1
|
Tekin B, Cheville JC, Milosevic D, McCarthy M, Whaley RD, Hernandez LH, Jimenez RE, Sharma V, Leibovich BC, Boorjian SA, Costello BA, Pagliaro LC, Gupta S. Assessment of trophoblast cell-surface antigen 2 (TROP2) and nectin-4 expression in choriocarcinoma. Hum Pathol 2025; 159:105815. [PMID: 40414312 DOI: 10.1016/j.humpath.2025.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2025] [Accepted: 05/22/2025] [Indexed: 05/27/2025]
Abstract
OBJECTIVES Choriocarcinoma is associated with high mortality in multiply relapsed patients. Herein, we assessed immunohistochemistry (IHC) expression of TROP2 and nectin-4 in choriocarcinoma and other germ cell tumors (GCT), as antibody drug conjugates (ADCs) targeting these markers are entering the therapeutic landscape of many tumors. METHODS Archival cases of choriocarcinoma and controls (non-choriocarcinoma GCT) were evaluated for TROP2 and nectin-4 IHC, performed on whole-slide sections, and results were quantified using H-scores (range: 0-300) based on membranous staining. RESULTS The cohort included 20 primary GCT and 15 metastases from 34 patients. Of these, 18 specimens were choriocarcinoma (3 primary and 15 metastases), including six women with gestational choriocarcinoma. Median TROP2 and nectin-4 H-scores in choriocarcinomas were 22.5 and 60, respectively. For TROP2 and nectin-4, H-scores>200 were noted in 27.8% of patients, each. There was no correlation between serum beta-hCG levels measured within 2 weeks prior to specimen collection or peak serum beta-hCG levels and TROP2 or nectin-4 expression. The control group consisted of seminoma (n = 10); yolk sac tumor (n = 9), embryonal carcinoma (n = 10), postpubertal teratoma (n = 5), and spermatocytic tumor (n = 2). The median TROP2 H-scores for embryonal carcinoma, teratoma, and yolk sac tumor were 35, 30, and 15, respectively, and 0 for the remainder. The median nectin-4 H-score was 0 for all control group categories. Choriocarcinomas had a higher nectin-4 H-score compared to the control group (p < 0.001). CONCLUSIONS Given the high TROP2 and nectin-4 expression in a subset of choriocarcinoma, ADCs targeting these biomarkers may be a promising therapeutic approach for these tumors, pending additional validation.
Collapse
Affiliation(s)
- Burak Tekin
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - John C Cheville
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Dragana Milosevic
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Michael McCarthy
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Rumeal D Whaley
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | | | - Rafael E Jimenez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| | - Vidit Sharma
- Department of Urology, Mayo Clinic, Rochester, MN, USA.
| | | | | | - Brian A Costello
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| | - Lance C Pagliaro
- Division of Medical Oncology, Department of Oncology, Mayo Clinic, Rochester, MN, USA.
| | - Sounak Gupta
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
2
|
Vaughan OR, Maksym K, Hillman S, Spencer RN, Hristova M, David AL, Lange S. Placental Protein Citrullination Signatures Are Modified in Early- and Late-Onset Fetal Growth Restriction. Int J Mol Sci 2025; 26:4247. [PMID: 40362485 PMCID: PMC12071715 DOI: 10.3390/ijms26094247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/18/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
Fetal growth restriction (FGR) is an obstetric condition most frequently caused by placental dysfunction. It is a major cause of perinatal morbidity with limited treatment options, so identifying the underpinning mechanisms is important. Peptidylarginine deiminases (PADs) are calcium-activated enzymes that mediate post-translational citrullination (deimination) of proteins, through conversion of arginine to citrulline. Protein citrullination leads to irreversible changes in protein structure and function and is implicated in many pathobiological processes. Whether placental protein citrullination occurs in FGR is poorly understood. We assessed protein citrullination and PAD isozyme abundance (PAD1, 2, 3, 4 and 6) in human placental samples from pregnancies complicated by early- and late-onset FGR, compared to appropriate-for-gestational-age (AGA) controls. Proteomic mass spectrometry demonstrated that the placental citrullinome profile changed in both early- and late-onset FGR, with 112 and 345 uniquely citrullinated proteins identified in early- and late-onset samples, respectively. Forty-four proteins were citrullinated only in control AGA placentas. The proteins that were uniquely citrullinated in FGR placentas were enriched for gene ontology (GO) terms related to neurological, developmental, immune and metabolic pathways. A greater number of GO and human phenotype pathways were functionally enriched for citrullinated proteins in late- compared with early-onset FGR. Correspondingly, late-onset but not early-onset FGR was associated with significantly increased placental abundance of PAD2 and citrullinated histone H3, determined by Western blotting. PAD3 was downregulated in early-onset FGR while abundance of PAD 1, 4 and 6 was less altered in FGR. Our findings show that placental protein citrullination is altered in FGR placentas, potentially contributing to the pathobiology of placental dysfunction.
Collapse
Affiliation(s)
- Owen R. Vaughan
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (O.R.V.); (S.H.); (R.N.S.); (A.L.D.)
| | - Kasia Maksym
- Women’s Health Division, University College London Hospitals NHS Foundation Trust, London NW1 2PG, UK;
| | - Sara Hillman
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (O.R.V.); (S.H.); (R.N.S.); (A.L.D.)
| | - Rebecca N. Spencer
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (O.R.V.); (S.H.); (R.N.S.); (A.L.D.)
- Department of Obstetrics and Gynaecology, University of Leeds, Leeds LS2 9JT, UK
| | - Mariya Hristova
- Department of Neonatology, EGA Institute for Women’s Health, University College London, London WC1E 6BT, UK;
| | - Anna L. David
- Department of Maternal and Fetal Medicine, EGA Institute for Women’s Health, University College London, London WC1E 6HX, UK; (O.R.V.); (S.H.); (R.N.S.); (A.L.D.)
| | - Sigrun Lange
- Department of Neonatology, EGA Institute for Women’s Health, University College London, London WC1E 6BT, UK;
- Pathobiology and Extracellular Vesicles Research Group, School of Life Sciences, University of Westminster, London W1W 6UW, UK
| |
Collapse
|
3
|
Vlachadis N, Christodoulaki C, Tsamadias V, Peitsidis P, Machairiotis N, Sioutis D, Vlahos NF, Economou E, Panagopoulos P. A Genetic Risk Score for Recurrent Miscarriages Based on Polymorphisms in Platelet Glycoproteins and Adhesion Molecules Genes. J Clin Med 2025; 14:2355. [PMID: 40217804 PMCID: PMC11989388 DOI: 10.3390/jcm14072355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/11/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: The objective of the study was to explore the combined effect of polymorphisms in the platelet glycoproteins Ia (GpIa) and IIIa (GpIIIa), along with the platelet-endothelial cell adhesion molecule-1 (PECAM-1) and P-Selectin genes, on the risk of recurrent pregnancy loss. Methods: This study involved 162 women with primary unexplained recurrent miscarriages and 60 fertile controls who had at least one uncomplicated full-term pregnancy without experiencing fetal loss. All participants were of Greek origin and were genotyped for four single nucleotide polymorphisms (SNPs), GpIa-C807T, GpIIIa-PlA1/PlA2, PECAM-1-C373G, and P-Selectin-A37674C, using pyrosequencing. A genetic risk score (GRS) was calculated in two forms: one based on the number of SNPs (dominant model) and the other based on the number of polymorphic alleles (additive model), utilizing logistic regression and receiver operator characteristic (ROC) analyses. Results: A statistically significant increase in the risk of miscarriage was observed with the number of polymorphic genes, with an odds ratio (OR) of 2.2 (95% confidence interval [CI]: 1.5 to 3.2, p < 0.001) for each additional SNP. The ROC analysis revealed an area under the curve (AUC) of 0.689 (95% CI: 0.614 to 0.763, p < 0.001). The presence of two or more polymorphic genes demonstrated a sensitivity of 69.8% and specificity of 65%, with an OR = 4.3 (95% CI: 2.3 to 8.0, p < 0.001). The performance of the GRS improved in younger patients and those experiencing late miscarriages. An AUC = 0.839 (95% CI: 0.749 to 0.930, p < 0.001) and an OR = 7.0 (95% CI: 2.8 to 17.8, p < 0.001) per SNP were achieved for the age group < 30 years. For subjects with second trimester fetal loss, the GRS yielded an AUC = 0.742 (95% CI: 0.610 to 0.874, p = 0.002) and an OR = 3.6 (95%OR = 7.0, 95% CI: 2.8 to 17.8) per SNP. The allelic GRS produced similar or slightly diminished results. Conclusions: This study highlights the promising potential of a genetic risk score based on four SNPs in predicting unexplained recurrent miscarriages, particularly in younger individuals and in cases of late miscarriage. These findings contribute to a deeper understanding of the epidemiology of unexplained recurrent miscarriage, emphasizing the role of platelet thrombophilia.
