1
|
Muraosa Y, Hino Y, Takatsuka S, Watanabe A, Sakaida E, Saijo S, Miyazaki Y, Yamasaki S, Kamei K. Fungal chitin-binding glycoprotein induces Dectin-2-mediated allergic airway inflammation synergistically with chitin. PLoS Pathog 2024; 20:e1011878. [PMID: 38170734 PMCID: PMC10763971 DOI: 10.1371/journal.ppat.1011878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 12/01/2023] [Indexed: 01/05/2024] Open
Abstract
Although chitin in fungal cell walls is associated with allergic airway inflammation, the precise mechanism underlying this association has yet to be elucidated. Here, we investigated the involvement of fungal chitin-binding protein and chitin in allergic airway inflammation. Recombinant Aspergillus fumigatus LdpA (rLdpA) expressed in Pichia pastoris was shown to be an O-linked glycoprotein containing terminal α-mannose residues recognized by the host C-type lectin receptor, Dectin-2. Chitin particles were shown to induce acute neutrophilic airway inflammation mediated release of interleukin-1α (IL-1α) associated with cell death. Furthermore, rLdpA-Dectin-2 interaction was shown to promote phagocytosis of rLdpA-chitin complex and activation of mouse bone marrow-derived dendritic cells (BMDCs). Moreover, we showed that rLdpA potently induced T helper 2 (Th2)-driven allergic airway inflammation synergistically with chitin, and Dectin-2 deficiency attenuated the rLdpA-chitin complex-induced immune response in vivo. In addition, we showed that serum LdpA-specific immunoglobulin levels were elevated in patients with pulmonary aspergillosis.
Collapse
Affiliation(s)
- Yasunori Muraosa
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Yutaro Hino
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Shogo Takatsuka
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Akira Watanabe
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Emiko Sakaida
- Department of Hematology, Chiba University Hospital, Chiba, Japan
| | - Shinobu Saijo
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
| | - Yoshitsugu Miyazaki
- Department of Fungal Infection, National Institute of Infectious Diseases, Tokyo, Japan
| | - Sho Yamasaki
- Division of Molecular Immunology, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Division of Molecular Design, Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
- Department of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Laboratory of Molecular Immunology, Immunology Frontier Research Center, Osaka University, Osaka, Japan
| | - Katsuhiko Kamei
- Division of Clinical Research, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Division of Infection Control and Prevention, Medical Mycology Research Center, Chiba University, Chiba, Japan
- Department of Infectious Diseases, Japanese Red Cross Ishinomaki Hospital, Miyagi, Japan
| |
Collapse
|
2
|
Shu J, Xiong W, Zhang R, Ma S, Zhou K, Wang X, Yan F, Huang D, Li J, Wu Y, He J. Glycan-selective in-situ growth of thermoresponsive polymers for thermoprecipitation and enrichment of N-glycoprotein/glycopeptides. Talanta 2023; 253:123956. [PMID: 36167012 DOI: 10.1016/j.talanta.2022.123956] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 12/13/2022]
Abstract
In view of the biological significance and micro-heterogeneity of protein glycosylation for human health, specific enrichment of N-glycosylated proteins/peptides from complex biological samples is a prerequisite for the discovery of disease biomarkers and clinical diagnosis. In this work, we propose a "grafting-from" N-glycoprotein enriching method based on the in-situ growth of thermoresponsive polymer brushes from the N-glycosylated site of proteins. The initiator was first attached to the pre-oxidized glycan moieties by hydrazide chemistry, from which the thermoresponsive polymers can be grown to form giant protein-polymer conjugates (PPC). The thermosensitive PPC can be precipitated and separated by raising the temperature to above its lower critical solubility temperature (LCST). Mass spectrometry verified 210 N-glycopeptides corresponding to 136 N-glycoproteins in the rabbit serum. These results demonstrate the capability of the tandem thermoprecipitation strategy to enrich and separate N-glycoprotein/glycopeptide. Due to its simplicity and efficiency specifically, this method holds the potential for identifying biomarkers from biological samples in N-glycoproteome analysis.
Collapse
Affiliation(s)
- Jingjing Shu
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Wenli Xiong
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Ran Zhang
- Central Laboratory of Health Quarantine, International Travel Health Care Center, Shenzhen Customs District. 1011 Fuqiang Road, Shenzhen, 518045, China
| | - Shanyun Ma
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Kaiqiang Zhou
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Xuwei Wang
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Fen Yan
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Da Huang
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Jianhua Li
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China
| | - Yuanzi Wu
- Research Institute of Photocatalysis, College of Biological Science and Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou, 350108, China.
| | - Jian'an He
- Central Laboratory of Health Quarantine, International Travel Health Care Center, Shenzhen Customs District. 1011 Fuqiang Road, Shenzhen, 518045, China.
