1
|
Zheng K, Zheng C, Zhu L, Yang B, Jin X, Wang S, Song Z, Liu J, Xiong Y, Tian F, Cai R, Hu B. Machine Learning Enabled Reusable Adhesion, Entangled Network-Based Hydrogel for Long-Term, High-Fidelity EEG Recording and Attention Assessment. NANO-MICRO LETTERS 2025; 17:281. [PMID: 40439842 PMCID: PMC12122957 DOI: 10.1007/s40820-025-01780-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/21/2025] [Indexed: 06/02/2025]
Abstract
Due to their high mechanical compliance and excellent biocompatibility, conductive hydrogels exhibit significant potential for applications in flexible electronics. However, as the demand for high sensitivity, superior mechanical properties, and strong adhesion performance continues to grow, many conventional fabrication methods remain complex and costly. Herein, we propose a simple and efficient strategy to construct an entangled network hydrogel through a liquid-metal-induced cross-linking reaction, hydrogel demonstrates outstanding properties, including exceptional stretchability (1643%), high tensile strength (366.54 kPa), toughness (350.2 kJ m-3), and relatively low mechanical hysteresis. The hydrogel exhibits long-term stable reusable adhesion (104 kPa), enabling conformal and stable adhesion to human skin. This capability allows it to effectively capture high-quality epidermal electrophysiological signals with high signal-to-noise ratio (25.2 dB) and low impedance (310 ohms). Furthermore, by integrating advanced machine learning algorithms, achieving an attention classification accuracy of 91.38%, which will significantly impact fields like education, healthcare, and artificial intelligence.
Collapse
Affiliation(s)
- Kai Zheng
- Key Lab of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Chengcheng Zheng
- Key Lab of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Lixian Zhu
- Key Lab of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Bihai Yang
- Key Lab of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Xiaokun Jin
- Key Lab of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Su Wang
- Key Lab of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Zikai Song
- Key Lab of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Jingyu Liu
- Key Lab of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Yan Xiong
- Analysis & Testing Center of Fangshan District, Beijing Institute of Technology, Beijing, 100081, People's Republic of China
| | - Fuze Tian
- School of Information Science and Engineering, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| | - Ran Cai
- Key Lab of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| | - Bin Hu
- Key Lab of Brain Health Intelligent Evaluation and Intervention, Beijing Institute of Technology, Beijing, 100081, People's Republic of China.
| |
Collapse
|
2
|
Guo J, Zhang T, Hao X, Liu S, Zou Y, Li J, Wu W, Chen L, Liu X. Aramid Nanofiber/MXene-Reinforced Polyelectrolyte Hydrogels for Absorption-Dominated Electromagnetic Interference Shielding and Wearable Sensing. NANO-MICRO LETTERS 2025; 17:271. [PMID: 40402172 PMCID: PMC12098229 DOI: 10.1007/s40820-025-01791-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 04/29/2025] [Indexed: 05/23/2025]
Abstract
Conductive hydrogels have garnered widespread attention as a versatile class of flexible electronics. Despite considerable advancements, current methodologies struggle to reconcile the fundamental trade-off between high conductivity and effective absorption-dominated electromagnetic interference (EMI) shielding, as dictated by classical impedance matching theory. This study addresses these limitations by introducing a novel synthesis of aramid nanofiber/MXene-reinforced polyelectrolyte hydrogels. Leveraging the unique properties of polyelectrolytes, this innovative approach enhances ionic conductivity and exploits the hydration effect of hydrophilic polar groups to induce the formation of intermediate water. This critical innovation facilitates polarization relaxation and rearrangement in response to electromagnetic fields, thereby significantly enhancing the EMI shielding effectiveness of hydrogels. The electromagnetic wave attenuation capacity of these hydrogels was thoroughly evaluated across both X-band and terahertz band frequencies, with further investigation into the impact of varying water content states-hydrated, dried, and frozen-on their electromagnetic properties. Moreover, the hydrogels exhibited promising capabilities beyond mere EMI shielding; they also served effectively as strain sensors for monitoring human motions, indicating their potential applicability in wearable electronics. This work provides a new approach to designing multifunctional hydrogels, advancing the integration of flexible, multifunctional materials in modern electronics, with potential applications in both EMI shielding and wearable technology.
Collapse
Affiliation(s)
- Jinglun Guo
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Tianyi Zhang
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Xiaoyu Hao
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Shuaijie Liu
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yuxin Zou
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Jinjin Li
- National Key Laboratory of Scattering and Radiation, Beijing Institute of Environmental Features, Beijing, 100854, People's Republic of China
| | - Wei Wu
- National Key Laboratory of Scattering and Radiation, Beijing Institute of Environmental Features, Beijing, 100854, People's Republic of China
| | - Liming Chen
- Department of Physics and Astronomy, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Xuqing Liu
- Center of Advanced Lubrication and Seal Materials, State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
3
|
Ren J, Shi P, Zu X, Ding L, Liu F, Wang Y, Wu Y, Shi G, Wu Y, Li L. Challenges and future prospects of the 2D material-based composites for microwave absorption. NANOSCALE 2025. [PMID: 40391401 DOI: 10.1039/d5nr00925a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Abstract
The widespread use of electronic devices inevitably brings about the problem of electromagnetic pollution. As a result, it is important and urgent to develop efficient absorbing materials to alleviate increasing pollution issues. Recently, two-dimensional (2D) material-based microwave absorbers have attracted wide attention in microwave absorption due to their unique lamellar structure, large specific surface area, low density, good thermal and chemical stability. Through various modulation strategies such as structure configuration, pore/defect engineering, heteroatom doping and coupling of functional materials, 2D materials or 2D material-based composites exhibit excellent microwave absorption performance. In this review, the absorption mechanism is firstly introduced and then the latest progress in 2D material-based microwave absorbers is reviewed in depth. The challenges and future prospects for graphene, h-BN, and MXene-based microwave absorbers are discussed in the final part. This timely review aims to provide guidance or stimulation to develop advanced multifunctional 2D material-based microwave absorbers in this rapidly blossoming field.
Collapse
Affiliation(s)
- Jia Ren
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, PR China.
| | - Ping Shi
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, PR China.
| | - Xinyan Zu
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, PR China.
| | - Lei Ding
- Centre for Atomaterials and Nanomanufacturing, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Feng Liu
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, PR China.
- Shenyang Key Laboratory of Advanced Energy Materials and Renewable Resources, Shenyang, 110870, PR China
| | - Yuzheng Wang
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, PR China.
- Shenyang Key Laboratory of Advanced Energy Materials and Renewable Resources, Shenyang, 110870, PR China
| | - Yuhan Wu
- School of Environmental and Chemical Engineering, Shenyang University of Technology, Shenyang, 110870, PR China
| | - Guimei Shi
- School of Science, Shenyang University of Technology, Shenyang, 110870, PR China
| | - Yusheng Wu
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, PR China.
- Shenyang Key Laboratory of Advanced Energy Materials and Renewable Resources, Shenyang, 110870, PR China
| | - Laishi Li
- School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, 110870, PR China.
- Shenyang Key Laboratory of Advanced Energy Materials and Renewable Resources, Shenyang, 110870, PR China
| |
Collapse
|
4
|
Zhang JX, Pan P, Yang ZC, He J, Zeng PF, Zhang R. A Printable Deep Eutectic/Copper Conductive Colloid for Wearable Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025. [PMID: 40383928 DOI: 10.1021/acs.langmuir.5c00453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
The advancement of wearable electronics has placed higher demands on the comfort and convenience of flexible materials. In this work, a conductive pseudoplastic colloid was developed by utilizing the oxygen elements adsorbed on the surface of copper powder, which forms donor-acceptor interactions with the hydrogen bond donors in a deep eutectic solvent. The flakelike copper powder, serving as a conductive filler, provides more efficient spatial conductive pathways and further enhances the cross-linking ability between the copper powder and the deep eutectic solvent. The resulting deep eutectic/copper colloid not only exhibits low volume resistivity (1.19 × 10-3 (Ω·m)), high viscosity, and excellent thermal stability but also demonstrates outstanding strain-resistance characteristics. By printing onto a textile substrate, a flexible strain sensor with a wide linear strain range (5-90%) and ultrahigh sensitivity (gauge factor ≈ 1 × 105) was fabricated. This sensor can sensitively and stably detect human body movements such as joint and muscle motions. Furthermore, the sensor has been integrated into a portable glove for motion detection and human-machine interaction, showcasing its great potential as a high-performance wearable strain sensor.
Collapse
Affiliation(s)
- Jin-Xian Zhang
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300382, China
| | - Peng Pan
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300382, China
| | - Zheng-Chun Yang
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300382, China
| | - Jie He
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300382, China
| | - Pei-Feng Zeng
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300382, China
| | - Rui Zhang
- School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300382, China
| |
Collapse
|
5
|
Zhao W, Yao L, Shen J, Chen S, Zhu S, Chen S, Wang L, Li Y, Liu S, Zhao Q. Advanced Liquid Metal-Based Hydrogels for Flexible Electronics. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27713-27739. [PMID: 40323766 DOI: 10.1021/acsami.5c05225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
With the rapid development of flexible electronics in wearable devices, healthcare devices, and the Internet of Things (IoT), liquid metals (LMs)-based hydrogels have emerged as cutting-edge functional materials due to their high electrical conductivity, tunable mechanical properties, excellent biocompatibility, and unique self-healing properties. Through various physical or chemical methods, LMs can be integrated to form multifunctional LMs-based hydrogels, thus broadening the potential application fields. In this Review, the recent advancement in LMs-based hydrogels for flexible electronics is comprehensively and systematically reviewed from three aspects of synthesis methods, properties, and applications. For the first time, the existing innovative synthesis methods of LMs-based hydrogels are classified and summarized, including patterned LMs on/inside hydrogel substrates, LMs as conductive fillers in polymeric hydrogels, LMs as initiators in hydrogels, and LMs as cross-linkers with organic/inorganic materials. The synthesis mechanism is also stated in detail to highlight the multiple roles of LMs in adjusting the hydrogel properties. The versatile applications of LMs-based hydrogels in flexible electronics, including flexible sensors, wireless communications, electromagnetic interference (EMI) shielding, soft robot actuators, energy storage and conversion, etc., are separately described. Finally, the current challenges and future prospects of LMs-based hydrogels are proposed.
Collapse
Affiliation(s)
- Weiwei Zhao
- State Key Laboratory of Flexible Electronics (LoFE) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Le Yao
- State Key Laboratory of Flexible Electronics (LoFE) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Jiacheng Shen
- State Key Laboratory of Flexible Electronics (LoFE) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shujiao Chen
- State Key Laboratory of Flexible Electronics (LoFE) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shujing Zhu
- State Key Laboratory of Flexible Electronics (LoFE) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shu Chen
- State Key Laboratory of Flexible Electronics (LoFE) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Longlu Wang
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Yang Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Shujuan Liu
- State Key Laboratory of Flexible Electronics (LoFE) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Qiang Zhao
- State Key Laboratory of Flexible Electronics (LoFE) and Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
6
|
Chen J, Yi D, Shen B, Zheng W. Multifunctional Liquid-Metal Composites for Electromagnetic Communication and Attenuation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2404595. [PMID: 40326960 DOI: 10.1002/adma.202404595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/15/2025] [Indexed: 05/07/2025]
Abstract
Efficient and reliable information transmission is crucial in the widespread use of electronic products and wireless communication. Additionally, it is vital to address the electromagnetic interference (EMI) and radiation that arise from the communication process. In particular, the emergence of flexible electronic products has posed new hurdles for EM functional materials with flexibility and high performance. Liquid metal (LM) is an innovative EM functional material that possesses both the conductivity of metals and the fluidity to reconfigure like a liquid. These characteristics paved the way for developing novel flexible electronic devices and products. This review provides an overview of the current status and future potential of LM-based EM functional materials. It highlights the latest progress in LM-based materials for applications such as EMI shielding, EM-wave absorption, and wireless communication (antennas). Finally, the primary obstacles of LM-based EM functional materials are discussed and revealed potential directions for their advancement. Overall, the current research on LM-based EM functional materials indicates that they have great potential to promote the development of EM functional materials, thus providing new possibilities for the advancement of flexible electronic products.