Collapse
Affiliation(s)
- Nikolaos Vlachadis
- Department of Obstetrics and Gynecology, General Hospital of Messinia, 24100 Kalamata, Greece;
- Clinical Laboratory of Genetic-Therapeutic Individualization, Second Department of Obstetrics and Gynecology, Medical School, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (V.T.); (E.E.)
| | - Chryssi Christodoulaki
- Third Department of Obstetrics and Gynecology, Medical School, Attiko Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (C.C.); (N.M.); (D.S.)
| | - Vassilios Tsamadias
- Clinical Laboratory of Genetic-Therapeutic Individualization, Second Department of Obstetrics and Gynecology, Medical School, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (V.T.); (E.E.)
| | - Panagiotis Peitsidis
- Fifth Department of Obstetrics and Gynecology, Elena Venizelou Maternity Hospital, 11521 Athens, Greece
| | - Nikolaos Machairiotis
- Third Department of Obstetrics and Gynecology, Medical School, Attiko Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (C.C.); (N.M.); (D.S.)
| | - Dimos Sioutis
- Third Department of Obstetrics and Gynecology, Medical School, Attiko Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (C.C.); (N.M.); (D.S.)
| | - Nikolaos F. Vlahos
- Second Department of Obstetrics and Gynecology, Medical School, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece;
| | - Emmanuel Economou
- Clinical Laboratory of Genetic-Therapeutic Individualization, Second Department of Obstetrics and Gynecology, Medical School, Aretaieio Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (V.T.); (E.E.)
| | - Periklis Panagopoulos
- Family Planning Unit, Third Department of Obstetrics and Gynecology, Medical School, Attiko Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| |
Collapse
|
4
|
Shi L, Wang Z, Xiao J, Hu R, Zou H, Wang J, Yue Z, Peng Q, Jiang Y, Xue B, Wang L. Folic Acid Alleviates Hydrogen Peroxide-Induced Oxidative Stress in Bovine Placental Trophoblast Cells by Regulating the NRF2/mTOR Signaling Pathway. Int J Mol Sci 2025; 26:2818. [PMID: 40141461 PMCID: PMC11942747 DOI: 10.3390/ijms26062818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 02/20/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
As one of the important components of placental structure, the integrity of placental trophoblast cells is crucial for placental function. When oxidative stress continues to act on placental trophoblast cells, it can cause changes in placental structure and function. Research has shown that folic acid (FA) has a certain alleviating effect on the functional damage of trophoblast cells caused by oxidative stress, but the mechanism of action is still unclear. Therefore, this study focuses on bovine placental trophoblast cells (BPTCs) to explore the effects and mechanisms by which FA regulates oxidative stress in cells, with the aim of providing a theoretical foundation for improving the reproductive performance of cows. The results show that, compared with the H2O2 group, the FA+ H2O2 group showed an increase in the cell proliferation index (PI), superoxide dismutase 2 (SOD2), glutathione peroxidase (GSH-px), and catalase (CAT) mRNA expression and total antioxidant capacity (T-AOC) of cells, while the content of reactive oxygen species (ROS) decreased. In addition, the mRNA expression of tight junction factors, nutrient transporters, placental functional factors, mammalian rapamycin (mTOR) and its downstream factors, and nuclear factor erythroid 2-related factor 2 (NRF2) and its downstream factors in the FA+ H2O2 group increased, while the protein abundance of nuclear NRF2 decreased. After treatment with the inhibitor ML385, it was found that the protective effect of FA on H2O2-induced cellular oxidative damage was alleviated. These results indicate that FA can regulate the NRF2/mTOR signaling pathway, promote the expression of antioxidant factors, and alleviate the damage to the cell barrier and nutrient transport function in BPTCs caused by oxidative stress.
Collapse
Affiliation(s)
| | - Zhisheng Wang
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (J.X.); (H.Z.); (J.W.); (Z.Y.); (Q.P.); (Y.J.); (B.X.); (L.W.)
| | | | - Rui Hu
- Low Carbon Breeding Cattle and Safety Production University Key Laboratory of Sichuan Province, Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; (L.S.); (J.X.); (H.Z.); (J.W.); (Z.Y.); (Q.P.); (Y.J.); (B.X.); (L.W.)
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Zhang B, Song C, Zhou B, Zhang J, Dong W, Zhang Y, Zhao X, Zhang Q. CTNNB1 and CDH1 Regulate Trophoblast Cell Adhesion and Junction Formation in Yak Placental Tissue at Different Gestational Stages. Animals (Basel) 2025; 15:876. [PMID: 40150405 PMCID: PMC11939409 DOI: 10.3390/ani15060876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/15/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025] Open
Abstract
Yaks (Bos grunniens), which are distributed across the Tibetan Plateau and other high-altitude regions, are vital livestock that provide essential resources for local herders and have significant economic and ecological value [...].
Collapse
Affiliation(s)
- Bohao Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (C.S.); (W.D.); (Y.Z.); (X.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (J.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Chen Song
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (C.S.); (W.D.); (Y.Z.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Bin Zhou
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (J.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Junjun Zhang
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (J.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Weitao Dong
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (C.S.); (W.D.); (Y.Z.); (X.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Yong Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (C.S.); (W.D.); (Y.Z.); (X.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (J.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Xingxu Zhao
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (C.S.); (W.D.); (Y.Z.); (X.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (J.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| | - Quanwei Zhang
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (C.S.); (W.D.); (Y.Z.); (X.Z.)
- College of Life Science and Biotechnology, Gansu Agricultural University, Lanzhou 730070, China; (B.Z.); (J.Z.)
- Gansu Key Laboratory of Animal Generational Physiology and Reproductive Regulation, Lanzhou 730070, China
| |
Collapse
|
6
|
Li H, Yang Y, Yang F, Bao X, Pan C, Lin W, Lai L, Lin W, Lin R. Determination of blood biochemical indices and research of egg quality-related candidate gene CDH5 in Putian black duck. Gene 2025; 937:149142. [PMID: 39643146 DOI: 10.1016/j.gene.2024.149142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 11/25/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Improving egg quality and enhancing production efficiency are essential goals in poultry breeding. CDH5 encodes a cadherin involved in Ca2+ transport in endothelial cells. The role of CDH5 in regulating duck egg quality and its mechanisms affecting Ca2+ concentrations in duck uterine epithelial cells remains unclear. This study evaluated egg quality traits of the Putian black duck and conducted an association analysis with blood biochemical indices and single nucleotide polymorphisms in CDH5. Additionally, we constructed a CDH5 overexpression vector and synthesized specific siRNAs for transfection into Putian black duck uterine epithelial cells to assess Ca2+ concentrations. Our results revealed a significant association between egg quality and five novel SNPs in CDH5, along with various blood biochemical indices. Further experiments demonstrated that CDH5 overexpression and knockdown reduced Ca2+ concentrations in the uterine epithelial cells of Putian black ducks.
Collapse
Affiliation(s)
- Huihuang Li
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Yue Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Fan Yang
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Xinguo Bao
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Chengfu Pan
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Weilong Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Lianjie Lai
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Weimin Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China
| | - Ruiyi Lin
- College of Animal Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350000, China.
| |
Collapse
|
7
|
Kim M, Park W, Lim W, Song G, Park S. Impacts of tolylfluanid on implantation and placental development: Disruption of mitochondrial function and implantation-related gene expression in vitro and in vivo. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175549. [PMID: 39151622 DOI: 10.1016/j.scitotenv.2024.175549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Tolylfluanid is a widely used pesticide and antifouling agent in agricultural and marine industries and is recognized as a potential endocrine disruptor. However, the toxicological effects of tolylfluanid on the placenta development was not elucidated. This study used trophoblastic cell (HTR-8/SVneo cell) and endometrial cell (T HESCs) lines as in vitro model and mouse models as in vivo model to investigate the toxic effects of tolylfluanid on implantation-associated cell and placenta development during early pregnancy. Experimental results indicated that both cell lines exhibited reduced viability upon tolylfluanid exposure. Various in vitro experiments were conducted at <1 mg/L concentration. The results indicate that tolylfluanid can arrest cell cycle and induce apoptosis in endometrial and trophoblastic cells, abnormally regulate Ca2+ homeostasis and MAPK signaling pathways, and disrupt mitochondrial function. In vivo experiments, subchronic tolylfluanid exposure to mouse during puberty and pregnancy period impaired placenta development, resulting in reduced fetal and placental weight, abnormal placental structures, and altered gene expression. Specifically, a decrease in the ratio of labyrinth/junctional zones and changes in placenta gene expression patterns after tolylfluanid exposure were similar to characters of adverse pregnancy outcomes such as preeclampsia and fetal growth restriction (FGR). This study suggests that tolylfluanid exposure may have negative outcomes on female reproduction, and highlights the need for stricter regulation and monitoring of tolylfluanid use to protect women's reproductive health. This is the first study indicating the adverse effects of tolylfluanid on implantation and placental development during pregnancy.
Collapse
Affiliation(s)
- Miji Kim
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Wonhyoung Park
- Department of Animal Science, Chungbuk National University, Cheongju 28644, Republic of Korea
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| | - Sunwoo Park
- Department of GreenBio Science, Gyeongsang National University, Jinju 52725, Republic of Korea.
| |
Collapse
|
8
|
Gonzalez TL, Willson BE, Wang ET, Taylor KD, Novoa A, Swarna A, Ortiz JC, Zeno GJ, Jefferies CA, Lawrenson K, Rotter JI, Chen YDI, Williams J, Cui J, Goodarzi MO, Pisarska MD. Sexually dimorphic DNA methylation and gene expression patterns in human first trimester placenta. Biol Sex Differ 2024; 15:63. [PMID: 39152463 PMCID: PMC11328442 DOI: 10.1186/s13293-024-00629-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 06/19/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Fetal sex and placental development impact pregnancy outcomes and fetal-maternal health, but the critical timepoint of placenta establishment in first trimester is understudied in human pregnancies. METHODS Pregnant subjects were recruited in late first trimester (weeks 10-14) at time of chorionic villus sampling, a prenatal diagnostic test. Leftover placenta tissue was collected and stored until birth outcomes were known, then DNA and RNA were isolated from singleton, normal karyotype pregnancies resulting in live births. DNA methylation was measured with the Illumina Infinium MethylationEPIC BeadChip array (n = 56). Differential methylation analysis compared 25 females versus 31 males using a generalized linear model on 743,461 autosomal probes. Gene expression sex differences were analyzed with RNA-sequencing (n = 74). An integrated analysis was performed using linear regression to correlate gene expression and DNA methylation in 51 overlapping placentas. RESULTS Methylation analysis identified 151 differentially methylated probes (DMPs) significant at false discovery rate < 0.05, including 89 (59%) hypermethylated in females. Probe cg17612569 (GABPA, ATP5J) was the most significant CpG site, hypermethylated in males. There were 11 differentially methylated regions affected by fetal sex, with transcription factors ZNF300 and ZNF311 most significantly hypermethylated in males and females, respectively. RNA-sequencing identified 152 genes significantly sexually dimorphic at false discovery rate < 0.05. The 151 DMPs were associated with 18 genes with gene downregulation (P < 0.05) in the direction of hypermethylation, including 2 genes significant at false discovery rate < 0.05 (ZNF300 and CUB and Sushi multiple domains 1, CSMD1). Both genes, as well as Family With Sequence Similarity 228 Member A (FAM228A), showed significant correlation between DNA methylation and sexually dimorphic gene expression, though FAM228A DNA methylation was less sexually dimorphic. Comparison with other sex differences studies found that cg17612569 is male-hypermethylated across gestation in placenta and in human blood up to adulthood. CONCLUSIONS Overall, sex dimorphic differential methylation with associated differential gene expression in the first trimester placenta is small, but there remain significant genes that may be regulated through methylation leading to differences in the first trimester placenta.
