(s)
- Jing Jin
- College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xinyao Wang
- College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yang Hu
- College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhuang Zhang
- College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Hongbo Liu
- College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jie Yin
- College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Pinxian Xi
- College of Chemistry and Chemical Engineering, Frontiers Science Center for Rare Isotopes, State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
27
|
Shinde KP, Chavan HS, Salunke AS, Oh J, Aqueel Ahmed AT, Shrestha NK, Im H, Park J, Inamdar AI. Electrochemical Investigations of Double Perovskite M 2NiMnO 6 (Where M = Eu, Gd, Tb) for High-Performance Oxygen Evolution Reaction. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:3076. [PMID: 38063772 PMCID: PMC10707741 DOI: 10.3390/nano13233076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 11/29/2023] [Accepted: 12/01/2023] [Indexed: 06/21/2024]
Abstract
Double perovskites are known for their special structures which can be utilized as catalyst electrode materials for electrochemical water splitting to generate carbon-neutral hydrogen energy. In this work, we prepared lanthanide series metal-doped double perovskites at the M site such as M2NiMnO6 (where M = Eu, Gd, Tb) using the solid-state reaction method, and they were investigated for an oxygen evolution reaction (OER) study in an alkaline medium. It is revealed that the catalyst with a configuration of Tb2NiMnO6 has outstanding OER properties such as a low overpotential of 288 mV to achieve a current density of 10 mAcm-2, a lower Tafel slope of 38.76 mVdec-1, and a long cycling stability over 100 h of continuous operation. A-site doping causes an alteration in the oxidation or valence states of the NiMn cations, their porosity, and the oxygen vacancies. This is evidenced in terms of the Mn4+/Mn3+ ratio modifying electronic properties and the surface which facilitates the OER properties of the catalyst. This is discussed using electrochemical impedance spectroscopy (EIS) and electrochemical surface area (ECSA) of the catalysts. The proposed work is promising for the synthesis and utilization of future catalyst electrodes for high-performance electrochemical water splitting.
Collapse
Affiliation(s)
- Kiran P. Shinde
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Harish S. Chavan
- Department of Chemistry and Chemical Engineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Republic of Korea
| | - Amol S. Salunke
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Jeongseok Oh
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Abu Talha Aqueel Ahmed
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Nabeen K. Shrestha
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Hyunsik Im
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| | - Joonsik Park
- Department of Materials Science and Engineering, Hanbat National University, Daejeon 34158, Republic of Korea
| | - Akbar I. Inamdar
- Division of Physics and Semiconductor Science, Dongguk University, Seoul 04620, Republic of Korea
| |
Collapse
|
28
|
Wang X, Zhang K, Xie Y, Yu D, Tian H, Lou Y. MnO xH y-modified CoMoP/NF nanosheet arrays as hydrogen evolution reaction and oxygen evolution reaction bifunctional catalysts under alkaline conditions. Dalton Trans 2023; 52:15091-15100. [PMID: 37814596 DOI: 10.1039/d3dt02467a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
It is widely acknowledged that interface engineering strategies can significantly enhance the activity of catalysts. In this study, we developed a CoMoP nanoarray directly grown in situ on a nickel foam (NF) substrate, with the interface structure formed through the electrodeposition of MnOxHy. The resulting heterostructure MnOxHy/CoMoP/NF exhibited remarkable hydrogen evolution reaction (HER) activity, achieving overpotentials as low as 61 and 138 mV at 10 and 100 mA cm-2, respectively. Moreover, MnOxHy/CoMoP/NF demonstrated efficient oxygen evolution reaction (OER) activity with an overpotential of 330 mV at 100 mA cm-2. Remarkably, MnOxHy/CoMoP/NF maintained its catalytic properties and structural integrity even after working continuously for 20 h facilitating the HER at 10 mA cm-2 and the OER at 100 mA cm-2. The Tafel slopes of the HER and OER were determined to be as small as 14 and 55 mV dec-1, respectively, confirming that the coupled interface conferred fast reaction kinetics on the catalyst. When applied in overall water splitting, MnOxHy/CoMoP/NF delivered a voltage of 1.91 V at 100 mA cm-2 with excellent stability. This study demonstrated the feasibility of utilizing a simple electrodeposition technique to fabricate a heterogeneous structure with bifunctional catalytic activity, establishing a solid foundation for diverse industrial applications.
Collapse
Affiliation(s)
- Xuemin Wang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Ke Zhang
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yuhan Xie
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Dehua Yu
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Haoze Tian
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| | - Yongbing Lou
- School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
29
|
Dong Y, Deng Z, Zhang H, Liu G, Wang X. A Highly Active and Durable Hierarchical Electrocatalyst for Large-Current-Density Water Splitting. NANO LETTERS 2023; 23:9087-9095. [PMID: 37747850 DOI: 10.1021/acs.nanolett.3c02940] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Designing bifunctional catalysts with high current densities under industrial circumstances is crucial to propelling hydrogen energy with a boost from fundamental to practical application. In this work, heterojunction nanowire arrays consisting of manganese oxide and cobalt phosphide (denoted as MnO-CoP/NF) are designed to meet the industrial demand by regulating the synergic mass transport and electronic structure coupling with numerous nano-heterogeneous interfaces. The optimal MnO-CoP/NF electrode exhibits remarkable bifunctional electrocatalytic performance with overpotentials of 259.5 mV for hydrogen evolution at a large current density of 1000 mA cm-2 and 392.2 mV for oxygen evolution at 1500 mA cm-2. Moreover, the MnO-CoP/NF electrode demonstrates superior durability and an ultralow voltage of 1.76 V at 500 mA cm-2, outperforming that of a commercial RuO2||Pt/C electrode. This work sheds light on the design of metallic heterostructures with optimized interfacial electronic structures and a high abundance of active sites for practical industrial water splitting applications.
