1
|
Katsuba KE, Zabegina LM, Plevako DS, Gurtovenko AA, Malek AV. Targeting HER2 with DNA Aptamers for Efficient Anticancer Drug Delivery: A Combined Experimental and Computational Study. Bioconjug Chem 2025. [PMID: 40403699 DOI: 10.1021/acs.bioconjchem.5c00022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Targeted delivery of cytostatic drugs is a powerful approach to achieving tumor tissue selectivity, reducing systemic toxicity, and ultimately improving the efficacy of anticancer chemotherapy. Targeting can be achieved using a wide range of molecular ligands, with DNA aptamers being a promising representative. In this work, we employed flow cytometry, a AuNP-aptasensor, and atomic-scale computer modeling to assess the affinity of several DNA aptamers (Anti-HER2, HB5, Apt-6, HeA2_1, and HeA2_3) for human epidermal growth factor receptor 2 (HER2), which is known to be one of the factors that promote the growth of breast cancer cells. Flow cytometry showed that short aptamers (HeA2_1 and HeA2_3) had a higher affinity for HER2 on MDAMB453 cancer cells than longer aptamers (HB5, Apt-6). HER2-negative MDA-MB-231 cells served as the negative control. The HeA2_3 aptamer has a high average affinity (HeA2_3:23.6, HeA2_1:13.1, Apt-6:3.6; HB5:3.5; Anti-HER2:3.2) and a nearly Gaussian distribution across the cells, while HeA2_1 forms a fraction of cells with a relatively high fluorescence signal intensity (HeA2_1:11.6; HeA2_3:5.9; Apt-6:3.4; HB5:3.1; Anti-HER2:2.1). Most of the findings for cancer cells also hold for the HER2-positive small extracellular vesicles studied using the AuNP-aptasensor. Computer simulations confirmed that short aptamers are characterized by stronger binding to the extracellular domain of HER2. A detailed analysis of the free energy allowed us to show for the first time that tight binding to HER2 correlates with well-separated hot and cold spots on the protein surface. For the aptamers that meet these criteria (HeA2_1, HeA2_3, and Anti-HER2), favorable interactions with HER2 are driven by the local attraction of nucleotides to arginine and lysine residues of HER2 and possibly stabilized by intermolecular hydrogen bonds. For longer aptamers (Apt-6 and HB5), hot and cold spots on the HER2 surface overlap and the aptamers show much weaker binding. Overall, our findings show that binding of DNA aptamers to HER2 cannot be characterized merely by the dissociation equilibrium constant. A more sophisticated approach that combines experimental and computational methods allowed us to unlock the molecular mechanisms behind the aptamer-HER2 bindings. The results of our study also suggest that computer modeling has become a reliable and accurate tool for aptamer prescreening prior to laboratory experiments.
Collapse
Affiliation(s)
- Konstantin E Katsuba
- N.N. Petrov National Medical Research Center of Oncology, Pesochny, Leningradskaya 68, St. Petersburg 197758, Russia
| | - Lidia M Zabegina
- N.N. Petrov National Medical Research Center of Oncology, Pesochny, Leningradskaya 68, St. Petersburg 197758, Russia
| | - Daniil S Plevako
- N.N. Petrov National Medical Research Center of Oncology, Pesochny, Leningradskaya 68, St. Petersburg 197758, Russia
| | - Andrey A Gurtovenko
- Branch of Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre "Kurchatov Institute", Institute of Macromolecular Compounds, Bolshoi Prospect V.O. 31, St. Petersburg 199004, Russia
| | - Anastasia V Malek
- N.N. Petrov National Medical Research Center of Oncology, Pesochny, Leningradskaya 68, St. Petersburg 197758, Russia
| |
Collapse
|
2
|
Russo A, Tellone E, Farsaci F. Exploring Tumor Cell-Platelet Biochemical Interactions by Dielectric Measurements of Blood: A Potential Target for Tumor Detection and Staging. BIOLOGY 2025; 14:542. [PMID: 40427731 PMCID: PMC12108633 DOI: 10.3390/biology14050542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/29/2025]
Abstract
This paper aims to investigate the dielectric properties of blood for tumor detection and staging. The application of complex thermodynamic models and the study of the trend over time of some thermodynamic functions have allowed us to highlight the generation of displacement currents caused by changes in charge, i.e., by the activation and consequent accumulation of platelets on migrating tumor cells. Although few studies exist to date in this regard, the technique used has provided promising results, especially in terms of building a database. In this context, the evaluation of the dielectric parameters of healthy and cancerous blood can be exploited for the staging of cancer. The main advantages of this method include easy application, non-invasiveness, low cost, and online monitoring.
Collapse
Affiliation(s)
- Annamaria Russo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy; (E.T.); (F.F.)
| | | | | |
Collapse
|
3
|
Meng F, He Y, Zhao J, Yuan Z, Wang J, Parra KG, Fishel ML, Ratliff TL, Yeo Y. Timely administration of drug combination improves chemoimmunotherapy of an immune-cold tumor. J Control Release 2025; 381:113579. [PMID: 40023227 PMCID: PMC12002645 DOI: 10.1016/j.jconrel.2025.02.075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
An immunoactive complex consisting of a polyethyleneimine derivative (2E'), paclitaxel (PTX), and cyclic dinucleotide (CDN) was developed for chemoimmunotherapy of solid tumors. Each component uniquely contributes to stimulating innate immune response to tumors: 2E' carries PTX and CDN while stimulating antigen-presenting cells, PTX induces immunogenic cell death, and CDN activates the STING pathway. A single intratumoral injection of 2E'/PTX/CDN inhibited the growth of MOC1 oral squamous cell carcinoma and KPCY (2838c3) pancreatic tumors, achieving complete tumor regression in 80-100 % of mice. However, 2E'/PTX/CDN showed limited therapeutic efficacy with immune-cold B16F10 melanoma, accompanied by the increase of innate immune cells in the tumor draining lymph nodes peaking on day 5 post-administration and subsiding thereafter. The addition of a complex of 2E' and siRNA targeting PD-L1 (siPD-L1) at an optimal 5-d interval improved the response in B16F10 melanoma, resulting in tumor-free survival in 50 % of mice and rejection of live tumor rechallenge in 67 % of surviving animals. Consistent with the function of each component, the timed combination of 2E'/PTX/CDN and 2E'/siPD-L1 increased the fractions of mature dendritic cells and M1 macrophages, prevented the increase of regulatory T cells in tumor-draining lymph nodes, and increased melanoma antigen-specific CD8+ T cells in the spleen. These results demonstrate the effectiveness of the 2E'/PTX/CDN complex in the chemoimmunotherapy of solid tumors and highlight the significance of timely intervention to sustain the immunoactive phenotype in its application to immune-cold tumors.
Collapse
Affiliation(s)
- Fanfei Meng
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Department of Biomedical and Nutritional Sciences, University of Massachusetts Lowell, 3 Solomont Way, Lowell, MA 01854, USA
| | - Yanying He
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jiaqi Zhao
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Zhongyue Yuan
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Jianping Wang
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Karen Gutierrez Parra
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA
| | - Melissa L Fishel
- Departments of Pediatrics and of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Timothy L Ratliff
- Purdue University Institute for Cancer Research, 201 South University Street, West Lafayette, IN 47907, USA; Department of Comparative Pathobiology, Purdue University, 625 Harrison Street, West Lafayette, Indiana 47907, USA
| | - Yoon Yeo
- Department of Industrial and Molecular Pharmaceutics, Purdue University, 575 Stadium Mall Drive, West Lafayette, IN 47907, USA; Purdue University Institute for Cancer Research, 201 South University Street, West Lafayette, IN 47907, USA; Weldon School of Biomedical Engineering, Purdue University, 206 S Martin Jischke Drive, West Lafayette, IN 47907, USA.
| |
Collapse
|
4
|
Alemi PS, Mohamadali M, Arabahmadi S, Irani S, Sharifi F. Carboxymethyl Chitosan and Chitosan as a Bioactive Delivery System: A Review. Biotechnol Appl Biochem 2025:e2758. [PMID: 40275440 DOI: 10.1002/bab.2758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 02/16/2025] [Indexed: 04/26/2025]
Abstract
The functionality and mechanism of bioactive agents (BA) in treating various diseases have been studied as a progressive route. Designing an effective delivery system for transferring these molecules and components is a major challenge. For that reason, a wide range of biomaterials has been introduced to deliver BA to the target tissue or cells. Chitosan (CTS) is a nontoxic, biocompatible, biodegradable, and notable point low-cost polymer, and, as a result, can be effectively utilized in the formulation of diverse delivery systems, in biomedical applications. However, CTS has some limitations, such as poor solubility in aqueous and alkaline media, rapid swelling and degradation, and consequence fast release agent. The CTS derivative carboxymethyl chitosan (CMC) is an acceptable candidate for overcoming these limitations. CMC is a high-impact grade for pharmaceutical and biomedical applications because of its nontoxic, biocompatible, biodegradable, gelation, mucoadhesive, antibacterial, and antifungal. CMC bioactivity potentials are related to carboxyl and methyl groups added through chemical modification in the CTS backbone. In this review, the physical and chemical properties of CTS and CMC have been introduced and discussed. Afterward, its biomedical applications with delivery approaches for various BA (drugs, genes, proteins), microfluidic, and cancer have been considered.
Collapse
Affiliation(s)
- Parinaz Sadat Alemi
- Department of Biological Sciences, University of Texas at Dallas, Richardson, Texas, USA
| | - Marjan Mohamadali
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Samira Arabahmadi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shiva Irani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Fereshteh Sharifi
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
- Soft Tissue Engineering Research Center, Tissue Engineering and Regenerative Medicine Institute, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
5
|
Varela-Quitián YF, Mendez-Rivera FE, Bernal-Estévez DA. Cationic antimicrobial peptides: potential templates for anticancer agents. Front Med (Lausanne) 2025; 12:1548603. [PMID: 40342581 PMCID: PMC12058764 DOI: 10.3389/fmed.2025.1548603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 04/07/2025] [Indexed: 05/11/2025] Open
Abstract
Cancer is a major global health concern and one of the leading causes of death worldwide. According to the World Health Organization (WHO), there is an urgent need for novel therapeutic agents to treat this disease. Some antimicrobial peptides (AMPs) have demonstrated activity against both microbial pathogens and cancer cells. Among these, cationic AMPs (CAMPs) have garnered significant attention because of their ability to selectively interact with the negatively charged surfaces of cancer cell membranes. CAMPs present several advantages such as high specificity for targeting cancer cells, minimal toxicity to normal cells, reduced probability of inducing resistance, stability under physiological conditions, ease of chemical modification, and low production costs. This review focuses on CAMPs with anticancer properties such as KLA, bovine lactoferricin derivatives, and LTX-315, and briefly explores common bioinformatics tools for Anticancer Peptides (ACPs) selection pipeline from AMPs.
Collapse
|
6
|
Tashima T. Non-Invasive Delivery of CRISPR/Cas9 Ribonucleoproteins (Cas9 RNPs) into Cells via Nanoparticles for Membrane Transport. Pharmaceutics 2025; 17:201. [PMID: 40006568 PMCID: PMC11859894 DOI: 10.3390/pharmaceutics17020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 01/31/2025] [Accepted: 02/02/2025] [Indexed: 02/27/2025] Open
Abstract
The clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9) system is a promising biotechnology tool for genome editing. However, in living organisms, several pharmacokinetic challenges arise, including off-target side effects due to incorrect distribution, low bioavailability caused by membrane impermeability, and instability resulting from enzymatic degradation. Therefore, innovative delivery strategies must be developed to address these issues. Modified nanoparticles offer a potential solution for the non-invasive delivery of CRISPR/Cas9 ribonucleoproteins (Cas9 RNPs). Cas9 RNPs encapsulated in nanoparticles are protected from enzymatic degradation, similar to how microRNAs are shielded within exosomes. It is well-established that certain materials, including proteins, are expressed selectively in specific cell types. For example, the α-7 nicotinic receptor is expressed in endothelial and neuronal cells, while the αvβ3 integrin is expressed in cancer cells. These endogenous materials can facilitate receptor-mediated endocytosis or transcytosis. Nanoparticles encapsulating Cas9 RNPs and coated with ligands targeting such receptors may be internalized through receptor-mediated mechanisms. Once internalized, Cas9 RNPs could perform the desired gene editing in the nucleus after escaping the endosome through mechanisms such as the proton sponge effect or membrane fusion. In this review, I discuss the potential and advantages of delivering Cas9 RNP-encapsulated nanoparticles coated with ligands through receptor-mediated endocytosis or transcytosis.