Collapse
Affiliation(s)
- Tania L Gonzalez
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
| | - Bryn E Willson
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
| | - Erica T Wang
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Kent D Taylor
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Allynson Novoa
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
| | - Akhila Swarna
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
| | - Juanita C Ortiz
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
| | - Gianna J Zeno
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
| | - Caroline A Jefferies
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Division of Rheumatology, Department of Medicine, Kao Autoimmune Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Kate Lawrenson
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
- Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jerome I Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - Yii-Der Ida Chen
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, CA, USA
| | - John Williams
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jinrui Cui
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mark O Goodarzi
- Division of Endocrinology, Diabetes and Metabolism, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Margareta D Pisarska
- Department of Obstetrics and Gynecology, Cedars-Sinai Medical Center, 8635 West 3rd Street, Suite 160, Los Angeles, CA, 90048, USA.
- David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Wang L, Chen Y, Wu H, Yu HH, Ma L. Slit2-Robo4 signal pathway and tight junction in intestine mediate LPS-induced inflammation in mice. Eur J Med Res 2024; 29:349. [PMID: 38937814 PMCID: PMC11209965 DOI: 10.1186/s40001-024-01894-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
BACKGROUND Sepsis is one of the most common clinical diseases, which is characterized by a serious and uncontrollable inflammatory response. LPS-induced inflammation is a critical pathological event in sepsis, but the underlying mechanism has not yet been fully elucidated. METHODS The animal model was established for two batches. In the first batch of experiments, Adult C57BL/6J mice were randomly divided into control group and LPS (5 mg/kg, i.p.)group . In the second batch of experiments, mice were randomly divided into control group, LPS group, and LPS+VX765(10 mg/kg, i.p., an inhibitor of NLRP3 inflammasome) group. After 24 hours, mice were anesthetized with isoflurane, blood and intestinal tissue were collected for tissue immunohistochemistry, Western blot analysis and ELISA assays. RESULTS The C57BL/6J mice injected with LPS for twenty-four hours could exhibit severe inflammatory reaction including an increased IL-1β, IL-18 in serum and activation of NLRP3 inflammasome in intestine. The injection of VX765 could reverse these effects induced by LPS. These results indicated that the increased level of IL-1β and IL-18 in serum induced by LPS is related to the increased intestinal permeability and activation of NLRP3 inflammasome. In the second batch of experiments, results of western blot and immunohistochemistry showed that Slit2 and Robo4 were significant decreased in intestine of LPS group, while the expression of VEGF was significant increased. Meanwhile, the protein level of tight junction protein ZO-1, occludin, and claudin-5 were significantly lower than in control group, which could also be reversed by VX765 injection. CONCLUSIONS In this study, we revealed that Slit2-Robo4 signaling pathway and tight junction in intestine may be involved in LPS-induced inflammation in mice, which may account for the molecular mechanism of sepsis.
Collapse
Affiliation(s)
- Lv Wang
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People's Republic of China
| | - Yingtai Chen
- Emergency Department, Baoshan Branch of Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200444, People's Republic of China
| | - Hao Wu
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People's Republic of China
| | - He-Hua Yu
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People's Republic of China.
| | - Linhao Ma
- Department of Emergency and Critical Care Medicine, Shanghai Changzheng Hospital, Naval Medical University, Shanghai, 200003, People's Republic of China.
| |
Collapse
|
10
|
Adu-Gyamfi EA, Cheeran EA, Salamah J, Enabulele DB, Tahir A, Lee BK. Long non-coding RNAs: a summary of their roles in placenta development and pathology†. Biol Reprod 2024; 110:431-449. [PMID: 38134961 DOI: 10.1093/biolre/ioad179] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 12/24/2023] Open
Abstract
Long non-coding RNAs are cellular transcripts that have ˃200 nucleotides in length and do not code for proteins. Due to their low expression levels, long non-coding RNAs were previously considered as mere transcriptional noise. However, current evidence indicates that they regulate a myriad of biological processes such as cell proliferation, invasion, and apoptosis. Hence, their expression patterns are crucial indicators of the physiological or pathological states of cells, tissues, and organs. The utilization of long non-coding RNAs as biomarkers and therapeutic targets for the clinical management of several diseases have been suggested. Gradually, long non-coding RNAs are gaining a substantial attention in the field of feto-maternal medicine. After embryo implantation, the interactions between the trophoblast cells from the embryo and the uterus of the mother facilitate placenta development and pregnancy progression. These processes are tightly regulated, and their impairments result in pregnancy pathologies such as miscarriage and preeclampsia. Accumulating evidence implicates long non-coding RNAs in these processes. Herein, we have summarized the roles of several long non-coding RNAs in human placenta development, have proposed some mechanisms by which they participate in physiological and pathological placentation, have revealed some knowledge deficits, and have recommended ideal experimental approaches that will facilitate the clarification of the mechanistic actions of each long non-coding RNA at the feto-maternal interface during healthy and pathological pregnancies.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Elisha Ann Cheeran
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Joudi Salamah
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Divine Blessing Enabulele
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Ayesha Tahir
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY 12144, United States
| |
Collapse
|
11
|
Adu-Gyamfi EA, Salamah J, Cheeran EA, Lee BK. Bisphenol S moderately decreases the expression of syncytiotrophoblast marker genes and induces apoptosis in human trophoblast lineages. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123259. [PMID: 38159624 DOI: 10.1016/j.envpol.2023.123259] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/07/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024]
Abstract
Bisphenol S (BPS) is currently used in the manufacturing of several household equipment such as water pipes and food containers. Hence, its entrance into the human body is almost inevitable. The presence of BPS in body fluids has been reported. However, its potential toxicity, especially on human placenta development and pregnancy progression, has not been explored. In this study, we assessed the impacts of BPS on the self-renewal and differentiation potentials of placental stem cells, also known as trophoblast stem cells (TSCs), by exposing them to three different BPS concentrations during their self-renewal and differentiation into syncytiotrophoblast (ST), extravillous trophoblast (EVT), and trophoblast organoids. Interestingly, BPS treatment did not affect the stemness, cell cycle and proliferation of the TSCs but it induced apoptosis in each trophoblast lineage. BPS altered the expression of several fusion-related genes. However, this alteration did not translate into significant morphological defects in the STs and organoids. Moreover, BPS did not impair the differentiation of TSCs into EVTs. These findings suggest that the presence of BPS at the feto-maternal interface may exaggerate trophoblast apoptosis and moderately inhibit the trophoblast fusion pathway to affect placenta development and pregnancy. Our study offers valuable insights into the potential toxicity of BPS on human placenta development, emphasizing the need for epidemiological assessment of the relationship between maternal serum levels of BPS and pregnancy complications.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Joudi Salamah
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Elisha Ann Cheeran
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, Cancer Research Center, University at Albany, State University of New York, Rensselaer, NY, 12144, USA.
| |
Collapse
|
12
|
Adu-Gyamfi EA, Cheeran EA, Salamah J, Lee BK. Mechanistic actions of long non-coding RNA MALAT1 within the ovary and at the feto-maternal interface. Mol Biol Rep 2024; 51:301. [PMID: 38353828 DOI: 10.1007/s11033-024-09220-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/06/2024] [Indexed: 02/16/2024]
Abstract
Long non-coding RNAs (LncRNAs) are being unveiled as crucial regulators of several biological processes and pathways. Among the lncRNAs is metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), which is also known as nuclear enriched abundant transcript 2 (NEAT2). MALAT1 is highly conserved in mammals, and controls cellular processes such as proliferation, migration, invasion, angiogenesis, and apoptosis in both physiological and pathological conditions. Roles of MALAT1 in the female reproductive system are gradually getting explored. Within the ovarian micro-environment, the physiological expression of MALAT1 potentially modulates folliculogenesis while its upregulation promotes the metastasis of epithelial ovarian cancers. Interestingly, women with polycystic ovary syndrome have been shown to exhibit aberrant ovarian expression of MALAT1 and this is believed to contribute to the development of the disease. At the feto-maternal interface, MALAT1 potentially promotes trophoblast development. While its placental downregulation is linked to the pathogenesis of preeclampsia, its placental upregulation is associated with placenta increta and placenta percreta. Hence, abnormal expression of MALAT1 is a candidate molecular biomarker and therapeutic target for the treatment of these obstetric and gynecologic anomalies. To enhance a quick uncovering and detailed characterization of the mechanistic actions of MALAT1 in the female reproductive system, we have highlighted some knowledge deficits and have recommended ideal experimental models to be employed in prospective investigations.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Biomedical Sciences, University at Albany - State University of New York, Rensselaer, NY, 12144, USA.
- Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY, 12144, USA.
| | - Elisha Ann Cheeran
- Department of Biomedical Sciences, University at Albany - State University of New York, Rensselaer, NY, 12144, USA
- Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY, 12144, USA
| | - Joudi Salamah
- Department of Biomedical Sciences, University at Albany - State University of New York, Rensselaer, NY, 12144, USA
- Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY, 12144, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, University at Albany - State University of New York, Rensselaer, NY, 12144, USA.
