1
|
Basu Baul TS, Das A, Tamang R, Duthie A, Koch B, Parkin S. Synthesis, structural analysis, and systematic exploration of the antitumor activities of triphenyltin(IV) 2-hydroxy-5-(phenyldiazenyl)benzoates through the modulation of trifluoromethyl variants. J Inorg Biochem 2025; 269:112898. [PMID: 40117734 DOI: 10.1016/j.jinorgbio.2025.112898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/25/2025] [Accepted: 03/13/2025] [Indexed: 03/23/2025]
Abstract
By reacting 5-[(E)-2-(2-trifluoromethylphenyl)-1-diazenyl]-2-hydroxybenzoic acid (H'HL3), 5-[(E)-2-(3-trifluoromethylphenyl)-1-diazenyl]-2-hydroxybenzoic acid (H'HL4), and 5-[(E)-2-(4-trifluoromethylphenyl)-1-diazenyl]-2-hydroxybenzoic acid (H'HL5), with the triphenyltin source Ph3SnOH, three triphenyltin(IV) 2-hydroxy-5-(phenyldiazenyl)benzoates [Ph3Sn(HL3)] (3), [Ph3Sn(HL4)] (4) and [Ph3Sn(HL5)] (5) were obtained. The resulting tin complexes were characterized using standard spectroscopic techniques and single-crystal X-ray diffraction (SC-XRD). Triphenyltin complexes 3-5 exhibit a monomeric distorted tetrahedral configuration, with the fluoro substituted 2-hydroxy-5-(phenyldiazenyl)benzoates coordinating in a monodentate fashion. Additionally, the crystal structure of H'HL5 is reported. Alongside these, two triphenyltin compounds [Ph3Sn(HL1)] (1) and [Ph3Sn(HL2)] (2), are included to evaluate and compare their anti-proliferative properties. Here, HL1 and HL2 represent 5-[(E)-2-(phenyl)-1-diazenyl]-2-hydroxybenzoate and 5-[(E)-2-(4-fluorophenyl)-1-diazenyl]-2-hydroxybenzoate, respectively. The in vitro antiproliferative activity of the triphenyltin(IV) compounds 1-5 was evaluated against MCF-7 (human breast cancer), HeLa (human cervical cancer), and HEK-293 (normal human embryonic kidney) cells and a mechanism of action is proposed on the basis of various biological assays.
Collapse
Affiliation(s)
- Tushar S Basu Baul
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India.
| | - Amon Das
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India
| | - Rupen Tamang
- Genotoxicology and Cancer Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Andrew Duthie
- School of Life & Environmental Science, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Biplob Koch
- Genotoxicology and Cancer Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, 506 Library Drive, 146 Chemistry-Physics Building, Lexington, KY 40506-0055, USA
| |
Collapse
|
2
|
Basu Baul TS, Brahma S, Tamang R, Duthie A, Koch B, Parkin S. Synthesis, structures, and cytotoxicity insights of organotin(IV) complexes with thiazole-appended pincer ligand. J Inorg Biochem 2025; 262:112750. [PMID: 39378763 DOI: 10.1016/j.jinorgbio.2024.112750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
Diorganotin complexes of the compositions [Me2Sn(L)] (1), [n-Bu2Sn(L)] (2), [Ph2Sn(L)]⋅C6H6 (3), [Bz2Sn(L)]⋅C6H6 (4) and [n-Oct2Sn(L)] (5) were synthesized by reacting R2SnO (R = Me, n-Bu, Ph, Bz or n-Oct) with the N2,N6-di(thiazol-2-yl)pyridine-2,6-dicarboxamide (H2L, where H2 denotes the two acidic protons) in refluxing toluene. Additionally, the mono-n-butyltin complex [n-BuSn(HL)Cl2]·H2O (6) was synthesized from n-BuSnCl3 and H2L in acetonitrile. Compounds were characterized by FT-IR, 1H, 13C and 119Sn NMR spectroscopy, while their solid-state structures were examined using single-crystal X-ray diffraction studies. In diorganotin compounds 1-5, the dianionic tridentate ligands (Npy, N-, N-) act as κ-N3 chelators. In 6, the L moiety (O, Npy, N-) acts as a κ-ON2 tridentate chelator, with involvement of one of the carboxamide oxygen atoms. The coordination polyhedron around the Sn(IV) ion is completed either by two axial Sn-R ligands in compounds 1-5 or by n-Bu and Cl ligands in compound 6, giving rise to distorted trigonal bipyramid or octahedral structures, respectively. The tin NMR results show that the penta-coordinated structures of compounds 1-5 and the hexacoordinated structure of compound 6, observed in the solid-state, are retained in solution. The in vitro antitumor activities of 1-5 were tested on T-47D breast cancer cells. Of these, diphenyltin compound 3 showed the highest anti-proliferative effect, with an IC50 of 10 ± 1.60 μM. Compound 3 exhibited selective toxicity, potentially inducing apoptosis via reactive oxygen species generation and nuclear changes, indicating promise as a breast cancer treatment. This study is the first to explore thiazole-appended organotin compounds for cytotoxicity.