Collapse
Affiliation(s)
- Toshihiko Tashima
- Tashima Laboratories of Arts and Sciences, 1239-5 Toriyama-cho, Kohoku-ku, Yokohama 222-0035, Japan
| |
Collapse
|
7
|
Bayle EA, Ilhami FB, Chen JK, Cheng CC. Potential of a CO 2-Responsive supramolecular drug-carrier system as a safer and more effective treatment for cancer. Mater Today Bio 2024; 29:101319. [PMID: 39554842 PMCID: PMC11567101 DOI: 10.1016/j.mtbio.2024.101319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/15/2024] [Accepted: 10/27/2024] [Indexed: 11/19/2024] Open
Abstract
We combined carbon dioxide (CO2)-responsive cytosine-containing rhodamine 6G (Cy-R6G) as a hydrophobic anticancer agent with hydrogen-bonded cytosine-functionalized polyethylene glycol (Cy-PEG) as a hydrophilic supramolecular carrier to construct a CO2-responsive drug delivery system, with the aim of enhancing the responsiveness of the system to the tumor microenvironment and thus the overall effectiveness of anticancer therapy. Due to self-complementary hydrogen bonding interactions between cytosine units, Cy-R6G and Cy-PEG co-assemble in water to form spherical-like nanogels, with Cy-R6G effectively encapsulated within the nanogels. The nanogels exhibit several distinctive physical features, such as widely tunable nanogel size and drug loading capacity for Cy-R6G, intriguing fluorescence properties, high co-assembled structural stability in normal aqueous environments, enhanced anti-hemolytic characteristics, sensitive dual CO2/pH-responsive behavior, and precise and easily controllable CO2-induced release of Cy-R6G. Cytotoxicity assays clearly indicated that, due to the presence of cytosine receptors on the surface of cancer cells, Cy-R6G-loaded nanogels exert selective cytotoxicity against cancer cells in pristine culture medium, but do not affect the viability of normal cells. Surprisingly, in CO2-rich culture medium, Cy-R6G-loaded nanogels exhibit a further significant enhancement in cytotoxicity against cancer cells, and remain non-cytotoxic to normal cells. More importantly, a series of in vitro experiments demonstrated that compared to pristine culture medium, CO2-rich culture medium promotes more rapid selective internalization of Cy-R6G-loaded nanogels into cancer cells through cytosine-mediated macropinocytosis and thus accelerates the induction of apoptosis. Therefore, this newly developed system provides novel avenues for the development of highly effective CO2-responsive drug delivery systems with potent anticancer capabilities.
Collapse
Affiliation(s)
- Enyew Alemayehu Bayle
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Department of Natural Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya, 60231, Indonesia
| | - Jem-Kun Chen
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| |
Collapse
|
8
|
Vu THN, Morozkina SN, Olekhnovich RO, Podshivalov AV, Uspenskaya MV. Study on Fabrication and Properties of Polyvinyl Alcohol/Chitosan Nanofibers Created from Aqueous Solution with Acetic Acid and Ethanol by the Electrospinning Method. Polymers (Basel) 2024; 16:3393. [PMID: 39684138 DOI: 10.3390/polym16233393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/26/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The development of nanofibers with incorporated biologically active molecules with a targeted mode of action is a current research trend. Potential materials for the development of such systems include poly(vinyl alcohol) (PVA) and chitosan (CS) nanofibers, which are traditionally fabricated by the electrospinning of aqueous solutions of these polymers with acetic acid. To improve drug integration, ethanol was added to the binary-solvent system. This results in several important data: noticeable shifts in the solvent system's solubility parameter, the interaction of the various component forces, and optical and rheological properties of the PVA-CS solution. The use of ethanol in the electrospun solution also contributes to adjusting the solubility parameters of the solution in the Teas graph, maintaining the "fh - fd" in the optimal region for the fabrication of PVA-CS nanofibers. Increasing the efficiency of PVA-CS nanofiber fabrication by electrospinning is quite difficult due to the requirements of solution parameters, technological parameters, and environmental parameters; however, this efficiency was increased in this work by 2 to 3 times with a more optimal PVA-CS nanofiber morphology. These results demonstrate that aqueous solution containing 4% PVA, 3% CS, 15% ethanol, and 45% acetic acid is optimal for increasing the nanofiber fabrication productivity, improving the morphology and diameter of PVA-CS nanofibers without changing in chemical bonds. The XRD spectrum revealed that the alterations in the crystal lattice and diameter of the PVA-CS nanofibers led to the variation in their thermal and tensile properties.
Collapse
Affiliation(s)
- Thi Hong Nhung Vu
- Faculty of Basic Sciences, Vietnam National University of Forestry at Dong Nai, Trang Bom 76000, Dong Nai Province, Vietnam
| | - Svetlana N Morozkina
- Kabardino-Balkarian State University, Chernyshevskogo 173, 360004 Nalchik, Russia
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 St. Petersburg, Russia
| | - Roman O Olekhnovich
- Civil Engineering Institute, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29 B, 195251 St. Petersburg, Russia
- Institute of Chemistry, St. Petersburg State University, 7-9 Universitetskaya Embankment, 199034 St. Petersburg, Russia
| | - Aleksandr V Podshivalov
- Center for Chemical Engineering, ITMO University, Kronverkskiy Prospekt, 49A, 197101 St. Petersburg, Russia
| | - Mayya V Uspenskaya
- Civil Engineering Institute, Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya, 29 B, 195251 St. Petersburg, Russia
| |
Collapse
|
9
|
Iliev I, Tsoneva I, Nesheva A, Staneva G, Robev B, Momchilova A, Nikolova B. Complementary Treatment of Breast Cancer Cells with Different Metastatic Potential with Iscador Qu in the Presence of Clinically Approved Anticancer Drugs. Curr Issues Mol Biol 2024; 46:12457-12480. [PMID: 39590334 PMCID: PMC11593002 DOI: 10.3390/cimb46110740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/28/2024] [Accepted: 11/03/2024] [Indexed: 11/28/2024] Open
Abstract
European mistletoe extract (Iscador Qu) has been studied for decades, but it has not ceased to arouse scientific interest. The purpose was to investigate the impact of Iscador Qu on the antiproliferative potential of 11 standard chemotherapeutic agents on two breast cancer cell lines: MCF-7 low-metastatic and MDA-MB-231 high-metastatic and control cell lines (MCF-10A). MTT-dye reduction assay, FACS analysis, and PI staining were utilized. The most promising combinations acting against the MDA-MB-231 cell line were observed upon the simultaneous application of Iscador Qu (80 µg/mL) and Docetaxel, with 4-fold reduction in IC50. An antagonistic effect was found under treatment with Cisplatin and Iscador Qu (1.5-fold increase in IC50). The response of the low-metastatic breast cancer cell line MCF-7 to the tested combinations was different compared to the high-metastatic one. The most pronounced cytotoxic effect was found for the combination of Oxaliplatin and Iscador Qu (20 µg/mL) (5.2-fold IC50 reduction). An antagonistic effect for MCF-7 line was also observed when combinations with Olaparib and Tamoxifen were applied. This in vitro study offers new combinations between Iscador Qu and standard chemotherapeutic agents that hold great promise in establishing breast cancer therapeutic protocols compared to traditional monotherapies.
Collapse
Affiliation(s)
- Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 25, 1113 Sofia, Bulgaria;
| | - Iana Tsoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.T.); (A.N.); (A.M.)
| | - Aleksandrina Nesheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.T.); (A.N.); (A.M.)
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.T.); (A.N.); (A.M.)
| | - Bozhil Robev
- Department of Medical Oncology, University Hospital “Sv. Ivan Rilski”, 15 Acad. Ivan Geshov Blvd, 1431 Sofia, Bulgaria;
| | - Albena Momchilova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.T.); (A.N.); (A.M.)
| | - Biliana Nikolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 21, 1113 Sofia, Bulgaria; (I.T.); (A.N.); (A.M.)
| |
Collapse
|
10
|
Liu A, Huang Z, Du X, Duvva N, Du Y, Teng Z, Liao Z, Liu C, Tian H, Huo S. Biodegradable Ruthenium-Rhenium Complexes Containing Nanoamplifiers: Triggering ROS-Induced CO Release for Synergistic Cancer Treatment. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403795. [PMID: 38995228 PMCID: PMC11425273 DOI: 10.1002/advs.202403795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/03/2024] [Indexed: 07/13/2024]
Abstract
The constrained effectiveness of photodynamic therapy (PDT) has impeded its widespread use in clinical practice. Urgent efforts are needed to address the shortcomings faced in photodynamic therapy, such as photosensitizer toxicity, short half-life, and limited action range of reactive oxygen species (ROS). In this study, a biodegradable copolymer nanoamplifier is reported that contains ruthenium complex (Ru-complex) as photosensitizer (PS) and rhenium complex (Re-complex) as carbon monoxide (CO)-release molecule (CORM). The well-designed nanoamplifier brings PS and CORM into close spatial proximity, significantly promotes the utilization of light-stimulated reactive oxygen species (ROS), and cascaded amplifying CO release, thus enabling an enhanced synergistic effect of PDT and gas therapy for cancer treatment. Moreover, owing to its intrinsic photodegradable nature, the nanoamplifier exhibits good tumor accumulation and penetration ability, and excellent biocompatibility in vivo. These findings suggest that the biodegradable cascaded nanoamplifiers pave the way for a synergistic and clinically viable integration of photodynamic and gas therapy.
Collapse
Affiliation(s)
- Aijie Liu
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
- Shenzhen Research Institute of Xiamen UniversityShenzhenGuangdong518057China
| | - Zhenkun Huang
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
| | - Xiangfu Du
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
| | - Naresh Duvva
- Department of Chemistry‐Ångström LaboratoryBox 523 Uppsala UniversityUppsalaSE‐75120Sweden
| | - Yuting Du
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
| | - Zihao Teng
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
| | - Zhihuan Liao
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
| | - Chen Liu
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
| | - Haining Tian
- Department of Chemistry‐Ångström LaboratoryBox 523 Uppsala UniversityUppsalaSE‐75120Sweden
| | - Shuaidong Huo
- State Key Laboratory of Cellular Stress BiologyFujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenFujian361102China
| |
Collapse
|
11
|
Miceli R, Allen NG, Subramaniam B, Carmody L, Dordick JS, Corr DT, Cotten M, Gross RA. Synergistic Treatment of Breast Cancer by Combining the Antimicrobial Peptide Piscidin with a Modified Glycolipid. ACS OMEGA 2024; 9:33408-33424. [PMID: 39130564 PMCID: PMC11308023 DOI: 10.1021/acsomega.3c09902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/30/2024] [Accepted: 06/11/2024] [Indexed: 08/13/2024]
Abstract
Piscidin 3 (P3), a peptide produced by fish, and a hexyl ester-modified sophorolipid (SL-HE), have individually shown promise as antimicrobial and anticancer drugs. A recent report by our team revealed that combining P3 with SL-HE in a 1:8 molar ratio resulted in an 8-fold enhancement in peptide activity, while SL-HE improved by 25-fold its antimicrobial activity against the Gram-positive microorganism Bacillus cereus. Extending these findings, the same P3/SL-HE combination was assessed on two breast cancer cell lines: BT-474, a hormonally positive cell line, and MDA-MB-231, an aggressive triple-negative cell line. The results demonstrated that the 1:8 molar ratio of P3/SL-HE synergistically enhances the anticancer effects against both tumorigenic breast cell lines. Mechanistic studies indicate the activation of an intrinsic apoptotic cell death mechanism through an increase in reactive oxygen species and mitochondrial dysfunction and a secondary programmed necrotic pathway that involves pore formation in the plasma membrane. When a fibroblast cell line, CCD1065SK HDF, was utilized to determine selectivity, the synergistic SL-HE/P3 combination exhibited a protective property compared to the use of SL-HE alone and therefore afforded vastly improved selectivity indices. Given the promising results reported herein, the synergistic combination of P3/SL-HE constitutes a novel strategy that merits further study for the treatment of breast cancer.
Collapse
Affiliation(s)
- Rebecca
T. Miceli
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Noah G. Allen
- Department
of Biomedical Engineering, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Bhagyashree Subramaniam
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - Livia Carmody
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
| | - Jonathan S. Dordick
- Department
of Biomedical Engineering, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
- Department
of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| | - David T. Corr
- Department
of Biomedical Engineering, Rensselaer Polytechnic
Institute, Troy, New York 12180, United States
| | - Myriam Cotten
- Department
of Applied Science, William & Mary, Williamsburg, Virginia 23185, United States
| | - Richard A. Gross
- Department
of Chemistry and Chemical Biology, Rensselaer
Polytechnic Institute, Troy, New York 12180, United States
- Center
for Biotechnology and Interdisciplinary Sciences, Rensselaer Polytechnic Institute, Troy, New York 12180, United States
| |
Collapse
|
12
|
Jalilian S, Bahremand K, Arkan E, Jaymand M, Aghaz F. A comparative study of sericin and gluten for magnetic nanoparticle-mediated drug delivery to breast cancer cell lines. Sci Rep 2024; 14:18150. [PMID: 39103485 PMCID: PMC11300879 DOI: 10.1038/s41598-024-69009-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024] Open
Abstract
With breast cancer emerging as a pressing global health challenge, characterized by escalating incidence rates and geographical disparities, there is a critical need for innovative therapeutic strategies. This comprehensive research navigates the landscape of nanomedicine, specifically focusing on the potential of magnetic nanoparticles (MNPs), with magnetite (Fe3O4) taking center stage. MNPs, encapsulated in biocompatible polymers like silica known as magnetic silica nanoparticles (MSN), are augmented with phosphotungstate (PTA) for enhanced chemodynamic therapy (CDT). PTA is recognized for its dual role as a natural chelator and electron shuttle, expediting electron transfer from ferric (Fe3+) to ferrous (Fe2+) ions within nanoparticles. Additionally, protein-based charge-reversal nanocarriers like silk sericin and gluten are introduced to encapsulate (MSN-PTA) nanoparticles, offering a dynamic facet to drug delivery systems for potential revolutionization of breast cancer therapy. This study successfully formulates and characterizes protein-coated nanocapsules, specifically MSN-PTA-SER, and MSN-PTA-GLU, with optimal physicochemical attributes for drug delivery applications. The careful optimization of sericin and gluten concentrations results in finely tuned nanoparticles, showcasing uniform size, enhanced negative zeta potential, and remarkable stability. Various analyses, from Dynamic Light Scattering (DLS) and scanning electron microscopy (SEM) to transmission electron microscopy (TEM), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray diffraction analysis (XRD), and Thermogravimetric analysis (TGA), provide insights into structural integrity and surface modifications. Vibrating Sample Magnetometer (VSM) analysis underscores superparamagnetic behavior, positioning these nanocapsules as promising candidates for targeted drug delivery. In vitro evaluations demonstrate dose-dependent inhibition of cell viability in MCF-7 and Zr-75-1 breast cancer cells, emphasizing the therapeutic potential of MSN-PTA-SER and MSN-PTA-GLU. The interplay of surface charge and pH-dependent cellular uptake highlights the robust stability and versatility of these nanocarriers in tumor microenvironment, paving the way for advancements in targeted drug delivery and personalized nanomedicine. This comparative analysis explores the suitability of silk sericin and gluten, unraveling a promising avenue for the development of advanced, targeted, and efficient breast cancer treatments.