Collapse
Affiliation(s)
- Jiali Chen
- Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Da Yi
- College of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, China
| | - Bin Shen
- Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenge Zheng
- Laboratory of Polymers and Composites, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, Zhejiang, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
7
|
Huang W, Liu X, Wang Y, Feng J, Huang J, Dai Z, Yang S, Pei S, Zhong J, Gui X. Ultra‑Broadband and Ultra-High Electromagnetic Interference Shielding Performance of Aligned and Compact MXene Films. NANO-MICRO LETTERS 2025; 17:234. [PMID: 40287922 PMCID: PMC12034605 DOI: 10.1007/s40820-025-01750-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
With the rapid development of electronic detective techniques, there is an urgent need for broadband (from microwave to infrared) stealth of aerospace equipment. However, achieving effective broadband stealth primarily relies on the composite of multi-layer coatings of different materials, while realizing broadband stealth with a single material remains a significant challenge. Herein, we reported a highly compact MXene film with aligned nanosheets through a continuous centrifugal spraying strategy. The film exhibits an exceptional electromagnetic interference shielding effectiveness of 45 dB in gigahertz band (8.2-40 GHz) and 59 dB in terahertz band (0.2-1.6 THz) at a thickness of 2.25 μm, owing to the high conductivity (1.03 × 106 S m-1). Moreover, exceptionally high specific shielding effectiveness of 1.545 × 106 dB cm2 g⁻1 has been demonstrated by the film, which is the highest value reported for shielding films. Additionally, the film exhibits an ultra-low infrared emissivity of 0.1 in the wide-range infrared band (2.5-16.0 μm), indicating its excellent infrared stealth performance for day-/nighttime outdoor environments. Moreover, the film demonstrates efficient electrothermal performance, including a high saturated temperature (over 120 °C at 1.0 V), a high heating rate (4.4 °C s-1 at 1.0 V), and a stable and uniform heating distribution. Therefore, this work provides a promising strategy for protecting equipment from multispectral electromagnetic interference and inhibiting infrared detection.
Collapse
Affiliation(s)
- Weiqiang Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Xuebin Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yunfan Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Jiyong Feng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Junhua Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhenxi Dai
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Shaodian Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Songfeng Pei
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, 72 Wenhua Road, Shenyang, 110016, People's Republic of China
- School of Materials Science and Engineering, University of Science and Technology of China, 72 Wenhua Road, Shenyang, 110016, People's Republic of China
| | - Jing Zhong
- Key Lab of Structure Dynamic Behavior and Control (Harbin Institute of Technology), Ministry of Education, Harbin, 150090, People's Republic of China
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
8
|
Peng W, Zhang Y, Zhang Z, Zhao H, Huang H, Zhao J, Cheng BX, He J, Xu B, Shang B, Nie S, Wang S, Duan Q. Liquid Metal-Promoted Supramolecular Interactions Enable Ultrafast Self-Healing Triboelectric Materials with High Performance at Room Temperature. NANO LETTERS 2025; 25:6622-6630. [PMID: 40208821 DOI: 10.1021/acs.nanolett.5c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Soft self-healing materials are excellent candidates for wearable devices to power sensors due to their excellent compliance, extensibility, and self-restorability. However, combining ultrafast and autonomous restorative properties with excellent mechanical capabilities for application in self-powered wearable device still poses challenges. Utilizing the high mobility and conductivity of liquid metal, this paper incorporates it into polydimethylsiloxane by a supramolecular interfacial assembly strategy to prepare a triboelectric material with ultrahigh stretchability (12000%) and remarkable self-healing (30 min at ∼25 °C). The dynamic bonds endow the material with excellent and universal self-healing ability under extreme environments (-20 °C, near infrared, and underwater), mechanical durability, and triboelectric properties (100 V and 0.81 W/m2). By integrating the material into wearable self-powered devices, real-time feedback on human joint movement is enabled. This work offers a valuable strategy to balance the trade-off between shape adaptation and self-healing, paving the way for enhanced applicability in sensing applications.
Collapse
Affiliation(s)
- Weiqing Peng
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Ye Zhang
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Zhijun Zhang
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Haohe Huang
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Jiamin Zhao
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Bing-Xu Cheng
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Juanxia He
- School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Bei Xu
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Baijun Shang
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Shuangxi Nie
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| | - Qingshan Duan
- School of Light Industry and Food Engineering, Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Guangxi University, Nanning 530004, China
| |
Collapse
|
9
|
Wang H, Du J, Mao Y. Hydrogel-Based Continuum Soft Robots. Gels 2025; 11:254. [PMID: 40277689 PMCID: PMC12026835 DOI: 10.3390/gels11040254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/22/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
This paper comprehensively reviews the latest advances in hydrogel-based continuum soft robots. Hydrogels exhibit exceptional flexibility and adaptability compared to traditional robots reliant on rigid structures, making them ideal as biomimetic robotic skins and platforms for constructing highly accurate, real-time responsive sensory interfaces. The article systematically summarizes recent research developments across several key dimensions, including application domains, fabrication methods, actuator technologies, and sensing mechanisms. From an application perspective, developments span healthcare, manufacturing, and agriculture. Regarding fabrication techniques, the paper extensively explores crosslinking methods, additive manufacturing, microfluidics, and other related processes. Additionally, the article categorizes and thoroughly discusses various hydrogel-based actuators responsive to solute/solvent variations, pH, chemical reactions, temperature, light, magnetic fields, electric fields, hydraulic/electro-osmotic stimuli, and humidity. It also details the strategies for designing and implementing diverse sensors, including strain, pressure, humidity, conductive, magnetic, thermal, gas, optical, and multimodal sensors. Finally, the paper offers an in-depth discussion of the prospective applications of hydrogel-based continuum soft robots, particularly emphasizing their potential in medical and industrial fields. Concluding remarks include a forward-looking outlook highlighting future challenges and promising research directions.
Collapse
Affiliation(s)
- Honghong Wang
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
| | - Jingli Du
- School of Mechano-Electronic Engineering, Xidian University, Xi’an 710071, China
| | - Yi Mao
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China;
| |
Collapse
|
10
|
Choi K, Lee G, Lee MG, Hwang HJ, Lee K, Lee Y. Bio-Inspired Ionic Sensors: Transforming Natural Mechanisms into Sensory Technologies. NANO-MICRO LETTERS 2025; 17:180. [PMID: 40072809 PMCID: PMC11904071 DOI: 10.1007/s40820-025-01692-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/14/2025] [Indexed: 03/14/2025]
Abstract
Many natural organisms have evolved unique sensory systems over millions of years that have allowed them to detect various changes in their surrounding environments. Sensory systems feature numerous receptors-such as photoreceptors, mechanoreceptors, and chemoreceptors-that detect various types of external stimuli, including light, pressure, vibration, sound, and chemical substances. These stimuli are converted into electrochemical signals, which are transmitted to the brain to produce the sensations of sight, touch, hearing, taste, and smell. Inspired by the biological principles of sensory systems, recent advancements in electronics have led to a wide range of applications in artificial sensors. In the current review, we highlight recent developments in artificial sensors inspired by biological sensory systems utilizing soft ionic materials. The versatile characteristics of these ionic materials are introduced while focusing on their mechanical and electrical properties. The features and working principles of natural and artificial sensing systems are investigated in terms of six categories: vision, tactile, hearing, gustatory, olfactory, and proximity sensing. Lastly, we explore several challenges that must be overcome while outlining future research directions in the field of soft ionic sensors.
Collapse
Affiliation(s)
- Kyongtae Choi
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do, 17104, Republic of Korea
| | - Gibeom Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Republic of Korea
| | - Min-Gyu Lee
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hee Jae Hwang
- Department of Mechanical Design Engineering, Kumoh National Institute of Technology, 61 Daehak-ro, Gumi, Gyeongsangbuk-do, 39177, Republic of Korea
| | - Kibeom Lee
- Department of Mechanical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam, Gyeonggi-do, 13120, Republic of Korea.
| | - Younghoon Lee
- Department of Mechanical Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-gu, Yongin, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
11
|
Hajalilou A. Liquid Metal-Polymer Hydrogel Composites for Sustainable Electronics: A Review. Molecules 2025; 30:905. [PMID: 40005215 PMCID: PMC11858249 DOI: 10.3390/molecules30040905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/28/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
Hydrogels, renowned for their hydrophilic and viscoelastic properties, have emerged as key materials for flexible electronics, including electronic skins, wearable devices, and soft sensors. However, the application of pure double network hydrogel-based composites is limited by their poor chemical stability, low mechanical stretchability, and low sensitivity. Recent research has focused on overcoming these limitations by incorporating conductive fillers, such as liquid metals (LMs), into hydrogel matrices or creating continuous conductive paths through LMs within the polymer matrix. LMs, including eutectic gallium and indium (EGaIn) alloys, offer exceptional electromechanical, electrochemical, thermal conductivity, and self-repairing properties, making them ideal candidates for diverse soft electronic applications. The integration of LMs into hydrogels improves conductivity and mechanical performance while addressing the challenges posed by rigid fillers, such as mismatched compliance with the hydrogel matrix. This review explores the incorporation of LMs into hydrogel composites, the challenges faced in achieving optimal dispersion, and the unique functionalities introduced by these composites. We also discuss recent advances in the use of LM droplets for polymerization processes and their applications in various fields, including tissue engineering, wearable devices, biomedical applications, electromagnetic shielding, energy harvesting, and storage. Additionally, 3D-printable hydrogels are highlighted. Despite the promise of LM-based hydrogels, challenges such as macrophase separation, weak interfacial interactions between LMs and polymer networks, and the difficulty of printing LM inks onto hydrogel substrates limit their broader application. However, this review proposes solutions to these challenges.
Collapse
Affiliation(s)
- Abdollah Hajalilou
- Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa (Nova FCT), 2829-516 Caparica, Portugal
| |
Collapse
|
12
|
Wang Z, Hu H, Chai Z, Hu Y, Wang S, Zhang C, Yan C, Wang J, Coll W, Huang TJ, Xu X, Deng H. Bioinspired hydrophobic pseudo-hydrogel for programmable shape-morphing. Nat Commun 2025; 16:875. [PMID: 39833266 PMCID: PMC11746949 DOI: 10.1038/s41467-025-56291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
Inspired by counterintuitive water "swelling" ability of the hydrophobic moss of the genus Sphagnum (Peat moss), we prepared a hydrophobic pseudo-hydrogel (HPH), composed of a pure hydrophobic silicone elastomer with a tailored porous structure. In contrast to conventional hydrogels, HPH achieves absorption-induced volume expansion through surface tension induced elastocapillarity, presenting an unexpected absorption-induced volume expansion capability in hydrophobic matrices. We adopt a theoretical framework elucidating the interplay of surface tension induced elastocapillarity, providing insights into the absorption-induced volume expansion behavior. By systematically programming the pore structure, we demonstrate tunable, anisotropic, and programmable absorption-induced expansion. This leads to dedicated self-shaping transformations. Incorporating magnetic particles, we engineer HPH-based soft robots capable of swimming, rolling, and walking. This study demonstrates a unusual approach to achieve water-responsive behavior in hydrophobic materials, expanding the possibilities for programmable shape-morphing in soft materials and soft robotic applications.
Collapse
Affiliation(s)
- Zhigang Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Haotian Hu
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Zefan Chai
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Yuhang Hu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Siyuan Wang
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Cheng Zhang
- College of Engineering, Nanjing Agricultural University, Nanjing, China
| | - Chunjie Yan
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China
| | - Jun Wang
- Unmanned System Research Institute, Northwestern Polytechnical University, Xi'an, China
| | - Wesley Coll
- Department of Mechanical Engineering and Material Science, Duke University, Durham, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, USA
- Department of Biomedical Engineering, Duke University, Durham, USA
| | - Xianchen Xu
- Department of Biomedical Engineering, Duke University, Durham, USA.
| | - Heng Deng
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, China.