- Cancer Research Center, University at Albany - State University of New York, Rensselaer, NY, 12144, USA.
| |
Collapse
|
13
|
Adu-Gyamfi EA, Cheeran EA, Salamah J, Lee BK. Long noncoding RNA H19 in ovarian biology and placenta development. Cell Biochem Funct 2024; 42:e3907. [PMID: 38269505 DOI: 10.1002/cbf.3907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/25/2023] [Accepted: 12/10/2023] [Indexed: 01/26/2024]
Abstract
As the first long noncoding RNA to be discovered, H19 has gained substantial attention as a key regulator of several biological processes and its roles in female reproductive biology are gradually getting revealed. Herein, we have summarized the current evidence regarding H19 expression pattern and involvement in the developmental and pathological processes associated with the ovary and the placenta. The findings indicate that within the ovaries, H19 is expressed in the antral and cystic atretic follicles as well as in the corpora lutea but absent in the primordial, primary, and secondary follicles. Its normal expression promotes the maturation of antral follicles and prevents their premature selection for the ovulatory journey while its aberrant induction promotes polycystic ovary syndrome development and ovarian cancer metastasis. In the placenta, H19 is highly expressed in the cytotrophoblasts and extravillous trophoblasts but weakly expressed in the syncytiotrophoblast layer and potentially controls trophoblast cell fate decisions during placenta development. Abnormal expression of H19 is observed in the placental villi of pregnancies affected by pre-eclampsia and fetal growth restriction. Therefore, dysregulated H19 is a candidate biomarker and therapeutic target for the mitigation of ovarian and placenta-associated diseases.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Biomedical Sciences, University at Albany-State University of New York, Rensselaer, New York, USA
- Cancer Research Center, University at Albany-State University of New York, Rensselaer, New York, USA
| | - Elisha Ann Cheeran
- Department of Biomedical Sciences, University at Albany-State University of New York, Rensselaer, New York, USA
- Cancer Research Center, University at Albany-State University of New York, Rensselaer, New York, USA
| | - Joudi Salamah
- Department of Biomedical Sciences, University at Albany-State University of New York, Rensselaer, New York, USA
- Cancer Research Center, University at Albany-State University of New York, Rensselaer, New York, USA
| | - Bum-Kyu Lee
- Department of Biomedical Sciences, University at Albany-State University of New York, Rensselaer, New York, USA
- Cancer Research Center, University at Albany-State University of New York, Rensselaer, New York, USA
| |
Collapse
|
14
|
Vestergaard AL, Andersen MK, Olesen RV, Bor P, Larsen A. High-Dose Vitamin D Supplementation Significantly Affects the Placental Transcriptome. Nutrients 2023; 15:5032. [PMID: 38140291 PMCID: PMC10745524 DOI: 10.3390/nu15245032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/03/2023] [Accepted: 12/06/2023] [Indexed: 12/24/2023] Open
Abstract
Vitamin D deficiency is a highly prevalent obstetrical concern associated with an increased risk of complications like pre-eclampsia, gestational diabetes, and growth retardation. Vitamin D status in pregnancy is also linked to long-term offspring health, e.g., the risk of obesity, metabolic disease, and neurodevelopmental problems. Despite the suspected role of vitamin D in placental diseases and fetal development, there is limited knowledge on the effect of vitamin D on placental function. Thus, we performed next-generation RNA sequencing, comparing the placental transcriptome from uncomplicated term pregnancies receiving the often-recommended dose of 10 µg vitamin D/day (n = 36) with pregnancies receiving 90 µg/day (n = 34) from late first trimester to delivery. Maternal vitamin D status in the first trimester was also considered. We found that signaling pathways related to cell adhesion, immune function, and neurodevelopment were affected, supporting that increased vitamin D supplementation benefits placental function in established pregnancies without severe vitamin D deficiency, also underlining the importance of vitamin D in brain development. Specific effects of the first trimester vitamin D status and offspring sex were also identified. Further studies are warranted, addressing the optimal vitamin status during pregnancy with a focus on organ-specific vitamin D needs in individual pregnancies.
Collapse
Affiliation(s)
- Anna Louise Vestergaard
- Department of Obstetrics and Gynecology, Randers Regional Hospital, 8930 Randers, Denmark (P.B.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
| | - Matilde K. Andersen
- Department of Obstetrics and Gynecology, Randers Regional Hospital, 8930 Randers, Denmark (P.B.)
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark (A.L.)
| | - Rasmus V. Olesen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark (A.L.)
| | - Pinar Bor
- Department of Obstetrics and Gynecology, Randers Regional Hospital, 8930 Randers, Denmark (P.B.)
- Department of Clinical Medicine, Aarhus University, 8200 Aarhus, Denmark
- Department of Obstetrics and Gynecology, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Agnete Larsen
- Department of Biomedicine, Aarhus University, 8000 Aarhus, Denmark (A.L.)
| |
Collapse
|
15
|
Li W, Yuan W, Huang S, Zou L, Zheng K, Xie D. Research progress on the mechanism of Treponema pallidum breaking through placental barrier. Microb Pathog 2023; 185:106392. [PMID: 37852552 DOI: 10.1016/j.micpath.2023.106392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 10/20/2023]
Abstract
Congenital syphilis, a significant cause of fetal mortality worldwide, is a congenital infectious disease instigated by the vertical transmission of Treponema pallidum during pregnancy. Clinical manifestations include preterm delivery, stillbirth, neonatal skin lesions, skeletal abnormalities, and central nervous system aberrations. The ongoing increase in the incidence of congenital syphilis, coupled with complexities in diagnosis, necessitates a detailed understanding of its pathogenesis for the development of improved diagnostic approaches, and to interrupt the route of vertical transmission. Drawing from the broader body of research associated with vertical transmission pathogens, we aim to clarify the potential mechanisms by which Treponema pallidum breaches the placental barrier to infect the fetus.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Wei Yuan
- The Fourth Affiliated Hospital of Nanchang University, China
| | - Shaobin Huang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, Hengyang Medical College, Institution of Pathogenic Biology, University of South China, Hengyang, China
| | - Lin Zou
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China
| | - Kang Zheng
- Department of Clinical Laboratory, Hengyang Central Hospital, Hengyang, China.
| | - Dongde Xie
- Department of Clinical Laboratory, The Second People's Hospital of Foshan, China.
| |
Collapse
|
16
|
Ning H, Tao H. Small RNA sequencing of exosomal microRNAs reveals differential expression of microRNAs in preeclampsia. Medicine (Baltimore) 2023; 102:e35597. [PMID: 37861520 PMCID: PMC10589583 DOI: 10.1097/md.0000000000035597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 09/20/2023] [Indexed: 10/21/2023] Open
Abstract
Preeclampsia (PE) is one of the most common hypertensive disorders of pregnancy. It is a dangerous condition with a high mortality rate in mothers and fetuses and is associated with a lack of early diagnosis and effective treatment. While the etiology of the disease is complex and obscure, it is now clear that the placenta is central to disease progression. Exosomal microRNAs (miRNAs) are possible mediators that regulate placenta-related physiological and pathological processes. Placental mesenchymal stem cells have considerable potential to help us understand the pathogenesis and treatment of pregnancy-related diseases. Here, we investigate the exosomal miRNA profiles of human placenta-derived mesenchymal stem cells between healthy pregnant women and those with PE. We performed small RNA sequencing to obtain miRNA profiles, and conducted enrichment analysis of the miRNA target genes to identify differentially expressed miRNAs associated with PE. Overall, we detected 1795 miRNAs; among them, 206 were differentially expressed in women with PE, including 35 upregulated and 171 downregulated miRNAs, when compared with healthy pregnant women. Moreover, we identified possible functions and pathways associated with PE, including angiogenesis, cell proliferation, migration and invasion, and the coagulation-fibrinolysis balance. Eventually, we proposed hsa-miR-675-5p, hsa-miR-3614-5p, and hsa-miR-615-5p as potential regulators of the pathogenesis of PE, and constructed a miRNA-target gene network. Our study identifies possible candidate biomarkers for the diagnosis of PE, and introduces a new direction for further understanding the pathogenesis of PE.
Collapse
Affiliation(s)
- Hui Ning
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, China
| | - Hong Tao
- Department of Obstetrics, Qingdao Municipal Hospital, Qingdao, China
| |
Collapse
|
17
|
Yao W, Yao Y, He W, Zhao C, Liu D, Wang G, Wang Z. PABPC1 promotes cell proliferation and metastasis in pancreatic adenocarcinoma by regulating COL12A1 expression. Immun Inflamm Dis 2023; 11:e919. [PMID: 37506150 PMCID: PMC10336663 DOI: 10.1002/iid3.919] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND The expression of cytoplasmic poly (A) binding protein-1 (PABPC1) has been reported in multiple cancer types. This protein is known to modulate cancer progression. However, the effects of PABPC1 expression in pancreatic adenocarcinoma (PAAD) have not been investigated. Here, we investigate the regulatory targets and molecular mechanisms of PABPC1 in PAAD. METHODS PABPC1 and collagen type XII α1 chain (COL12A1) expression in PAAD and their role in tumor prognosis and tumor stage were investigated using The Cancer Genome Atlas database analysis. After silencing PABPC1, messenger RNA sequencing and Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed. The expression of differentially expressed genes (DEGs), cell viability, apoptosis, and cell migration and invasion were explored using reverse transcription-quantitative polymerase chain reaction, Cell Counting Kit-8 assay, flow cytometry assay, and transwell assay, respectively. The relationship between PABPC1 and COL12A1 expression was assessed by Pearson's correlation analysis. The regulatory function of COL12A1 in PABPC1-affected BXPC3 cell behavior was studied after COL12A1 was overexpressed. RESULTS PABPC1 and COL12A1 expression was upregulated in patients with PAAD and was linked to poor prognosis. Four hundred and seventy-four DEGs were observed in BXPC3 cells after PABPC1 silencing. GO and KEGG analyses revealed that the top 10 DEGs were enriched in cell adhesion pathways. Additionally, PABPC1 silencing inhibited cell viability, migration, and invasion and accelerated apoptosis in BXPC3 cells. PABPC1 silencing increased AZGP1 and ARHGAP30 expression and decreased CAV1 and COL12A1 expression in BXPC3 cells. PABPC1 positively mediated COL12A1 expression, whereas PABPC1 knockdown induced the inhibition of BXPC3 cell proliferation, migration, and invasion. CONCLUSION The results of this study indicate that PABPC1 may function as a tumor promoter in PAAD, accelerating BXPC3 cell proliferation and metastasis by regulating COL12A1 expression.