Collapse
Affiliation(s)
- Saba Jalilian
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Kiana Bahremand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mehdi Jaymand
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Faranak Aghaz
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
13
|
Almeida TC, Giannotti KC, Ribeiro Silva LM, Marques-Porto R, DeOcesano-Pereira C, Camargo L, Chudzinski-Tavassi AM, Reid P, Picolo G. Crotoxin induces cytotoxic effects in human malignant melanoma cells in both native and detoxified forms. Front Pharmacol 2024; 15:1425446. [PMID: 39114354 PMCID: PMC11303296 DOI: 10.3389/fphar.2024.1425446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
Introduction: Melanoma, a highly aggressive skin cancer originating in melanocytes, poses a significant threat due to its metastatic potential. While progress has been made in treating melanoma with targeted therapies and immunotherapies, challenges persist. Crotoxin (CTX), the principal toxin in Crotalus durissus terrificus snake venom, exhibits various biological activities, including anti-tumoral effects across multiple cancers. However, its clinical use is limited by toxicity. Thus, exploring alternatives to mitigate adverse effects is crucial. Methods and Results: This study investigates the antitumoral potential of CTX in its native and in a detoxified form, in melanoma cells. Firstly, we demonstrated that detoxified CTX presented reduced phospholipase activity. Both forms proved to be more cytotoxic to SK-MEL-28 and MeWo melanoma cells than non-tumoral cells. In SK-MEL-28 cells, where cytotoxic effects were more pronounced, native and detoxified CTX induced increased necrosis and apoptosis rates. We also confirmed the apoptosis death demonstrated by the activation of caspase-3 and 7, and the formation of apoptotic bodies. Furthermore, both CTX caused cell cycle arrest at the G2/M phase, interfering with melanoma cell proliferation. Cell migration and invasion were also suppressed by both CTX. These results confirm the antitumoral potential of CTX. Discussion: The maintenance of the antiproliferative effects in the detoxified version, with reduced enzymatic activity often liked to harm effects, supports further studies to identify active parts of the molecule responsible for the interesting effects without causing substantial toxic events, contributing to the future use of CTX-derived drugs with safety and efficacy.
Collapse
Affiliation(s)
| | | | | | | | | | - Lauren Camargo
- Centre of Excellence in New Target Discovering (CENTD), Butantan Institute, Sao Paulo, Brazil
| | | | - Paul Reid
- Celtic Biotech Ltd., Dublin, Ireland
| | - Gisele Picolo
- Laboratory of Pain and Signaling, Butantan Institute, Sao Paulo, Brazil
| |
Collapse
|
14
|
Lu VM, Shah AH, González MM. The Potential of Liquorpheresis to Treat Leptomeningeal Disease. World Neurosurg 2024; 187:93-98. [PMID: 38636632 DOI: 10.1016/j.wneu.2024.04.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024]
Abstract
Leptomeningeal disease (LMD) is a devastating sequela of many cancers, with an extremely poor prognosis. Barriers to improving outcomes are related to the inability of many traditional therapies to effectively reach the cerebrospinal fluid (CSF) space within the central nervous system. Liquorpheresis is an emerging treatment modality specific to CSF diseases, the primary mechanism of action of which is direct targeted filtration of CSF content by neurosurgical access. In this review, we highlight the principles of liquorpheresis and detail how LMD can be amenable to this treatment. Further, we summarize the current in vitro and in vivo evidence supporting liquorpheresis as a feasible method to treat LMD and other central nervous system diseases as well as describe its conceivable limitations.
Collapse
Affiliation(s)
- Victor M Lu
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA.
| | - Ashish H Shah
- Department of Neurological Surgery, University of Miami, Miami, Florida, USA
| | - Manuel Menéndez González
- Department of Medicine, Hospital Universitario Central de Asturias, University of Oviedo, Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias, Oviedo, Spain
| |
Collapse
|
15
|
Cirillo S, Zhang B, Brown S, Zhao X. Antimicrobial peptide A 9K as a gene delivery vector in cancer cells. Eur J Pharm Biopharm 2024; 198:114244. [PMID: 38467336 DOI: 10.1016/j.ejpb.2024.114244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 02/24/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
Designed peptides are promising biomaterials for biomedical applications. The amphiphilic cationic antimicrobial peptide (AMP), A9K, can self-assemble into nano-rod structures and has shown cancer cell selectivity and could therefore be a promising candidate for therapeutic delivery into cancer cells. In this paper, we investigate the selectivity of A9K for cancer cell models, examining its effect on two human cancer cell lines, A431 and HCT-116. Little or no activity was observed on the control, human dermal fibroblasts (HDFs). In the cancer cell lines the peptide inhibited cellular growth through changes in mitochondrial morphology and membrane potential while remaining harmless towards HDFs. In addition, the peptide can bind to and protect nucleic acids while transporting them into both 2D cultures and 3D spheroids of cancer cells. A9K showed high efficiency in delivering siRNA molecules into the centre of the spheroids. A9K was also explored in vivo, using a zebrafish (Danio rerio) development toxicity assay, showing that the peptide is safe at low doses. Finally, a high-content imaging screen, using RNA interference (RNAi) targeted towards cellular uptake, in HCT-116 cells was carried out. Our findings suggest that active cellular uptake is involved in peptide internalisation, mediated through clathrin-mediated endocytosis. These new discoveries make A9K attractive for future developments in clinical and biotechnological applications.
Collapse
Affiliation(s)
- Silvia Cirillo
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK
| | - Bo Zhang
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Stephen Brown
- The Sheffield RNAi Screening Facility, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Xiubo Zhao
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, UK; School of Pharmacy, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
16
|
Yuan S, Hu Q. Convergence of nanomedicine and neutrophils for drug delivery. Bioact Mater 2024; 35:150-166. [PMID: 38318228 PMCID: PMC10839777 DOI: 10.1016/j.bioactmat.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/20/2024] [Accepted: 01/21/2024] [Indexed: 02/07/2024] Open
Abstract
Neutrophils have recently emerged as promising carriers for drug delivery due to their unique properties including rapid response toward inflammation, chemotaxis, and transmigration. When integrated with nanotechnology that has enormous advantages in improving treatment efficacy and reducing side effects, neutrophil-based nano-drug delivery systems have expanded the repertoire of nanoparticles employed in precise therapeutic interventions by either coating nanoparticles with their membranes, loading nanoparticles inside living cells, or engineering chimeric antigen receptor (CAR)-neutrophils. These neutrophil-inspired therapies have shown superior biocompatibility, targeting ability, and therapeutic robustness. In this review, we summarized the benefits of combining neutrophils and nanotechnologies, the design principles and underlying mechanisms, and various applications in disease treatments. The challenges and prospects for neutrophil-based drug delivery systems were also discussed.
Collapse
Affiliation(s)
- Sichen Yuan
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| | - Quanyin Hu
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, 53705, United States
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin-Madison, Madison, WI, 53705, United States
| |
Collapse
|
17
|
Ouyang L, Chen H, Xu R, Shaik R, Zhang G, Zhe J. Rapid Surface Charge Mapping Based on a Liquid Crystal Microchip. BIOSENSORS 2024; 14:199. [PMID: 38667192 PMCID: PMC11047892 DOI: 10.3390/bios14040199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/05/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024]
Abstract
Rapid surface charge mapping of a solid surface remains a challenge. In this study, we present a novel microchip based on liquid crystals for assessing the surface charge distribution of a planar or soft surface. This chip enables rapid measurements of the local surface charge distribution of a charged surface. The chip consists of a micropillar array fabricated on a transparent indium tin oxide substrate, while the liquid crystal is used to fill in the gaps between the micropillar structures. When an object is placed on top of the chip, the local surface charge (or zeta potential) influences the orientation of the liquid crystal molecules, resulting in changes in the magnitude of transmitted light. By measuring the intensity of the transmitted light, the distribution of the surface charge can be accurately quantified. We calibrated the chip in a three-electrode configuration and demonstrated the validity of the chip for rapid surface charge mapping using a borosilicate glass slide. This chip offers noninvasive, rapid mapping of surface charges on charged surfaces, with no need for physical or chemical modifications, and has broad potential applications in biomedical research and advanced material design.
Collapse
Affiliation(s)
- Leixin Ouyang
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA; (L.O.); (H.C.); (R.X.)
| | - Heyi Chen
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA; (L.O.); (H.C.); (R.X.)
| | - Ruiting Xu
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA; (L.O.); (H.C.); (R.X.)
| | - Rubia Shaik
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA; (R.S.); (G.Z.)
| | - Ge Zhang
- Department of Biomedical Engineering, University of Akron, Akron, OH 44325, USA; (R.S.); (G.Z.)
| | - Jiang Zhe
- Department of Mechanical Engineering, University of Akron, Akron, OH 44325, USA; (L.O.); (H.C.); (R.X.)
| |
Collapse
|
18
|
Mahdieh A, Motasadizadeh H, Maghsoudian S, Sabzevari A, Khalili F, Yeganeh H, Nyström B. Novel polyurethane-based ionene nanoparticles electrostatically stabilized with hyaluronic acid for effective gene therapy. Colloids Surf B Biointerfaces 2024; 236:113802. [PMID: 38382225 DOI: 10.1016/j.colsurfb.2024.113802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/29/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
Gene therapy is considered to be a valuable strategy for effective cancer treatment. However, the development of effective delivery systems that can specifically deliver gene materials, such as siRNA to tumor tissues plays a critical role in cancer therapy. In the present study, we have developed a novel complex that is based on an electrostatic interaction between cationic polyurethane ionene (CPUI) nanoparticles and an anti-signal transducer and activator of transcription 3 (STAT3) siRNA. For active targeting, hyaluronic acid (HA) was used to coat the complexes, which significantly reduced the cytotoxicity of the blank nanocarriers while demonstrating high transport efficiency of the siRNA via the CD44-mediated endocytosis pathway in MCF-7 breast cancer cells. The targeted nanocarriers (HA/CPUI/siRNA) showed significantly higher cellular internalization in flow cytometry and confocal microscopy compared with the non-targeted system (CPUI/siRNA). In addition, the incorporation of HA on the surface of the complexes resulted in significantly greater suppression of the STAT3 gene compared to the corresponding non-targeted formulation. Whole-body fluorescence images showed more significant tumor accumulation of the targeted nanocarriers in 4T1 breast tumor-bearing mice. Therefore, HA/CPUI/siRNA nanocarriers are an interesting option for the siRNA-targeted treatment of breast cancer cells.