| |
Collapse
|
3
|
Hou X, Wei L, Tang Y, Kong W, Liu J, Schnoor JL, Jiang G. Two Typical Glycosylated Metabolites of Tetrabromobisphenol A Formed in Plants: Excretion and Deglycosylation in Plant Root Zones. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2021; 8:313-319. [PMID: 34805424 PMCID: PMC8603600 DOI: 10.1021/acs.estlett.1c00084] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The glycosylation process was investigated for the common brominated flame retardant tetrabromobisphenol A (TBBPA) in hydroponic exposure systems with pumpkin seedlings. Two typical glycosylation metabolites of TBBPA formed in pumpkin seedlings, TBBPA mono-β-d-glucopyranoside (TBBPA MG) and TBBPA di-β-d-glucopyranoside (TBBPA DG), increasing their mass early in the exposure (reaching maximum masses of 608 ± 53 and 3806 ± 1570 pmol at 12 h, respectively) and then falling throughout exposure. These two metabolites were released from roots to rhizosphere solutions, where they also exhibited initial increases followed by decreasing trends (reaching maximum masses of 595 ± 272 pmol at 3 h and 77.1 ± 36.0 pmol at 6 h, respectively). However, a (pseudo)zero-order deglycosylation of TBBPA MG and TBBPA DG (during the first 1.5 h) back to TBBPA was unexpectedly detected in the hydroponic solutions containing pumpkin exudates and microorganisms. The function of microorganisms in the solutions was further investigated, revealing that the microorganisms were main contributors to deglycosylation. Plant detoxification through glycosylation and excretion, followed by deglycosylation of metabolites back to the toxic parent compound (TBBPA) in hydroponic solutions, provides new insight into the uptake, transformation, and environmental fate of TBBPA and its glycosylated metabolites in plant/microbial systems.
Collapse
Affiliation(s)
- Xingwang Hou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linfeng Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yinyin Tang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenqian Kong
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiyan Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment and Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment and Institute of Environment and Health, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
4
|
Althumairy D, Zhang X, Baez N, Barisas G, Roess DA, Bousfield GR, Crans DC. Glycoprotein G-protein Coupled Receptors in Disease: Luteinizing Hormone Receptors and Follicle Stimulating Hormone Receptors. Diseases 2020; 8:E35. [PMID: 32942611 PMCID: PMC7565105 DOI: 10.3390/diseases8030035] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/22/2020] [Accepted: 08/26/2020] [Indexed: 12/14/2022] Open
Abstract
Signal transduction by luteinizing hormone receptors (LHRs) and follicle-stimulating hormone receptors (FSHRs) is essential for the successful reproduction of human beings. Both receptors and the thyroid-stimulating hormone receptor are members of a subset of G-protein coupled receptors (GPCRs) described as the glycoprotein hormone receptors. Their ligands, follicle-stimulating hormone (FSH) and luteinizing hormone (LH) and a structurally related hormone produced in pregnancy, human chorionic gonadotropin (hCG), are large protein hormones that are extensively glycosylated. Although the primary physiologic functions of these receptors are in ovarian function and maintenance of pregnancy in human females and spermatogenesis in males, there are reports of LHRs or FSHRs involvement in disease processes both in the reproductive system and elsewhere. In this review, we evaluate the aggregation state of the structure of actively signaling LHRs or FSHRs, their functions in reproduction as well as summarizing disease processes related to receptor mutations affecting receptor function or expression in reproductive and non-reproductive tissues. We will also present novel strategies for either increasing or reducing the activity of LHRs signaling. Such approaches to modify signaling by glycoprotein receptors may prove advantageous in treating diseases relating to LHRs or FSHRs function in addition to furthering the identification of new strategies for modulating GPCR signaling.
Collapse
Affiliation(s)
- Duaa Althumairy
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA; (D.A.); (G.B.)
- Department of Biological Sciences, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Xiaoping Zhang
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| | - Nicholas Baez
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| | - George Barisas
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA; (D.A.); (G.B.)
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| | - Deborah A. Roess
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA;
| | - George R. Bousfield
- Department of Biological Sciences, Wichita State University, Wichita, KS 67260, USA;
| | - Debbie C. Crans
- Cell and Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA; (D.A.); (G.B.)