Collapse
Affiliation(s)
- Weijie Yao
- Department of Hepatobiliary SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Yanrong Yao
- Department of Hepatobiliary SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Wen He
- Department of Hepatobiliary SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Chengsi Zhao
- Department of Hepatobiliary SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Di Liu
- Department of Hepatobiliary SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Genwang Wang
- Department of Hepatobiliary SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| | - Zuozheng Wang
- Department of Hepatobiliary SurgeryGeneral Hospital of Ningxia Medical UniversityYinchuanChina
| |
Collapse
|
18
|
Dong J, Xu Q, Chen S, Lei H, Wang J, Yan S, Qian C, Wang X. Comparative Proteomic and Phospho-proteomic Analysis of Mouse Placentas Generated via In Vivo and In Vitro Fertilization. Reprod Sci 2023; 30:1143-1156. [PMID: 36280645 DOI: 10.1007/s43032-022-01109-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/13/2022] [Indexed: 10/31/2022]
Abstract
Offspring conceived by assisted reproductive technologies (ART) have increased risk of suffering from gestational complications, and placental dysfunction is related with the adverse outcomes. Studies have revealed that abnormal or adaptive changes can occur in ART placentas, but the potential reasons are not fully understood. Hereby, we tried to use proteomics and phospho-proteomics to find the underlying mechanisms responsible for the changes of ART placentas. Liquid chromatography-tandem mass spectrometry was utilized to perform proteome and phospho-proteome detection on mouse placentas. The differential expressed proteins (DEPs) or phospho-proteins (DEPPs) were analyzed based on subcellular localization, functional classification, and enrichment. Western blot was used to verify the DEPs (Afadin, ZO-1, Ace2, Agt, Slc7a5, and Slc38a10) and measure mTOR signaling activities (mTOR, Rps6, and 4Ebp1). The data showed that 161 DEPs and 304 DEPPs were found in proteome and phospho-proteome, respectively. Multiple biological processes were enriched based on those DEPs and DEPPs, and renin-angiotensin system, cell junction, and PI3K-Akt pathway were investigated. By protein expression identification, two key proteins associated with renin-angiotensin system (Ace2 and Agt) were down-regulated, and the levels of Afadin and ZO-1 (related with cell junction) as well as Slc38a10 were increased in IVF placentas. In addition, mTOR downstream activities were increased as shown by p-Rps6 and p-4Ebp1 in IVF placentas. In conclusion, IVF leads to the changes of cell junction, renin-angiotensin system, amino acid transport, and increased mTOR signaling in mouse placentas, which may be associated with the altered structure and function of IVF placentas.
Collapse
Affiliation(s)
- Jie Dong
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Qian Xu
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Shuqiang Chen
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Hui Lei
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Jingjing Wang
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Song Yan
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Chenxi Qian
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China
| | - Xiaohong Wang
- Department of Obstetrics and Gynaecology, Tangdu Hospital, Air Force Medical University, Xi'an, 710038, Shaanxi Province, China.
| |
Collapse
|
19
|
Yang J, Liu Y, Dong M. Integrated Bioinformatics Analysis to Screen Hub Gene Signatures for Fetal Growth Restriction. Genet Res (Camb) 2023; 2023:3367406. [PMID: 37033160 PMCID: PMC10079385 DOI: 10.1155/2023/3367406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 02/26/2023] [Accepted: 03/21/2023] [Indexed: 04/03/2023] Open
Abstract
Background. Fetal growth restriction (FGR) is the impairment of the biological growth potential of the fetus and often leads to adverse pregnancy outcomes. The molecular mechanisms for the development of FGR, however, are still unclear. The purpose of this study is to identify critical genes associated with FGR through an integrated bioinformatics approach and explore the potential pathogenesis of FGR. Methods. We downloaded FGR-related gene microarray data, used weighted gene co-expression network analysis (WGCNA), differentially expressed genes (DEGs), and protein-protein interaction (PPI) networks to screen hub genes. The GSE24129 gene set was used for validation of critical gene expression levels and diagnostic capabilities. Results. A weighted gene co-expression network was constructed, and 5000 genes were divided into 12 modules. Of these modules, the blue module showed the closest relationship with FGR. Taking the intersection of the DEGs and genes in the blue module as pivotal genes, 277 genes were identified, and 20 crucial genes were screened from the PPI network. The GSE24129 gene set verified the expression of 20 genes, and CXCL9, CXCR3, and ITGAX genes were identified as actual pivotal genes. The expression levels of CXCL9, CXCR3, and ITGAX were increased in both the training and validation sets, and ROC curve validation revealed that these three pivotal genes had a significant diagnostic ability for FGR. Single-gene GSEA results showed that all three core genes activated “hematopoietic cell lineage” and “cell adhesion molecules” and inhibited the “cGMP-PKG signaling pathway” in the development of FGR. CXCL9, CXCR3, and ITGAX may therefore be closely associated with the development of FGR and may serve as potential biomarkers for the diagnosis and treatment of FGR.
Collapse
|
20
|
Brockway HM, Wilson SL, Kallapur SG, Buhimschi CS, Muglia LJ, Jones HN. Characterization of methylation profiles in spontaneous preterm birth placental villous tissue. PLoS One 2023; 18:e0279991. [PMID: 36952446 PMCID: PMC10035933 DOI: 10.1371/journal.pone.0279991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 03/25/2023] Open
Abstract
Preterm birth is a global public health crisis which results in significant neonatal and maternal mortality. Yet little is known regarding the molecular mechanisms of idiopathic spontaneous preterm birth, and we have few diagnostic markers for adequate assessment of placental development and function. Previous studies of placental pathology and our transcriptomics studies suggest a role for placental maturity in idiopathic spontaneous preterm birth. It is known that placental DNA methylation changes over gestation. We hypothesized that if placental hypermaturity is present in our samples, we would observe a unique idiopathic spontaneous preterm birth DNA methylation profile potentially driving the gene expression differences we previously identified in our placental samples. Our results indicate the idiopathic spontaneous preterm birth DNA methylation pattern mimics the term birth methylation pattern suggesting hypermaturity. Only seven significant differentially methylated regions fitting the idiopathic spontaneous preterm birth specific (relative to the controls) profile were identified, indicating unusually high similarity in DNA methylation between idiopathic spontaneous preterm birth and term birth samples. We identified an additional 1,718 significantly methylated regions in our gestational age matched controls where the idiopathic spontaneous preterm birth DNA methylation pattern mimics the term birth methylation pattern, again indicating a striking level of similarity between the idiopathic spontaneous preterm birth and term birth samples. Pathway analysis of these regions revealed differences in genes within the WNT and Cadherin signaling pathways, both of which are essential in placental development and maturation. Taken together, these data demonstrate that the idiopathic spontaneous preterm birth samples display a hypermature methylation signature than expected given their respective gestational age which likely impacts birth timing.
Collapse
Affiliation(s)
- Heather M. Brockway
- Department of Physiology and Functional Genomics, College of Medicine at the University of Florida, Gainesville, Florida, United States of America
| | - Samantha L. Wilson
- Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - Suhas G. Kallapur
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California, UCLA Mattel Children’s Hospital, Los Angeles, California, United States of America
| | - Catalin S. Buhimschi
- Department of Obstetrics and Gynecology, The University of Illinois College of Medicine, Chicago, Illinois, United States of America
| | - Louis J. Muglia
- Burroughs Wellcome Fund, Research Triangle Park, North Carolina, United States of America
| | - Helen N. Jones
- Department of Physiology and Functional Genomics, College of Medicine at the University of Florida, Gainesville, Florida, United States of America
| |
Collapse
|
21
|
Expression profile of genes related to pregnancy maintenance in Dromedary Camel during the first trimester. Anim Reprod Sci 2023; 251:107211. [PMID: 36990016 DOI: 10.1016/j.anireprosci.2023.107211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/18/2023]
Abstract
So far, few signals involved in embryo-maternal dialogue have been identified in pregnant she-camel. Our objective was to investigate expression profiles of genes relevant to uterine extracellular matrix remodeling (ITGB4, SLCO2A1, FOS, and JUN), uterine tissue vascularization, and placental formation (VEGFA, PGF, and PDGFA), embryonic growth and development (IGF1 and PTEN), plus cell death of uterine tissue (BCL2) in early pregnant versus non-pregnant she-camels. Forty genital tracts (20 pregnant and 20 non-pregnant) and blood samples were collected from abattoirs. Total RNA was extracted from uterine tissues and qRT-PCR was conducted for candidate genes. Serum concentrations of progesterone (P4) and estradiol17-β (E2) were measured. Expression of ITGB4, FOS, and PGF genes increased (P < 0.001) in the right uterine horn of pregnant versus non-pregnant she-camels. Moreover, JUN, SLCO2A1, VEGFA, and PTEN mRNAs were up-regulated (P < 0.001) in various segments of uterine tissues in pregnant groups. The PDGFA transcript was over-expressed (P < 0.001) in both uterine horns of pregnant groups. Additionally, IGF1 was higher (P < 0.001) in the right horn and the uterine body of pregnant groups, and expression of BCL2 was increased (P < 0.001) in the pregnant uterine body. Moreover, serum concentrations of P4 were higher (P < 0.001) and E2 lower (P < 0.05) in pregnant she-camels. Taken together, the fine-tuning of genes related to implantation, matrix formation, vascularization, and placental formation is highly required for successful pregnancy in she-camels.