Collapse
Affiliation(s)
- Athar Mahdieh
- Department of Pharmacy, Section for Pharmaceutics and Social Pharmacy, University of Oslo, Oslo, Norway
| | - Hamidreza Motasadizadeh
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Samane Maghsoudian
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Sabzevari
- Polymer Faculty, Biomedical Engineering Department, Meybod University, Meybod, Yazd, Iran; Polymer Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Fereshte Khalili
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Yeganeh
- Iran Polymer and Petrochemical Institute, Tehran, Iran
| | - Bo Nyström
- Department of Chemistry, University of Oslo, Oslo, Norway.
| |
Collapse
|
19
|
Bahremand K, Aghaz F, Bahrami K. Enhancing Cisplatin Efficacy with Low Toxicity in Solid Breast Cancer Cells Using pH-Charge-Reversal Sericin-Based Nanocarriers: Development, Characterization, and In Vitro Biological Assessment. ACS OMEGA 2024; 9:14017-14032. [PMID: 38560009 PMCID: PMC10976391 DOI: 10.1021/acsomega.3c09361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Platinum-based chemotherapeutic agents are widely employed in cancer treatment because of their effectiveness in targeting DNA. However, this indiscriminate action often affects both cancerous and normal cells, leading to severe side effects and highlighting the need for innovative approaches in achieving precise drug delivery. Nanotechnology presents a promising avenue for addressing these challenges. Protein-based nanocarriers exhibit promising capabilities in the realm of cancer drug delivery with silk sericin nanoparticles standing out as a leading contender. This investigation focuses on creating a sericin-based nanocarrier (SNC) featuring surface charge reversal designed to effectively transport cisplatin (Cispt-SNC) into MCF-7 breast cancer cells. Utilizing AutoDock4.2, our molecular docking analyses identified key amino acids and revealed distinctive conformational clusters, providing insights into the drug-protein interaction landscape and highlighting the potential of sericin as a carrier for controlled drug release. The careful optimization and fabrication of sericin as the carrier material were achieved through flash nanoprecipitation, a straightforward and reproducible method that is devoid of intricate equipment. The physicochemical properties of SNCs and Cispt-SNCs, particularly concerning size, surface charge, and morphology, were evaluated using dynamic light scattering (DLS) and scanning electron microscopy (SEM). Chemical and conformational analyses of the nanocarriers were conducted using Fourier-transform infrared spectroscopy (FTIR) and circular dichroism (CD), and elemental composition analysis was performed through energy-dispersive X-ray spectroscopy (EDX). This approach aimed to achieve the smallest nanoparticle size for Cispt-SNCs (180 nm) and high drug encapsulation efficiency (84%) at an optimal sericin concentration of 0.1% (w/v), maintaining a negative net charge at a physiological pH (7.4). Cellular uptake and cytotoxicity were investigated in MCF-7 breast cancer cells. SNCs demonstrated stability and exhibited a pH-dependent drug release behavior, aligning with the mildly acidic tumor microenvironment (pH 6.0-7.0). Efficient cellular uptake of Cispt-SNC, along with DNA fragmentation and chromatin condensation, was found at pH 6, leading to cell apoptosis. These results collectively indicate the potential of SNCs for achieving controlled drug release in a tumor-specific context. Our in vitro studies reveal the cytotoxicity of both cisplatin and Cispt-SNCs on MCF-7 cells. Cisplatin significantly reduced cell viability at 10 μM concentration (IC50), and the unique combination of sericin and cisplatin showcased enhanced cell viability compared to cisplatin alone, suggesting that controlled drug release is indicated by a gradient decrease in cell viability and highlighting SNCs as promising carriers. The study underscores the promise of protein-based nanocarriers in advancing targeted drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Kiana Bahremand
- Nano Drug Delivery
Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Faranak Aghaz
- Nano Drug Delivery
Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Kiumars Bahrami
- Nanoscience and Nanotechnology
Research Center (NNRC), Razi University, Kermanshah 67144-14971, Iran
| |
Collapse
|
20
|
Moreddu R. Nanotechnology and Cancer Bioelectricity: Bridging the Gap Between Biology and Translational Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304110. [PMID: 37984883 PMCID: PMC10767462 DOI: 10.1002/advs.202304110] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/25/2023] [Indexed: 11/22/2023]
Abstract
Bioelectricity is the electrical activity that occurs within living cells and tissues. This activity is critical for regulating homeostatic cellular function and communication, and disruptions of the same can lead to a variety of conditions, including cancer. Cancer cells are known to exhibit abnormal electrical properties compared to their healthy counterparts, and this has driven researchers to investigate the potential of harnessing bioelectricity as a tool in cancer diagnosis, prognosis, and treatment. In parallel, bioelectricity represents one of the means to gain fundamental insights on how electrical signals and charges play a role in cancer insurgence, growth, and progression. This review provides a comprehensive analysis of the literature in this field, addressing the fundamentals of bioelectricity in single cancer cells, cancer cell cohorts, and cancerous tissues. The emerging role of bioelectricity in cancer proliferation and metastasis is introduced. Based on the acknowledgement that this biological information is still hard to access due to the existing gap between biological findings and translational medicine, the latest advancements in the field of nanotechnologies for cellular electrophysiology are examined, as well as the most recent developments in micro- and nano-devices for cancer diagnostics and therapy targeting bioelectricity.
Collapse
|
21
|
Nikookar Golestani R, Ghods E, Rostamian M, Madanchi H, Talebi AF. Investigating the antimicrobial activity, cytotoxicity, and action mechanism of acylated and amidated derivatives of AurH1 antifungal peptide. BMC Microbiol 2023; 23:332. [PMID: 37946110 PMCID: PMC10633902 DOI: 10.1186/s12866-023-03090-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND The increasing growth of microbial resistance threatens the health of human societies. Therefore, the discovery and design of new antibiotics seem necessary. Today, antimicrobial peptides (AMPs) are receiving attention due to their unique properties. In our previous studies, exclusive antifungal effects of AurH1, which is a truncated and modified form of Aurein1.2, were synthesized. In this study, AurH1 antifungal peptide was synthesized into acylated (Ac-AurH1) and amidated (AurH1-NH2) derivatives, and their antifungal activity, cytotoxicity, anticancer activity, hemolytic effects were investigated. Finally, the time- of killing, the action mechanism of amidated and acylated peptides, and the effects of salts and human serum on their antimicrobial potency were determined. All the results obtained about these peptides were compared with the AurH1 without chemical modifications. RESULTS The results showed that amidation at the C-terminal of AurH1 compared to acylation at the N-terminal of it can improve the antifungal properties and cytotoxicity of AurH1. The results showed that AurH1 amidation can maintain the antifungal activity of this peptide in the culture medium containing specific dilutions of human serum compared to the intact AurH1. Also, the amidation of the C-terminal of AurH1 could not affect the mechanism of action and its time -of killing. CONCLUSION As a result, the amidation of the C-terminal of the AurH1 is a suitable strategy to improve its antifungal properties and cytotoxicity. This modification can enhance its properties for animal studies.
Collapse
Affiliation(s)
- Reyhane Nikookar Golestani
- Department of Microbial Biotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, 35131-19111, Iran
| | - Elahe Ghods
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, 35131-38111, Iran
| | - Mosayeb Rostamian
- Infectious Diseases Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid Madanchi
- Department of Biotechnology, School of Medicine, Semnan University of Medical Sciences, Semnan, 35131-38111, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Drug Design and Bioinformatics Unit, Medical Biotechnology Department, Biotechnology Research Center, Pasteur Institute of Iran, Tehran, 13198, Iran.
| | - Ahmad Farhad Talebi
- Department of Microbial Biotechnology, Faculty of New Sciences and Technologies, Semnan University, Semnan, 35131-19111, Iran.
| |
Collapse
|
22
|
Zandi A, Shojaeian F, Abbasvandi F, Faranoush M, Anbiaee R, Hoseinpour P, Gilani A, Saghafi M, Zandi A, Hoseinyazdi M, Davari Z, Miraghaie SH, Tayebi M, Taheri MS, Ardestani SMS, Sheikhi Mobarakeh Z, Nikshoar MR, Enjavi MH, Kordehlachin Y, Mousavi-kiasary SMS, Mamdouh A, Akbari ME, Yunesian M, Abdolahad M. A human pilot study on positive electrostatic charge effects in solid tumors of the late-stage metastatic patients. Front Med (Lausanne) 2023; 10:1195026. [PMID: 37915327 PMCID: PMC10616960 DOI: 10.3389/fmed.2023.1195026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/25/2023] [Indexed: 11/03/2023] Open
Abstract
Background Correlative interactions between electrical charges and cancer cells involve important unknown factors in cancer diagnosis and treatment. We previously reported the intrinsic suppressive effects of pure positive electrostatic charges (PEC) on the proliferation and metabolism of invasive cancer cells without any effect on normal cells in cell lines and animal models. The proposed mechanism was the suppression of pro-caspases 3 and 9 with an increase in Bax/Bcl2 ratio in exposed malignant cells and perturbation induced in the KRAS pathway of malignant cells by electrostatic charges due to the phosphate molecule electrostatic charge as the trigger of the pathway. This study aimed to examine PECs as a complementary treatment for patients with different types of solid metastatic tumors, who showed resistance to chemotherapy and radiotherapy. Methods In this study, solid metastatic tumors of the end-stage patients (n = 41) with various types of cancers were locally exposed to PEC for at least one course of 12 days. The patient's signs and symptoms, the changes in their tumor size, and serum markers were followed up from 30 days before positive electrostatic charge treating (PECT) until 6 months after the study. Results Entirely, 36 patients completed the related follow-ups. Significant reduction in tumor sizes and cancer-associated enzymes as well as improvement in cancer-related signs and symptoms and patients' lifestyles, without any side effects on other tissues or metabolisms of the body, were observed in more than 80% of the candidates. Conclusion PECT induced significant cancer remission in combination with other therapies. Therefore, this non-ionizing radiation would be a beneficial complementary therapy, with no observable side effects of ionizing radiotherapy, such as post-radiation inflammation.
Collapse
Affiliation(s)
- Ashkan Zandi
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Centre of Excellence, Nanoelectronics and Thin Film Laboratory, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Fatemeh Shojaeian
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fereshteh Abbasvandi
- Department of ATMP, Breast Cancer Research Centre, Motamed Cancer Institute, ACECR, Tehran, Iran
- Cancer Research Centre, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Faranoush
- Pediatric Growth and Development Research Centre, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
- Cardio-Oncology Research Centre, Rajaie Cardiovascular Medical and Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Robab Anbiaee
- Department of Radiation Oncology, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Parisa Hoseinpour
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- SEPAS Pathology Laboratory, Tehran, Iran
| | - Ali Gilani
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Saghafi
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Afsoon Zandi
- Department of Otolaryngology, Head and Neck Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Meisam Hoseinyazdi
- Medical Imaging Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Davari
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Seyyed Hossein Miraghaie
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Mahtab Tayebi
- Department of ATMP, Breast Cancer Research Centre, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Morteza Sanei Taheri
- Department of Radiology, Shohada Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - S. Mehdi Samimi Ardestani
- Department of Psychiatry, Behavioural Sciences Research Centre, Imam Hossein Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sheikhi Mobarakeh
- Department of Quality of Life, Breast Cancer Research Centre, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Reza Nikshoar
- Department of Gastroenterology Surgery, Taleghani Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Hossein Enjavi
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Centre of Excellence, Nanoelectronics and Thin Film Laboratory, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Yasin Kordehlachin
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - S. M. Sadegh Mousavi-kiasary
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | - Amir Mamdouh
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
| | | | - Masud Yunesian
- Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Department of Research Methodology and Data Analysis, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Electronic Centre of Excellence, Nanobioelectronic Devices Laboratory, Cancer Electronics Research Group, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- Nano Electronic Centre of Excellence, Nanoelectronics and Thin Film Laboratory, School of Electrical and Computer Engineering, Faculty of Engineering, University of Tehran, Tehran, Iran
- Imam-Khomeini Hospital, Tehran University of Medical Sciences, Cancer Institute, Tehran, Iran
- UT&TUMS Cancer Electrotechnique Research Centre, YAS Hospital, Tehran, Iran
| |
Collapse
|
23
|
Iliev I, Mavrova A, Yancheva D, Dimov S, Staneva G, Nesheva A, Tsoneva I, Nikolova B. 2-Alkyl-Substituted-4-Amino-Thieno[2,3- d]Pyrimidines: Anti-Proliferative Properties to In Vitro Breast Cancer Models. Molecules 2023; 28:6347. [PMID: 37687177 PMCID: PMC10489817 DOI: 10.3390/molecules28176347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/24/2023] [Accepted: 08/24/2023] [Indexed: 09/10/2023] Open
Abstract
Thienopyrimidines are structural analogs of quinazolines, and the creation of new 2-alkyl derivatives of ethyl 4-aminothienopyrimidine-6-carboxylates for the study of their anti-proliferative properties is of great pharmacological interest. Some 2-alkyl-4-amino-thieno[2,3-d]pyrimidines 2-5 were synthesized, and their cyto- and phototoxicity against BALB 3T3 cells were established by an in vitro 3T3 NRU test. The obtained results indicate that the tested compounds are not cytotoxic or phototoxic, and that they are appropriate to be studied for their anti-proliferative and anti-tumor properties. The anti-proliferative potential of the compounds was investigated on MCF-7 and MDA-MB-231 cancer cells, as well as a MCF-10A cell line (normal human mammary epithelial cells). The most toxic to MCF-7 was thienopyrimidine 3 with IC50 13.42 μg/mL (IC50 0.045 μM), followed by compound 4 (IC50 28.89 μg/mL or IC50 0.11 μM). The thienopyrimidine 4 revealed higher selectivity to MCF-7 and lower activity (IC50 367 μg/mL i.e., 1.4 μM) than compound 3 with MCF-10A cells. With respect to MDA-MB-231 cells, ester 2 manifested the highest effect with IC50 52.56 μg/mL (IC50 0.16 μM), and 2-ethyl derivative 4 revealed IC50 62.86 μg/mL (IC50 0.24 μM). It was estimated that the effect of the substances on the cell cycle progression was due to cell cycle arrest in the G2 stage for MDA-MB-231, while arrest in G1 was detected for the estrogen (ER)-positive MCF-7 cell line. The tested compound's effects on the change of the zeta potential in the tumorigenic cells utilized in this study were determined. The calculation which we performed of the physicochemical properties and pharmacokinetic parameters influencing the biological activity suggested high intestinal absorption, as well as drug-likeness.