Collapse
Affiliation(s)
- Yan Dong
- College of Chemistry and Chemical Engineering, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Zhiping Deng
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Hao Zhang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| | - Guangyi Liu
- College of Chemistry and Chemical Engineering, Central South University, 932 South Lushan Road, Changsha, Hunan 410083, People's Republic of China
| | - Xiaolei Wang
- Department of Chemical and Materials Engineering, University of Alberta, 9211-116 Street NW, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
30
|
Chen Z, Zheng R, Bao T, Ma T, Wei W, Shen Y, Ni BJ. Dual-Doped Nickel Sulfide for Electro-Upgrading Polyethylene Terephthalate into Valuable Chemicals and Hydrogen Fuel. NANO-MICRO LETTERS 2023; 15:210. [PMID: 37695408 PMCID: PMC10495299 DOI: 10.1007/s40820-023-01181-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
Electro-upcycling of plastic waste into value-added chemicals/fuels is an attractive and sustainable way for plastic waste management. Recently, electrocatalytically converting polyethylene terephthalate (PET) into formate and hydrogen has aroused great interest, while developing low-cost catalysts with high efficiency and selectivity for the central ethylene glycol (PET monomer) oxidation reaction (EGOR) remains a challenge. Herein, a high-performance nickel sulfide catalyst for plastic waste electro-upcycling is designed by a cobalt and chloride co-doping strategy. Benefiting from the interconnected ultrathin nanosheet architecture, dual dopants induced up-shifting d band centre and facilitated in situ structural reconstruction, the Co and Cl co-doped Ni3S2 (Co, Cl-NiS) outperforms the single-doped and undoped analogues for EGOR. The self-evolved sulfide@oxyhydroxide heterostructure catalyzes EG-to-formate conversion with high Faradic efficiency (> 92%) and selectivity (> 91%) at high current densities (> 400 mA cm-2). Besides producing formate, the bifunctional Co, Cl-NiS-assisted PET hydrolysate electrolyzer can achieve a high hydrogen production rate of 50.26 mmol h-1 in 2 M KOH, at 1.7 V. This study not only demonstrates a dual-doping strategy to engineer cost-effective bifunctional catalysts for electrochemical conversion processes, but also provides a green and sustainable way for plastic waste upcycling and simultaneous energy-saving hydrogen production.
Collapse
Affiliation(s)
- Zhijie Chen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Renji Zheng
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, People's Republic of China.
| | - Teng Bao
- School of Biology, Food and Environment Engineering, Hefei University, Hefei, 230601, People's Republic of China
| | - Tianyi Ma
- School of Science, STEM College, RMIT University, Melbourne, VIC, 3000, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Yansong Shen
- School of Chemical Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia.
| |
Collapse
|
31
|
Ma W, Yang X, Li D, Xu R, Nie L, Zhang B, Wang Y, Wang S, Wang G, Diao J, Zheng L, Bai J, Leng K, Li X, Qu Y. Ru-W Pair Sites Enabling the Ensemble Catalysis for Efficient Hydrogen Evolution. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303110. [PMID: 37435625 PMCID: PMC10502621 DOI: 10.1002/advs.202303110] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/23/2023] [Indexed: 07/13/2023]
Abstract
Simultaneously optimizing elementary steps, such as water dissociation, hydroxyl transferring, and hydrogen combination, is crucial yet challenging for achieving efficient hydrogen evolution reaction (HER) in alkaline media. Herein, Ru single atom-doped WO2 nanoparticles with atomically dispersed Ru-W pair sites (Ru-W/WO2 -800) are developed using a crystalline lattice-confined strategy, aiming to gain efficient alkaline HER. It is found that Ru-W/WO2 -800 exhibits remarkable HER activity, characterized by a low overpotential (11 mV at 10 mA cm-2 ), notable mass activity (5863 mA mg-1 Ru at 50 mV), and robust stability (500 h at 250 mA cm-2 ). The highly efficient activity of Ru-W/WO2 -800 is attributed to the synergistic effect of Ru-W sites through ensemble catalysis. Specifically, the W sites expedite rapid hydroxyl transferring and water dissociation, while the Ru sites accelerate the hydrogen combination process, synergistically facilitating the HER activity. This study opens a promising pathway for tailoring the coordination environment of atomic-scale catalysts to achieve efficient electro-catalysis.