Collapse
|
22
|
Lapehn S, Houghtaling S, Ahuna K, Kadam L, MacDonald JW, Bammler TK, LeWinn KZ, Myatt L, Sathyanarayana S, Paquette AG. Mono(2-ethylhexyl) phthalate induces transcriptomic changes in placental cells based on concentration, fetal sex, and trophoblast cell type. Arch Toxicol 2023; 97:831-847. [PMID: 36695872 PMCID: PMC9968694 DOI: 10.1007/s00204-023-03444-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/17/2023] [Indexed: 01/26/2023]
Abstract
Phthalates are ubiquitous plasticizer chemicals found in consumer products. Exposure to phthalates during pregnancy has been associated with adverse pregnancy and birth outcomes and differences in placental gene expression in human studies. The objective of this research was to evaluate global changes in placental gene expression via RNA sequencing in two placental cell models following exposure to the phthalate metabolite mono(2-ethylhexyl) phthalate (MEHP). HTR-8/SVneo and primary syncytiotrophoblast cells were exposed to three concentrations (1, 90, 180 µM) of MEHP for 24 h with DMSO (0.1%) as a vehicle control. mRNA and lncRNAs were quantified using paired-end RNA sequencing, followed by identification of differentially expressed genes (DEGs), significant KEGG pathways, and enriched transcription factors (TFs). MEHP caused gene expression changes across all concentrations for HTR-8/SVneo and primary syncytiotrophoblast cells. Sex-stratified analysis of primary cells identified different patterns of sensitivity in response to MEHP dose by sex, with male placentas being more responsive to MEHP exposure. Pathway analysis identified 11 KEGG pathways significantly associated with at least one concentration in both cell types. Four ligand-inducible nuclear hormone TFs (PPARG, PPARD, ESR1, AR) were enriched in at least three treatment groups. Overall, we demonstrated that MEHP differentially affects placental gene expression based on concentration, fetal sex, and trophoblast cell type. This study confirms prior studies, as enrichment of nuclear hormone receptor TFs were concordant with previously published mechanisms of phthalate disruption, and generates new hypotheses, as we identified many pathways and genes not previously linked to phthalate exposure.
Collapse
Affiliation(s)
- Samantha Lapehn
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
| | - Scott Houghtaling
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
| | - Kylia Ahuna
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Leena Kadam
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - James W. MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 USA
| | - Theo K. Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195 USA
| | - Kaja Z. LeWinn
- Department of Psychiatry, University of California-San Francisco, San Francisco, CA 94143 USA
| | - Leslie Myatt
- Department of Obstetrics and Gynecology, Oregon Health and Science University, Portland, OR 97239 USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA 98195 USA
- Center for Child Health, Behavior and Development, Seattle Children’s Research Institute, Seattle, WA 98101 USA
| | - Alison G. Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children’s Research Institute, 1900 9th Ave, Jack R. MacDonald Building, Seattle, WA 98101 USA
- Department of Pediatrics, University of Washington, Seattle, WA 98195 USA
| |
Collapse
|
23
|
Than NG, Romero R, Györffy D, Posta M, Bhatti G, Done B, Chaemsaithong P, Jung E, Suksai M, Gotsch F, Gallo DM, Bosco M, Kim B, Kim YM, Chaiworapongsa T, Rossi SW, Szilágyi A, Erez O, Tarca AL, Papp Z. Molecular subclasses of preeclampsia characterized by a longitudinal maternal proteomics study: distinct biomarkers, disease pathways and options for prevention. J Perinat Med 2023; 51:51-68. [PMID: 36253935 PMCID: PMC9837387 DOI: 10.1515/jpm-2022-0433] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/09/2022] [Indexed: 01/25/2023]
Abstract
OBJECTIVES The heterogeneous nature of preeclampsia is a major obstacle to early screening and prevention, and a molecular taxonomy of disease is needed. We have previously identified four subclasses of preeclampsia based on first-trimester plasma proteomic profiles. Herein, we expanded this approach by using a more comprehensive panel of proteins profiled in longitudinal samples. METHODS Proteomic data collected longitudinally from plasma samples of women who developed preeclampsia (n=109) and of controls (n=90) were available from our previous report on 1,125 proteins. Consensus clustering was performed to identify subgroups of patients with preeclampsia based on data from five gestational-age intervals by using select interval-specific features. Demographic, clinical, and proteomic differences among clusters were determined. Differentially abundant proteins were used to identify cluster-specific perturbed KEGG pathways. RESULTS Four molecular clusters with different clinical phenotypes were discovered by longitudinal proteomic profiling. Cluster 1 involves metabolic and prothrombotic changes with high rates of early-onset preeclampsia and small-for-gestational-age neonates; Cluster 2 includes maternal anti-fetal rejection mechanisms and recurrent preeclampsia cases; Cluster 3 is associated with extracellular matrix regulation and comprises cases of mostly mild, late-onset preeclampsia; and Cluster 4 is characterized by angiogenic imbalance and a high prevalence of early-onset disease. CONCLUSIONS This study is an independent validation and further refining of molecular subclasses of preeclampsia identified by a different proteomic platform and study population. The results lay the groundwork for novel diagnostic and personalized tools of prevention.
Collapse
Affiliation(s)
- Nándor Gábor Than
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
- First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
- Detroit Medical Center, Detroit, Michigan, USA
| | - Dániel Györffy
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
- Faculty of Information Technology and Bionics, Pázmány Péter Catholic University, Budapest, Hungary
| | - Máté Posta
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
- Genesis Theranostix Group, Budapest, Hungary
- Károly Rácz Doctoral School of Clinical Medicine, Semmelweis University, Budapest, Hungary
| | - Gaurav Bhatti
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Done
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Piya Chaemsaithong
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Manaphat Suksai
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Francesca Gotsch
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Dahiana M. Gallo
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Universidad Del Valle, Cali, Colombia
| | - Mariachiara Bosco
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bomi Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Yeon Mee Kim
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Pathology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Pathology, Haeundae Paik Hospital, Inje University College of Medicine, Busan, Republic of Korea
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | - András Szilágyi
- Systems Biology of Reproduction Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Genesis Theranostix Group, Budapest, Hungary
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, HaEmek Medical Center, Afula, Israel
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Genesis Theranostix Group, Budapest, Hungary
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Computer Science, Wayne State University College of Engineering, Detroit, Michigan, USA
| | - Zoltán Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
- Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
24
|
Davenport BN, Jones HN, Wilson RL. Placental treatment with insulin-like growth factor 1 via nanoparticle differentially impacts vascular remodeling factors in guinea pig sub-placenta/decidua. Front Physiol 2023; 13:1055234. [PMID: 36685211 PMCID: PMC9845775 DOI: 10.3389/fphys.2022.1055234] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/13/2022] [Indexed: 01/06/2023] Open
Abstract
Clinically, fetal growth restriction (FGR) is only detectable in later gestation, despite pathophysiological establishment likely earlier in pregnancy. Additionally, there are no effective in utero treatment options for FGR. We have developed a nanoparticle to deliver human insulin-like 1 growth factor (hIGF-1) in a trophoblast-specific manner which results in increased expression of hIGF-1. IGF-1 signaling in the placenta regulates multiple developmental processes including trophoblast invasion and maternal vascular remodeling, both of which can be diminished in the FGR placenta. We aimed to determine the effects of short-term hIGF-1 nanoparticle treatment on sub-placenta/decidua trophoblast signaling mechanisms in FGR and under normal growth conditions. Using the guinea pig maternal nutrient restriction (MNR) model of FGR, ultrasound-guided, intra-placenta injections of hIGF-1 nanoparticle were performed at gestational day 30-33, and dams sacrificed 5 days later. Sub-placenta/decidua tissue was separated from placenta for further analyses. Western blot was used to analyze protein expression of ERK/AKT/mTOR signaling proteins (phospho-Erk (pERK), phospho-Akt (pAKT), raptor, rictor and deptor). qPCR was used to analyze gene expression of vascular/remodeling factors [vascular endothelial growth factor (Vegf), placenta growth factor (Pgf), platelet-derived growth factor (Pdgf)) and tight junction/adhesion proteins (claudin 5 (Cldn5), p-glycoprotein (Abcb1), occludin (Ocln) and tight junction protein 1 (Zo1)]. MNR reduced expression of pERK, PdgfB and Cldn5, and increased expression of Ocln and Zo1 in the sub-placenta/decidua. In MNR + hIGF1 nanoparticle sub-placenta/decidua, expression of PdgfB, Ocln and Zo1 was normalized, whilst pAkt, VegfB, Vegf receptor 1 and PdgfB receptor were increased compared to MNR. In contrast, hIGF-1 nanoparticle treatment of normal placentas reduced expression of pERK, raptor and increased expression of the mTOR inhibitor deptor. This was associated with reduced expression of VegfA, Plgf, and PdgfB. Here we have shown that the impact of hIGF-1 nanoparticle treatment is dependent on pregnancy environment. Under MNR/FGR, hIGF-1 nanoparticle treatment triggers increased expression of growth factors and normalization of EMT factors. However, under normal conditions, the response of the placenta is to decrease AKT/mTOR signaling and growth factor expression to achieve homeostasis.