Collapse
Affiliation(s)
- Ivan Iliev
- Institute of Experimental Morphology, Pathology and Anthropology with Museum, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 25, 1113 Sofia, Bulgaria;
| | - Anelia Mavrova
- Department of Organic Chemistry, Faculty of Chemical Technologies, University of Chemical Technology and Metallurgy, S8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (A.M.); (S.D.)
| | - Denitsa Yancheva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 9, 1113 Sofia, Bulgaria;
| | - Stefan Dimov
- Department of Organic Chemistry, Faculty of Chemical Technologies, University of Chemical Technology and Metallurgy, S8 Kliment Ohridski Blvd., 1756 Sofia, Bulgaria; (A.M.); (S.D.)
| | - Galya Staneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (A.N.); (I.T.)
| | - Alexandrina Nesheva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (A.N.); (I.T.)
| | - Iana Tsoneva
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (A.N.); (I.T.)
| | - Biliana Nikolova
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 21, 1113 Sofia, Bulgaria; (A.N.); (I.T.)
| |
Collapse
|
24
|
Paresishvili T, Kakabadze Z. Challenges and Opportunities Associated With Drug Delivery for the Treatment of Solid Tumors. Oncol Rev 2023; 17:10577. [PMID: 37711860 PMCID: PMC10497757 DOI: 10.3389/or.2023.10577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/17/2023] [Indexed: 09/16/2023] Open
Abstract
In this review, we discuss the effectiveness of drug delivery system based on metal nanoparticles, and also, describe the problems associated with their delivery to tumor cells. Throughout recent years, more reports have appeared in the literature that demonstrate promising results for the treatment of various types of cancer using metal-based nanoparticles. Due to their unique physical and chemical properties, metal nanoparticles are effectively being used for the delivery of drug to the tumor cells, for cancer diagnosis and treatment. They can also be synthesized allowing the control of size and shape. However, the effectiveness of the metal nanoparticles for cancer treatment largely depends on their stability, biocompatibility, and ability to selectively affect tumor cells after their systemic or local administration. Another major problem associated with metal nanoparticles is their ability to overcome tumor tissue barriers such as atypical blood vessel structure, dense and rigid extracellular matrix, and high pressure of tumor interstitial fluid. The review also describes the design of tumor drug delivery systems that are based on metal nanoparticles. The mechanism of action of metal nanoparticles on cancer cells is also discussed. Considering the therapeutic safety and toxicity of metal nanoparticles, the prospects for their use for future clinical applications are being currently reviewed.
Collapse
Affiliation(s)
- Teona Paresishvili
- Department of Clinical Anatomy, Tbilisi State Medical University, Tbilisi, Georgia
| | | |
Collapse
|
25
|
Moharamipour S, Aminifar M, Foroughi-Gilvaee MR, Faranoush P, Mahdavi R, Abadijoo H, Parniani M, Abbasvandi F, Mansouri S, Abdolahad M. Hydroelectric actuator for 3-dimensional analysis of electrophoretic and dielectrophoretic behavior of cancer cells; suitable in diagnosis and invasion studies. BIOMATERIALS ADVANCES 2023; 151:213476. [PMID: 37276690 DOI: 10.1016/j.bioadv.2023.213476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 04/29/2023] [Accepted: 05/13/2023] [Indexed: 06/07/2023]
Abstract
Cancer is a cellular-based disease, so cytological diagnosis is one of the main challenges for its early detection. An extensive number of diagnostic methods have been developed to separate cancerous cells from normal ones, in electrical methods attract progressive attention. Identifying and specifying different cells requires understanding their dielectric and electric properties. This study evaluated MDA-MB-231, HUVEC, and MCF-10A cell lines, WBCs isolated from blood, and patient-derived cell samples with a cylindrical body with two transparent FTO (fluorine-doped tin oxide) plate electrodes. Cell mobility rates were recorded in response to these stimuli. It was observed that cancer cells demonstrate drastic changes in their motility in the presence and absence of an electric field (DC/AC). Also, solution viscosity's effect on cancer cells' capturing efficacy was evaluated. This research's main distinguished specification uses a non-microfluidic platform to detect and pathologically evaluate cytological samples with a simple, cheap, and repeatable platform. The capturing procedure was carried out on a cytological slide without any complicated electrode patterning with the ability of cytological staining. Moreover, this platform successfully designed and experimented with the invasion assay (the ability of captured cancer cells to invade normal cells).
Collapse
Affiliation(s)
- Shima Moharamipour
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mina Aminifar
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Reza Foroughi-Gilvaee
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Pooya Faranoush
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; Pediatric Growth and Development Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Reihane Mahdavi
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hamed Abadijoo
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Mohammad Parniani
- Pathology Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Fereshteh Abbasvandi
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; ATMP Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, P.O. BOX: 15179/64311, Tehran, Iran
| | - Sepideh Mansouri
- Radiation Oncology Research Center (RORC), Cancer Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Abdolahad
- Nano Bio Electronic Devices Lab, Cancer Electronics Research Group, School of Electrical and Computer Engineering, College of Engineering, University of Tehran, Tehran, Iran; UT and TUMS Cancer Electronics Research Center, Tehran University of Medical Sciences, Tehran, Iran; Cancer Institute, Imam Khomeini Hospital, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
26
|
Aghaz F, Asadi Z, Sajadimajd S, Kashfi K, Arkan E, Rahimi Z. Codelivery of resveratrol melatonin utilizing pH responsive sericin based nanocarriers inhibits the proliferation of breast cancer cell line at the different pH. Sci Rep 2023; 13:11090. [PMID: 37422485 PMCID: PMC10329705 DOI: 10.1038/s41598-023-37668-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023] Open
Abstract
Protein-based nanocarriers have demonstrated good potential for cancer drug delivery. Silk sericin nano-particle is arguably one of the best in this field. In this study, we developed a surface charge reversal sericin-based nanocarrier to co-deliver resveratrol and melatonin (MR-SNC) to MCF-7 breast cancer cells as combination therapy. MR-SNC was fabricated with various sericin concentrations via flash-nanoprecipitation as a simple and reproducible method without complicated equipment. The nanoparticles were subsequently characterized for their size, charge, morphology and shape by dynamic light scattering (DLS) and scanning electron microscope (SEM). Nanocarriers chemical and conformational analysis were done by fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) respectively. In vitro drug release was determined at different pH values (7.45, 6.5 and 6). The cellular uptake and cytotoxicity were studies using breast cancer MCF-7 cells. MR-SNC fabricated with the lowest sericin concentration (0.1%), showed a desirable 127 nm size, with a net negative charge at physiological pH. Sericin structure was preserved entirely in the form of nano-particles. Among the three pH values we applied, the maximum in vitro drug release was at pH 6, 6.5, and 7.4, respectively. This pH dependency showed the charge reversal property of our smart nanocarrier via changing the surface charge from negative to positive in mildly acidic pH, destructing the electrostatic interactions between sericin surface amino acids. Cell viability studies demonstrated the significant toxicity of MR-SNC in MCF-7 cells at all pH values after 48 h, suggesting a synergistic effect of combination therapy with the two antioxidants. The efficient cellular uptake of MR-SNC, DNA fragmentation and chromatin condensation was found at pH 6. Nutshell, our result indicated proficient release of the entrapped drug combination from MR-SNC in an acidic environment leading to cell apoptosis. This work introduces a smart pH-responsive nano-platform for anti-breast cancer drug delivery.
Collapse
Affiliation(s)
- Faranak Aghaz
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Asadi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
27
|
Mahdieh A, Yeganeh H, Sande SA, Nyström B. Design of novel polyurethane-based ionene nanocarriers for cancer therapy: Synthesis, in-vitro, and in-vivo studies. Int J Pharm 2023; 635:122768. [PMID: 36841369 DOI: 10.1016/j.ijpharm.2023.122768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/01/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
New strategies for constructing versatile nanocarriers are needed for cancer therapy to overcome the multiple challenges of targeted delivery. This work explores the advantages of polyurethane with main-chain quaternary ammonium salt moieties (ionene) as a novel carrier for targeted drug delivery. We have developed a novel cationic soybean oil-based polyurethane ionene nanocarrier (CPUI) that can act as an effective anticancer agent and efficiently deliver the anticancer drug 5-fluorouracil (5FU). We also report a potential anticancer drug delivery system targeting the folate receptor. In vitro experiments with blank CPUI carriers on the 4T1 (mouse breast cancer cell line) and the NIH-3T3 (mouse fibroblast cell line) revealed high cytotoxicity for the cancer cells but only low cytotoxicity for the normal fibroblast cells. The CPUI nanoparticles were readily loaded with 5FU (5FU-CPUI) in water using electrostatic interactions between the cationic quaternary ammonium groups of ionene and the anionic 5FU. The in vivo study in mice with tumors showed that the blank CPUI carriers significantly inhibited tumor growth, even more than the free drug (5FU). The inhibitory effect on tumor growth was slightly enhanced when the carriers were loaded with 5FU. The prepared nanoparticles had a high loading capacity of 41.8 %. Further enhancement of the inhibitory effect was observed when folic acid (FA) was added as a targeting moiety to the system via ion exchange with the bromine counterion of the quaternary ammonium moieties. The results suggest that the efficacy of FA-CPUI-5FU nanoparticles as vehicles for drug delivery can be enhanced via folate receptor (FR) mediated endocytosis in 4T1 cells and these novel nanocarriers may provide a potential platform for effective targeted drug delivery to tumor tissue and breast cancer therapy in the clinic.
Collapse
Affiliation(s)
- Athar Mahdieh
- Department of Pharmacy, Section for Pharmaceutics and Social Pharmacy, University of Oslo, Oslo, Norway
| | - Hamid Yeganeh
- Iran Polymer and Petrochemical Institute, Tehran, Iran.
| | - Sverre Arne Sande
- Department of Pharmacy, Section for Pharmaceutics and Social Pharmacy, University of Oslo, Oslo, Norway
| | - Bo Nyström
- Department of Chemistry, University of Oslo, Oslo, Norway.
| |
Collapse
|
28
|
Manayia AH, Ilhami FB, Huang SY, Su TH, Huang CW, Chiu CW, Lee DJ, Lai JY, Cheng CC. Photoreactive Mercury-Containing Metallosupramolecular Nanoparticles with Tailorable Properties That Promote Enhanced Cellular Uptake for Effective Cancer Chemotherapy. Biomacromolecules 2023; 24:943-956. [PMID: 36645325 DOI: 10.1021/acs.biomac.2c01369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A new potential route to enhance the efficiency of supramolecular polymers for cancer chemotherapy was successfully demonstrated by employing a photosensitive metallosupramolecular polymer (Hg-BU-PPG) containing an oligomeric poly(propylene glycol) backbone and highly sensitive pH-responsive uracil-mercury-uracil (U-Hg-U) bridges. This route holds great promise as a multifunctional bioactive nano-object for development of more efficient and safer cancer chemotherapy. Owing to the formation of uracil photodimers induced by ultraviolet irradiation, Hg-BU-PPG can form a photo-cross-linked structure and spontaneously forms spherical nanoparticles in aqueous solution. The irradiated nanoparticles possess many unique characteristics, such as unique fluorescence behavior, highly sensitive pH-responsiveness, and intriguing phase transition behavior in aqueous solution as well as high structural stability and antihemolytic activity in biological media. More importantly, a series of cellular studies clearly confirmed that the U-Hg-U photo-cross-links in the irradiated nanoparticles substantially enhance their selective cellular uptake by cancer cells via macropinocytosis and the mercury-loaded nanoparticles subsequently induce higher levels of cytotoxicity in cancer cells (compared to non-irradiated nanoparticles), without harming normal cells. These results are mainly attributed to cancer cell microenvironment-triggered release of mercury ions from disassembled nanoparticles, which rapidly induce massive levels of apoptosis in cancer cells. Overall, the pH-sensitive U-Hg-U photo-cross-links within this newly discovered supramolecular system are an indispensable factor that offers a potential path to remarkably enhance the selective therapeutic effects of functional nanoparticles toward cancer cells.