- Shenzhen Research Institute, China University of Geosciences, Shenzhen, China.
| |
Collapse
|
13
|
Zou Y, Liao Z, Zhang R, Song S, Yang Y, Xie D, Liu X, Wei L, Liu Y, Song Y. Cellulose nanofibers/liquid metal hydrogels with high tensile strength, environmental adaptability and electromagnetic shielding for temperature monitoring and strain sensors. Carbohydr Polym 2025; 348:122788. [PMID: 39562066 DOI: 10.1016/j.carbpol.2024.122788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/12/2024] [Accepted: 09/20/2024] [Indexed: 11/21/2024]
Abstract
Hydrogel sensors are widely recognized in the fields of flexible electronics and human motion monitoring due to their multiple properties and potential applications. However, how to prepare hydrogels with multiple excellent properties simultaneously and how to improve the compatibility of conductive fillers with hydrogel matrices remain a major challenge. Therefore, in this work, liquid metal (LM) droplets stabilized by cellulose nanofibers (CNFs) were utilized to initiate the polymerization of acrylamide monomer (Am), which was used as a conductive filler. Meanwhile, reduced graphene oxide (rGO) was introduced to bridge the LM droplets. The hydrogels were then further crosslinked in glycerol. The constructed CNF@LM/polyacrylamide/rGO/gelatin/glycerol hydrogel possesses high tensile properties (>1317 %), high environmental adaptability (-80 to 80 °C), and adhesion properties for multifunctional sensing. What's more, it offers the high sensitivity of both a strain sensor and a temperature sensor for accurate monitoring of human movement at room temperature and even in extreme environments. In addition, this hydrogel has excellent electromagnetic shielding properties and antimicrobial properties. This research opens up a new direction for the preparation of multifunctional hydrogel sensors, expanding their applications in cutting-edge fields such as temperature monitoring, wearable smart devices, e-skin and intelligent robotics.
Collapse
Affiliation(s)
- Yushan Zou
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Zhengyu Liao
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Rui Zhang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Shanshan Song
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yutong Yang
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Di Xie
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Xinru Liu
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Lishi Wei
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China
| | - Yi Liu
- Key Laboratory of Wooden Material Science and Application, Beijing Forestry University, Beijing 100083, PR China.
| | - Yongming Song
- Key Laboratory of Bio-based Material Science and Technology, Ministry of Education, Northeast Forestry University, Harbin 150040, PR China; College of Home and Art Design, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
14
|
Li J, Wei H, Cui S, Hou H, Zhang Y, Zhang Y, Xu BB, Chu L, El-Bahy ZM, Melhi S, Sellami R, Guo Z. Polyvinyl alcohol/sodium alginate-based conductive hydrogels with in situ formed bimetallic zeolitic imidazolate frameworks towards soft electronics. Carbohydr Polym 2024; 346:122633. [PMID: 39245501 DOI: 10.1016/j.carbpol.2024.122633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/16/2024] [Accepted: 08/16/2024] [Indexed: 09/10/2024]
Abstract
Bimetallic zeolitic imidazolate frameworks (BZIFs) have received enormous attention due to their unique physi-chemical properties, but are rarely reported for electrically conductive hydrogel (ECH) applications arising from low intrinsic conductivity and poor dispersion. Herein, we propose an innovative strategy to prepare highly conductive and mechanically robust ECHs by in situ growing Ni/Co-BZIFs within the polyvinyl alcohol/sodium alginate dual network (PZPS). 2-methylimidazole (MeIM) ligands copolymerize with pyrrole monomers, enhancing the electrical conductivity; meanwhile, MeIM ligands act as anchor points for in-situ formation of BZIFs, effectively avoiding phase-to-phase interfacial resistance and ensuring a uniform distribution in the hydrogel network. Due to the synergism of Ni/Co-BZIFs, the PZPS hydrogel exhibits a high areal capacitance of 630.3 mF·cm-2 at a current density of 0.5 mA·cm-2, promising for flexible energy storage devices. In addition, PZPS shows excellent mechanical strength and toughness (with an ultimate tensile strength of 405.0 kPa and a toughness of 784.2 kJ·m-3 at an elongation at break of 474.0 %), a high gauge factor of up to 4.18 over an extremely wide stress range of 0-42 kPa when used as flexible wearable strain/pressure sensors. This study provides new insights to incorporating highly conductive and uniformly dispersed ZIFs into hydrogels for flexible wearable electronics.
Collapse
Affiliation(s)
- Jiongru Li
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Huige Wei
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuaichuan Cui
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Hua Hou
- College of Materials Science and Engineering, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yifan Zhang
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | | | - Ben Bin Xu
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK
| | - Liqiang Chu
- Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, Tianjin Key Laboratory of Multivariate Identification for Port Hazardous Chemical Substances, College of Chemical Engineering and Materials Science, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zeinhom M El-Bahy
- Department of Chemistry, Faculty of Science, Al-Azhar University, Nasr City 11884, Cairo, Egypt
| | - Saad Melhi
- Department of Chemistry, College of Science, University of Bisha, Bisha, 61922, Saudi Arabia
| | - Rahma Sellami
- Department of Computer Science, Applied College, Northern Border University, Rafha 91911, Saudi Arabia
| | - Zhanhu Guo
- Department of Mechanical and Construction Engineering, Northumbria University, Newcastle Upon Tyne NE1 8ST, UK.
| |
Collapse
|
15
|
Ge H, Gao D, Zhang S, Liu C, Chen L, Song Y, Li Z, Hong N, Kang J, Song Z, Wang Z, Li N. Regulating the Conductive Network of Graphene/Ni Composite Films toward Tunable Electromagnetic Shielding Efficiency. ACS APPLIED MATERIALS & INTERFACES 2024; 16:68144-68156. [PMID: 39582261 DOI: 10.1021/acsami.4c13043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2024]
Abstract
Smart electromagnetic interference (EMI) shielding materials with adjustable shielding efficiency (SE) hold immense importance in the field of wearable and switchable EMI shielding. However, existing materials often suffer from a constrained tunability range and inadequate stability. In this study, a highly stretchable conductive framework is fabricated by integrating Ni-doped laser-induced graphene (LIG/Ni) with silicone. Through meticulous manipulation of the LIG scanning trajectory and Ni nanoparticle (NP) deposition parameters, ordered and dense conductive pathways were formed. This ordered structure preserves the graphene's structural coherence and conductivity along the axis perpendicular to stretching, while graphene parallel to the stretching direction forms random connections, resulting in the effective regulation of electrical conductivity. Under a 200% strain, the electrical conductivity dropped to a minimum of 1.07 S/cm, and the average SE in the X-band was reduced to 2.33 dB. Upon strain release, the conductive network rapidly reconfigured, boosting conductivity to 63.6 S/m and an enhanced SE of 68.12 dB. With its highly reversible conductive network, this composite exhibits exceptional cycling stability and an expansive range of adjustable SE, thereby holding immense practical value for versatile electromagnetic protection applications.
Collapse
Affiliation(s)
- Hu Ge
- School of Energy Materials & Chemical Engineering, Hefei University, Hefei, Anhui 230601, China
| | - Daming Gao
- School of Energy Materials & Chemical Engineering, Hefei University, Hefei, Anhui 230601, China
| | - Shudong Zhang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Cui Liu
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Liqing Chen
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yanping Song
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhao Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Na Hong
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jun Kang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhihao Song
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zhenyang Wang
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Nian Li
- Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
16
|
Mao L, Li G, Zhang B, Wen K, Wang C, Cai Q, Zhao X, Guo Z, Zhang S. Functional Hydrogels for Aqueous Zinc-Based Batteries: Progress and Perspectives. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2416345. [PMID: 39659112 DOI: 10.1002/adma.202416345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/19/2024] [Indexed: 12/12/2024]
Abstract
Aqueous zinc batteries (AZBs) hold great potential for green grid-scale energy storage due to their affordability, resource abundance, safety, and environmental friendliness. However, their practical deployment is hindered by challenges related to the electrode, electrolyte, and interface. Functional hydrogels offer a promising solution to address such challenges owing to their broad electrochemical window, tunable structures, and pressure-responsive mechanical properties. In this review, the key properties that functional hydrogels must possess for advancing AZBs, including mechanical strength, ionic conductivity, swelling behavior, and degradability, from a perspective of the full life cycle of hydrogels in AZBs are summarized. Current modification strategies aimed at enhancing these properties and improving AZB performance are also explored. The challenges and design considerations for integrating functional hydrogels with electrodes and interface are discussed. In the end, the limitations and future directions for hydrogels to bridge the gap between academia and industries for the successful deployment of AZBs are discussed.
Collapse
Affiliation(s)
- Lei Mao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Guanjie Li
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Binwei Zhang
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing, 400044, P. R. China
- Center of Advanced Electrochemical Energy, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, P. R. China
| | - Kaihua Wen
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Cheng Wang
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Qinqin Cai
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xun Zhao
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zaiping Guo
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Shilin Zhang
- School of Chemical Engineering, Faculty of Sciences, Engineering and Technology, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
17
|
He M, Lv X, Li Z, Li H, Qian W, Zhu S, Zhou Y, Wang Y, Bu X. Research on Efficient Electromagnetic Shielding Performance and Modulation Mechanism of Aero/Organo/Hydrogels with Gravity-Induced Asymmetric Gradient Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403210. [PMID: 39410726 DOI: 10.1002/smll.202403210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 09/07/2024] [Indexed: 12/20/2024]
Abstract
To eliminate electromagnetic pollution, it is a challenging task to develop highly efficient electromagnetic shielding materials that integrate microwave absorption (MA) performance with high shielding capability and achieve tunability in shielding performance. Asymmetrically structured aero/organo/hydrogels with a progressively changing concentration gradient of liquid metal nanoparticles (LMNPs), induced by gravity, are prepared by integrating the conductive fillers Ti3C2Tx MXene and LMNPs into a dual-network structure composed of polyvinyl alcohol and cellulose nanofibers. Benefiting from the unique structure, which facilitates the absorption-reflection-reabsorption process of electromagnetic waves along with conductive fillers and the porous structure, three types of gels demonstrate efficient shielding performance. HPCML achieves a total shielding effectiveness (SET) of up to 86.9 dB and a reflection shielding effectiveness (SER) of as low as 2.85 dB. Especially, APCML, with an ultra-low reflection coefficient (R) of 6.4%, achieves compatibility between shielding performance and MA properties. The relationship between dispersing media (air, water, and glycerol/water) and the shielding performance of aero/organo/hydrogels is explored, thereby achieving modulation of the shielding performance of the gel system. The work has paved a clear path for integrating absorption and shielding capabilities into a composite material, thereby providing a prototype of a highly efficient shielding material with MA performance.
Collapse
Affiliation(s)
- Man He
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xuelian Lv
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhonghui Li
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Haoyuan Li
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Wen Qian
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Shengyin Zhu
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yuming Zhou
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Yongjuan Wang
- Jiangsu Optoelectronic Functional Materials and Engineering Laboratory, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Xiaohai Bu
- School of Materials Science and Engineering, Nanjing Institute of Technology, Nanjing, 211167, China
| |
Collapse
|
18
|
Ma G, Lan D, Zhang Y, Sun X, Jia Z, Wu G, Bu G, Yin P. Microporous Cobalt Ferrite with Bio-Carbon Loosely Decorated to Construct Multi-Functional Composite for Dye Adsorption, Anti-Bacteria and Electromagnetic Protection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404449. [PMID: 39011980 DOI: 10.1002/smll.202404449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 06/30/2024] [Indexed: 07/17/2024]
Abstract
Currently, facing electromagnetic protection requirement under complex aqueous environments, the bacterial reproduction and organic dye corrosion may affect the composition and micro-structures of absorbers to weaken their electromagnetic properties. To address such problems, herein, a series of CoFe2O4@BCNPs (cobalt ferrite @ bio-carbon nanoparticles) composites are synthesized via co-hydrothermal and calcining process. The coupling of magnetic cobalt ferrite and dielectric bio-carbon derived from Apium can endow the composite multiple absorption mechanisms and matched impedance for effective microwave absorption, attaining a bandwidth of 8.12 GHz at 2.36 mm and an intensity of -49.85 dB at 3.0 mm. Due to the ROS (reactive oxygen species) stimulation ability and heavy metal ions of cobalt ferrite, the composite realizes an excellent antibacterial efficiency of 99% against Gram negative bacteria of Escherichia coli. Moreover, the loose porous layer of surface stacked bio-carbon can promote the adsorption of methylene blue for subsequent eliminating, a high removal rate of 90.37% for organic dye can be also achieved. This paper offers a new insight for rational design of composite's component and micro-structure to construct multi-functional microwave absorber for satisfying the electromagnetic protection demand in complicated environments.