Collapse
Affiliation(s)
- Tushar S Basu Baul
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India; Sophisticated Analytical Instrument Facility, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India.
| | - Swmkwr Brahma
- Centre for Advanced Studies in Chemistry, North-Eastern Hill University, NEHU Permanent Campus, Umshing, Shillong 793 022, India
| | - Rupen Tamang
- Genotoxicology and Cancer Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Andrew Duthie
- School of Life & Environmental Science, Deakin University, Pigdons Road, Waurn Ponds, Victoria 3216, Australia
| | - Biplob Koch
- Genotoxicology and Cancer Biology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India.
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, 506 Library Drive, 146 Chemistry-Physics Building, Lexington, KY 40506-0055, USA.
| |
Collapse
|
3
|
Kasalović MP, Jelača S, Maksimović-Ivanić D, Lađarević J, Radovanović L, Božić B, Mijatović S, Pantelić NĐ, Kaluđerović GN. Novel diphenyltin(IV) complexes with carboxylato N-functionalized 2-quinolone ligands: Synthesis, characterization and in vitro anticancer studies. J Inorg Biochem 2024; 250:112399. [PMID: 37890233 DOI: 10.1016/j.jinorgbio.2023.112399] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/04/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023]
Abstract
Three new diphenyltin(IV) complexes, bis(3-(4-methyl-2-oxoquinolinyl-1(2H)-yl)propanoato)diphenyltin(IV) (1), bis(2-(4-methyl-2-oxoquinolin-1(2H)-yl)ethanoato)diphenyltin(IV) (2), and bis(2-(4-hydroxy-2-oxoquinolin-1(2H)-yl)ethanoato)diphenyltin(IV) (3), were synthesized and characterized by elemental microanalysis, FT-IR spectroscopy, and multinuclear (1H, 13C and 119Sn) NMR spectroscopy. Crystal structure of ligand precursor, 2-(4-methyl-2-oxoquinolinyl-1-(2H)-yl)acetic acid (HL2), has been determined by X-ray diffraction studies. Asymmetric bidentate coordination of the carboxylato ligands and skew trapezoidal structures are assumed for the synthesized complexes. In vitro anticancer activity of the synthesized diphenyltin(IV) complexes was evaluated against three human: MCF-7 (breast adenocarcinoma), A375 (melanoma), HCT116 (colorectal carcinoma), and three mouse tumor cell lines: 4T1 (breast carcinoma), B16 (melanoma), CT26 (colon carcinoma) using MTT and CV assays. The IC50 values fall in the range from 0.1 to 3.7 μM. Flow cytometric analysis and fluorescent microscopy suggest that complex 1 induces caspase-dependent apoptosis followed with strong blockade of cell division in HCT116 cells. Since complex 1 showed ROS/RNS scavenging potential mentioned cytotoxicity was not connected with oxidative stress.
Collapse
Affiliation(s)
- Marijana P Kasalović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany; Department of Chemistry, Faculty of Science, University of Kragujevac, Radoja Domanovića 12, 34000 Kragujevac, Serbia
| | - Sanja Jelača
- Department of Immunology, Institute for Biological Research "Siniša Stanković" ̶ National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Danijela Maksimović-Ivanić
- Department of Immunology, Institute for Biological Research "Siniša Stanković" ̶ National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena Lađarević
- Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Lidija Radovanović
- Innovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
| | - Bojan Božić
- Institute of Physiology and Biochemistry "Ivan Djaja", Faculty of Biology, University of Belgrade, Studentski trg 16, Belgrade 11000, Serbia
| | - Sanja Mijatović
- Department of Immunology, Institute for Biological Research "Siniša Stanković" ̶ National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Nebojša Đ Pantelić
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany; Department of Chemistry and Biochemistry, Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080 Belgrade, Serbia.