Collapse
Affiliation(s)
- Weilong Ma
- International Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics and Photon‐TechnologyNorthwest UniversityXi'anShaanxi710069China
| | - Xiaoyu Yang
- Oncology DepartmentNational Clinical Research Center for Geriatric DisordersXiangya HospitalCentral South UniversityChangsha410083China
| | - Dingding Li
- International Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics and Photon‐TechnologyNorthwest UniversityXi'anShaanxi710069China
| | - Ruixin Xu
- International Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics and Photon‐TechnologyNorthwest UniversityXi'anShaanxi710069China
| | - Liangpeng Nie
- International Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics and Photon‐TechnologyNorthwest UniversityXi'anShaanxi710069China
| | - Baoping Zhang
- International Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics and Photon‐TechnologyNorthwest UniversityXi'anShaanxi710069China
| | - Yi Wang
- International Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics and Photon‐TechnologyNorthwest UniversityXi'anShaanxi710069China
| | - Shuang Wang
- International Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics and Photon‐TechnologyNorthwest UniversityXi'anShaanxi710069China
| | - Gang Wang
- International Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics and Photon‐TechnologyNorthwest UniversityXi'anShaanxi710069China
| | | | - Lirong Zheng
- Beijing Synchrotron Radiation FacilityInstitute of High Energy Physics, Chinese Academy of SciencesBeijing100039China
| | - Jinbo Bai
- Université Paris‐SaclayCentraleSupélecENS Paris‐SaclayCNRSLMPS‐Laboratoire de Mécanique Paris‐Saclay8–10 rue Joliot‐CurieGif‐sur‐Yvette91190France
| | - Kunyue Leng
- International Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics and Photon‐TechnologyNorthwest UniversityXi'anShaanxi710069China
| | - Xiaolin Li
- Institute of Intelligent Manufacturing TechnologyShenzhen PolytechnicShenzhen518055China
| | - Yunteng Qu
- International Collaborative Center on Photoelectric Technology and Nano Functional MaterialsInstitute of Photonics and Photon‐TechnologyNorthwest UniversityXi'anShaanxi710069China
| |
Collapse
|
32
|
Yu K, Yang H, Zhang H, Huang H, Wang Z, Kang Z, Liu Y, Menezes PW, Chen Z. Immobilization of Oxyanions on the Reconstructed Heterostructure Evolved from a Bimetallic Oxysulfide for the Promotion of Oxygen Evolution Reaction. NANO-MICRO LETTERS 2023; 15:186. [PMID: 37515724 PMCID: PMC10387036 DOI: 10.1007/s40820-023-01164-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 06/28/2023] [Indexed: 07/31/2023]
Abstract
Efficient and durable oxygen evolution reaction (OER) requires the electrocatalyst to bear abundant active sites, optimized electronic structure as well as robust component and mechanical stability. Herein, a bimetallic lanthanum-nickel oxysulfide with rich oxygen vacancies based on the La2O2S prototype is fabricated as a binder-free precatalyst for alkaline OER. The combination of advanced in situ and ex situ characterizations with theoretical calculation uncovers the synergistic effect among La, Ni, O, and S species during OER, which assures the adsorption and stabilization of the oxyanion [Formula: see text] onto the surface of the deeply reconstructed porous heterostructure composed of confining NiOOH nanodomains by La(OH)3 barrier. Such coupling, confinement, porosity and immobilization enable notable improvement in active site accessibility, phase stability, mass diffusion capability and the intrinsic Gibbs free energy of oxygen-containing intermediates. The optimized electrocatalyst delivers exceptional alkaline OER activity and durability, outperforming most of the Ni-based benchmark OER electrocatalysts.
Collapse
Affiliation(s)
- Kai Yu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hongyuan Yang
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany
| | - Hao Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Hui Huang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Zhaowu Wang
- School of Physics and Engineering, Longmen Laboratory, Henan University of Science and Technology, Luoyang, 471023, People's Republic of China
| | - Zhenhui Kang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China.
| | - Yang Liu
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Prashanth W Menezes
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany.
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| | - Ziliang Chen
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China.
- Department of Chemistry: Metalorganics and Inorganic Materials, Technical University of Berlin, Straße Des 17 Juni 135. Sekr. C2, 10623, Berlin, Germany.
- Materials Chemistry Group for Thin Film Catalysis - CatLab, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany.
| |
Collapse
|
33
|
Qian Y, Zhou B, Zhang Q, Yang H. Rational Design of Goethite-Sulfide Nanowire Heterojunctions for High Current Density Water Splitting. J Phys Chem Lett 2023:6709-6718. [PMID: 37470326 DOI: 10.1021/acs.jpclett.3c01321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
The preparation of efficient and stable bifunctional electrocatalysts for electrochemical overall water splitting (OWS) to scale up commercial hydrogen production remains a great challenge. Here, we synthesized heterojunction structures consisting of Co9S8/Ni3S2 nanowire arrays and amorphous goethite (FeOOH, α-phase) particles as efficient OWS catalysts using an interface engineering strategy. The interfacial charge inhomogeneity caused by the heterojunction contact leads to the generation of a built-in electric field, which makes the electron-deficient FeOOH and electron-rich Co9S8/Ni3S2 favorable for hydrogen/oxygen evolution reaction, respectively, thus ensuring the excellent activity of FeOOH/Co9S8/Ni3S2 as a bifunctional catalyst. FeOOH/Co9S8/Ni3S2 exhibits impressive catalytic activity for the oxygen evolution reaction, achieving an ultralarge current density of 1000 mA cm-2 needed as low as 265 mV overpotential, and its stability was tested up to 1440 h. Furthermore, an excellent OWS output (1.55 V to generate 10 mA cm-2) is achieved by the bifunctional FeOOH/Co9S8/Ni3S2 catalysts.
Collapse
Affiliation(s)
- Yinyin Qian
- Engineering Research Center of Nano-geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Binghui Zhou
- Engineering Research Center of Nano-geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Qiang Zhang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Huaming Yang
- Engineering Research Center of Nano-geomaterials of Ministry of Education, China University of Geosciences, Wuhan 430074, China
- Laboratory of Advanced Mineral Materials, China University of Geosciences, Wuhan 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| |
Collapse
|
34
|
Zheng X, Shi X, Ning H, Yang R, Lu B, Luo Q, Mao S, Xi L, Wang Y. Tailoring a local acid-like microenvironment for efficient neutral hydrogen evolution. Nat Commun 2023; 14:4209. [PMID: 37452036 PMCID: PMC10349089 DOI: 10.1038/s41467-023-39963-8] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/06/2023] [Indexed: 07/18/2023] Open
Abstract
Electrochemical hydrogen evolution reaction in neutral media is listed as the most difficult challenges of energy catalysis due to the sluggish kinetics. Herein, the Ir-HxWO3 catalyst is readily synthesized and exhibits enhanced performance for neutral hydrogen evolution reaction. HxWO3 support is functioned as proton sponge to create a local acid-like microenvironment around Ir metal sites by spontaneous injection of protons to WO3, as evidenced by spectroscopy and electrochemical analysis. Rationalize revitalized lattice-hydrogen species located in the interface are coupled with Had atoms on metallic Ir surfaces via thermodynamically favorable Volmer-Tafel steps, and thereby a fast kinetics. Elaborated Ir-HxWO3 demonstrates acid-like activity with a low overpotential of 20 mV at 10 mA cm-2 and low Tafel slope of 28 mV dec-1, which are even comparable to those in acidic environment. The concept exemplified in this work offer the possibilities for tailoring local reaction microenvironment to regulate catalytic activity and pathway.