Collapse
Affiliation(s)
- Guojuan Ma
- College of Science, Sichuan Agricultural University, Ya'an, 625014, P. R. China
| | - Di Lan
- School of Materials Science and Engineering, Hubei University of Automotive Technology, Shiyan, 442002, P. R. China
| | - Yi Zhang
- College of Science, Sichuan Agricultural University, Ya'an, 625014, P. R. China
| | - Xiyuan Sun
- College of Science, Sichuan Agricultural University, Ya'an, 625014, P. R. China
| | - Zirui Jia
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guanglei Wu
- Institute of Materials for Energy and Environment, State Key Laboratory of Bio-fibers and Eco-textiles, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Guixian Bu
- College of Life Science, Sichuan Agricultural University, Ya'an, 625014, P. R. China
| | - Pengfei Yin
- College of Science, Sichuan Agricultural University, Ya'an, 625014, P. R. China
| |
Collapse
|
19
|
Li X, Chen C, Li Z, Yi P, Zou H, Deng G, Fang M, He J, Sun X, Yu R, Shui J, Pan C, Liu X. Inter-Skeleton Conductive Routes Tuning Multifunctional Conductive Foam for Electromagnetic Interference Shielding, Sensing and Thermal Management. NANO-MICRO LETTERS 2024; 17:52. [PMID: 39465431 PMCID: PMC11513780 DOI: 10.1007/s40820-024-01540-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/13/2024] [Indexed: 10/29/2024]
Abstract
Conductive polymer foam (CPF) with excellent compressibility and variable resistance has promising applications in electromagnetic interference (EMI) shielding and other integrated functions for wearable electronics. However, its insufficient change amplitude of resistance with compressive strain generally leads to a degradation of shielding performance during deformation. Here, an innovative loading strategy of conductive materials on polymer foam is proposed to significantly increase the contact probability and contact area of conductive components under compression. Unique inter-skeleton conductive films are constructed by loading alginate-decorated magnetic liquid metal on the polymethacrylate films hanged between the foam skeleton (denoted as AMLM-PM foam). Traditional point contact between conductive skeletons under compression is upgraded to planar contact between conductive films. Therefore, the resistance change of AMLM-PM reaches four orders of magnitude under compression. Moreover, the inter-skeleton conductive films can improve the mechanical strength of foam, prevent the leakage of liquid metal and increase the scattering area of EM wave. AMLM-PM foam has strain-adaptive EMI shielding performance and shows compression-enhanced shielding effectiveness, solving the problem of traditional CPFs upon compression. The upgrade of resistance response also enables foam to achieve sensitive pressure sensing over a wide pressure range and compression-regulated Joule heating function.
Collapse
Affiliation(s)
- Xufeng Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Chunyan Chen
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Zhenyang Li
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Peng Yi
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Haihan Zou
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Gao Deng
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Ming Fang
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China
| | - Junzhe He
- Science and Technology On Electromagnetic Scattering Laboratory, Beijing Institute of Environmental Features, Beijing, 100854, People's Republic of China
| | - Xin Sun
- Science and Technology On Electromagnetic Scattering Laboratory, Beijing Institute of Environmental Features, Beijing, 100854, People's Republic of China
| | - Ronghai Yu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China.
| | - Jianglan Shui
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China.
- Tianmushan Laboratory, Xixi Octagon City, Yuhang District, Hangzhou, 310023, People's Republic of China.
| | - Caofeng Pan
- Institute of Atomic Manufacturing, Beihang University, Beijing, 100191, People's Republic of China.
| | - Xiaofang Liu
- School of Materials Science and Engineering, Beihang University, Beijing, 100191, People's Republic of China.
| |
Collapse
|
20
|
Al-Fakih GOA, Ilyas RA, Atiqah A, Atikah MSN, Saidur R, Dufresne A, Saharudin MS, Abral H, Sapuan SM. Advanced functional materials based on nanocellulose/Mxene: A review. Int J Biol Macromol 2024; 278:135207. [PMID: 39256123 DOI: 10.1016/j.ijbiomac.2024.135207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 08/11/2024] [Accepted: 08/28/2024] [Indexed: 09/12/2024]
Abstract
The escalating need for a sustainable future has driven the advancement of renewable functional materials. Nanocellulose, derived from the abundant natural biopolymer cellulose, demonstrates noteworthy characteristics, including high surface area, crystallinity, mechanical strength, and modifiable chemistry. When combined with two-dimensional (2D) graphitic materials, nanocellulose can generate sophisticated hybrid materials with diverse applications as building blocks, carriers, scaffolds, and reinforcing constituents. This review highlights the progress of research on advanced functional materials based on the integration of nanocellulose, a versatile biopolymer with tailorable properties, and MXenes, a new class of 2D transition metal carbides/nitrides known for their excellent conductivity, mechanical strength, and large surface area. By addressing the challenges and envisioning future prospects, this review underscores the burgeoning opportunities inherent in MXene/nanocellulose composites, heralding a sustainable frontier in the field of materials science.
Collapse
Affiliation(s)
- Ghassan O A Al-Fakih
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia
| | - R A Ilyas
- Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Skudai, Johor, Malaysia; Centre for Advance Composite Materials (CACM), Faculty of Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia; Institute of Tropical Forest and Forest Products (INTROP), Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Centre of Excellence for Biomass Utilization, Universiti Malaysia Perlis, 02600 Arau, Perlis, Malaysia.
| | - A Atiqah
- Institute of Microengineering and Nanoelectronics, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia
| | - M S N Atikah
- Department of Chemical and Environmental Engineering, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - R Saidur
- Research Centre for Nano-Materials and Energy Technology, School of Engineering and Technology, Sunway University, Bandar Sunway, Malaysia
| | - Alain Dufresne
- University Grenoble Alpes, CNRS, Grenoble INP, LGP2, F-38000 Grenoble, France
| | | | - Hairul Abral
- Laboratory of Nanoscience and Technology, Department of Mechanical Engineering, Andalas University, Padang, Sumatera Barat, Indonesia; Research Collaboration Center for Nanocellulose, BRIN-Andalas University, Padang, Indonesia
| | - S M Sapuan
- Advanced Engineering Materials and Composite Research Centre (AEMC), Department of Mechanical and Manufacturing Engineering, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
21
|
Ren J, Wu Z, Wang B, Zheng L, Han S, Hu J. Multifunctional chitosan-based composite hydrogels engineered for sensing applications. Int J Biol Macromol 2024; 278:134956. [PMID: 39179061 DOI: 10.1016/j.ijbiomac.2024.134956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/05/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Chitosan-based hydrogels, as natural high-molecular-weight flexible materials, are widely utilized due to their outstanding properties. In this research, we developed a one-pot method for synthesizing a novel PVA/CS@PPy-PDAx% conductive hydrogel and explored the internal bonding patterns through molecular dynamics simulations. By adding PPy-PDA nanoparticles into a hydrogel matrix, an interpenetrating conductive network established successfully. The uniform distribution of PPy-PDA nanoparticles endowed the hydrogel with good electrical conductivity (0.171 S/m), significantly enhanced mechanical properties, and strain sensing (S = 5.04), as well as near-infrared photothermal responsiveness (temperature increase of 41.9 °C within 30 s). Additionally, due to the hydrogel's significant photothermal conversion efficiency under near-infrared radiation, it exhibits rapid elimination of Escherichia coli with an antibacterial efficiency exceeding 90 %. The unique hydrogen-bonded crosslinked structure provides the hydrogel with excellent re-healing properties, allowing for restoration through a freeze-thaw process after damage. The conductivity remains nearly unchanged after re-healing, maintaining the material's integrity and functionality. The flexible sensor based on this hydrogel has a response time of 100 ms and can sensitively detect large-scale deformations (e.g., joint bending at various angles), different gravitational forces, and recognize human handwriting. These characteristics make this hydrogel a promising candidate for advancing intelligent wearable technologies and human-machine interaction systems.
Collapse
Affiliation(s)
- Jie Ren
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Zengyang Wu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China
| | - Bai Wang
- Shenyang Fire Science and Technology Research Institute of MEM, Shenyang 110034, PR China; National Engineering Laboratory for Fire and Emergency Rescue, Shenyang 110034, PR China
| | - Liuping Zheng
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, Fujian 350007, PR China.
| | - Siyu Han
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China.
| | - Jianshe Hu
- Center for Molecular Science and Engineering, College of Science, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
22
|
Sun Z, Ou Q, Dong C, Zhou J, Hu H, Li C, Huang Z. Conducting polymer hydrogels based on supramolecular strategies for wearable sensors. EXPLORATION (BEIJING, CHINA) 2024; 4:20220167. [PMID: 39439497 PMCID: PMC11491309 DOI: 10.1002/exp.20220167] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/02/2024] [Indexed: 10/25/2024]
Abstract
Conductive polymer hydrogels (CPHs) are gaining considerable attention in developing wearable electronics due to their unique combination of high conductivity and softness. However, in the absence of interactions, the incompatibility between hydrophobic conductive polymers (CPs) and hydrophilic polymer networks gives rise to inadequate bonding between CPs and hydrogel matrices, thereby significantly impairing the mechanical and electrical properties of CPHs and constraining their utility in wearable electronic sensors. Therefore, to endow CPHs with good performance, it is necessary to ensure a stable and robust combination between the hydrogel network and CPs. Encouragingly, recent research has demonstrated that incorporating supramolecular interactions into CPHs enhances the polymer network interaction, improving overall CPH performance. However, a comprehensive review focusing on supramolecular CPH (SCPH) for wearable sensing applications is currently lacking. This review provides a summary of the typical supramolecular strategies employed in the development of high-performance CPHs and elucidates the properties of SCPHs that are closely associated with wearable sensors. Moreover, the review discusses the fabrication methods and classification of SCPH sensors, while also exploring the latest application scenarios for SCPH wearable sensors. Finally, it discusses the challenges of SCPH sensors and offers suggestions for future advancements.
Collapse
Affiliation(s)
- Zhiyuan Sun
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'anPeople's Republic of China
| | - Qingdong Ou
- Macao Institute of Materials Science and Engineering (MIMSE)Faculty of Innovation EngineeringMacau University of Science and TechnologyMacao TaipaPeople's Republic of China
| | - Chao Dong
- Chemistry and Physics DepartmentCollege of Art and ScienceThe University of Texas of Permian BasinOdessaTexasUSA
| | - Jinsheng Zhou
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenPeople's Republic of China
| | - Huiyuan Hu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenPeople's Republic of China
| | - Chong Li
- Guangdong Polytechnic of Science and TechnologyZhuhaiPeople's Republic of China
| | - Zhandong Huang
- School of Chemical Engineering and TechnologyXi'an Jiaotong UniversityXi'anPeople's Republic of China
| |
Collapse
|
23
|
Zhao R, Liu C, Luo H, Zhao J, Zhang J, He Y, Li Z, Yang P, Xu L, Wan Y. Nanoengineered Injectable Hydrogel: An Advanced Radioprotective Barrier with Magnetic Hyperthermia Synergy. ACS APPLIED MATERIALS & INTERFACES 2024; 16:50188-50201. [PMID: 39263908 DOI: 10.1021/acsami.4c07904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
Despite its effectiveness in eradicating cancer cells, current tumor radiotherapy often causes irreversible damage to the surrounding healthy tissues. To address this issue and enhance therapeutic outcomes, we developed a multifunctional injectable hydrogel that integrates electromagnetic shielding and magnetothermal effects. This innovation aims to improve the efficacy of brachytherapy while protecting adjacent normal tissues. Recognizing the limitations of existing hydrogel materials in terms of stretchability, durability, and single functionality, we engineered a composite hydrogel by self-assembling nickel nanoparticles on the surface of liquid metal particles and embedding them into an injectable hydrogel matrix. The resulting composite material demonstrates superior electromagnetic interference shielding performance (74.89 dB) and a rapid magnetothermal heating rate (10.9 °C/min), significantly enhancing its in vivo applicability. The experimental results confirm that this innovative nanocomposite hydrogel effectively attenuates electromagnetic waves during brachytherapy, thereby protecting normal tissues surrounding the tumor and enhancing radiotherapy efficacy through magnetothermal therapy. This study advances the safety and effectiveness of cancer treatments and provides new insights into the development of multifunctional biomedical materials, promoting the innovative application of nanotechnology in the medical field.