| | - Goran N Kaluđerović
- Department of Engineering and Natural Sciences, University of Applied Sciences Merseburg, Eberhard-Leibnitz-Straße 2, 06217 Merseburg, Germany.
| |
Collapse
|
4
|
Triphenyltin(IV) dithiocarbamate compound induces genotoxicity and cytotoxicity in K562 human erythroleukemia cells primarily via mitochondria-mediated apoptosis. Food Chem Toxicol 2022; 168:113336. [PMID: 35963475 DOI: 10.1016/j.fct.2022.113336] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 06/25/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022]
Abstract
The novel di-and triphenyltin(IV) dithiocarbamate compounds represented as RnSnL2 (where R = C4H9, C6H5; n = 2,3; L = N,N-dithiocarbamate), Ph2Sn(N,N-diisopropyldithiocarbamate) (OC1), Ph3Sn(N,N-diisopropyldithiocarbamate) (OC2), Ph2Sn(N,N-diallyldithiocarbamate) (OC3), Ph3Sn(N,N-diallyldithiocarbamate) (OC4), and Ph2Sn(N,N-diethyldithiocarbamate) (OC5) were assessed for their cytotoxicity in K562 human erythroleukemia cells. All compounds inhibited the growth of cells at low micromolar concentrations (<10 μM), and the mechanism underlying their antiproliferative effects on K562 cells was apoptosis, as corroborated by the exposure of plasma membrane phosphatidylserine. OC2, which showed the most promising antiproliferative activity, was selected for further analyses. The results demonstrated that OC2 induced apoptosis in K562 cells via an intrinsic mitochondrial pathway triggered upon DNA damage, an early apoptotic signal. Subsequently, OC2 produced excessive intracellular reactive oxygen species. The role of oxidative stress was corroborated by the significant reduction in GSH levels and percentage of apoptosis in NAC-pretreated cells. OC2 could arrest the cell cycle progression in the S phase. These new findings elucidate the antiproliferative potential of OC2 in the K562 human erythroleukemia cells and warrant further investigation, specifically to determine the exact signaling pathway underlying its antileukemic efficacy.
Collapse
|
5
|
Gong HP, Quan ZJ, Wang XC. Palladium-catalyzed Hiyama cross-couplings of pyrimidin-2-yl tosylates with organosilanes. JOURNAL OF CHEMICAL RESEARCH 2022. [DOI: 10.1177/17475198211067163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
An efficient palladium-catalyzed Hiyama reaction between various pyrimidin-2-yl tosylates with organosilanes has been developed. The use of CuCl with TBAF as additive is essential for promotion of the construction of the carbon–carbon bond. This procedure shows wide functional group tolerance for electrophilic pyrimidin-2-yl tosylates and has been extended to aromatic amino-substituted pyrimidin-2-yl tosylates, affording the desired C2-aryl and alkenyl pyrimidine derivatives in good to excellent yields.
Collapse
Affiliation(s)
- Hai-Peng Gong
- College of Science, Gansu Agricultural University, Lanzhou, P.R. China
| | - Zheng-Jun Quan
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P.R. China
| | - Xi-Cun Wang
- College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, P.R. China
| |
Collapse
|
6
|
Pinto C, Cidade H, Pinto M, Tiritan ME. Chiral Flavonoids as Antitumor Agents. Pharmaceuticals (Basel) 2021; 14:1267. [PMID: 34959668 PMCID: PMC8704364 DOI: 10.3390/ph14121267] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/25/2022] Open
Abstract
Flavonoids are a group of natural products with a great structural diversity, widely distributed in plant kingdom. They play an important role in plant growth, development and defense against aggressors. Flavonoids show a huge variety of biological activities such as antioxidant, anti-inflammatory, anti-mutagenic, antimicrobial and antitumor, being able to modulate a large diversity of cellular enzymatic activities. Among natural flavonoids, some classes comprise chiral molecules including flavanones, flavan-3-ols, isoflavanones, and rotenoids, which have one or more stereogenic centers. Interestingly, in some cases, individual compounds of enantiomeric pairs have shown different antitumor activity. In nature, these compounds are mainly biosynthesized as pure enantiomers. Nevertheless, they are often isolated as racemates, being necessary to carry out their chiral separation to perform enantioselectivity studies. Synthetic chiral flavonoids with promising antitumor activity have also been obtained using diverse synthetic approaches. In fact, several new chiral bioactive flavonoids have been synthesized by enantioselective synthesis. Particularly, flavopiridol was the first cyclin-dependent kinase (CDK) inhibitor which entered clinical trials. The chiral pool approaches using amino acid as chiral building blocks have also been reported to achieve small libraries of chrysin derivatives with more potent in vitro growth inhibitory effect than chrysin, reinforcing the importance of the introduction of chiral moieties to improve antitumor activity. In this work, a literature review of natural and synthetic chiral flavonoids with antitumor activity is reported for the first time.