Collapse
Affiliation(s)
- Baylea N. Davenport
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, FL, United States
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL, United States
| | - Helen N. Jones
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, FL, United States
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL, United States
| | - Rebecca L. Wilson
- Center for Research in Perinatal Outcomes, University of Florida College of Medicine, Gainesville, FL, United States
- Department of Physiology and Aging, University of Florida College of Medicine, Gainesville, FL, United States
| |
Collapse
|
25
|
Sağsöz H, Liman N, Akbalık ME, Alan E, Saruhan BG, Ketani MA, Erdoğan S. Expression of cadherins and some connective tissue components in cow uterus and placenta during pregnancy. Res Vet Sci 2022; 151:64-79. [PMID: 35870371 DOI: 10.1016/j.rvsc.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/06/2022] [Accepted: 07/14/2022] [Indexed: 11/26/2022]
Abstract
The implantation and placental development processes are regulated with cell adhesion molecules and remodeling of the maternal endometrium's extracellular matrices (ECM) and fetal chorion. This study aimed to investigate the distribution and localization of some classical cadherins (E-, N-, and P-cadherins) and extracellular matrix components collagen type 5α1, fibronectin, and laminin in the cow placentomes during pregnancy using immunohistochemical and Western blotting analyses. The study results confirmed the expression of E- and P-cadherins, collagen type Vα1 (COLVα1), fibronectin, and laminin in the cow placentomes, but not N-cadherin. Throughout the pregnancy, E- and P- cadherins, COLVα1, and laminin were localized in the luminal and glandular epithelium of the inter-caruncular endometrium, caruncular epithelium, and the uninucleate (UNCs) and binucleate trophoblast giant cells (BNCs/TGCs). E- cadherin immunoreactivity in the first pregnancy period was strong in the UNCs while moderate in the BNCs/TGCs. However, it was weak in both trophoblast in the second and third pregnancy periods. In the fetal trophoblasts, P- cadherin and laminin immunostainings were more intense in the BNCs/TGCs than UNCs. The fetal and maternal stromal cells were also positive for P- cadherin, COLVα1, fibronectin, and laminin. The immunostaining intensity of COLVα1 and fibronectin in the stromal extracellular matrix of the placentomes decreased as the pregnancy progressed. The endothelia of fetal and maternal vessels were positive for all proteins. The presence and distinct localization of cadherins and ECM proteins in the cow placentome components support the role of these molecules in regulating placental cell growth, migration, and matrix production during pregnancy.
Collapse
Affiliation(s)
- Hakan Sağsöz
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey.
| | - Narin Liman
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, 38039 Kayseri, Turkey.
| | - M Erdem Akbalık
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey
| | - Emel Alan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Erciyes, 38039 Kayseri, Turkey
| | - Berna Güney Saruhan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey
| | - M Aydın Ketani
- Department of Histology and Embryology, Faculty of Veterinary Medicine, University of Dicle, 21280 Diyarbakır, Turkey
| | - Serkan Erdoğan
- Department of Anatomy, Faculty of Veterinary Medicine, Tekirdağ Namık Kemal University, 59000, Tekirdağ, Turkey
| |
Collapse
|
26
|
Deng P, Cui K, Shi Y, Zhu Y, Wang Y, Shao X, Qin J. Fluidic Flow Enhances the Differentiation of Placental Trophoblast-Like 3D Tissue from hiPSCs in a Perfused Macrofluidic Device. Front Bioeng Biotechnol 2022; 10:907104. [PMID: 35845423 PMCID: PMC9280037 DOI: 10.3389/fbioe.2022.907104] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/17/2022] [Indexed: 11/21/2022] Open
Abstract
The human placenta serves as a multifunctional organ to maintain the proper development of a fetus. However, our knowledge of the human placenta is limited due to the lack of appropriate experimental models. In this work, we created an in vitro placental trophoblast-like model via self-organization of human induced pluripotent stem cells (hiPSCs) in a perfused 3D culture macrofluidic device. This device allowed cell seeding, in situ trophoblast lineage differentiation, and formation of trophoblast-like tissues from hiPSCs in a biomimetic microenvironment. It incorporated extracellular matrix (ECM) and fluid flow in a single device. After trophoblast lineage differentiation, we were able to generate the 3D clusters with major cell types of the human placenta, including trophoblast progenitor cytotrophoblasts (CTBs), differentiated subtypes, syncytiotrophoblasts (STBs), and extravillous trophoblasts (EVTs) under long-term 3D culture (∼23 days). Moreover, the formed tissues exhibited enhanced expressions of CTB-, STB-, and EVT-related markers at the level of genes and proteins under a dynamic culture compared with static conditions. RNA-seq analysis revealed the higher expression of trophoblast-specific genes in 3D tissues, indicating the essential role of fluid flow to promote the trophoblast differentiation of hiPSCs. The established placental 3D model combined a bioengineering strategy with developmental principles, providing a promising platform for the study of placental biology in a biomimetic microenvironment in health and disease.
Collapse
Affiliation(s)
- Pengwei Deng
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Kangli Cui
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Yang Shi
- Dalian Key Laboratory of Reproduction and Mother-child Genetics, Dalian Women and Children’s Medical Group, Dalian, China
| | - Yujuan Zhu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Beijing, China
| | - Yaqing Wang
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Xiaoguang Shao
- Dalian Key Laboratory of Reproduction and Mother-child Genetics, Dalian Women and Children’s Medical Group, Dalian, China
| | - Jianhua Qin
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
- Division of Biotechnology, Dalian Institute of Chemical Physics, University of Chinese Academy of Sciences, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
- *Correspondence: Jianhua Qin,
| |
Collapse
|
27
|
Liu H, Wang X. MiR-200b-3p is upregulated in the placental tissues from patients with preeclampsia and promotes the development of preeclampsia via targeting profilin 2. Cell Cycle 2022; 21:1945-1957. [PMID: 35613309 DOI: 10.1080/15384101.2022.2075644] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Preeclampsia is a serious pregnancy disorder affecting both maternal and fetal health. However, the pathogenesis of preeclampsia has not been fully understood. This study aimed to investigate the key microRNAs (miRNAs) in the development of preeclampsia. A high-throughput miRNA sequencing analysis for the placental tissues from patients with preeclampsia and healthy controls was conducted, followed by investigation of differentially expressed miRNAs (DEMs) and functional enrichment analysis. Moreover, the expression of a key DEM, named miR-200b-3p, in the preeclampsia patients was validated, and the effects of miR-200b-3p overexpression on the proliferation, migration, and apoptosis of HTR8 trophoblast cells were investigated in vitro. Furthermore, the target gene of miR-200b-3p was investigated based on gene expression profile GSE177049 and miRWalk 2.0 database. The target relationship between miR-200b-3p and profilin 2 (PFN2) was investigated in vitro. A total of 12 DEMs including miR-200b-3p were identified between preeclampsia placental tissues and control placental tissues, which were significantly enriched in several pathways, such as cell adhesion molecules (CAMs) and tight junction. Moreover, increased expression of miR-200b-3p was revealed in the placental tissues of preeclampsia patients, and overexpression of miR-200b-3p suppressed cell proliferation and migration but promoted apoptosis of trophoblast cells. Furthermore, PFN2 was confirmed as a target of miR-200b-3p, and overexpression of PFN2 reversed the inhibitory effects of miR-200b-3p overexpression on trophoblast cell migration. Our findings reveal that miR-200b-3p is upregulated in the placental tissues of patients with preeclampsia and promotes preeclampsia development via PFN2. miR-200b-3p may serve as a promising therapeutic target against preeclampsia.
Collapse
Affiliation(s)
- Huijun Liu
- Department of Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China
| | - Xietong Wang
- Department of Obstetrics, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,Key Laboratory of Birth Regulation and Control Technology of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Shandong University, Jinan, Shandong, China
| |
Collapse
|
28
|
Adu-Gyamfi EA, Rosenfeld CS, Tuteja G. The impact of bisphenol a (BPA) on the placenta. Biol Reprod 2022; 106:826-834. [PMID: 35020819 DOI: 10.1093/biolre/ioac001] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) that is used in a wide-variety of plastic and common house-hold items. Therefore, there is potential continual exposure to this compound. BPA exposure has been linked to certain placenta-associated obstetric complications such as preeclampsia, fetal growth restriction, miscarriage, and preterm birth. However, how BPA exposure results in these disorders remains uncertain. Hence, we have herein summarized the reported impact of BPA on the morphology and metabolic state of the placenta and have proposed mechanisms by which BPA affects placentation, potentially leading to obstetric complications. Current findings suggest that BPA induces pathological changes in the placenta and disrupts its metabolic activities. Based on exposure concentrations, BPA can elicit apoptotic or anti-apoptotic signals in the trophoblasts; and can exaggerate trophoblast fusion while inhibiting trophoblast migration and invasion to affect pregnancy. Accordingly, the usage of BPA products by pregnant women should be minimized and less harmful alternative chemicals should be explored and employed where possible.
Collapse
Affiliation(s)
| | - Cheryl S Rosenfeld
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, USA
- Data Science and Informatics Institute, University of Missouri, Columbia, MO, USA
- Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri, Columbia, MO, USA
| | - Geetu Tuteja
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, USA
| |
Collapse
|
29
|
Lamptey J, Czika A, Aremu JO, Pervaz S, Adu-Gyamfi EA, Otoo A, Li F, Wang YX, Ding YB. The role of fascin in carcinogenesis and embryo implantation. Exp Cell Res 2021; 409:112885. [PMID: 34662557 DOI: 10.1016/j.yexcr.2021.112885] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 01/02/2023]
Abstract
The cytoskeleton, with its actin bundling proteins, plays crucial roles in a host of cellular function, such as cancer metastasis, antigen presentation and trophoblast migration and invasion, as a result of cytoskeletal remodeling. A key player in cytoskeletal remodeling is fascin. Upregulation of fascin induces the transition of epithelial phenotypes to mesenchymal phenotypes through complex interaction with transcription factors. Fascin expression also regulates mitochondrial F-actin to promote oxidative phosphorylation (OXPHOS) in some cancer cells. Trophoblast cells, on the other hand, exhibit similar physiological functions, involving the upregulation of genes crucial for its migration and invasion. Owing to the similar tumor-like characteristics among cancer and trophoblats, we review recent studies on fascin in relation to cancer and trophoblast cell biology; and based on existing evidence, link fascin to the establishment of the maternal-fetal interface.