Collapse
Affiliation(s)
- Xiaozhong Zheng
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Xiaoyun Shi
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Honghui Ning
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Rui Yang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Bing Lu
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Qian Luo
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Shanjun Mao
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Lingling Xi
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China
| | - Yong Wang
- Advanced Materials and Catalysis Group, Center of Chemistry for Frontier Technologies, State Key Laboratory of Clean Energy Utilization, Institute of Catalysis, Department of Chemistry, Zhejiang University, 310028, Hangzhou, P. R. China.
- College of Chemistry and Molecular Engineering, Zhengzhou University, 450001, Zhengzhou, China.
| |
Collapse
|
35
|
Ding L, Xie Z, Yu S, Wang W, Terekhov AY, Canfield BK, Capuano CB, Keane A, Ayers K, Cullen DA, Zhang FY. Electrochemically Grown Ultrathin Platinum Nanosheet Electrodes with Ultralow Loadings for Energy-Saving and Industrial-Level Hydrogen Evolution. NANO-MICRO LETTERS 2023; 15:144. [PMID: 37269447 PMCID: PMC10239421 DOI: 10.1007/s40820-023-01117-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 04/26/2023] [Indexed: 06/05/2023]
Abstract
Nanostructured catalyst-integrated electrodes with remarkably reduced catalyst loadings, high catalyst utilization and facile fabrication are urgently needed to enable cost-effective, green hydrogen production via proton exchange membrane electrolyzer cells (PEMECs). Herein, benefitting from a thin seeding layer, bottom-up grown ultrathin Pt nanosheets (Pt-NSs) were first deposited on thin Ti substrates for PEMECs via a fast, template- and surfactant-free electrochemical growth process at room temperature, showing highly uniform Pt surface coverage with ultralow loadings and vertically well-aligned nanosheet morphologies. Combined with an anode-only Nafion 117 catalyst-coated membrane (CCM), the Pt-NS electrode with an ultralow loading of 0.015 mgPt cm-2 demonstrates superior cell performance to the commercial CCM (3.0 mgPt cm-2), achieving 99.5% catalyst savings and more than 237-fold higher catalyst utilization. The remarkable performance with high catalyst utilization is mainly due to the vertically well-aligned ultrathin nanosheets with good surface coverage exposing abundant active sites for the electrochemical reaction. Overall, this study not only paves a new way for optimizing the catalyst uniformity and surface coverage with ultralow loadings but also provides new insights into nanostructured electrode design and facile fabrication for highly efficient and low-cost PEMECs and other energy storage/conversion devices.
Collapse
Affiliation(s)
- Lei Ding
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Zhiqiang Xie
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Shule Yu
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Weitian Wang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Alexander Y Terekhov
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | - Brian K Canfield
- Center for Laser Applications, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA
| | | | - Alex Keane
- Nel Hydrogen, Wallingford, CT, 06492, USA
| | | | - David A Cullen
- Oak Ridge National Laboratory, Center for Nanophase Materials Sciences, Oak Ridge, TN, 37831, USA
| | - Feng-Yuan Zhang
- Nanodynamics and High-Efficiency Lab for Propulsion and Power, Department of Mechanical, Aerospace & Biomedical Engineering, UT Space Institute (University of Tennessee-Knoxville), Tullahoma, TN, 37388, USA.
| |
Collapse
|
36
|
Luo Y, Wu S, Wang P, Ranganathan H, Shi Z. Interface engineering of Ni 2P/MoO x decorated NiFeP nanosheets for enhanced alkaline hydrogen evolution reaction at high current densities. J Colloid Interface Sci 2023; 648:551-557. [PMID: 37307611 DOI: 10.1016/j.jcis.2023.05.163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 05/21/2023] [Accepted: 05/26/2023] [Indexed: 06/14/2023]
Abstract
The rational design of high-performance non-noble metal electrocatalysts at large current densities is important for the development of sustainable energy conversion devices such as alkaline water electrolyzers. However, improving the intrinsic activity of those non-noble metal electrocatalysts remains a great challenge. Therefore, Ni2P/MoOx decorated three-dimensional (3D) NiFeP nanosheets (NiFeP@Ni2P/MoOx) with abundant interfaces were synthesized using facile hydrothermal and phosphorization methods. NiFeP@Ni2P/MoOx exhibits excellent electrocatalytic activity for hydrogen evolution reaction (HER) at a high current density of -1000 mA cm-2 with a low overpotential of 390 mV. Surprisingly, it can operate steadily at a large current density of -500 mA cm-2 for 300 h, indicating its long-term durability under high current densities. The boosted electrocatalytic activity and stability can be ascribed to the as-fabricated heterostructures via interface engineering, leading to modifying the electronic structure, improving the active area, and enhancing the stability. Besides, the 3D nanostructure is also beneficial for exposing abundant accessible active sites. Therefore, this research proposes a considerable route for fabricating non-noble metal electrocatalysts by interface engineering and 3D nanostructure applied in large-scale hydrogen production facilities.