Collapse
Affiliation(s)
- Cláudia Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.P.); (H.C.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Honorina Cidade
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.P.); (H.C.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Madalena Pinto
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.P.); (H.C.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - Maria Elizabeth Tiritan
- Laboratory of Organic and Pharmaceutical Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; (C.P.); (H.C.); (M.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Novo Edifício do Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- CESPU, Institute of Research and Advanced Training in Health Sciences and Technologies (IINFACTS), Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| |
Collapse
|
7
|
Devi J, Pachwania S. Synthesis, characterization, in vitro antioxidant and antimicrobial activities of diorganotin(IV) complexes derived from hydrazide Schiff base ligands. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1960835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jai Devi
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Haryana, India
| | - Sushila Pachwania
- Department of Chemistry, Guru Jambheshwar University of Science & Technology, Haryana, India
| |
Collapse
|
8
|
Alhaydary E, Yousif E, Al-Mashhadani MH, Ahmed DS, Jawad AH, Bufaroosha M, Ahmed AA. Sulfamethoxazole as a ligand to synthesize di- and tri-alkyltin(IV) complexes and using as excellent photo-stabilizers for PVC. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02822-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Adeyemi JO, Saibu GM, Olasunkanmi LO, Fadaka AO, Meyer M, Sibuyi NR, Onwudiwe DC, Oyedeji AO. Synthesis, computational and biological studies of alkyltin(IV) N-methyl- N-hydroxyethyl dithiocarbamate complexes. Heliyon 2021; 7:e07693. [PMID: 34430727 PMCID: PMC8365376 DOI: 10.1016/j.heliyon.2021.e07693] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 07/24/2021] [Accepted: 07/29/2021] [Indexed: 11/26/2022] Open
Abstract
Methyltin(IV) of butyltin(IV)-N-hydroxyethyl dithiocarbamate complexes, represented as [(CH3)2Sn(L(OH))2] and [(C4H9)2Sn(L(OH))2] respectively were synthesized and characterized using spectroscopic techniques (1H, 13C and 119Sn NMR) and elemental analysis. Both infrared and NMR data showed that, the complexes were formed via two sulphur atoms of the dithiocarbamate group. This mode of coordination was further supported by the DFT calculation, which suggested the formation of a distorted octahedral geometry around the tin atom. The complexes were screened for their antioxidant, cytotoxicity and anti-inflammatory properties. Four different assays including DPPH, nitric oxide, reducing power and hydrogen peroxides were used for the antioxidant studies, while an in vitro anti-inflammatory study was done using albumin denaturation assay. The complexes showed good antioxidant activity, especially in the DPPH assay. Butyltin(IV)-N-hydroxyethyl dithiocarbamate showed better cytotoxicity activity compared to methyltin(IV)-N-hydroxyethyl dithiocarbamate in the selected cell lines, which included KMST-6, Caco-2 and A549 cell lines. The anti-inflammatory activities revealed that the two complexes have useful activities better than diclofenac used as control drug.