- Department of Chemistry, Colorado State University, Fort Collins, CO 80523, USA; (X.Z.); (N.B.)
| |
Collapse
|
5
|
Horan Hand P, Simpson JF, Kuroki M, Parker R, Schlom J. Reactivities of an anti-CEA peptide monoclonal antibody. Int J Biol Markers 2020; 7:1-15. [PMID: 1374782 DOI: 10.1177/172460089200700101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Synthetic peptides representing different areas of the CEA molecule were used as immunogens for the development of anti-CEA antibodies. Both polyclonal and monoclonal antibodies were generated using peptides composed of CEA amino acid positions 99–128 and 585–613, respectively. One MAb, designated CP4, generated using the CEA peptide 99–128, was chosen for a more detailed analysis of reactivity. MAb CP4 reacts in solid phase RIAs with CEA peptide 99–128 immunogen and purified native CEA. CP4 did not react with purified non- specific cross reacting antigen (NCA), even though there were two single amino acid differences between NCA and CEA in the 29 amino acid peptide. The affinity constants of CP4 for the CEA peptide 99–128 and native CEA are 4.07 × 109M−1and 5.75 × 108M−1, respectively. When CP4 was reacted with purified CEA in Western blotting experiments, the Mr 180,000 glycoprotein characteristic of CEA was detected, but CP4 reacted to various size entities in tumor cell extracts. The results of liquid competition RIAs showed that the epitope that MAb CP4 recognized on native CEA is not available for binding when CEA is in solution. Physical (adsorption to a solid matrix) or chemical (deglycosylation or formalin-fixation) alteration of CEA is required for binding of CP4 to CEA. MAb CP4 reacted approximately 1,000-fold greater to deglycosylated CEA than native CEA. Immunohistochemical studies using formalin-fixed paraffin-embedded tissue sections demonstrated that, among carcinomas, CP4 reacts selectively with colorectal carcinomas, while normal colon is negative. Although stomach carcinoma is negative, dysplastic lesions and areas of intestinal metaplasia are reactive. Two of 7 normal stomach tissues showed focal cytoplasmic reactivity of the surface epithelium. CP4, therefore, appears to react with an epitope with highly restricted expression in colorectal carcinoma. These studies demonstrate the complexities in dealing with an anti-peptide MAb with reactivity to an epitope which is accessible only under certain conditions.
Collapse
Affiliation(s)
- P Horan Hand
- Laboratory of Tumor Immunology and Biology, National Cancer Institute, Bethesda, MD
| | | | | | | | | |
Collapse
|
6
|
Zhu H, Aloor A, Ma C, Kondengaden SM, Wang PG. Mass Spectrometric Analysis of Protein Glycosylation. ACS SYMPOSIUM SERIES 2020. [DOI: 10.1021/bk-2020-1346.ch010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- He Zhu
- These authors contributed equally
| | | | | | | | - Peng George Wang
- Current Address: Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
7
|
Hei Z, Zhao M, Tian Y, Chang H, Shen X, Xia G, Wang J. Isolation and Characterization of a Novel Sialoglycopeptide Promoting Osteogenesis from Gadus morhua Eggs. Molecules 2019; 25:molecules25010156. [PMID: 31906039 PMCID: PMC6983019 DOI: 10.3390/molecules25010156] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/23/2019] [Accepted: 12/27/2019] [Indexed: 12/12/2022] Open
Abstract
Gadus morhua eggs contain several nutrients, including polyunsaturated fatty acids, lecithin and glycoproteins. A novel sialoglycopeptide from the eggs of G. morhua (Gm-SGPP) was extracted with 90% phenol and purified by Q Sepharose Fast Flow (QFF) ion exchange chromatography, followed by S-300 gel filtration chromatography. Gm-SGPP contained 63.7% carbohydrate, 16.2% protein and 18.6% N-acetylneuraminic acid. High-performance size exclusion chromatography and sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) demonstrated that Gm-SGPP is a 7000-Da pure sialoglycopeptide. β-elimination reaction suggested that Gm-SGPP contained N-glycan units. Amino acid N-terminal sequence analysis indicated the presence of Ala-Ser-Asn-Gly-Thr-Gln-Ala-Pro amino acid sequence. Moreover, N-glycan was connected at the third Asn location of the peptide chain through GlcNAc. Gm-SGPP was composed of D-mannose, D-glucuronic acid and D-galactose. Fourier transform-infrared spectroscopy (FT-IR), 1H-nuclear magnetic resonance spectroscopy (1H-NMR) and methylation analysis were performed to reveal the structure profile of Gm-SGPP. In vitro results showed that the proliferation activity of MC3T3-E1 cells was significantly promoted by Gm-SGPP. In vivo data revealed that Gm-SGPP increased the calcium and phosphorus content of tibias and promoted longitudinal bone growth in adolescent rats.
Collapse
Affiliation(s)
- Zhiliang Hei
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Meihui Zhao
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Yingying Tian
- Marine Biomedical Research Institute of Qingdao, Qingdao 266003, China
| | - Hong Chang
- Hainan Institute for Food Control, Hainan 570228, China
| | - Xuanri Shen
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Hainan 570228, China
| | - Guanghua Xia
- Hainan Engineering Research Center of Aquatic Resources Efficient Utilization in South China Sea, Hainan University, Hainan 570228, China
- College of Food Science and Technology, Hainan University, Hainan 570228, China
- Correspondence: (G.X.); (J.W.); Tel.: +86-0898-6619-6803 (G.X.); +86-0532-8203-1948 (J.W.); Fax: +86-0532-8203-2468 (G.X.); +86-0898-6619-6803 (J.W.)