Collapse
Affiliation(s)
- Jones Lamptey
- School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China; Kumasi Centre for Collaborative Research in Tropical Medicine, KCCR, UPO, Kumasi, Ghana.
| | - Armin Czika
- School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - John Ogooluwa Aremu
- Department of Human Anatomy and Histoembryology, Harbin Medical University, Harbin, People's Republic of China
| | - Sadaf Pervaz
- School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Enoch Appiah Adu-Gyamfi
- School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Antonia Otoo
- School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Fangfang Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China
| | - Ying-Xiong Wang
- School of Basic Medicine, Chongqing Medical University, Chongqing, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China.
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, People's Republic of China.
| |
Collapse
|
30
|
Ullah A, Wang MJ, Yang JP, Adu-Gyamfi EA, Czika A, Sah SK, Feng Q, Wang YX. Ovarian inflammatory mRNA profiles of a dehydroepiandrosterone plus high-fat diet-induced polycystic ovary syndrome mouse model. Reprod Biomed Online 2021; 44:791-802. [DOI: 10.1016/j.rbmo.2021.10.024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 10/15/2021] [Accepted: 10/25/2021] [Indexed: 10/19/2022]
|
31
|
Adu-Gyamfi EA, Lamptey J, Chen XM, Li FF, Li C, Ruan LL, Yang XN, Liu TH, Wang YX, Ding YB. Iodothyronine deiodinase 2 (DiO 2) regulates trophoblast cell line cycle, invasion and apoptosis; and its downregulation is associated with early recurrent miscarriage. Placenta 2021; 111:54-68. [PMID: 34166926 DOI: 10.1016/j.placenta.2021.06.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/26/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022]
Abstract
INTRODUCTION Trophoblast development is a crucial event in placentation and pregnancy complications but its underlying mechanisms remain unclear. Thus, we aimed at investigating the role of DiO2 in trophoblast cell line decisions and assessing its placental villous expression in early recurrent miscarriage (ERM) patients. METHODS The placental villous expression of DiO2 was determined with immunofluorescence. Cell proliferation was measured with the CCK8 kit while cell-cycle and apoptosis were studied with flow-cytometry. Cell migration and invasion were measured with wound-healing and transwell assays, respectively. Gene expression was then assessed with RT-qPCR and western blotting. RESULTS DiO2 is expressed in the CTB, PCT, DCT and STB of the placenta. Its overexpression arrested trophoblast cell line proliferation at the G1 phase of the cell-cycle by downregulating cyclin-D1 and PCNA, while promoting apoptosis via increased caspase-3 activity and inhibition of the AKT and ERK1/2 signaling pathways. Also, it augmented trophoblast cell line migration and invasion via the upregulation of N-cadherin, vimentin, fascin-1, twist-1 and other epithelial-mesenchymal transition genes. DiO2 knockdown elicited the opposite effects. Surprisingly, each of these effects of DiO2 manipulation was not mediated by thyroid hormone metabolism. Assessment of the ERM placental villi revealed a downregulation of DiO2, N-cadherin, vimentin, fascin-1 and twist-1. The expression of E-cadherin remained unchanged in these placentae. DISCUSSION During placentation, DiO2 may inhibit trophoblast proliferation while facilitating their differentiation into an invasive phenotype; and that its downregulation may contribute to the shallow trophoblast invasion that precedes ERM. Hence, DiO2 is a potential therapeutic target against ERM.
Collapse
Affiliation(s)
- Enoch Appiah Adu-Gyamfi
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Jones Lamptey
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xue-Mei Chen
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Fang-Fang Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Cong Li
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Ling-Ling Ruan
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China
| | - Xue-Niu Yang
- First Affiliated Hospital of Chongqing Medical University, Chongqing, 400020, People's Republic of China
| | - Tai-Hang Liu
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Bioinformatics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Ying-Xiong Wang
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| | - Yu-Bin Ding
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, 400016, People's Republic of China; Department of Reproductive Sciences, School of Public Health, Chongqing Medical University, Chongqing, 400016, People's Republic of China.
| |
Collapse
|
32
|
Meakin AS, Cuffe JSM, Darby JRT, Morrison JL, Clifton VL. Let's Talk about Placental Sex, Baby: Understanding Mechanisms That Drive Female- and Male-Specific Fetal Growth and Developmental Outcomes. Int J Mol Sci 2021; 22:6386. [PMID: 34203717 PMCID: PMC8232290 DOI: 10.3390/ijms22126386] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/09/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023] Open
Abstract
It is well understood that sex differences exist between females and males even before they are born. These sex-dependent differences may contribute to altered growth and developmental outcomes for the fetus. Based on our initial observations in the human placenta, we hypothesised that the male prioritises growth pathways in order to maximise growth through to adulthood, thereby ensuring the greatest chance of reproductive success. However, this male-specific "evolutionary advantage" likely contributes to males being less adaptable to shifts in the in-utero environment, which then places them at a greater risk for intrauterine morbidities or mortality. Comparatively, females are more adaptable to changes in the in-utero environment at the cost of growth, which may reduce their risk of poor perinatal outcomes. The mechanisms that drive these sex-specific adaptations to a change in the in-utero environment remain unclear, but an increasing body of evidence within the field of developmental biology would suggest that alterations to placental function, as well as the feto-placental hormonal milieu, is an important contributing factor. Herein, we have addressed the current knowledge regarding sex-specific intrauterine growth differences and have examined how certain pregnancy complications may alter these female- and male-specific adaptations.
Collapse
Affiliation(s)
- Ashley S. Meakin
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.S.M.); (J.R.T.D.); (J.L.M.)
| | - James S. M. Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD 4072, Australia;
| | - Jack R. T. Darby
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.S.M.); (J.R.T.D.); (J.L.M.)
| | - Janna L. Morrison
- Early Origins of Adult Health Research Group, UniSA: Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia; (A.S.M.); (J.R.T.D.); (J.L.M.)
| | - Vicki L. Clifton
- Mater Medical Research Institute, The University of Queensland, Brisbane, QLD 4000, Australia
| |
Collapse
|
33
|
Jiang NX, Li XL. The Disorders of Endometrial Receptivity in PCOS and Its Mechanisms. Reprod Sci 2021; 29:2465-2476. [PMID: 34046867 DOI: 10.1007/s43032-021-00629-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/19/2021] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a mysterious and complicated endocrine disease with the combination of metabolic, reproductive, psychological dysfunctions. Impaired endometrial receptivity and ovulation disorders/anovulation are both important causes of PCOS-related infertility. However, change in endometrium has never received the same attention as ovulatory dysfunction. Besides, putting emphasis on endometrial function may be more realistic for PCOS-related infertility, given the wide use of assisted reproductive technology. The present review focuses on the disorders of endometrial receptivity of patients with PCOS, summarizes the changes of the indicators of endometrial receptivity including leukemia inhibitory factor, homeobox genes A, pinopodes, αvβ3-integrin, and intercellular junctions and also analyzes the possible mechanisms of decreased endometrial receptivity and its relationship with the main endocrine and metabolic disorders of PCOS such as hyperandrogenism, inflammation, insulin resistance, and obesity. Despite several biomarkers have been found to be associated with decreased endometrial receptivity in PCOS, the clinical relevance of these findings still awaits future clarification.
Collapse
Affiliation(s)
- Nan-Xing Jiang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China
| | - Xue-Lian Li
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China. .,Shanghai Key Laboratory of Female Reproductive Endocrine Related Diseases, Obstetrics and Gynecology Hospital, Fudan University, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
34
|
Lamptey J, Li F, Adu-Gyamfi EA, Chen XM, Czika A, Otoo A, Liu TH, Wang YX, Ding YB. Downregulation of fascin in the first trimester placental villi is associated with early recurrent miscarriage. Exp Cell Res 2021; 403:112597. [PMID: 33862100 DOI: 10.1016/j.yexcr.2021.112597] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 12/17/2022]
Abstract
Inadequate trophoblast proliferation, shallow invasion and exaggerated rate of trophoblast apoptosis are implicated in early recurrent miscarriage (ERM). However, the mechanistic bases of this association have not been fully established. We aimed at investigating the involvement of fascin, an actin-bundling protein, in trophoblast activities and ERM. We found that fascin was downregulated in the cytotrophoblasts (CTBs) and distal cytotrophoblasts (DCTs) of ERM placentae. Knockdown of fascin altered cellular and nucleolar morphology, and inhibited the proliferation but increased apoptosis of trophoblastic HTR8/SVneo cells. Furthermore, fascin knockdown decreased the expression of transcription factors such as Snail1/2, Twist and Zeb1/2, mesenchymal molecules such as Vimentin and N-cadherin, and the protein expression of phosphorylated extracellular signal-regulated kinase 1/2 (ERK1/2) and phosphorylates signal transducer and activator of transcript 3 (STAT3). Exposure of HTR-8/SVneo cells to hypoxia reoxygenation (H/R) decreased fascin expression to affect the cells' invasion. Our results indicate for the first time that the downregulation of fascin is involved in the pathogenesis of early recurrent miscarriage; and hence a potential therapeutic target against the disease.
Collapse
Affiliation(s)
- Jones Lamptey
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Fangfang Li
- The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Enoch Appiah Adu-Gyamfi
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Xue-Mei Chen
- The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Armin Czika
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Antonia Otoo
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Tai-Hang Liu
- The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China
| | - Ying-Xiong Wang
- Department of Genetics, School of Basic Medicine, Chongqing Medical University, Chongqing, 400016, PR China; The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.
| | - Yu-Bin Ding
- The Joint International Research Laboratory of Reproduction and Development, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, PR China.
| |
Collapse
|