Collapse
Affiliation(s)
- Jerry O. Adeyemi
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa
- Department of Chemistry, Faculty of Natural and Agricultural, Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | - Gbemisola M. Saibu
- Risk & Vulnerability Science Centre, Walter Sisulu University, Nelson Mandela Drive, Mthatha, Private Bag X1, 5099, South Africa
| | - Lukman O. Olasunkanmi
- Department of Chemistry, Faculty of Science, Obafemi Awolowo University, Ile-Ife 220005, Nigeria
| | - Adewale O. Fadaka
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535 Cape Town, South Africa
| | - Mervin Meyer
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535 Cape Town, South Africa
| | - Nicole R.S. Sibuyi
- Department of Science and Innovation/Mintek Nanotechnology Innovation Centre, Biolabels Node, Department of Biotechnology, Faculty of Natural Sciences, University of the Western Cape, Private Bag X17, Bellville, 7535 Cape Town, South Africa
| | - Damian C. Onwudiwe
- Material Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho, South Africa
- Department of Chemistry, Faculty of Natural and Agricultural, Science, North-West University (Mafikeng Campus), Private Bag X2046, Mmabatho 2735, South Africa
| | - Adebola O. Oyedeji
- Department of Chemical & Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Mthatha, South Africa
| |
Collapse
|
10
|
Uddin N, Rashid F, Haider A, Tirmizi SA, Raheel A, Imran M, Zaib S, Diaconescu PL, Iqbal J, Ali S. Triorganotin (IV) carboxylates as potential anticancer agents: Their synthesis, physiochemical characterization, and cytotoxic activity against HeLa and MCF‐7 cancer cells. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Noor Uddin
- Department of Chemistry Quaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Faisal Rashid
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad 22060 Pakistan
| | - Ali Haider
- Department of Chemistry Quaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Syed Ahmed Tirmizi
- Department of Chemistry Quaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Ahmad Raheel
- Department of Chemistry Quaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Muhammad Imran
- Department of Chemistry Quaid‐i‐Azam University Islamabad 45320 Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad 22060 Pakistan
- Department of Biochemistry, Faculty of Life Sciences University of Central Punjab Lahore 54590 Pakistan
| | - Paula L. Diaconescu
- Department of Chemistry and Biochemistry University of California Los Angeles 607 Charles E. Young Drive East Los Angeles California 90095 USA
| | - Jamshed Iqbal
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad 22060 Pakistan
| | - Saqib Ali
- Department of Chemistry Quaid‐i‐Azam University Islamabad 45320 Pakistan
| |
Collapse
|
11
|
Rashid F, Uddin N, Ali S, Haider A, Tirmizi SA, Diaconescu PL, Iqbal J. New triorganotin(iv) compounds with aromatic carboxylate ligands: synthesis and evaluation of the pro-apoptotic mechanism. RSC Adv 2021; 11:4499-4514. [PMID: 35424423 PMCID: PMC8694426 DOI: 10.1039/d0ra06695h] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/19/2020] [Indexed: 01/04/2023] Open
Abstract
Three new organotin(iv) carboxylate compounds were synthesized and structurally characterized by elemental analysis and FT-IR and multinuclear NMR (1H, 13C, 119Sn) spectroscopy. Single X-ray crystallography reveals that compound C2 has a monoclinic crystal system with space group P21/c having distorted bipyramidal geometry defined by C3SnO2. The synthesized compounds were screened for drug-DNA interactions via UV-Vis spectroscopy and cyclic voltammetry showing good activity with high binding constants. Theoretical investigations also support the reactivity of the compounds as depicted from natural bond orbital (NBO) analysis using Gaussian 09. Synthesized compounds were initially evaluated on two cancer (HeLa and MCF-7) cell lines and cytotoxicity to normal cells was evaluated using a non-cancerous (BHK-21) cell line. All the compounds were found to be active, with IC50 values less than that of the standard drug i.e. cisplatin. The cytotoxic effect of the most potent compound C2 was confirmed by LDH cytotoxicity assay and fluorescence imaging after PI staining. Apoptotic features in compound C2 treated cancer cells were visualized after DAPI staining while regulation of apoptosis was observed by reactive oxygen species generation, binding of C2 with DNA, a change in mitochondrial membrane potential and expression of activated caspase-9 and caspase-3 in cancer cells. Results are indicative of activation of the intrinsic pathway of apoptosis in C2 treated cancer cells.