Collapse
Affiliation(s)
- Abere Habtamu Manayia
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Fasih Bintang Ilhami
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan.,Department of Natural Science, Faculty of Mathematics and Natural Science, Universitas Negeri Surabaya, Surabaya60231, Indonesia
| | - Sin-Yu Huang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Ting-Hsuan Su
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Cheng-Wei Huang
- Department of Chemical and Materials Engineering, National Kaohsiung University of Science and Technology, Kaohsiung807618, Taiwan
| | - Chih-Wei Chiu
- Department of Materials Science and Engineering, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei10617, Taiwan, Taiwan
| | - Juin-Yih Lai
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei10607, Taiwan.,R&D Center for Membrane Technology, Chung Yuan Christian University, Chungli, Taoyuan32043, Taiwan.,Department of Chemical Engineering and Materials Science, Yuan Ze University, Chungli, Taoyuan32023, Taiwan
| | - Chih-Chia Cheng
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei10607, Taiwan.,Advanced Membrane Materials Research Center, National Taiwan University of Science and Technology, Taipei10607, Taiwan
| |
Collapse
|
29
|
Cell Surface Charge Mapping Using a Microelectrode Array on ITO Substrate. Cells 2023; 12:cells12040518. [PMID: 36831185 PMCID: PMC9954061 DOI: 10.3390/cells12040518] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 01/26/2023] [Accepted: 02/02/2023] [Indexed: 02/09/2023] Open
Abstract
Many cellular functions are regulated by cell surface charges, such as intercellular signaling and metabolism. Noninvasive measurement of surface charge distribution of a single cell plays a vital role in understanding cellular functions via cell membranes. We report a method for cell surface charge mapping via photoelectric interactions. A cell is placed on an array of microelectrodes fabricated on a transparent ITO (indium tin oxide) surface. An incident light irradiates the ITO surface from the backside. Because of the influence of the cell surface charge (or zeta potential), the photocurrent and the absorption of the incident light are changed, inducing a magnitude change of the reflected light. Hence, the cell surface charge distribution can be quantified by analyzing the reflected light intensity. This method does not need physical or chemical modification of the cell surface. We validated this method using charged microparticles (MPs) and two types of cells, i.e., human dermal fibroblast cells (HDFs) and human mesenchymal stem cells (hMSC). The measured average zeta potentials were in good agreement with the standard electrophoresis light scattering method.
Collapse
|
30
|
Eswar K, Mukherjee S, Ganesan P, Kumar Rengan A. Immunomodulatory Natural Polysaccharides: An Overview of the Mechanisms Involved. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
|
31
|
Banerjee N, Chatterjee O, Roychowdhury T, Basu D, Dutta A, Chowdhury M, Dastidar SG, Chatterjee S. Sequence driven interaction of amino acids in de-novo designed peptides determines c-Myc G-quadruplex unfolding inducing apoptosis in cancer cells. Biochim Biophys Acta Gen Subj 2023; 1867:130267. [PMID: 36334788 DOI: 10.1016/j.bbagen.2022.130267] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/21/2022] [Accepted: 10/28/2022] [Indexed: 11/06/2022]
Abstract
c-MYC proto-oncogene harbors a putative G-quadruplex structure (Pu27) at the NHEIII1 domain, which can shuffle between transcriptional inhibitor quadruplex and transcriptionally active duplex. In cancer cells this quadruplex destabilization is preferred and NHEIII1 domain assume a duplex topology thereby inducing c-MYC overexpression and tumorigenesis. Hence, the c-MYC quadruplex acts as an excellent target for anti-cancer therapy. Though researcher have tried to develop G-quadruplex targeted small molecules, work with G-quadruplex targeting peptides is very limited. Here we present a peptide that can bind to c-MYC quadruplex, destabilize the tetrad core, and permit the formation of a substantially different structure from the quartet core seen in the canonical G-quadruplexes. Such conformation potentially acted as a roadblock for transcription factors thereby reducing cMYC expression. This event sensitizes the cancer cell to activate apoptotic cascade via the c-MYC-VEGF-A-BCL2 axis. This study provides a detailed insight into the peptide-quadruplex interface that encourages better pharmacophore design to target dynamic quadruplex structure. We believe that our results will contribute to the development, characterization, and optimization of G-quadruplex binding peptides for potential clinical application.
Collapse
Affiliation(s)
- Nilanjan Banerjee
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Oishika Chatterjee
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Tanaya Roychowdhury
- Cancer Biology and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 700032, India
| | - Debadrita Basu
- Division of Bioinformatics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Anindya Dutta
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Madhurima Chowdhury
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Shubhra Ghosh Dastidar
- Division of Bioinformatics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India
| | - Subhrangsu Chatterjee
- Department of Biophysics, Bose Institute, Unified Academic campus, EN-80, Sector V, Kolkata 700091, India.
| |
Collapse
|
32
|
Das U, Banik S, Nadumane SS, Chakrabarti S, Gopal D, Kabekkodu SP, Srisungsitthisunti P, Mazumder N, Biswas R. Isolation, Detection and Analysis of Circulating Tumour Cells: A Nanotechnological Bioscope. Pharmaceutics 2023; 15:280. [PMID: 36678908 PMCID: PMC9864919 DOI: 10.3390/pharmaceutics15010280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/17/2022] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Cancer is one of the dreaded diseases to which a sizeable proportion of the population succumbs every year. Despite the tremendous growth of the health sector, spanning diagnostics to treatment, early diagnosis is still in its infancy. In this regard, circulating tumour cells (CTCs) have of late grabbed the attention of researchers in the detection of metastasis and there has been a huge surge in the surrounding research activities. Acting as a biomarker, CTCs prove beneficial in a variety of aspects. Nanomaterial-based strategies have been devised to have a tremendous impact on the early and rapid examination of tumor cells. This review provides a panoramic overview of the different nanotechnological methodologies employed along with the pharmaceutical purview of cancer. Initiating from fundamentals, the recent nanotechnological developments toward the detection, isolation, and analysis of CTCs are comprehensively delineated. The review also includes state-of-the-art implementations of nanotechnological advances in the enumeration of CTCs, along with future challenges and recommendations thereof.
Collapse
Affiliation(s)
- Upama Das
- Applied Optics and Photonics Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam, India
| | - Soumyabrata Banik
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Sharmila Sajankila Nadumane
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shweta Chakrabarti
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Dharshini Gopal
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Shama Prasada Kabekkodu
- Department of Cell and Molecular Biotechnology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Pornsak Srisungsitthisunti
- Department of Production and Robotics Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Bangkok 10800, Thailand
| | - Nirmal Mazumder
- Department of Biophysics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal 576104, Karnataka, India
| | - Rajib Biswas
- Applied Optics and Photonics Laboratory, Department of Physics, Tezpur University, Tezpur 784028, Assam, India
| |
Collapse
|
33
|
Naghaviyan A, Hashemi-Moghaddam H, Zavareh S, Ebrahimi Verkiani M, Meuller A. Synergistic Effect Evaluation of Magnetotherapy and a Cationic-Magnetic Nanocomposite Loaded with Doxorubicin for Targeted Drug Delivery to Breast Adenocarcinoma. Mol Pharm 2023; 20:101-117. [PMID: 36475680 DOI: 10.1021/acs.molpharmaceut.2c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This work investigates the synergistic effect of magnetotherapy and a novel cationic-magnetic drug delivery system on inhibiting breast cancer cell growth and other tissues. First, super-paramagnetic magnetite (Fe3O4) nanoparticles were coated with doxorubicin-imprinted poly(methacrylic acid-co-diallyl dimethylammonium chloride) [Fe3O4/poly(MAA-DDA)]. The cationic-magnetic nanocomposite (CMC) was characterized using XRD, FT-IR, VSM, TGA, TEM, FESEM, EDS, DLS, and BET. In vitro analyses, including drug release kinetics, cytotoxicity, and hemolytic assays, confirmed this novel CMC's good drug release profile and biocompatibility. Finally, in vivo experiments on BALB/c mice were designed to evaluate the synergistic effect of magnetotherapy on targeted drug delivery using the CMC. In vivo fluorescence imaging evaluated the drug distribution in different tissues of mice. Tumor volume evaluation demonstrated the efficiency of the CMC and magnetotherapy in preventing tumor growth; the two techniques significantly reduced tumor volume. Histopathological analysis proved that applying magnetotherapy in conjunction with the cationic-magnetic drug delivery system significantly prevented tumor cell proliferation and increased apoptosis with limited impact on other tissues. Also, Dox and Fe concentrations in different tissues confirmed the efficient drug delivery to tumor cells.
Collapse
Affiliation(s)
- Alireza Naghaviyan
- Department of Pharmacy, Damghan Branch, Islamic Azad University, 3671637849Damghan, Iran
| | | | - Saeed Zavareh
- School of Biology, Damghan University, 3671641167Damghan, Iran
| | | | - Anja Meuller
- Department of Chemistry and Biochemistry, Central Michigan University, Mount Pleasant, Michigan48859, United States
| |
Collapse
|
34
|
The New General Biological Property of Stem-like Tumor Cells (Part II: Surface Molecules, Which Belongs to Distinctive Groups with Particular Functions, Form a Unique Pattern Characteristic of a Certain Type of Tumor Stem-like Cells). Int J Mol Sci 2022; 23:ijms232415800. [PMID: 36555446 PMCID: PMC9785054 DOI: 10.3390/ijms232415800] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/16/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022] Open
Abstract
An ability of poorly differentiated cells of different genesis, including tumor stem-like cells (TSCs), to internalize extracellular double-stranded DNA (dsDNA) fragments was revealed in our studies. Using the models of Krebs-2 murine ascites carcinoma and EBV-induced human B-cell lymphoma culture, we demonstrated that dsDNA internalization into the cell consists of several mechanistically distinct phases. The primary contact with cell membrane factors is determined by electrostatic interactions. Firm contacts with cell envelope proteins are then formed, followed by internalization into the cell of the complex formed between the factor and the dsDNA probe bound to it. The key binding sites were found to be the heparin-binding domains, which are constituents of various cell surface proteins of TSCs-either the C1q domain, the collagen-binding domain, or domains of positively charged amino acids. These results imply that the interaction between extracellular dsDNA fragments and the cell, as well as their internalization, took place with the involvement of glycocalyx components (proteoglycans/glycoproteins (PGs/GPs) and glycosylphosphatidylinositol-anchored proteins (GPI-APs)) and the system of scavenger receptors (SRs), which are characteristic of TSCs and form functional clusters of cell surface proteins in TSCs. The key provisions of the concept characterizing the principle of organization of the "group-specific" cell surface factors of TSCs of various geneses were formulated. These factors belong to three protein clusters: GPs/PGs, GIP-APs, and SRs. For TSCs of different tumors, these clusters were found to be represented by different members with homotypic functions corresponding to the general function of the cluster to which they belong.
Collapse
|
35
|
The Sub-Molecular and Atomic Theory of Cancer Beginning: The Role of Mitochondria. Diagnostics (Basel) 2022; 12:diagnostics12112726. [DOI: 10.3390/diagnostics12112726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/09/2022] Open
Abstract
Life as we know it is made of strict interaction of atom, metabolism, and genetics, made around the chemistry of the most common elements of the universe: hydrogen, oxygen, nitrogen, sulfur, phosphorus, and carbon. The interaction of atomic, metabolic, and genetic cycles results in the organization and de-organization of chemical information of what we consider living entities, including cancer cells. In order to approach the problem of the origin of cancer, it is therefore reasonable to start from the assumption that the atomic structure, metabolism, and genetics of cancer cells share a common frame with prokaryotic mitochondria, embedded in conditions favorable for the onset of both. Despite years of research, cancer in its general acceptation remains enigmatic. Despite the increasing efforts to investigate the complexity of tumorigenesis, complementing the research on genetic and biochemical changes, researchers face insurmountable limitations due to the huge presence of variabilities in cancer and metastatic behavior. The atomic level of all biological activities it seems confirmed the electron behavior, especially within the mitochondria. The electron spin may be considered a key factor in basic biological processes defining the structure, reactivity, spectroscopic, and magnetic properties of a molecule. The use of magnetic fields (MF) has allowed a better understanding of the grade of influence on different biological systems, clarifying the multiple effects on electron behavior and consequently on cellular changes. Scientific advances focused on the mechanics of the cytoskeleton and the cellular microenvironment through mechanical properties of the cell nucleus and its connection to the cytoskeleton play a major role in cancer metastasis and progression. Here, we present a hypothesis regarding the changes that take place at the atomic and metabolic levels within the human mitochondria and the modifications that probably drive it in becoming cancer cell. We propose how atomic and metabolic changes in structure and composition could be considered the unintelligible reason of many cancers’ invulnerability, as it can modulate nuclear mechanics and promote metastatic processes. Improved insights into this interplay between this sub-molecular organized dynamic structure, nuclear mechanics, and metastatic progression may have powerful implications in cancer diagnostics and therapy disclosing innovation in targets of cancer cell invasion.