Collapse
Affiliation(s)
- Yuanzhi Luo
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Sisi Wu
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China
| | - Pan Wang
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China; Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, PR China.
| | - Hariprasad Ranganathan
- Institut National de la Recherche Scientifique (INRS), ́Energie Mat́eriaux T́eĺecommunications Research Centre, Varennes, Qúebec J3X 1P7, Canada
| | - Zhicong Shi
- Institute of Batteries, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
37
|
Zhou Q, Xu C, Hou J, Ma W, Jian T, Yan S, Liu H. Duplex Interpenetrating-Phase FeNiZn and FeNi 3 Heterostructure with Low-Gibbs Free Energy Interface Coupling for Highly Efficient Overall Water Splitting. NANO-MICRO LETTERS 2023; 15:95. [PMID: 37037951 PMCID: PMC10086094 DOI: 10.1007/s40820-023-01066-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The sluggish kinetics of both hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) generate the large overpotential in water electrolysis and thus high-cost hydrogen production. Here, multidimensional nanoporous interpenetrating-phase FeNiZn alloy and FeNi3 intermetallic heterostructure is in situ constructed on NiFe foam (FeNiZn/FeNi3@NiFe) by dealloying protocol. Coupling with the eminent synergism among specific constituents and the highly efficient mass transport from integrated porous backbone, FeNiZn/FeNi3@NiFe depicts exceptional bifunctional activities for water splitting with extremely low overpotentials toward OER and HER (η1000 = 367/245 mV) as well as the robust durability during the 400 h testing in alkaline solution. The as-built water electrolyzer with FeNiZn/FeNi3@NiFe as both anode and cathode exhibits record-high performances for sustainable hydrogen output in terms of much lower cell voltage of 1.759 and 1.919 V to deliver the current density of 500 and 1000 mA cm-2 as well long working lives. Density functional theory calculations disclose that the interface interaction between FeNiZn alloy and FeNi3 intermetallic generates the modulated electron structure state and optimized intermediate chemisorption, thus diminishing the energy barriers for hydrogen production in water splitting. With the merits of fine performances, scalable fabrication, and low cost, FeNiZn/FeNi3@NiFe holds prospective application potential as the bifunctional electrocatalyst for water splitting.
Collapse
Affiliation(s)
- Qiuxia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), Spintronics Institute, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
- School of Medical Information and Engineering, Southwest Medical University, Luzhou, 646000, People's Republic of China
| | - Caixia Xu
- Institute for Advanced Interdisciplinary Research (iAIR), Spintronics Institute, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
| | - Jiagang Hou
- Kyiv College at Qilu University of Technology, Qilu University of Technology, Shandong Academy of Sciences, Jinan, 250353, People's Republic of China
| | - Wenqing Ma
- Institute for Advanced Interdisciplinary Research (iAIR), Spintronics Institute, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Tianzhen Jian
- Institute for Advanced Interdisciplinary Research (iAIR), Spintronics Institute, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Shishen Yan
- Institute for Advanced Interdisciplinary Research (iAIR), Spintronics Institute, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China
| | - Hong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), Spintronics Institute, Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, People's Republic of China.
- State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, People's Republic of China.
| |
Collapse
|
38
|
Zeng SP, Shi H, Dai TY, Liu Y, Wen Z, Han GF, Wang TH, Zhang W, Lang XY, Zheng WT, Jiang Q. Lamella-heterostructured nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride electrodes as stable catalysts for oxygen evolution. Nat Commun 2023; 14:1811. [PMID: 37002220 PMCID: PMC10066221 DOI: 10.1038/s41467-023-37597-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Developing robust nonprecious-metal electrocatalysts with high activity towards sluggish oxygen-evolution reaction is paramount for large-scale hydrogen production via electrochemical water splitting. Here we report that self-supported laminate composite electrodes composed of alternating nanoporous bimetallic iron-cobalt alloy/oxyhydroxide and cerium oxynitride (FeCo/CeO2-xNx) heterolamellas hold great promise as highly efficient electrocatalysts for alkaline oxygen-evolution reaction. By virtue of three-dimensional nanoporous architecture to offer abundant and accessible electroactive CoFeOOH/CeO2-xNx heterostructure interfaces through facilitating electron transfer and mass transport, nanoporous FeCo/CeO2-xNx composite electrodes exhibit superior oxygen-evolution electrocatalysis in 1 M KOH, with ultralow Tafel slope of ~33 mV dec-1. At overpotential of as low as 360 mV, they reach >3900 mA cm-2 and retain exceptional stability at ~1900 mA cm-2 for >1000 h, outperforming commercial RuO2 and some representative oxygen-evolution-reaction catalysts recently reported. These electrochemical properties make them attractive candidates as oxygen-evolution-reaction electrocatalysts in electrolysis of water for large-scale hydrogen generation.
Collapse
Affiliation(s)
- Shu-Pei Zeng
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China
| | - Hang Shi
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China
| | - Tian-Yi Dai
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China
| | - Yang Liu
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China
| | - Zi Wen
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China
| | - Gao-Feng Han
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China
| | - Tong-Hui Wang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China
| | - Wei Zhang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China
| | - Xing-You Lang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China.
| | - Wei-Tao Zheng
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China
| | - Qing Jiang
- Key Laboratory of Automobile Materials (Jilin University), Ministry of Education, School of Materials Science and Engineering, and Electron Microscopy Center, Jilin University, Changchun, 130022, China.
| |
Collapse
|
39
|
Xia L, Wang F, Pan K, Zhang B, Li W, Ma X, Yang T, Xu Y, Ren Y, Yu H, Wei S. Dual Co xS y-Modified Tungsten Disulfide Double-Heterojunction Electrocatalyst for Efficient Hydrogen Evolution in All-pH Media. ACS APPLIED MATERIALS & INTERFACES 2023; 15:11765-11776. [PMID: 36812185 DOI: 10.1021/acsami.2c21998] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The rational design and preparation of a heterogeneous electrocatalyst for hydrogen evolution reaction (HER) has become a research hotspot, while applicable and pH-universal tungsten disulfide (WS2)-based hybrid composites are rarely reported. Herein, we propose a novel hybrid catalyst (WS2/Co9S8/Co4S3) comprising two heterojunctions of WS2/Co4S3 and WS2/Co9S8, which grow on the porous skeleton of Co, N-codoped carbon (Co/NC) flexibly applicable to all-pH electrolytes. The effect of double heterogeneous coupling on HER activity is explored as the highly flexible heterojunction is conducive to tune the activity of the catalyst, and the synergistic interaction of the double heterojunctions is maximized by adjusting the proportion of heterojunction components. Theoretical calculations show that both WS2/Co9S8 and WS2/Co4S3 heterojunctions have a Gibbs free energy of H reaction (|ΔGH*|) close to 0.0 eV and a facile decomposition water barrier. As collective synergy of dual CoxSy-modified WS2 double heterojunction, WS2/Co9S8/Co4S3 greatly enhances HER activity compared to bare Co9S8/Co4S3 or single heterojunction (WS2/Co9S8) in all-pH media. Besides, we have elucidated the unique HER mechanism of the double heterojunction to decompose H2O and confirm its excellent activity under alkaline and neutral conditions. Thus, this work provides new insights into WS2-based hybrid materials potentially applied to sustainable energy.