Collapse
Affiliation(s)
- Rong Zhao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan Key Laboratory of Electromagnetic Materials and Devices, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Chao Liu
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming 650107, China
| | - Hongyao Luo
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan Key Laboratory of Electromagnetic Materials and Devices, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jiawang Zhao
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan Key Laboratory of Electromagnetic Materials and Devices, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Jinjie Zhang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan Key Laboratory of Electromagnetic Materials and Devices, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Yunyan He
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming 650107, China
| | - Zhi Li
- Department of Nuclear Medicine, Yunnan Cancer Hospital & The Third Affiliated Hospital of Kunming Medical University, Kunming 650107, China
| | - Peng Yang
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan Key Laboratory of Electromagnetic Materials and Devices, School of Materials and Energy, Yunnan University, Kunming 650091, China
| | - Lei Xu
- Faculty of Metallurgical and Energy Engineering, Kunming University of Science and Technology, Kunming 650032, China
| | - Yanfen Wan
- National Center for International Research on Photoelectric and Energy Materials, Yunnan Key Laboratory for Micro/Nano Materials & Technology, Yunnan Key Laboratory of Electromagnetic Materials and Devices, School of Materials and Energy, Yunnan University, Kunming 650091, China
| |
Collapse
|
24
|
Hu F, Tang H, Wu F, Ding P, Zhang P, Sun W, Cai L, Fan B, Zhang R, Sun Z. Sn Whiskers from Ti 2SnC Max Phase: Bridging Dual-Functionality in Electromagnetic Attenuation. SMALL METHODS 2024; 8:e2301476. [PMID: 38183383 DOI: 10.1002/smtd.202301476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/07/2023] [Indexed: 01/08/2024]
Abstract
In the ever-evolving landscape of complex electromagnetic (EM) environments, the demand for EM-attenuating materials with multiple functionalities has grown. 1D metals, known for their high conductivity and ability to form networks that facilitate electron migration, stand out as promising candidates for EM attenuation. Presently, they find primary use in electromagnetic interference (EMI) shielding, but achieving a dual-purpose application for EMI shielding and microwave absorption (MA) remains a challenge. In this context, Sn whiskers derived from the Ti2SnC MAX phase exhibit exceptional EMI shielding and MA properties. A minimum reflection loss of -44.82 dB is achievable at lower loading ratios, while higher loading ratios yield efficient EMI shielding effectiveness of 42.78 dB. These qualities result from a delicate balance between impedance matching and EM energy attenuation via adjustable conductive networks; and the enhanced interfacial polarization effect at the cylindrical heterogeneous interface between Sn and SnO2, visually characterized through off-axis electron holography, also contributes to the impressive performance. Considering the compositional diversity of MAX phases and the scalable fabrication approach with environmental friendliness, this study provides a valuable pathway to multifunctional EM attenuating materials based on 1D metals.
Collapse
Affiliation(s)
- Feiyue Hu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Haifeng Tang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Fushuo Wu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Pei Ding
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Peigen Zhang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Wenwen Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Longzhu Cai
- The State Key Laboratory of Millimeter Waves, School of Information Science and Engineering, Southeast University, Nanjing, 210096, P. R. China
| | - Bingbing Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Rui Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - ZhengMing Sun
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
25
|
Meng L, Ma Y, Zou Y, Zhang B, Chen G, Dong C, Wang L, Guan H. Lightweight, breathable and self-cleaning polypyrrole-modified multifunctional cotton fabric for flexible electromagnetic interference shielding. Int J Biol Macromol 2024; 274:133347. [PMID: 38917920 DOI: 10.1016/j.ijbiomac.2024.133347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 06/27/2024]
Abstract
The thriving of wearable electronics and the emerging new requirements for electromagnetic interference (EMI) shielding have driven the innovation of EMI shielding materials towards lightweight, wearability and multifunctionality. Herein, the hierarchical polypyrrole nanotubes (PNTs)/PDMS structures are rationally constructed on the textile for obtaining multifunctional and flexible EMI shielding textiles by in-situ polymerization and surface coating. The modified cotton fabric possesses a conductivity of about 2715.8 S/m and an SET of 28.2 dB in the X band when the thickness is only 0.5 mm. After ultrasonic treatment, cyclic bending and washing, the conductivity and EMI shielding performance remain stable and exhibit long-term durability. Importantly, the textile's inherent lightweight, breathable and soft properties have been completely retained after modification. This work shows application potentiality in the field of EMI pollution protection and affords a novel path for the construction of multifunctionally wearable and durable EMI shielding materials.
Collapse
Affiliation(s)
- Lingsai Meng
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Yu Ma
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Yupeng Zou
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Bozhao Zhang
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Gang Chen
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Chengjun Dong
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Lihong Wang
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China
| | - Hongtao Guan
- School of Materials and Energy, Yunnan University, Kunming 950091, PR China.
| |
Collapse
|
26
|
Shen Y, Jin D, Li T, Yang X, Ma X. Magnetically Responsive Gallium-Based Liquid Metal: Preparation, Property and Application. ACS NANO 2024. [PMID: 39073895 DOI: 10.1021/acsnano.4c07051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Magnetically responsive soft smart materials have garnered significant academic attention due to their flexibility, remote controllability, and reconfigurability. However, traditional soft materials used in the construction of these magnetically responsive systems typically exhibit low density and poor thermal and electrical conductivities. These limitations result in suboptimal performance in applications such as medical radiography, high-performance electronic devices, and thermal management. To address these challenges, magnetically responsive gallium-based liquid metals have emerged as promising alternatives. In this review, we summarize the methodologies for achieving magnetically responsive liquid metals, including the integration of magnetic agents into the liquid metal matrix and the utilization of induced Lorentz forces. We then provide a comprehensive discussion of the key physicochemical properties of these materials and the factors influencing them. Additionally, we explore the advanced and potential applications of magnetically responsive liquid metals. Finally, we discuss the current challenges in this field and present an outlook on future developments and research directions.
Collapse
Affiliation(s)
- Yifeng Shen
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Dongdong Jin
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Tiefeng Li
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Xuxu Yang
- Center for X-Mechanics, Department of Engineering Mechanics, Zhejiang University, Hangzhou 310058, China
| | - Xing Ma
- Sauvage Laboratory for Smart Materials, School of Integrated Circuits, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|
27
|
Zhang Q, Wang H, Chen S, Liu X, Liu J, Liu X. Proton Hydrogel-Based Supercapacitors with Rapid Low-Temperature Self-Healing Properties. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39075860 DOI: 10.1021/acsami.4c07421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Hydrogel-based supercapacitors are an up-and-coming candidate for safe and portable energy storage. However, it is challenging for hydrogel electrolytes to achieve high conductivity and rapid self-healing at subzero temperatures because the movements of polymer chains and the reconstruction capability of broken dynamic bonds are limited. Herein, a highly conductive proton polyacrylamide-phytic acid (PAAm-PA) hydrogel electrolyte with rapid and autonomous self-healing ability and excellent adhesion over a wide temperature range is developed. PA, as a proton donor center, endows the hydrogels with high conductivity (102.0 mS cm-1) based on the Grotthuss mechanism. PA can also prevent the crystallization of water and form multiple reversible hydrogen bonds in the polymer network, which solves the dysfunction of self-healing hydrogels in a cryogenic environment. Accordingly, the hydrogel electrolytes demonstrate fast low-temperature self-healing ability with a self-healing efficiency of 79.4% within 3 h at -20 °C. In addition, the hydrogel electrolytes present outstanding adhesiveness on electrodes due to the generation of hydrogen bonds between PA and activated carbon electrodes. As a result, the integrated hydrogel-based supercapacitors with tight bonding electrode/electrolyte interface deliver a 139.5 mF cm-2 specific capacitance at 25 °C. Moreover, the supercapacitors display superb self-healing ability, achieving 92.1% of capacitance recovery after three cutting-healing cycles at -20 °C. Furthermore, the supercapacitors demonstrate only 6.4% capacitance degradation after 5000 charging-discharging cycles at -20 °C. This work provides a roadmap for designing all-in-one flexible energy storage devices with excellent self-healing ability over a wide temperature range.
Collapse
Affiliation(s)
- Qin Zhang
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Hui Wang
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Shuang Chen
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Xuming Liu
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Jinhua Liu
- Polymeric and Soft Materials Laboratory, School of Chemistry and Life Science and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| | - Xin Liu
- Polymeric and Soft Materials Laboratory, School of Chemical Engineering and Advanced Institute of Materials Science, Changchun University of Technology, Changchun 130012, China
| |
Collapse
|
28
|
Selseleh-Zakerin E, Mirkhan A, Shafiee M, Alihoseini M, Khani M, Shokri B, Tavassoli SH, Peymanfar R. Plasma Engineering toward Improving the Microwave-Absorbing/Shielding Feature of a Biomass-Derived Material. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:12148-12158. [PMID: 38806445 DOI: 10.1021/acs.langmuir.4c01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
During the past decade, ever-increasing electromagnetic pollution has excited a global concern. A sustainable resource, facile experimental scenario, fascinating reflection loss (RL), and broad efficient bandwidth are the substantial factors that intrigue researchers. This research led to the achievement of a brilliant microwave-absorbing material by treating pampas as biomass. The carbon-based microfibers attained by biowaste were treated by plasma under diverse environments to amplify their microwave-absorbing features. Moreover, a pyrolysis scenario was performed to compare the results. The reductive processes were performed by H2 plasma and carbonization. However, the CO2 plasma was performed to regulate the heteroatoms and defects. Interestingly, polystyrene (PS) was applied as a microwave-absorbing matrix. The aromatic rings existing in the absorbing medium establish electrostatic interactions, elevating interfacial polarization, and physical characteristics of PS augment the practical applications of the final product. The manipulated biomasses were characterized by Raman, X-ray diffraction, energy-dispersive spectroscopy, field emission scanning electron microscopy, and diffuse reflection spectroscopy analyses. Eventually, the microwave-absorbing features were estimated by a vector network analyzer. The plasma-treated pampas under H2/Ar blended with PS gained a maximum RL of -90.65 dB at 8.79 GHz and an efficient bandwidth (RL ≤ -10 dB) of 4.24 GHz with a thickness of 3.20 mm; meanwhile, plasma treatment under CO2 led to a maximum RL of 97.99 dB at 14.92 GHz and an efficient bandwidth of 7.74 GHz with a 2.05 mm thickness. Particularly, the biomass plasmolyzed under Ar covered the entire X and Ku bands with a thickness of 2.10 mm. Notably, total shielding efficiencies of the treated bioinspired materials were up to ≈99%, desirable for practical applications.