Collapse
|
36
|
Ishwarya R, Tamilmani G, Jeyakumar R, Albeshr MF, Mahboob S, Shahid D, Riaz MN, Govindarajan M, Vaseeharan B. Synthesis of zinc oxide nanoparticles using Vigna mungo seed husk extract: An enhanced antibacterial and anticancer activity and eco-friendly bio-toxicity assessment on algae and zooplankton. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
37
|
Hassan A, Al-Salmi FA, Abuamara TMM, Matar ER, Amer ME, Fayed EMM, Hablas MGA, Mohammed TS, Ali HE, Abd EL-fattah FM, Abd Elhay WM, Zoair MA, Mohamed AF, Sharaf EM, Dessoky ES, Alharthi F, Althagafi HAE, Abd El Maksoud AI. Ultrastructural analysis of zinc oxide nanospheres enhances anti-tumor efficacy against Hepatoma. Front Oncol 2022; 12:933750. [PMID: 36457501 PMCID: PMC9706544 DOI: 10.3389/fonc.2022.933750] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Accepted: 09/12/2022] [Indexed: 09/01/2023] Open
Abstract
Zinc oxide nanomaterial is a potential material in the field of cancer therapy. In this study, zinc oxide nanospheres (ZnO-NS) were synthesized by Sol-gel method using yeast extract as a non-toxic bio-template and investigated their physicochemical properties through various techniques such as FTIR, XR, DLS, and TEM. Furthermore, free zinc ions released from the zinc oxide nanosphere suspended medium were evaluated by using the ICP-AS technique. Therefore, the cytotoxicity of ZnO nanospheres and released Zn ions on both HuH7 and Vero cells was studied using the MTT assay. The data demonstrated that the effectiveness of ZnO nanospheres on HuH7 was better than free Zn ions. Similarly, ZnO-Ns were significantly more toxic to HuH7 cell lines than Vero cells in a concentration-dependent manner. The cell cycle of ZnO-Ns against Huh7 and Vero cell lines was arrested at G2/M. Also, the apoptosis assay using Annexin-V/PI showed that apoptosis of HuH7 and Vero cell lines by ZnO nanospheres was concentration and time-dependent. Caspase 3 assay results showed that the apoptosis mechanism may be intrinsic and extrinsic pathways. The mechanism of apoptosis was determined by applying the RT-PCR technique. The results revealed significantly up-regulated Bax, P53, and Cytochrome C, while the Bcl2 results displayed significant down-regulation and the western blot data confirmed the RT-PCR data. There is oxidative stress of the ZnO nanospheres and free Zn+2 ions. Results indicated that the ZnO nanospheres and free Zn+2 ions induced oxidative stress through increasing reactive oxygen species (ROS) and lipid peroxidation. The morphology of the HuH7 cell line after exposure to ZnO nanospheres at different time intervals revealed the presence of the chromatin condensation of the nuclear periphery fragmentation. Interestingly, the appearance of canonical ultrastructure features of apoptotic morphology of Huh7, Furthermore, many vacuoles existed in the cytoplasm, the majority of which were lipid droplets, which were like foamy cells. Also, there are vesicles intact with membranes that are recognized as swollen mitochondria.
Collapse
Affiliation(s)
- Amr Hassan
- Department of Bioinformatics, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
| | - Fawziah A. Al-Salmi
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| | | | - Emadeldin R. Matar
- Departments of Pathology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohamed E. Amer
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Ebrahim M. M. Fayed
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | | | - Tahseen S. Mohammed
- Department of Public Health and Community Medicine, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Haytham E. Ali
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Fayez M. Abd EL-fattah
- Department of Anatomy and Embryology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Wagih M. Abd Elhay
- Department of Histology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Mohammad A. Zoair
- Department of Physiology, Faculty of Medicine, Al-Azhar University, Cairo, Egypt
| | - Aly F. Mohamed
- Research and development department, Egyptian Organization for Biological Products and Vaccines [Holding Company for Vaccine and Sera Production (VACSERA)], Giza, Egypt
| | - Eman M. Sharaf
- Department of Bacteriology, Immunology, and Mycology, Animal Health Research Institute (AHRI), Shebin El Kom, Egypt
| | | | - Fahad Alharthi
- Biology Department, College of Sciences, Taif University, Taif, Saudi Arabia
| | | | - Ahmed I. Abd El Maksoud
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Sadat, Egypt
| |
Collapse
|
38
|
Anticancer peptides mechanisms, simple and complex. Chem Biol Interact 2022; 368:110194. [PMID: 36195187 DOI: 10.1016/j.cbi.2022.110194] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/12/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022]
Abstract
Peptide therapy has started since 1920s with the advent of insulin application, and now it has emerged as a new approach in treatment of diseases including cancer. Using anti-cancer peptides (ACPs) is a promising way of cancer therapy as ACPs are continuing to be approved and arrived at major pharmaceutical markets. Traditional cancer treatments face different problems like intensive adverse effects to patient's body, cell resistance to conventional chemical drugs and in some worse cases the occurrence of cell multidrug resistance (MDR) of cancerous tissues against chemotherapy. On the other hand, there are some benefits conceived for peptides usage in treatment of diseases specifically cancer, as these compounds present favorable characteristics such as smaller size, high activity, low immunogenicity, good biocompatibility in vivo, convenient and rapid way of synthesis, amenable to sequence modification and revision and there is no limitation for the type of cargo they carry. It is possible to achieve an optimum molecular and functional structure of peptides based on previous experience and bank of peptide motif data which may result in novel peptide design. Bioactive peptides are able to form pores in cell membrane and induce necrosis or apoptosis of abnormal cells. Moreover, recent researches have focused on the tumor recognizing peptide motifs with the ability to permeate to cancerous cells with the aim of cancer treatment at earlier stages. In this strategy the most important factors for addressing cancer are choosing peptides with easy accessibility to tumor cell without cytotoxicity effect towards normal cells. The peptides must also meet acceptable pharmacokinetic requirements. In this review, the characteristics of peptides and cancer cells are discussed. The various mechanisms of peptides' action proposed against cancer cells make the next part of discussion. It will be followed by giving information on peptides application, various methods of peptide designing along with introducing various databases. Future aspects of peptides for employing in area of cancer treatment come as conclusion at the end.
Collapse
|
39
|
Parsaeian MR, Haji Shabani AM, Dadfarnia S, Zare-Zardini H, Soltaninejad H, Forouzani-Moghaddam MJ. Evaluating the biological activities of functionalized magnetic iron oxide nanoparticles with different concentrations of aqueous pine leaves extract. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
40
|
Ritter GS, Dolgova EV, Petrova DD, Efremov YR, Proskurina AS, Potter EA, Ruzanova VS, Kirikovich SS, Levites EV, Taranov OS, Ostanin AA, Chernykh ER, Kolchanov NA, Bogachev SS. The new general biological property of stem-like tumor cells Part I. Peculiarities of the process of the double-stranded DNA fragments internalization into stem-like tumor cells. Front Genet 2022; 13:954395. [PMID: 36159968 PMCID: PMC9492886 DOI: 10.3389/fgene.2022.954395] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 08/15/2022] [Indexed: 11/19/2022] Open
Abstract
Stem-like tumor cells of ascites carcinoma Krebs-2 and Epstein-Barr virus-induced B-lymphoma were shown to possess the innate capability of binding and internalizing the TAMRA-labeled double-stranded DNA (dsDNA) probe. The process of binding and internalizing is rather complicated and composed of the following successive stages: 1) initiating electrostatic interaction and contact of a negatively charged dsDNA molecule with a positively charged molecule(s) on the surface of a stem-like tumor cell; 2) binding of the dsDNA probe to a tumor stem cell surface protein(s) via the formation of a strong chemical/molecular bond; and 3) the very internalization of dsDNA into the cell. Binding of DNA to cell surface proteins is determined by the presence of heparin/polyanion-binding sites within the protein structure, which can be competitively blocked by heparin and/or dextran sulfate, wherein heparin blocks only the binding, while dextran sulfate abrogates both binding and internalization. The abrogation of internalization by dextran sulfate implies the role of scavenger receptors in this process. Cells were shown to uptake DNA in amounts constituting ∼0.008% of the haploid genome. Inhibitors of caveolae-dependent internalization abrogate the DNA uptake in Krebs-2 cells, and inhibitors of the clathrin/caveolar mechanism block the internalization in B-lymphoma cells. In the present report, it is shown for the first time that in contrast to the majority of committed tumor cells, stem-like tumor cells of Krebs-2 and B-lymphoma carry a general positive charge on their surface.
Collapse
Affiliation(s)
- Genrikh S. Ritter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgeniya V. Dolgova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Daria D. Petrova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Yaroslav R. Efremov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk National Research State University, Novosibirsk, Russia
| | - Anastasia S. Proskurina
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Ekaterina A. Potter
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Vera S. Ruzanova
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
- Novosibirsk National Research State University, Novosibirsk, Russia
| | - Svetlana S. Kirikovich
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Evgeniy V. Levites
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Oleg S. Taranov
- State Research Center of Virology and Biotechnology “Vector”, Koltsovo, Russia
| | - Alexandr A. Ostanin
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Elena R. Chernykh
- Research Institute of Fundamental and Clinical Immunology, Novosibirsk, Russia
| | - Nikolay A. Kolchanov
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey S. Bogachev
- Institute of Cytology and Genetics of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia
| |
Collapse
|
41
|
Chang TK, Tung PC, Lee MJ, Lee W. A liquid-crystal aptasensing platform for label-free detection of a single circulating tumor cell. Biosens Bioelectron 2022; 216:114607. [PMID: 35969962 DOI: 10.1016/j.bios.2022.114607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/19/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022]
Abstract
Circulating tumor cells (CTCs), which are shed from a primary site into the bloodstream and lead to distal metastases, are pivotal as a prognostic marker for evaluating the treatment response of cancer patients. One of the major challenges of detecting CTCs is their scarcity in blood. We report herein a label-free liquid crystal (LC) cytosensor by adopting an aptamer against epithelial cell adhesion molecule (EpCAM) to capture EpCAM-positive cancer cells. The optical and dielectric signals transduced from the interaction between LC and different numbers of captured breast cancer cells were investigated. A limit of detection (LOD) of 5 CTCs was resulted from the optical biosensing approach relying on texture observation and image analysis of the optical signal in polarizing micrographs. The LOD was further lowered to a single CTC in the dielectric approach by studying the real- and imaginary-part dielectric constants of LC at 1 kHz and 30 Hz as well as the relaxation frequency. The LC-based EpCAM-specific dielectric cytosensor was successfully applied to single-cell CTC detection in cancer cell-spiked human serum and whole blood. This platform demonstrates the potential of LC-based biosensing technologies in cellular-level detection and quantitation, which is crucial to the early diagnosis of cancer metastasis and progression.
Collapse
Affiliation(s)
- Tsung-Keng Chang
- College of Photonics, National Yang Ming Chiao Tung University, Guiren Dist, Tainan, 711010, Taiwan; National Laboratory Animal Center, National Applied Research Laboratories, Taipei, 115202, Taiwan
| | - Pei-Chi Tung
- Department of Bioscience Technology, Chang Jung Christian University, Guiren Dist, Tainan, 711301, Taiwan
| | - Mon-Juan Lee
- Department of Bioscience Technology, Chang Jung Christian University, Guiren Dist, Tainan, 711301, Taiwan; Department of Medical Science Industries, Chang Jung Christian University, Guiren Dist, Tainan, 711301, Taiwan.
| | - Wei Lee
- College of Photonics, National Yang Ming Chiao Tung University, Guiren Dist, Tainan, 711010, Taiwan; Institute of Imaging and Biomedical Photonics, College of Photonics, National Yang Ming Chiao Tung University, Guiren Dist, Tainan, 711010, Taiwan.
| |
Collapse
|
42
|
Multi-Biofunctional Silver-Containing Metallosupramolecular Nanogels for Efficient Antibacterial Treatment and Selective Anticancer Therapy. Acta Biomater 2022; 151:576-587. [PMID: 35933102 DOI: 10.1016/j.actbio.2022.07.065] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/22/2022] [Accepted: 07/29/2022] [Indexed: 11/23/2022]
Abstract
We develop a simple and efficient route for the fabrication of water-soluble metallosupramolecular polymers. We demonstrate that the introduction of environment-responsive metal-organic complexes within supramolecular polymers endows the resulting self-assembled nano-objects with outstanding antibacterial activity and may significantly improve the efficacy and safety of selective cancer therapy. Herein, we successfully developed a silver-containing supramolecular polymer (Ag-Cy-J) possessing a hydrophilic Jeffamine backbone and highly sensitive pH-responsive cytosine-silver-cytosine (Cy-Ag-Cy) linkages, which spontaneously self-assemble to produce sterically stabilized spherical nanogels in water. The resulting nanogels exhibit several attractive features such as unique fluorescence behavior in water, highly stable self-assembled structures in biological media, significant antihemolytic capability, highly sensitive pH-responsiveness and broad-spectrum antibacterial activity against various bacteria strains. Importantly, in vitro cellular assays clearly demonstrated Ag-Cy-J nanogels highly selectively target and induce cytotoxicity in cancer cells, without affecting normal cells. The selective cytotoxic activity in cancer cells is attributed to rapid dissociation of the Cy-Ag-Cy complexes within the nanogels in the cancer cell microenvironment, followed by the intracellular release of silver ions and induction of rapid, massive apoptosis. Overall, the pH-sensitive Cy-Ag-Cy complexes within this supramolecular nanogel system may provide a route to remarkably improve the efficacy of both antibacterial and cancer drug therapies. STATEMENT OF SIGNIFICANCE: : We present a significant breakthrough in the development of a water-soluble silver-containing metallosupramolecular polymer (Ag-Cy-J) that spontaneously self-assembles in water into a spherical nanogel with unique physical characteristics due to the existence of highly sensitive pH-responsive cytosine-silver-cytosine (Cy-Ag-Cy) linkages within the nanogels. Importantly, a series of in vitro antibacterial and anticancer assays demonstrated the Ag-Cy-J nanogels not only exert strong antibacterial activity against various bacterial strains, but also exhibit a high degree of selective uptake and rapidly induce massive apoptosis in cancer cells without harming normal cells. Thus, this newly discovered supramolecular system may potentially provide a multi-biofunctional soft nanomaterial for efficient and safe antibacterial and cancer therapies.