Collapse
Affiliation(s)
- Liangbin Xia
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, China
- National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan Key Laboratory of High-Temperature Structural and Functional Materials, Henan University of Science and Technology, Luoyang 471000, China
| | - Fang Wang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, China
- Henan Province International Joint Laboratory of Materials for Solar Energy Conversion and Lithium Sodium based Battery, Luoyang 471023, China
| | - Kunming Pan
- National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan Key Laboratory of High-Temperature Structural and Functional Materials, Henan University of Science and Technology, Luoyang 471000, China
- Longmen Laboratory, Luoyang, Henan 471003, China
| | - Biying Zhang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, China
| | - Wenzhen Li
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011, United States
| | - Xiao Ma
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, China
| | - Tianxiang Yang
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, China
| | - Yanjie Xu
- School of Environmental Engineering and Chemistry, Luoyang Institute of Science and Technology, Luoyang, Henan 471023, China
| | - Yongpeng Ren
- National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan Key Laboratory of High-Temperature Structural and Functional Materials, Henan University of Science and Technology, Luoyang 471000, China
| | - Hua Yu
- National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan Key Laboratory of High-Temperature Structural and Functional Materials, Henan University of Science and Technology, Luoyang 471000, China
| | - Shizhong Wei
- National Joint Engineering Research Center for Abrasion Control and Molding of Metal Materials, Henan Key Laboratory of High-Temperature Structural and Functional Materials, Henan University of Science and Technology, Luoyang 471000, China
- Longmen Laboratory, Luoyang, Henan 471003, China
| |
Collapse
|
40
|
Zhang L, Zhang J, Xu A, Lin Z, Wang Z, Zhong W, Shen S, Wu G. Charge Redistribution of Co9S8/MoS2 Heterojunction Microsphere Enhances Electrocatalytic Hydrogen Evolution. Biomimetics (Basel) 2023; 8:biomimetics8010104. [PMID: 36975334 PMCID: PMC10046411 DOI: 10.3390/biomimetics8010104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
The electrocatalytic hydrogen evolution activity of transition metal sulfide heterojunctions are significantly increased when compared with that of a single component, but the mechanism behind the performance enhancement and the preparation of catalysts with specific morphologies still need to be explored. Here, we prepared a Co9S8/MoS2 heterojunction with microsphere morphology consisting of thin nanosheets using a facile two-step method. There is electron transfer between the Co9S8 and MoS2 of the heterojunction, thus realizing the redistribution of charge. After the formation of the heterojunction, the density of states near the Fermi surface increases, the d-band center of the transition metal moves downward, and the adsorption of both water molecules and hydrogen by the catalyst are optimized. As a result, the overpotential of Co9S8/MoS2 is superior to that of most relevant electrocatalysts reported in the literature. This work provides insight into the synergistic mechanisms of heterojunctions and their morphological regulation.
Collapse
Affiliation(s)
- Lili Zhang
- College of Material Science and Engineering, Changchun University of Technology, Changchun 130051, China
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China
| | - Jitang Zhang
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China
| | - Aijiao Xu
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China
| | - Zhiping Lin
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China
| | - Zongpeng Wang
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China
| | - Wenwu Zhong
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China
| | - Shijie Shen
- Zhejiang Provincial Key Laboratory for Cutting Tools, Taizhou University, Jiaojiang 318000, China
- Correspondence: (S.S.); (G.W.)
| | - Guangfeng Wu
- College of Material Science and Engineering, Changchun University of Technology, Changchun 130051, China
- Correspondence: (S.S.); (G.W.)
| |
Collapse
|
41
|
Yang J, Shen Y, Sun Y, Xian J, Long Y, Li G. Ir Nanoparticles Anchored on Metal-Organic Frameworks for Efficient Overall Water Splitting under pH-Universal Conditions. Angew Chem Int Ed Engl 2023; 62:e202302220. [PMID: 36859751 DOI: 10.1002/anie.202302220] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/03/2023]
Abstract
The construction of high-activity and low-cost electrocatalysts is critical for efficient hydrogen production by water electrolysis. Herein, we developed an advanced electrocatalyst by anchoring well-dispersed Ir nanoparticles on nickel metal-organic framework (MOF) Ni-NDC (NDC: 2,6-naphthalenedicarboxylic) nanosheets. Benefiting from the strong synergy between Ir and MOF through interfacial Ni-O-Ir bonds, the synthesized Ir@Ni-NDC showed exceptional electrocatalytic performance for hydrogen evolution reaction (HER), oxygen evolution reaction (OER) and overall water splitting in a wide pH range, superior to commercial benchmarks and most reported electrocatalysts. Theoretical calculations revealed that the charge redistribution of Ni-O-Ir bridge induced the optimization of H2 O, OH* and H* adsorption, thus leading to the accelerated electrochemical kinetics for HER and OER. This work provides a new clue to exploit bifunctional electrocatalysts for pH-universal overall water splitting.