Collapse
Affiliation(s)
- Elnaz Selseleh-Zakerin
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh 39177-67746, Iran
- Department of Science, Iranian Society of Philosophers, Tehran 13187-76511, Iran
- Peykareh Enterprise Development Company, Tehran 15149-45511, Iran
| | - Ali Mirkhan
- Department of Science, Iranian Society of Philosophers, Tehran 13187-76511, Iran
- Peykareh Enterprise Development Company, Tehran 15149-45511, Iran
| | - Mojtaba Shafiee
- Laser and Plasma Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
| | | | - Mohammadreza Khani
- Laser and Plasma Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
| | - Babak Shokri
- Laser and Plasma Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
| | | | - Reza Peymanfar
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh 39177-67746, Iran
- Department of Science, Iranian Society of Philosophers, Tehran 13187-76511, Iran
- Peykareh Enterprise Development Company, Tehran 15149-45511, Iran
- Laser and Plasma Institute, Shahid Beheshti University, Tehran 19839-69411, Iran
| |
Collapse
|
29
|
Chen Y, Estevez D, Zhu Z, Wang Y, Mai YW, Qin F. Multifunctional Conductive Hydrogel Composites with Nickel Nanowires and Liquid Metal Conductive Highways. ACS APPLIED MATERIALS & INTERFACES 2024; 16:29267-29281. [PMID: 38780052 DOI: 10.1021/acsami.4c05344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The dramatic growth of smart wearable electronics has generated a demand for conductive hydrogels due to their tunability, stimulus responsiveness, and multimodal sensing capabilities. However, the substantial trade-off between mechanical and electrical properties hinders their multifunctionality. Here, we report a double-network hydrogel composite that features a conductive "highway" constructed using magnetic-field-aligned nickel nanowires and liquid metal. The liquid metal fills the gaps between the aligned nickel nanowires. Such interconnected structures can form efficient conductive paths at low filler content, resulting in high conductivity (1.11 × 104 S/m) and mechanical compliance (Young's modulus, 89 kPa; toughness, 721 kJ/m3). When used as a wearable sensor, the hydrogel displays a high sensitivity and fast response for wireless motion detection and human-machine interaction. Furthermore, by exploiting its outstanding conductivity and electrical heating capacity, the hydrogel integrates electromagnetic shielding and thermal management functionalities. Owing to these all-around properties, our design offers a broader platform for expanding hydrogel applications.
Collapse
Affiliation(s)
- Yanlin Chen
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Diana Estevez
- Ningbo Innovation Center, Zhejiang University, 1 South Qianhu Road, Ningbo 315100, P. R. China
| | - Zihao Zhu
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Yunfei Wang
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| | - Yiu-Wing Mai
- Department of Mechanical Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong 999077, P. R. China
| | - Faxiang Qin
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou 310027, P. R. China
| |
Collapse
|
30
|
Li X, Hou K, Long Y, Song K. LM-Gel Plasticine Based on Binary Cooperative with Kneadable Shaping and Conductivity. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38711229 DOI: 10.1021/acsami.4c03471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Liquid metal (LM)-based polymers have received growing interest for wearable health monitoring, electronic skins, and soft robotics. However, fabricating multifunctional LM-based polymers, in particular, featuring a convenient shaping ability while offering excellent deformability and conductivity remains a challenge. To overcome this obstacle, here, we propose a strategy to prepare LM-Gel "plasticine" (LGP) with great deformability, which is composed of a PVA (poly(vinyl alcohol)) soft network and an LM conductive phase. LGP can be easily constructed into different shapes such as plasticine and can be applied to different conditions (such as building a 3D circuit, circuit repair, and switch). Meanwhile, LGP has great conductivity (2.3 × 104 S/m) after surface annealing. Besides, LGP has a good electric heating performance, which shows the potential for application in wearable heating devices. Thus, this approach not only provides a way to prepare LM-polymer plasticine but also provides a novel perspective toward extending the applied range of LM-polymer composites.
Collapse
Affiliation(s)
- Xingchao Li
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Kai Hou
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yue Long
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City 256606, Shandong, P. R. China
| | - Kai Song
- Key Laboratory of Bio-Inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City 256606, Shandong, P. R. China
| |
Collapse
|
31
|
Mai T, Chen L, Wang PL, Liu Q, Ma MG. Hollow Metal-Organic Framework/MXene/Nanocellulose Composite Films for Giga/Terahertz Electromagnetic Shielding and Photothermal Conversion. NANO-MICRO LETTERS 2024; 16:169. [PMID: 38587615 PMCID: PMC11001847 DOI: 10.1007/s40820-024-01386-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 02/24/2024] [Indexed: 04/09/2024]
Abstract
With the continuous advancement of communication technology, the escalating demand for electromagnetic shielding interference (EMI) materials with multifunctional and wideband EMI performance has become urgent. Controlling the electrical and magnetic components and designing the EMI material structure have attracted extensive interest, but remain a huge challenge. Herein, we reported the alternating electromagnetic structure composite films composed of hollow metal-organic frameworks/layered MXene/nanocellulose (HMN) by alternating vacuum-assisted filtration process. The HMN composite films exhibit excellent EMI shielding effectiveness performance in the GHz frequency (66.8 dB at Ka-band) and THz frequency (114.6 dB at 0.1-4.0 THz). Besides, the HMN composite films also exhibit a high reflection loss of 39.7 dB at 0.7 THz with an effective absorption bandwidth up to 2.1 THz. Moreover, HMN composite films show remarkable photothermal conversion performance, which can reach 104.6 °C under 2.0 Sun and 235.4 °C under 0.8 W cm-2, respectively. The unique micro- and macro-structural design structures will absorb more incident electromagnetic waves via interfacial polarization/multiple scattering and produce more heat energy via the local surface plasmon resonance effect. These features make the HMN composite film a promising candidate for advanced EMI devices for future 6G communication and the protection of electronic equipment in cold environments.
Collapse
Affiliation(s)
- Tian Mai
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Lei Chen
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Pei-Lin Wang
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Qi Liu
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China
| | - Ming-Guo Ma
- Research Center of Biomass Clean Utilization, MOE Engineering Research Center of Forestry Biomass Materials and Bioenergy, Beijing Key Laboratory of Lignocellulosic Chemistry, College of Materials Science and Technology, Beijing Forestry University, Beijing, 100083, People's Republic of China.
- State Silica-Based Materials Laboratory of Anhui Province, Bengbu, 233000, People's Republic of China.
| |
Collapse
|
32
|
Gai L, Wang Y, Wan P, Yu S, Chen Y, Han X, Xu P, Du Y. Compositional and Hollow Engineering of Silicon Carbide/Carbon Microspheres as High-Performance Microwave Absorbing Materials with Good Environmental Tolerance. NANO-MICRO LETTERS 2024; 16:167. [PMID: 38564086 PMCID: PMC10987424 DOI: 10.1007/s40820-024-01369-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/24/2024] [Indexed: 04/04/2024]
Abstract
Microwave absorbing materials (MAMs) characterized by high absorption efficiency and good environmental tolerance are highly desirable in practical applications. Both silicon carbide and carbon are considered as stable MAMs under some rigorous conditions, while their composites still fail to produce satisfactory microwave absorption performance regardless of the improvements as compared with the individuals. Herein, we have successfully implemented compositional and structural engineering to fabricate hollow SiC/C microspheres with controllable composition. The simultaneous modulation on dielectric properties and impedance matching can be easily achieved as the change in the composition of these composites. The formation of hollow structure not only favors lightweight feature, but also generates considerable contribution to microwave attenuation capacity. With the synergistic effect of composition and structure, the optimized SiC/C composite exhibits excellent performance, whose the strongest reflection loss intensity and broadest effective absorption reach - 60.8 dB and 5.1 GHz, respectively, and its microwave absorption properties are actually superior to those of most SiC/C composites in previous studies. In addition, the stability tests of microwave absorption capacity after exposure to harsh conditions and Radar Cross Section simulation data demonstrate that hollow SiC/C microspheres from compositional and structural optimization have a bright prospect in practical applications.
Collapse
Affiliation(s)
- Lixue Gai
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yahui Wang
- Anhui Provincial Laboratory of Advanced Laser Technology, College of Electronic Engineering, National University of Defense Technology, Hefei, 230037, People's Republic of China.
| | - Pan Wan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Shuping Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yongzheng Chen
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Xijiang Han
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Ping Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China
| | - Yunchen Du
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, People's Republic of China.
| |
Collapse
|
33
|
Yang S, Lin Z, Wang X, Huang J, Yang R, Chen Z, Jia Y, Zeng Z, Cao Z, Zhu H, Hu Y, Li E, Chen H, Wang T, Deng S, Gui X. Stretchable, Transparent, and Ultra-Broadband Terahertz Shielding Thin Films Based on Wrinkled MXene Architectures. NANO-MICRO LETTERS 2024; 16:165. [PMID: 38564038 PMCID: PMC10987438 DOI: 10.1007/s40820-024-01365-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 01/19/2024] [Indexed: 04/04/2024]
Abstract
With the increasing demand for terahertz (THz) technology in security inspection, medical imaging, and flexible electronics, there is a significant need for stretchable and transparent THz electromagnetic interference (EMI) shielding materials. Existing EMI shielding materials, like opaque metals and carbon-based films, face challenges in achieving both high transparency and high shielding efficiency (SE). Here, a wrinkled structure strategy was proposed to construct ultra-thin, stretchable, and transparent terahertz shielding MXene films, which possesses both isotropous wrinkles (height about 50 nm) and periodic wrinkles (height about 500 nm). Compared to flat film, the wrinkled MXene film (8 nm) demonstrates a remarkable 36.5% increase in SE within the THz band. The wrinkled MXene film exhibits an EMI SE of 21.1 dB at the thickness of 100 nm, and an average EMI SE/t of 700 dB μm-1 over the 0.1-10 THz. Theoretical calculations suggest that the wrinkled structure enhances the film's conductivity and surface plasmon resonances, resulting in an improved THz wave absorption. Additionally, the wrinkled structure enhances the MXene films' stretchability and stability. After bending and stretching (at 30% strain) cycles, the average THz transmittance of the wrinkled film is only 0.5% and 2.4%, respectively. The outstanding performances of the wrinkled MXene film make it a promising THz electromagnetic shielding materials for future smart windows and wearable electronics.
Collapse
Affiliation(s)
- Shaodian Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhiqiang Lin
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Ximiao Wang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Guangdong Province Key Laboratory of Display Material and Technology, Guangzhou, 510275, People's Republic of China
| | - Junhua Huang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Rongliang Yang
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zibo Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Yi Jia
- China Academy of Aerospace Science and Innovation, Beijing, 100176, People's Republic of China
| | - Zhiping Zeng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
| | - Zhaolong Cao
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Guangdong Province Key Laboratory of Display Material and Technology, Guangzhou, 510275, People's Republic of China
| | - Hongjia Zhu
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China
- Guangdong Province Key Laboratory of Display Material and Technology, Guangzhou, 510275, People's Republic of China
| | - Yougen Hu
- National Key Laboratory of Materials for Integrated Circuits, Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, People's Republic of China
| | - Enen Li
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou, 510700, People's Republic of China
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, 510700, People's Republic of China
| | - Huanjun Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- Guangdong Province Key Laboratory of Display Material and Technology, Guangzhou, 510275, People's Republic of China.
| | - Tianwu Wang
- GBA Branch of Aerospace Information Research Institute, Chinese Academy of Sciences, Guangzhou, 510700, People's Republic of China.
- School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Guangdong Provincial Key Laboratory of Terahertz Quantum Electromagnetics, Guangzhou, 510700, People's Republic of China.
| | - Shaozhi Deng
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
- Guangdong Province Key Laboratory of Display Material and Technology, Guangzhou, 510275, People's Republic of China.
| | - Xuchun Gui
- State Key Laboratory of Optoelectronic Materials and Technologies, School of Electronics and Information Technology, Sun Yat-Sen University, Guangzhou, 510275, People's Republic of China.
| |
Collapse
|
34
|
Zhang R, Fang X, Zhou B, Xiao C, Xie Y, Fan W, Liu Q, Fu X, Hu S, Wang J, Wong CP. Quasi-Hyperbolic Framework Graphite Foam-Based Composites with High Thermal Conductivity and Electromagnetic Shielding Properties Fabricated by an Electrochemical Expansion Method. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38489474 DOI: 10.1021/acsami.3c18502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2024]
Abstract
Nowadays, the rapid development of electronic devices requires composites with high thermal conductivity and good electromagnetic shielding properties. The key challenge lies in the construction of high-performance conductive networks. Herein, an electrochemical expansion graphite foam (EEG) with a quasi-hyperbolic framework was prepared by an electrochemical expansion method, and then the epoxy resin (EP) was filled to fabricate the composites. The graphite plate was first electrochemically intercalated and then foamed, in which plasticization was caused by weak oxidation in intercalation and the quasi-hyperbolic framework was induced by foaming during expansion. These processes were characterized by Fourier transform infrared (FTIR), micro-Raman, X-ray photoelectron spectroscopy (XPS), and so on. Based on the highly efficient quasi-hyperbolic framework and high-quality graphite structure, the thermal conductivity of the composite reached 43.523 W/(m·K), and total electromagnetic interference (EMI) shielding (SET) reached 105 dB. The heat transfer behavior was simulated by finite element analysis (FEA) in detail. This method of preparing high thermal conductivity and electromagnetic shielding materials has a good application prospect.