Collapse
Affiliation(s)
- Faisal Rashid
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
| | - Noor Uddin
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Saqib Ali
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Ali Haider
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Syed Ahmad Tirmizi
- Department of Chemistry, Quaid-i-Azam University 45320-Islamabad Pakistan
| | - Paula L Diaconescu
- Department of Chemistry and Biochemistry, University of California Los Angeles607 Charles E. Young Drive East Los Angeles CA 90095 USA
| | - Jamshed Iqbal
- Centre for Advanced Drug Research COMSATS University Islamabad, Abbottabad Campus Abbottabad-22060 Pakistan
| |
Collapse
|
12
|
Román T, Ramirez D, Fierro-Medina R, Santillan R, Farfán N. Ferrocene and Organotin (IV) Conjugates Containing Amino Acids and Peptides: A Promising Strategy for Searching New Therapeutic and Diagnostic Tools. CURR ORG CHEM 2020. [DOI: 10.2174/1385272824999201001154259] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Organometallic complexes are an important class of synthetic reagents and are of
great interest due to their versatility and wide biological application. The cationic nature of the
coordination nucleus facilitates its interaction with biological molecules such as amino acids,
proteins, and nucleic acids. The functionalization of peptides or amino acids with organometallic
motifs is a novel strategy for the design and development of molecules with greater biological
activity, stability in biological environments, and selectivity for specific targets, which
make them valuable tools for designing and obtaining molecules with therapeutic applications.
The physicochemical properties of ferrocene make it ideal for drug development, due to its
structure, stability in aqueous solutions, redox properties, and low toxicity. In the same way,
organotin (IV) derivatives have great potential for drug development because of their multiple
biological activities, wide structural versatility, high degree of stability, and low toxicity.
However, the synthesis of these drugs based on organometallic molecules containing ferrocene or organotin (IV) is
quite complex and represents a challenge nowadays; for this reason, it is necessary to design and implement procedures
to obtain molecules with a high degree of purity, in sufficient quantities, and at low cost. This review describes
the strategies of synthesis used up to now for the preparation of organometallic amino acids and peptides
containing ferrocene or organotin (IV) derivates, as well as their impact on the development of therapeutic agents.
Collapse
Affiliation(s)
- Tatiana Román
- Departamento de Farmacia, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogota D.C., Colombia
| | - David Ramirez
- Departamento de Quimica. Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogota D.C., Colombia
| | - Ricardo Fierro-Medina
- Departamento de Quimica. Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 45 # 26-85, Bogota D.C., Colombia
| | - Rosa Santillan
- Departamento de Quimica, Centro de Investigacion y de Estudios Avanzados del IPN, Av Instituto Politecnico Nacional 2508, San Pedro Zacatenco, Gustavo A. Madero, 07360 Ciudad de Mexico, CDMX, Mexico
| | - Norberto Farfán
- Facultad de Quimica, Departamento de Quimica Organica, Universidad Nacional Autonoma de Mexico, Av. Universidad 3000, Circuito Exterior S/N Delegacion Coyoacan, C.P. 04510 Ciudad Universitaria, Ciudad de Mexico, CDMX, Mexico
| |
Collapse
|
13
|
Hu W, Pang M, Li L, Yu W, Mou Y, Wang H, Lian Y. High-Throughput Speciation of Triethyl Tin, Tributyl Tin, and Triphenyl Tin in Environmental Water by Ultra-Performance Liquid Chromatography – Tandem Mass Spectrometry (UPLC-MS/MS). ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1833341] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Wenling Hu
- Jiaxing Eco-Environmental Monitoring Center of Zhejiang, Jiaxing, Zhejiang, China
| | - Ming Pang
- Jiaxing Qiuyuan Testing Technology Company, Jiaxing, Zhejiang, China
| | - Li Li
- Jiaxing Eco-Environmental Monitoring Center of Zhejiang, Jiaxing, Zhejiang, China
| | - Weijuan Yu
- Jiaxing Eco-Environmental Monitoring Center of Zhejiang, Jiaxing, Zhejiang, China
| | - Yuan Mou
- Jiaxing Qiuyuan Testing Technology Company, Jiaxing, Zhejiang, China
| | - Hongmei Wang
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| | - Yuan Lian
- College of Material and Textile Engineering, Jiaxing University, Jiaxing, Zhejiang, China
| |
Collapse
|
14
|