Collapse
Affiliation(s)
- Jun Yang
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yong Shen
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yamei Sun
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Jiahui Xian
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Yanju Long
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| | - Guangqin Li
- MOE Laboratory of Bioinorganic and Synthetic Chemistry, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510006, China
| |
Collapse
|
42
|
Wang C, Zhang Q, Yan B, You B, Zheng J, Feng L, Zhang C, Jiang S, Chen W, He S. Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions. NANO-MICRO LETTERS 2023; 15:52. [PMID: 36795218 PMCID: PMC9935811 DOI: 10.1007/s40820-023-01024-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/04/2023] [Indexed: 05/19/2023]
Abstract
The crystal facets featured with facet-dependent physical and chemical properties can exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) attributed to their anisotropy. The highly active exposed crystal facets enable increased mass activity of active sites, lower reaction energy barriers, and enhanced catalytic reaction rates for HER and OER. The formation mechanism and control strategy of the crystal facet, significant contributions as well as challenges and perspectives of facet-engineered catalysts for HER and OER are provided. The electrocatalytic water splitting technology can generate high-purity hydrogen without emitting carbon dioxide, which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality. Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency. Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface. Owing to the anisotropy, crystal planes with different orientations usually feature facet-dependent physical and chemical properties, leading to differences in the adsorption energies of oxygen or hydrogen intermediates, and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction (HER) and oxygen evolution reaction (OER). In this review, a brief introduction of the basic concepts, fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided. The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes. Subsequently, three strategies of selective capping agent, selective etching agent, and coordination modulation to tune crystal planes are comprehensively summarized. Then, we present an overview of significant contributions of facet-engineered catalysts toward HER, OER, and overall water splitting. In particular, we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity. Finally, the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed.
Collapse
Affiliation(s)
- Changshui Wang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Qian Zhang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| | - Bing Yan
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Bo You
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, People's Republic of China.
| | - Jiaojiao Zheng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Li Feng
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Chunmei Zhang
- Institute of Materials Science and Devices, School of Materials Science and Engineering, Suzhou University of Science and Technology, Suzhou, 2150009, People's Republic of China
| | - Shaohua Jiang
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China
| | - Wei Chen
- Guangxi Key Laboratory of Low Carbon Energy Materials, College of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin, 541004, People's Republic of China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, People's Republic of China.
- University of Science and Technology of China, Hefei, 230026, People's Republic of China.
| | - Shuijian He
- International Innovation Center for Forest Chemicals and Materials, Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing, 210037, People's Republic of China.
| |
Collapse
|
43
|
Fu H, Zhang A, Guo H, Duan L, Jin F, Zong H, Sun X, Liu J. In Situ Generation of Vertically Crossed P-Cu 3Se 2 Ultrathin Nanosheets Derived from Cu 2S Nanorod Arrays for High-Performance Supercapacitors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:8169-8180. [PMID: 36744806 DOI: 10.1021/acsami.2c21527] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transition-metal selenides (TMSs) have great potential in the synthesis of supercapacitor electrode materials due to their rich content and high specific capacity. However, the aggregation phenomenon of TMS materials in the process of charging and discharging will cause capacity attenuation, which seriously affects the service life and practical applications. Therefore, it is of great practical significance to design simple and efficient synthesis strategies to overcome these shortcomings. Hence, P-doped Cu3Se2 nanosheets are loaded on vertically aligned Cu2S nanorod arrays to synthesize CF/Cu2S@Cu3Se2/P nanocomposites with a unique core-shell heterostructure. Notably, the Cu2S precursors can be rapidly converted into Cu3Se2 nanorod arrays in situ in just 30 min at room temperature. The unique core-shell heterostructure effectively avoids the aggregation phenomenon, and the doped P elements further enhance the electrochemical properties of the electrode materials. Therefore, the as-prepared CF/Cu2S@Cu3Se2/P electrode exhibits a high areal capacitance of 5054 mF cm-2 (1099 C g-1) at 3 mA cm-2 and still retains 90.2% capacitance after 10 000 galvanostatic charge-discharge (GCD) cycles. The asymmetric supercapacitor (ASC) device assembled from synthetic CF/Cu2S@Cu3Se2/P and activated carbon (AC) possesses an energy density of 41.1 Wh kg-1 at a power density of 480.4 W kg-1. This work shows that the designed CF/Cu2S@Cu3Se2/P electrode has broad application prospects in the field of electrochemical energy storage.
Collapse
Affiliation(s)
- Hucheng Fu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao266071, China
| | - Aitang Zhang
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao266071, China
| | - Hanwen Guo
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao266071, China
| | - Lejiao Duan
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao266071, China
| | - Fuhao Jin
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao266071, China
| | - Hanwen Zong
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao266071, China
| | - Xiaolin Sun
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao266071, China
| | - Jingquan Liu
- College of Materials Science and Engineering, Institute for Graphene Applied Technology Innovation, Collaborative Innovation Centre for Marine Biomass Fibers, Materials and Textiles of Shandong Province, Qingdao University, Qingdao266071, China
| |
Collapse
|
44
|
Huang J, Feng M, Peng Y, Huang C, Yue X, Huang S. Encapsulating Ni Nanoparticles into Interlayers of Nitrogen-Doped Nb 2 CT x MXene to Boost Hydrogen Evolution Reaction in Acid. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206098. [PMID: 36507610 DOI: 10.1002/smll.202206098] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/21/2022] [Indexed: 06/18/2023]
Abstract
Design and development of low-cost and highly efficient non-precious metal electrocatalysts for hydrogen evolution reaction (HER) in an acidic medium are key issues to realize the commercialization of proton exchange membrane water electrolyzers. Ni is regarded as an ideal alternative to substitute Pt for HER based on the similar electronic structure and low price as well. However, low intrinsic activity and poor stability in acid restrict its practical applications. Herein, a new approach is reported to encapsulate Ni nanoparticles (NPs) into interlayer edges of N-doped Nb2 CTx MXene (Ni NPs@N-Nb2 CTx ) by an electrochemical process. The as-prepared Ni NPs@N-Nb2 CTx possesses Pt-like onset potentials and can reach 500 mA cm-2 at overpotentials of only 383 mV, which is much higher than that of N-Nb2 CTx supported Ni NPs synthesized by a wet-chemical method (w- Ni NPs/N-Nb2 CTx ). Furthermore, it shows high durability toward HER with a large current density of 300 mA cm-2 for 24 h because of the encapsulated structure against corrosion, oxidation as well as aggregation of Ni NPs in an acidic medium. Detailed structural characterization and density functional theory calculations reveal that the stronger interaction boosts the HER.