Collapse
Affiliation(s)
- Rong Zhang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, Hubei, China
- Hubei Longzhong Laboratory, Xiangyang 441000, Hubei, China
- High-Tech Organic Fibers Key Laboratory of Sichuan Province, Sichuan Textile Scientific Research Institute Co., Ltd., Chengdu 610083, Sichuan, China
| | - Xiang Fang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Baokuan Zhou
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Chuzeyuan Xiao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Yutao Xie
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Wuhou Fan
- High-Tech Organic Fibers Key Laboratory of Sichuan Province, Sichuan Textile Scientific Research Institute Co., Ltd., Chengdu 610083, Sichuan, China
| | - Qingting Liu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Xudong Fu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Shengfei Hu
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Juan Wang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, New Materials and Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Ching Ping Wong
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
35
|
Sheykhmoradi S, Ghaffari A, Mirkhan A, Ji G, Tan S, Peymanfar R. Dendrimer-assisted defect and morphology regulation for improving optical, hyperthermia, and microwave-absorbing features. Dalton Trans 2024; 53:4222-4236. [PMID: 38332744 DOI: 10.1039/d3dt04228f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Electromagnetic pollution and cancer are phenomena that essentially endanger the future of humanity. Herein, multiple approaches are being proposed to solve the aforementioned issues. Recent studies have demonstrated that by regulating the morphology, defect, and phase of materials, their microwave absorbing, optical, and hyperthermia properties are tunable. Calcium ferrite with proper dielectric, magnetic, and biocompatible characteristics was chosen as a substantial candidate to promote its microwave-absorbing properties by regulating its structure. Spinel CaFe2O4 was synthesized through sol-gel and solvothermal routes and its phase, defect, and morphology were manipulated using innovative procedures. Glucose was applied as conventional defecting and templating agent; interestingly, a dendrimer was designed to bear and form nanoparticles. More importantly, a novel reductive process was designed to fabricate one-put Ca/Fe3O4 using a solvothermal method. Particularly, polypropylene (PP) was employed as a practical polymeric matrix to fabricate the eventual product. Structures were molded at a low filling ratio to evaluate their optical and microwave-absorbing performance. As expected, defects, morphology, and phase play a pivotal role in tuning the optical and microwave-absorbing properties of calcium ferrite derivates. Interestingly, the dendrimer-assisted (D-A) formation of CaFe2O4 demonstrated a fascinating reflection loss (RL) of 70.11 dB and an efficient bandwidth (RL ≤ -20 dB) of 7.03 GHz with ultralow thickness (0.65 mm) and filling ratio (10 wt%), attaining proper shielding efficiency (SE) and hyperthermia desirable for its practical application as a material for shielding buildings and cancer therapy. The presented perspective develops new inspirations for architecting microwave absorbing/shielding materials with advanced applications in therapeutic issues.
Collapse
Affiliation(s)
- Somayeh Sheykhmoradi
- Department of Pharmaceutical Chemistry, Energy Institute of Higher Education, Saveh, Iran.
| | - Arezoo Ghaffari
- Department of Pharmaceutical Chemistry, Energy Institute of Higher Education, Saveh, Iran.
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh, Iran
| | - Ali Mirkhan
- Iranian Society of Philosophers, Department of Science, Tehran, Iran
- Peykareh Enterprise Development CO., Tehran, Iran
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, P. R. China
| | - Shujuan Tan
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211100, P. R. China
| | - Reza Peymanfar
- Department of Pharmaceutical Chemistry, Energy Institute of Higher Education, Saveh, Iran.
- Department of Chemical Engineering, Energy Institute of Higher Education, Saveh, Iran
- Iranian Society of Philosophers, Department of Science, Tehran, Iran
- Peykareh Enterprise Development CO., Tehran, Iran
| |
Collapse
|
36
|
Dang X, Fu Y, Wang X. A temperature and pressure dual-responsive, stretchable, healable, adhesive, and biocompatible carboxymethyl cellulose-based conductive hydrogels for flexible wearable strain sensor. Biosens Bioelectron 2024; 246:115893. [PMID: 38048722 DOI: 10.1016/j.bios.2023.115893] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/06/2023]
Abstract
The study aimed to develop a novel temperature and pressure dual-responsive conductive hydrogel with self-healing, self-adhesive, biocompatible, and stretchable properties, for the development of multifunctional anti-counterfeiting and wearable flexible electronic materials. A conductive hydrogel based on carboxymethyl cellulose (CMC) was synthesized by simple "one pot" free radical polymerization of CMC, acrylamide (AAm) and acrylic acid (AAc). The hydrogel displayed temperature responsiveness and possessed an upper critical solution temperature (UCST) value. In addition, hydrogels also had surprising pressure responsiveness. The synthesized hydrogels were characterized by FTIR, TGA, DSC, and XRD analysis. Importantly, the obtained hydrogels exhibited exceptional mechanical properties (stress: 730 kPa, strain: 880%), fatigue resistance, stretchability, self-healing capability, self-adhesive properties, and conductivity. In addition, valuable insights were obtained into the synthesis and application of flexible anti-counterfeiting and camouflage materials by the temperature and pressure dual-responsive hydrogels. Moreover, the prepared hydrogel, with an electrically sensitive perception of external strain (GF = 2.61, response time: 80 ms), can be utilized for monitoring human movement, emotional changes, physiological signals, language, and more, rendering it suitable for novel flexible anti-counterfeiting materials and versatile wearable iontronics. Overall, this study provided novel insights into the simple and efficient synthesis and sustainable manufacturing of environmentally friendly multifunctional anti-counterfeiting materials and flexible electronic skin sensors.
Collapse
Affiliation(s)
- Xugang Dang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China.
| | - Yuntao Fu
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| | - Xuechuan Wang
- Institute of Biomass and Function Materials & National Demonstration Centre for Experimental Light Chemistry Engineering Education, College of Bioresources Chemistry and Materials Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, PR China
| |
Collapse
|
37
|
Kumar Singh S, Raj R, Salvi AS, Parasuram S, Kumar S, Bose S. Microwave-assisted ZnO-decorated carbon urchin resembling 'shish-kebab' morphology with self-healing and enhanced electromagnetic shielding properties. NANOSCALE 2024; 16:3510-3524. [PMID: 38265458 DOI: 10.1039/d3nr05758e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Herein, inspired by Acacia auriculiformis fruit, the shish-kebab-like growth of ZnO on carbon urchin (ZnO@CU) was designed using microwave radiation, thus leading to a hierarchal 3D structure that can promote multiple internal reflections through polarization centers. This hierarchal structure was then dispersed in a designer polyetherimide (PEI) matrix containing dynamic covalent bonds that can undergo metathesis, triggered by temperature, to harness self-healing properties in the composite. Such key attributes are required for their potential use in EMI shielding applications where frequent repairs are indispensable. Morphological investigation revealed that the ZnO flower was periodically nucleated like 'shish-kebab' structures on CU surfaces. CU was designed from short carbon fibers using a facile modified method. The EMI shielding performance of the resulting composites was investigated in the X-band, illustrating a shielding effectiveness of -40.6 dB for 2 wt% of ZnO@CU loading, and the composite can be preserved after the self-healing procedure. The ZnO 'kebabs' on 'CU shish' facilitated multiple scattering and numerous polarization centers to improve the EMI shielding performances at extremely low filler contents. In addition, the mechanical and thermal properties of the composite showed improved structural integrity and superior resistance to extreme temperatures, respectively. Overall, the proposed ZnO@CU/PEI composite has great potential to fulfill the increasing demands for lightweight EMI shielding materials in many fields.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Rishi Raj
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Akshay Sunil Salvi
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Sampath Parasuram
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - S Kumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| | - Suryasarathi Bose
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India.
| |
Collapse
|
38
|
Li Z, Liu P, Chen S, Wang B, Liu S, Cui E, Li F, Yu Y, Pan W, Tang N, Gu Y. Polyvinyl alcohol/chitosan based nanocomposite organohydrogel flexible wearable strain sensors for sports monitoring and underwater communication rescue. Int J Biol Macromol 2024; 258:129054. [PMID: 38159708 DOI: 10.1016/j.ijbiomac.2023.129054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/21/2023] [Accepted: 12/24/2023] [Indexed: 01/03/2024]
Abstract
Hydrogel-based flexible wearable sensors have garnered significant attention in recent years. However, the use of hydrogel, a biomaterial known for its high toughness, environmental friendliness, and frost resistance, poses a considerable challenge. In this study, we propose a stepwise construction and multiple non-covalent interaction matching strategy to successfully prepare dynamically physically crosslinked multifunctional conductive hydrogels. These hydrogels self-assembled to form a rigid crosslinked network through intermolecular hydrogen bonding and metal ion coordination chelation. Furthermore, the freeze-thawing process promoted the formation of poly(vinyl alcohol) microcrystalline domains within the amorphous hydrogel network system, resulting in exceptional mechanical properties, including a tensile strength (2.09 ± 0.01 MPa) and elongation at break of 562 ± 12 %. It can lift 10,000 times its own weight. Additionally, these hydrogels exhibit excellent resistance to swelling and maintain good toughness even at temperatures as low as -60 °C. As a wearable strain sensor with remarkable sensing ability (GF = 1.46), it can be effectively utilized in water and underwater environments. Moreover, it demonstrates excellent antimicrobial properties against Escherichia coli (Gram-negative bacteria). Leveraging its impressive sensing ability, we combine signal recognition with a deep learning model by incorporating Morse code for encryption and decryption, enabling information transmission.
Collapse
Affiliation(s)
- Zhenchun Li
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Peng Liu
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China.
| | - Shaowei Chen
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Bingzhen Wang
- College of Guangxi, Guangxi University, Nanning, Guangxi 530000, China
| | - Shiyuan Liu
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Enyuan Cui
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Feihong Li
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Yunwu Yu
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Wenhao Pan
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Ning Tang
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| | - Yaxin Gu
- School of Materials Science and Engineering, Shenyang Jianzhu University, Shenyang 110168, China
| |
Collapse
|
39
|
Xiao S, Lao Y, Liu H, Li D, Wei Q, Li Z, Lu S. Highly stretchable anti-freeze hydrogel based on aloe polysaccharides with high ionic conductivity for multifunctional wearable sensors. Int J Biol Macromol 2024; 254:127931. [PMID: 37944728 DOI: 10.1016/j.ijbiomac.2023.127931] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/01/2023] [Accepted: 11/05/2023] [Indexed: 11/12/2023]
Abstract
Conductive hydrogels have limitations such as non-degradability, loss of electrical conductivity at sub-zero temperatures, and single functionality, which limit their applicability as materials for wearable sensors. To overcome these limitations, this study proposes a bio-based hydrogel using aloe polysaccharides as the matrix and degradable polyvinyl alcohol as a reinforcing material. The hydrogel was crosslinked with borax in a glycerol-water binary solvent system, producing good toughness and compressive strength. Furthermore, the hydrogel was developed as a sensor that could detect both small and large deformations with a low detection limit of 1 % and high stretchability of up to 300 %. Moreover, the sensor exhibited excellent frost resistance at temperatures above -50 °C, and the gauge factor of the hydrogel was 2.86 at 20 °C and 2.12 at -20 °C. The Aloe-polysaccharide-based conductive hydrogels also functioned effectively as a wearable sensor; it detected a wide range of humidities (0-98 % relative humidity) and exhibited fast response and recovery times (1.1 and 0.9 s) while detecting normal human breathing. The polysaccharide hydrogel was also temperature sensitive (1.737 % °C-1) and allowed for information sensing during handwriting.