Adeyemi JO, Onwudiwe DC. The mechanisms of action involving dithiocarbamate complexes in biological systems. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119809] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
15
|
Synthesis, Structural and Biological Studies of Organotin(IV) Complexes with N-(Dithiocarboxy) Sarcosine. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2020. [DOI: 10.1007/s13369-020-04496-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
16
|
Attanzio A, D’Agostino S, Busà R, Frazzitta A, Rubino S, Girasolo MA, Sabatino P, Tesoriere L. Cytotoxic Activity of Organotin(IV) Derivatives with Triazolopyrimidine Containing Exocyclic Oxygen Atoms. Molecules 2020; 25:E859. [PMID: 32075253 PMCID: PMC7070731 DOI: 10.3390/molecules25040859] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/07/2020] [Accepted: 02/14/2020] [Indexed: 12/28/2022] Open
Abstract
In this study cytotoxicity of organotin(IV) compounds with 1,2,4-triazolo[1,5-a]pyrimidines, Me3Sn(5tpO) (1), n-Bu3Sn(5tpO) (2), Me3Sn(mtpO) (3), n-Bu3Sn(mtpO) (4), n-Bu3Sn(HtpO2) (5), Ph3Sn(HtpO2) (6) where 5HtpO = 4,5-dihydro-5-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, HmtpO = 4,7-dihydro-5-methyl-7-oxo-[1,2,4]triazolo-[1,5-a]pyrimidine, and H2tpO2 = 4,5,6,7-tetrahydro-5,7- dioxo-[1,2,4]triazolo-[1,5-a]-pyrimidine, was assessed on three different human tumor cell lines: HCT-116 (colorectal carcinoma), HepG2 (hepatocarcinoma) and MCF-7 (breast cancer). While 1 and 3 were inactive, compounds 2, 4, 5 and 6 inhibited the growth of the three tumor cell lines with IC50 values in the submicromolar range and showed high selectivity indexes towards the tumor cells (SI > 90). The mechanism of cell death triggered by the organotin(IV) derivatives, investigated on HCT-116 cells, was apoptotic, as evident from the externalization of phosphatidylserine to the cell surface, and occurred via the intrinsic pathway with fall of mitochondrial inner membrane potential and production of reactive oxygen species. While compound 6 arrested the cell progression in the G2/M cell cycle phase and increased p53 and p21 levels, compounds 2, 4 and 5 blocked cell duplication in the G1 phase without affecting the expression of either of the two tumor suppressor proteins. Compounds 1 and 2 were also investigated using single crystal X-ray diffraction and found to be, in both cases, coordination polymers forming 1 D chains based on metal-ligand interactions. Interestingly, for n-Bu3Sn(5tpO)(2) H-bonding interactions between 5tpO- ligands belonging to adjacent chains were also detected that resemble the "base-pairing" assembly and could be responsible for the higher biological activity compared to compound 1. In addition, they are the first example of bidentate N(3), O coordination for the 5HtpO ligand on two adjacent metal atoms.
Collapse
Affiliation(s)
- Alessandro Attanzio
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Parco d’Orleans II, Viale delle Scienze-Pad., 16-90128 Palermo, Italy; (A.A.); (R.B.); (A.F.); (S.R.); (M.A.G.)
| | - Simone D’Agostino
- Department of Chemistry “G. Ciamician”, University of Bologna, via F. Selmi 2, 40126 Bologna, Italy;
| | - Rosalia Busà
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Parco d’Orleans II, Viale delle Scienze-Pad., 16-90128 Palermo, Italy; (A.A.); (R.B.); (A.F.); (S.R.); (M.A.G.)
| | - Anna Frazzitta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Parco d’Orleans II, Viale delle Scienze-Pad., 16-90128 Palermo, Italy; (A.A.); (R.B.); (A.F.); (S.R.); (M.A.G.)
| | - Simona Rubino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Parco d’Orleans II, Viale delle Scienze-Pad., 16-90128 Palermo, Italy; (A.A.); (R.B.); (A.F.); (S.R.); (M.A.G.)
| | - Maria Assunta Girasolo
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Parco d’Orleans II, Viale delle Scienze-Pad., 16-90128 Palermo, Italy; (A.A.); (R.B.); (A.F.); (S.R.); (M.A.G.)
| | - Piera Sabatino
- Department of Chemistry “G. Ciamician”, University of Bologna, via F. Selmi 2, 40126 Bologna, Italy;
| | - Luisa Tesoriere
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Parco d’Orleans II, Viale delle Scienze-Pad., 16-90128 Palermo, Italy; (A.A.); (R.B.); (A.F.); (S.R.); (M.A.G.)
| |
Collapse
|
17
|
Andleeb S, Imtiaz-ud-Din. Recent progress in designing the synthetic strategies for bismuth based complexes. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.120871] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
18
|
Adeyemi JO, Onwudiwe DC, Singh M. Synthesis, characterization, and cytotoxicity study of organotin(IV) complexes involving different dithiocarbamate groups. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.11.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|