Collapse
|
43
|
Moral-Sanz J, Fernandez-Rojo MA, Colmenarejo G, Kurdyukov S, Brust A, Ragnarsson L, Andersson Å, Vila SF, Cabezas-Sainz P, Wilhelm P, Vela-Sebastian A, Fernández-Carrasco I, Chin YKY, López-Mancheño Y, Smallwood TB, Clark RJ, Fry BG, King GF, Ramm GA, Alewood PF, Lewis RJ, Mulvenna JP, Boyle GM, Sanchez LE, Neely GG, Miles JJ, Ikonomopoulou MP. The structural conformation of the tachykinin domain drives the anti-tumoral activity of an octopus peptide in melanoma BRAF V600E. Br J Pharmacol 2022; 179:4878-4896. [PMID: 35818835 DOI: 10.1111/bph.15923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/22/2022] [Accepted: 05/05/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Over the past decades, targeted therapies and immunotherapy have vastly improved survival and reduced the morbidity of patients with BRAF-mutated melanoma. However, drug resistance and relapse hinder overall success. Therefore, there is an urgent need for novel compounds with therapeutic efficacy against BRAF- melanoma. This prompted us to investigate the antiproliferative profile of a tachykinin-peptide from the Octopus kaurna, Octpep-1 in melanoma. EXPERIMENTAL APPROACH We evaluated the cytotoxicity of Octpep-1 by MTT assay. Mechanistic insights on viability and cellular damage caused by Octpep-1 were gained via flow cytometry and bioenergetics. Structural and pharmacological characterization was conducted by molecular modelling, molecular biology, CRISPR/Cas9 technology, high-throughput mRNA and calcium flux analysis. In-vivo efficacy was validated in two independent xerograph animal models (mice and zebrafish). KEY RESULTS Octpep-1 selectively reduced the proliferative capacity of human melanoma BRAFV600E -mutated cells with minimal effects on fibroblasts. In melanoma-treated cells, Octpep-1 increased ROS with unaltered mitochondrial membrane potential and promoted non-mitochondrial and mitochondrial respiration with inefficient ATP coupling. Despite similarities with tachykinin peptides, knock-out or pharmacological blockade of tachykinin receptors suggested that Octpep-1 acts via a tachykinin-independent mechanism. Molecular modelling revealed that the cytotoxicity of Octpep-1 depends upon the α-helix and polyproline conformation in the C-terminal region of the peptide. Indeed, a truncated form of the C-terminal end of Octpep-1 displayed enhanced potency and efficacy against melanoma. Octpep-1 reduced the progression of tumors in xenograft melanoma mice and zebrafish, confirming its therapeutic potential in human BRAF-mutated melanoma. CONCLUSION AND IMPLICATIONS We unravel the intrinsic anti-tumoral properties of a tachykinin peptide, possessing a pharmacology independent of tachykinin-receptors. This peptide mediates the selective cytotoxicity in BRAF-mutated melanoma in-vitro and prevents tumor progression in-vivo, providing the foundation for a potential therapy against melanoma.
Collapse
Affiliation(s)
- Javier Moral-Sanz
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain
| | - Manuel A Fernandez-Rojo
- Hepatic Regenerative Medicine Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain.,Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Queensland, Australia.,Diamantina Institute, The University of Queensland, St. Lucia, QLD, Australia
| | - Gonzalo Colmenarejo
- Biostatistics & Bioinformatics Unit, Madrid Institute for Advances Studies in Food, Madrid, Spain
| | - Sergey Kurdyukov
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Andreas Brust
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Lotten Ragnarsson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Åsa Andersson
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Sabela F Vila
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain.,Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| | - Pablo Cabezas-Sainz
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| | - Patrick Wilhelm
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Ana Vela-Sebastian
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain
| | | | - Yanni K Y Chin
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, Australia
| | - Yaiza López-Mancheño
- Hepatic Regenerative Medicine Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain
| | - Taylor B Smallwood
- School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Clark
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Bryan G Fry
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, QLD, Australia
| | - Grant A Ramm
- Hepatic Fibrosis Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Queensland, Australia.,Faculty of Medicine, The University of Queensland, Brisbane, QLD, Australia
| | - Paul F Alewood
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Richard J Lewis
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia
| | - Jason P Mulvenna
- Infectious Diseases Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Glen M Boyle
- Department of Cell and Molecular Biology, Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Laura E Sanchez
- Department of Zoology, Genetics and Physical Anthropology, University of Santiago de Compostela, Lugo, Spain
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Charles Perkins Centre, Centenary Institute, and School of Life and Environmental Sciences, University of Sydney, Camperdown, NSW, Australia
| | - John J Miles
- Department of Immunology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia.,James Cook University, Centre for Biodiscovery and Molecular Development of Therapeutics and Centre for Biosecurity in Tropical Infectious Diseases, Cairns, Australia.,The Australian Institute of Tropical Health and Medicine (AITHM), James Cook University, Cairns, QLD, Australia.,Centre for Molecular Therapeutics, James Cook University, Cairns, QLD, Australia.,Centre for Tropical Bioinformatics and Molecular Biology, James Cook University, Cairns, QLD, Australia
| | - Maria P Ikonomopoulou
- Translational Venomics Group, Madrid Institute for Advanced Studies in Food, Madrid, Spain.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, Australia.,Department of Cell and Molecular Biology, Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| |
Collapse
|
44
|
A single local delivery of paclitaxel and nucleic acids via an immunoactive polymer eliminates tumors and induces antitumor immunity. Proc Natl Acad Sci U S A 2022; 119:e2122595119. [PMID: 35609195 DOI: 10.1073/pnas.2122595119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
SignificanceThe rationale of local cancer immunotherapy is that the treated tumor cells can serve as a depot of tumor antigens and activate/mobilize the patient's immune system to address systemic diseases. However, the challenge is to coordinate several events involved in the activation of antitumor immune responses, colocalize and retain multiple therapies in tumors, and support the functions of immune cells. Our carrier polyethyleneimine-lithocholic acid conjugate (2E') addresses these challenges based on the amphiphilic structure and inherent immunostimulatory activity. 2E' codelivers hydrophobic drugs and nucleic acids and leverages their effects to eliminate primary tumors and protect the hosts from distant and recurrent diseases. The versatility of 2E' will enable the use of therapeutic combinations to improve clinical outcomes of cancer immunotherapy.
Collapse
|
45
|
Kou SG, Peters L, Mucalo M. Chitosan: A review of molecular structure, bioactivities and interactions with the human body and micro-organisms. Carbohydr Polym 2022; 282:119132. [PMID: 35123764 DOI: 10.1016/j.carbpol.2022.119132] [Citation(s) in RCA: 156] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 01/06/2022] [Accepted: 01/08/2022] [Indexed: 12/14/2022]
Abstract
Chitosan has many desirable attributes e.g. antimicrobial properties and promoting wound healing, and is used in various applications. This article first discusses how degree of deacetylation (DD) and molecular weight (MW) impacts on what level of bioactivities chitosan manifests, then introduces the "molecular chain configuration" model to explain various possible mechanisms of antimicrobial interactions between chitosan with different MW and different types of bacteria. Similarly, the possible pathways of how chitosan reacts with cancer and the body's immune system to demonstrate immune and antitumor effects are also discussed by using this model. Moreover, the possible mechanisms of how chitosan enhances coagulation and wound healing are also discussed. With these beneficial bioactivities in mind, the application of chitosan in surgery, tissue engineering and oncology is outlined. This review concludes that as chitosan demonstrates many beneficial bioactivities via multiple mechanisms, it is an important polymer with a promising future in medicine.
Collapse
Affiliation(s)
| | - Linda Peters
- School of Science, University of Waikato, New Zealand
| | | |
Collapse
|
46
|
Yang S, Leong J, Wang Y, Sim R, Tan KH, Chua YH, Tan N, Lee ALZ, Tay J, Yang YY. Drug-free neutrally charged polypeptide nanoparticles as anticancer agents. J Control Release 2022; 345:464-474. [PMID: 35331785 DOI: 10.1016/j.jconrel.2022.03.034] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 01/11/2023]
Abstract
Cationic synthetic anticancer polymers and peptides have attracted increasing attention for advancing cancer treatment without causing drug resistance development. To circumvent in vivo instability and toxicity caused by cationic charges of the anticancer polymers/peptides, we report, for the first time, a nanoparticulate delivery system self-assembled from a negatively charged pH-sensitive polypeptide poly(ethylene glycol)-b-poly(ʟ-lysine)-graft-cyclohexene-1,2-dicarboxylic anhydride and a cationic anticancer polypeptide guanidinium-functionalized poly(ʟ-lysine) (PLL-Gua) via electrostatic interaction. The formation of nanoparticles (Gua-NPs) neutralized the positive charges of PLL-Gua. Both PLL-Gua and Gua-NPs killed cancer cells in a dose- and time-dependent manner, and induced cell death via apoptosis. Confocal microscopic studies demonstrated that PLL-Gua and Gua-NPs readily entered cancer cells, and Gua-NPs were taken up by the cells via endocytosis. Notably, Gua-NPs and PLL-Gua exhibited similar in vitro anticancer efficacy against MCF-7 and resistant MCF-7/ADR. PLL-Gua and Gua-NPs also induced similar morphological changes in MCF-7/ADR cells compared to MCF-7 cells, further indicating their ability to bypass drug resistance mechanisms in the MCF-7/ADR cells. More importantly, Gua-NPs with higher LD50 and enhanced tumor accumulation significantly inhibited tumor growth with negligible side effects in vivo. Our findings shed light on the in vivo delivery of anticancer peptides and opened a new avenue for cancer treatment.
Collapse
Affiliation(s)
- Shengcai Yang
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Jiayu Leong
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yanming Wang
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Rachel Sim
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Ko Hui Tan
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yau Hong Chua
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Nathanael Tan
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Ashlynn L Z Lee
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Joyce Tay
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Yi Yan Yang
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore; Department of Orthopaedic Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119288, Singapore.
| |
Collapse
|
47
|
Vu THN, Morozkina SN, Uspenskaya MV. Study of the Nanofibers Fabrication Conditions from the Mixture of Poly(vinyl alcohol) and Chitosan by Electrospinning Method. Polymers (Basel) 2022; 14:811. [PMID: 35215724 PMCID: PMC8963080 DOI: 10.3390/polym14040811] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 02/01/2023] Open
Abstract
Nanofiber fabrication is attracting great attention from scientists and technologists due to its applications in many fields of life. In order to design a nanosized polymer-based drug delivery system, we studied the conditions for the fabrication of electrospun nanofibers from poly (vinyl alcohol) (PVA) and chitosan (CS), which are well-known as biocompatible, biodegradable and non-toxic polymers that are widely used in the medical field. Aiming to develop nanofibers that can directly target diseased cells for treatment, such as cancerous cells, the ideal choice would be a system that contains the highest CS content as well as high quality fibers. In the present manuscript, it is expected to become the basis for improving the low bioavailability of medicinal drugs limited by poor solubility and low permeability. PVA-CS nanofibers were obtained by electrospinning at a PVA:CS ratio of 5:5 in a 60% (w/w) acetic acid solution under the following parameters: voltage 30 kV, feed rate 0.2 mL/h, needle-collector distance 14 cm. The obtained fibers were relatively uniform, with a diameter range of 77-292 nm and average diameter of 153 nm. The nanofiber system holds promise as a potential material for the integration of therapeutic drugs.
Collapse
Affiliation(s)
- Thi Hong Nhung Vu
- Chemical Engineering Centre, ITMO University, Kronverkskiy Prospekt, 49A, 197101 St. Petersburg, Russia; (S.N.M.); (M.V.U.)
| | | | | |
Collapse
|
48
|
Targeting nanoparticles to malignant tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188703. [DOI: 10.1016/j.bbcan.2022.188703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/01/2022] [Accepted: 02/21/2022] [Indexed: 12/12/2022]
|
49
|
Amigh S, Mohajeri A. Coronene-based quantum dots for the delivery of the doxorubicin anticancer drug: a computational study. NEW J CHEM 2022. [DOI: 10.1039/d2nj00636g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The coronene family could serve as a useful platform for the delivery of and tracking the release of the anticancer DOX drug.
Collapse
Affiliation(s)
- Soode Amigh
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| | - Afshan Mohajeri
- Department of Chemistry, College of Sciences, Shiraz University, Shiraz 7194684795, Iran
| |
Collapse
|
50
|
Rahimi R, Solimannejad M, Soleimannejad M. Two-dimensionalcovalent triazine frameworks as superior nanocarriers for the delivery of thioguanine anti-cancer drugs: a periodic DFT study. NEW J CHEM 2022. [DOI: 10.1039/d2nj02050e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This work aims to introduce a superior nanocarrier for thioguanine (TG) anti-cancer drug delivery, drug release, and cancer therapy through computational chemistry.
Collapse
Affiliation(s)
- Rezvan Rahimi
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak 38156-8-8349, Iran
| | - Mohammad Solimannejad
- Department of Chemistry, Faculty of Science, Arak University, Arak 38156-8-8349, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak 38156-8-8349, Iran
| | | |
Collapse
|