Collapse
Affiliation(s)
- Suijun Xiao
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Yufei Lao
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Hongbo Liu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Dacheng Li
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Qiaoyan Wei
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Ziwei Li
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China
| | - Shaorong Lu
- Key Laboratory of New Processing Technology for Nonferrous Metal & Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guilin University of Technology, Guilin 541004, China.
| |
Collapse
|
40
|
Zhang C, Liu K, He Y, Chang R, Guan F, Yao M. A multifunctional hydrogel dressing with high tensile and adhesive strength for infected skin wound healing in joint regions. J Mater Chem B 2023; 11:11135-11149. [PMID: 37964663 DOI: 10.1039/d3tb01384g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023]
Abstract
Most hydrogel dressings are designed for skin wounds in flat areas, and few are focused on the joint skin regions which undergo frequent movement. The mismatch of mechanical properties and poor fit between a hydrogel dressing and a wound in joint skin results in hydrogel shedding, bacterial infection and delayed healing. Therefore, it is of great significance to design and prepare a multifunctional hydrogel with high tensile and tissue-adhesive strength as well as other therapeutic effects for the treatment of joint skin wounds. In this work, a multifunctional hydrogel was reasonably prepared by simply mixing polyvinyl alcohol (PVA), borax, tannic acid (TA) and iron(III) chloride in certain proportions, which was further used to treat the skin wounds at the joint of the hind limb. Acting as the physical crosslinkers, borax and TA dynamically bond with PVA and provide the resulting hydrogel with strong tensile, fast shape-adaptive and self-healing properties. The photothermal bacteriostatic activity of the hydrogel is attributed to the formation of a metallic polyphenol network (MPN) between ferric ions and TA. In addition, the hydrogel exhibits high levels of adhesion, hemostatic performance, antioxidant abilities, and biocompatibility, and shows great potential to promote joint skin wound healing.
Collapse
Affiliation(s)
- Chen Zhang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Kaiyue Liu
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Yuanmeng He
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Rong Chang
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Fangxia Guan
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| | - Minghao Yao
- School of Life Science, Zhengzhou University, 100 Science Road, Zhengzhou 450001, P. R. China.
| |
Collapse
|
41
|
Ma H, Fashandi M, Rejeb ZB, Ming X, Liu Y, Gong P, Li G, Park CB. Efficient Electromagnetic Wave Absorption and Thermal Infrared Stealth in PVTMS@MWCNT Nano-Aerogel via Abundant Nano-Sized Cavities and Attenuation Interfaces. NANO-MICRO LETTERS 2023; 16:20. [PMID: 37975901 PMCID: PMC10656378 DOI: 10.1007/s40820-023-01218-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/28/2023] [Indexed: 11/19/2023]
Abstract
Pre-polymerized vinyl trimethoxy silane (PVTMS)@MWCNT nano-aerogel system was constructed via radical polymerization, sol-gel transition and supercritical CO2 drying. The fabricated organic-inorganic hybrid PVTMS@MWCNT aerogel structure shows nano-pore size (30-40 nm), high specific surface area (559 m2 g-1), high void fraction (91.7%) and enhanced mechanical property: (1) the nano-pore size is beneficial for efficiently blocking thermal conduction and thermal convection via Knudsen effect (beneficial for infrared (IR) stealth); (2) the heterogeneous interface was beneficial for IR reflection (beneficial for IR stealth) and MWCNT polarization loss (beneficial for electromagnetic wave (EMW) attenuation); (3) the high void fraction was beneficial for enhancing thermal insulation (beneficial for IR stealth) and EMW impedance match (beneficial for EMW attenuation). Guided by the above theoretical design strategy, PVTMS@MWCNT nano-aerogel shows superior EMW absorption property (cover all Ku-band) and thermal IR stealth property (ΔT reached 60.7 °C). Followed by a facial combination of the above nano-aerogel with graphene film of high electrical conductivity, an extremely high electromagnetic interference shielding material (66.5 dB, 2.06 mm thickness) with superior absorption performance of an average absorption-to-reflection (A/R) coefficient ratio of 25.4 and a low reflection bandwidth of 4.1 GHz (A/R ratio more than 10) was experimentally obtained in this work.
Collapse
Affiliation(s)
- Haoyu Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 24 Yihuan Road, Nanyiduan, Chengdu, 610065, Sichuan, People's Republic of China
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
- Jiangsu JITRI Advanced Polymer Materials Research Institute, Tengfei Building, 88 Jiangmiao Road, Jiangbei New District, Nanjing, 211800, Jiangsu, People's Republic of China
| | - Maryam Fashandi
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Zeineb Ben Rejeb
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada
| | - Xin Ming
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Yingjun Liu
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, International Research Center for X Polymers, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, People's Republic of China
| | - Pengjian Gong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 24 Yihuan Road, Nanyiduan, Chengdu, 610065, Sichuan, People's Republic of China.
| | - Guangxian Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 24 Yihuan Road, Nanyiduan, Chengdu, 610065, Sichuan, People's Republic of China
| | - Chul B Park
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 24 Yihuan Road, Nanyiduan, Chengdu, 610065, Sichuan, People's Republic of China.
- Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, ON, M5S 3G8, Canada.
| |
Collapse
|
42
|
Wang S, Zhang X, Hao S, Qiao J, Wang Z, Wu L, Liu J, Wang F. Nitrogen-Doped Magnetic-Dielectric-Carbon Aerogel for High-Efficiency Electromagnetic Wave Absorption. NANO-MICRO LETTERS 2023; 16:16. [PMID: 37975962 PMCID: PMC10656410 DOI: 10.1007/s40820-023-01244-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/12/2023] [Indexed: 11/19/2023]
Abstract
Carbon-based aerogels derived from biomass chitosan are encountering a flourishing moment in electromagnetic protection on account of lightweight, controllable fabrication and versatility. Nevertheless, developing a facile construction method of component design with carbon-based aerogels for high-efficiency electromagnetic wave absorption (EWA) materials with a broad effective absorption bandwidth (EAB) and strong absorption yet hits some snags. Herein, the nitrogen-doped magnetic-dielectric-carbon aerogel was obtained via ice template method followed by carbonization treatment, homogeneous and abundant nickel (Ni) and manganese oxide (MnO) particles in situ grew on the carbon aerogels. Thanks to the optimization of impedance matching of dielectric/magnetic components to carbon aerogels, the nitrogen-doped magnetic-dielectric-carbon aerogel (Ni/MnO-CA) suggests a praiseworthy EWA performance, with an ultra-wide EAB of 7.36 GHz and a minimum reflection loss (RLmin) of - 64.09 dB, while achieving a specific reflection loss of - 253.32 dB mm-1. Furthermore, the aerogel reveals excellent radar stealth, infrared stealth, and thermal management capabilities. Hence, the high-performance, easy fabricated and multifunctional nickel/manganese oxide/carbon aerogels have broad application aspects for electromagnetic protection, electronic devices and aerospace.
Collapse
Affiliation(s)
- Shijie Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Xue Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Shuyan Hao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Jing Qiao
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
- School of Mechanical Engineering, Shandong University, Jinan, 250061, People's Republic of China.
| | - Zhou Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Lili Wu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China
| | - Jiurong Liu
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
| | - Fenglong Wang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials Ministry of Education, Shandong University, Jinan, 250061, People's Republic of China.
- Shenzhen Research Institute of Shandong University, Shenzhen, 518057, Guangdong, People's Republic of China.
| |
Collapse
|
43
|
Jiang C, Li T, Huang X, Guo R. Patterned Liquid-Metal-Enabled Universal Soft Electronics (PLUS-E) for Deformation Sensing on 3D Curved Surfaces. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37878994 DOI: 10.1021/acsami.3c11845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Liquid metals with metallic conductivity and infinitely deformable properties have tremendous potential in the field of conformal electronics. However, most processing methods of liquid metal electronics require sophisticated apparatus or custom masks, resulting in high processing costs and intricate preparation procedures. This study proposes a simple and rapid preparation method for patterned liquid-metal-enabled universal soft electronics (PLUS-E). The utilization of selective adhesion of the liquid metals on stretchable substrates and the adaptive toner mask enables rapid fabrication (<2 s/100 cm2), excellent stretchability (800% strain), and high forming accuracy (100 μm). Benefiting from the adaptive deformation of the substrate and toner mask, PLUS-E can be conformally applied to any shape of 3D surfaces. Besides, the stability of PLUS-E on 3D surfaces is improved by low-fluidity liquid metal composites. The finite element simulation is used to accurately forecast the deformation and resistance changes of the PLUS-E, and it provides guidance for device design and manufacturing. Finally, this method was utilized to develop various sensors for detecting human motion, catheter bending, and balloon expansion. All of them have obtained stable and reliable signal measurements, demonstrating the usefulness of PLUS-E in real-world applications.
Collapse
Affiliation(s)
- Chengjie Jiang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Tianyu Li
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| | - Xian Huang
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
- Flexible Wearable Technology Research Center, Institute of Flexible Electronics Technology of Tsinghua, 906 Yatai Road, Jiaxing 314033, China
- Institute of Wearable Technology and Bioelectronics, Qiantang Science and Technology Innovation Center, 1002 23rd Street, Hangzhou 310018, China
| | - Rui Guo
- Department of Biomedical Engineering, Tianjin University, 92 Weijin Road, Tianjin 300072, China
| |
Collapse
|
44
|
Si W, Liao Q, Chu Y, Zhang Z, Chu X, Qin L. A multi-layer core-shell structure CoFe 2O 4@Fe 3C@NiO composite with high broadband electromagnetic wave-absorption performance. NANOSCALE 2023; 15:16381-16389. [PMID: 37789822 DOI: 10.1039/d3nr03837h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Enhancing the absorption strength of electromagnetic waves and broadening the absorption band are constant goals in designing and preparing absorbing materials. The use of composites has shown to be a very efficient method for acquiring broadband-absorbing materials, while the construction of a core-shell structure has demonstrated a significant enhancement in absorption capability. In this paper, the nanocomposite metal-organic framework (MOF) derivative CoFe2O3@C with a double core-shell structure and the nanocomposite MOF derivative CoFe2O4@Fe3C@NiO with a three-layered core-shell structure have been prepared using a chemical compound. The multi-layer structure provides more active sites for the multiple reflection and scattering of electromagnetic waves, effectively improving the attenuation capability. The effective absorption band (EAB) (reflection loss (RL) ≤ -5 dB) of both CoFe2O3@C and CoFe2O4@Fe3C@NiO are broadened compared to that of the ZIF-67 derivative. In particular, the minimum reflection loss (RLmin) of CoFe2O3@C was -52.7 dB at 13.3 GHz and 2.04 mm, and the EAB (RL ≤ -5 dB) is as wide as 9.35 GHz. Compared with the ZIF-67 derivative, the EAB exhibits a twofold rise, accompanied by a corresponding thickness increase of just 0.24 mm. At a matched thickness of 2.2 mm, the EAB of CoFe2O4@Fe3C@NiO can even reach 11.9 GHz.
Collapse
Affiliation(s)
- Wei Si
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China.
| | - Qingwei Liao
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China.
- Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100192, China
| | - Yu Chu
- Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Zhiwei Zhang
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China.
| | - Xiangcheng Chu
- State Key Laboratory of New Ceramics and Fine Processing, School of Material Science and Engineering, Tsinghua University, Beijing 100084, China.
| | - Lei Qin
- Key Laboratory of Sensors, Beijing Information Science & Technology University, Beijing 100192, China.
- Key Laboratory of Modern Measurement & Control Technology, Ministry of Education, Beijing Information Science & Technology University, Beijing 100192, China
| |
Collapse
|