Collapse
Affiliation(s)
- Jingle Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Min Feng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Yang Peng
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Churong Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Xin Yue
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| | - Shaoming Huang
- Guangzhou Key Laboratory of Low-Dimensional Materials and Energy Storage Devices, Collaborative Innovation Center of Advanced Energy Materials, School of Materials and Energy, Guangdong University of Technology, Guangzhou, 510006, P. R. China
| |
Collapse
|
45
|
Jin L, Ji R, Wan H, He J, Gu P, Lin H, Xu Q, Lu J. Boosting the Electrocatalytic Urea Oxidation Performance by Amorphous–Crystalline Ni-TPA@NiSe Heterostructures and Mechanism Discovery. ACS Catal 2022. [DOI: 10.1021/acscatal.2c05546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Liujun Jin
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Rui Ji
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Haibo Wan
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jinghui He
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Peiyang Gu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Hongzhen Lin
- Key Laboratory of Multifunctional Nanomaterials and Smart Systems Suzhou Institute of Nano-Tech and Nano-Bionics Chinese Academy of Sciences, Suzhou 215123, Jiangsu, China
| | - Qingfeng Xu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| | - Jianmei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215123, Jiangsu, China
| |
Collapse
|
46
|
Chen R, Zhang Z, Wang Z, Wu W, Du S, Zhu W, Lv H, Cheng N. Constructing Air-Stable and Reconstruction-Inhibited Transition Metal Sulfide Catalysts via Tailoring Electron-Deficient Distribution for Water Oxidation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Runzhe Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, P. R. China
| | - Zeyi Zhang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, P. R. China
| | - Zichen Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, P. R. China
| | - Wei Wu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, P. R. China
| | - Shaowu Du
- Fujian Key Laboratory of Functional Marine Sensing Materials, Minjiang University, Fuzhou350108, P. R. China
| | - Wangbin Zhu
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, P. R. China
| | - Haifeng Lv
- PEM Fuel Cell Catalyst Research and Development Center, Shenzhen Academy of Aerospace Technology, Shenzhen518057, China
| | - Niancai Cheng
- College of Materials Science and Engineering, Fuzhou University, Fuzhou350108, P. R. China
| |
Collapse
|
47
|
Zhang Z, Zhao D, Xu Y, Liu S, Xu X, Zhou J, Gao F, Tang H, Wang Z, Wu Y, Liu X, Zhang Y. A Review on Electrode Materials of Fast-Charging Lithium-Ion batteries. CHEM REC 2022; 22:e202200127. [PMID: 35876392 DOI: 10.1002/tcr.202200127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 07/04/2022] [Indexed: 11/08/2022]
Abstract
In recent years, the driving range of electric vehicles (EVs) has been dramatically improved. But the large-scale adoption of EVs still is hindered by long charging time. The high-energy LIBs are unable to be safely fast-charged due to their electrode materials with unsatisfactory rate performance. Thus it is necessary to summarize the properties of cathode and anode materials of fast-charging LIBs. In this review, we summarize the background, the fundamentals, electrode materials and future development of fast-charging LIBs. First, we introduce the research background and the physicochemical basics for fast-charging LIBs. Second, typical cathode materials of LIBs and the method to enhancing their fast-charging properties are discussed. Third, the anode materials of LIBs and the strategies for improving their fast-charging performance are analyzed. Finally, the future development of the cathode materials in fast-charging LIBs is prospected.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Energy Sciences and Engineering, Nanjing Tech University, 211816, Nanjing, Jiangsu Province, China
| | - Decheng Zhao
- School of Energy Sciences and Engineering, Nanjing Tech University, 211816, Nanjing, Jiangsu Province, China
| | - Yuanyuan Xu
- School of Energy Sciences and Engineering, Nanjing Tech University, 211816, Nanjing, Jiangsu Province, China
| | - Shupei Liu
- School of Energy Sciences and Engineering, Nanjing Tech University, 211816, Nanjing, Jiangsu Province, China
| | - Xiangyu Xu
- School of Energy Sciences and Engineering, Nanjing Tech University, 211816, Nanjing, Jiangsu Province, China
| | - Jian Zhou
- School of Energy Sciences and Engineering, Nanjing Tech University, 211816, Nanjing, Jiangsu Province, China
| | - Fei Gao
- School of Energy Sciences and Engineering, Nanjing Tech University, 211816, Nanjing, Jiangsu Province, China
| | - Hao Tang
- School of Energy Sciences and Engineering, Nanjing Tech University, 211816, Nanjing, Jiangsu Province, China
| | - Zhoulu Wang
- School of Energy Sciences and Engineering, Nanjing Tech University, 211816, Nanjing, Jiangsu Province, China
| | - Yutong Wu
- School of Energy Sciences and Engineering, Nanjing Tech University, 211816, Nanjing, Jiangsu Province, China
| | - Xiang Liu
- School of Energy Sciences and Engineering, Nanjing Tech University, 211816, Nanjing, Jiangsu Province, China
| | - Yi Zhang
- School of Energy Sciences and Engineering, Nanjing Tech University, 211816, Nanjing, Jiangsu Province, China
| |
Collapse
|
48
|
Abstract
We report several kinds of NiCo-LDH composites by a hydrothermal reaction and subsequent electrodeposition process. The prepared NiCo-LDH@PEDOT-200 sample shows an overpotential of 52 mV for the HER at 10 mA cm−2 in 1.0 M KOH.
Collapse
Affiliation(s)
- Mengdi Wang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Xingyu Liu
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Yuchen Sun
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
| | - Xiang Wu
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|