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
- Correspondence: (G.X.); (J.W.); Tel.: +86-0898-6619-6803 (G.X.); +86-0532-8203-1948 (J.W.); Fax: +86-0532-8203-2468 (G.X.); +86-0898-6619-6803 (J.W.)
| |
Collapse
|
8
|
Xiao H, Sun F, Suttapitugsakul S, Wu R. Global and site-specific analysis of protein glycosylation in complex biological systems with Mass Spectrometry. MASS SPECTROMETRY REVIEWS 2019; 38:356-379. [PMID: 30605224 PMCID: PMC6610820 DOI: 10.1002/mas.21586] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/27/2018] [Indexed: 05/16/2023]
Abstract
Protein glycosylation is ubiquitous in biological systems and plays essential roles in many cellular events. Global and site-specific analysis of glycoproteins in complex biological samples can advance our understanding of glycoprotein functions and cellular activities. However, it is extraordinarily challenging because of the low abundance of many glycoproteins and the heterogeneity of glycan structures. The emergence of mass spectrometry (MS)-based proteomics has provided us an excellent opportunity to comprehensively study proteins and their modifications, including glycosylation. In this review, we first summarize major methods for glycopeptide/glycoprotein enrichment, followed by the chemical and enzymatic methods to generate a mass tag for glycosylation site identification. We next discuss the systematic and quantitative analysis of glycoprotein dynamics. Reversible protein glycosylation is dynamic, and systematic study of glycoprotein dynamics helps us gain insight into glycoprotein functions. The last part of this review focuses on the applications of MS-based proteomics to study glycoproteins in different biological systems, including yeasts, plants, mice, human cells, and clinical samples. Intact glycopeptide analysis is also included in this section. Because of the importance of glycoproteins in complex biological systems, the field of glycoproteomics will continue to grow in the next decade. Innovative and effective MS-based methods will exponentially advance glycoscience, and enable us to identify glycoproteins as effective biomarkers for disease detection and drug targets for disease treatment. © 2019 Wiley Periodicals, Inc. Mass Spec Rev 9999: XX-XX, 2019.
Collapse
Affiliation(s)
- Haopeng Xiao
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Fangxu Sun
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Suttipong Suttapitugsakul
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| | - Ronghu Wu
- School of Chemistry and Biochemistry and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta 30332 Georgia
| |
Collapse
|
9
|
Wu XQ, Yu JX, Xu H, Huang XS. WITHDRAWN: Purification and characterization of a bifunctional fructan: Fructan 6G-fructosyl transferase from garlic (Allium sativum). Food Chem 2019. [DOI: 10.1016/j.foodchem.2019.05.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Takenaka S, Lim L, Fukami T, Yokota S, Doi M. Isolation and characterization of an aspartic protease able to hydrolyze and decolorize heme proteins from Aspergillus glaucus. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:2042-2047. [PMID: 30187473 DOI: 10.1002/jsfa.9339] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/17/2018] [Accepted: 08/29/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND The xerophilic Aspergillus molds, Aspergillus glaucus and Aspergillus repens, have been used in the ripening and fermentation of dried tuna bonito (katsuobushi). These molds, and especially their extracellular hydrolytic enzymes, may also be of wider industrial value. RESULTS Aspergillus glaucus strain MA0196 produces different types of hydrolytic enzymes, including amylase, serine protease, aspartic protease, lipase and cellulase, depending on the composition of the medium. We characterized several of these enzymes, focusing on a glycosylated aspartic protease. The results showed that the lower the d-glucose concentration in the medium, the higher the degree of protease glycosylation, with excess glycosylation tending to decrease protease activity. The molecular mass of the glycosylated protease as determined by gel filtration and sodium dodecyl sulphate-polyacrylamide gel electrophoresis was 243 and 253 kDa, respectively. The chemically deglycosylated protease had a molecular mass of only 46 kDa. The amount of myoglobin-decolorizing activity was similar to that of a previously reported aspartic protease from A. repens strain MK82. However, the strain MA0196 protease more broadly hydrolyzed myoglobin and hemoglobins than did the strain MK82 protease. CONCLUSION The results of the present study demonstrate the potential utility of Aspergillus molds as a functionally new microbial resource for industrial applications such as the bleaching of heme proteins. © 2018 Society of Chemical Industry.
Collapse
Affiliation(s)
- Shinji Takenaka
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Lihui Lim
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | - Takashi Fukami
- Division of Agrobioscience, Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | | |
Collapse
|
11
|
Collagen glycosylation. Curr Opin Struct Biol 2019; 56:131-138. [PMID: 30822656 DOI: 10.1016/j.sbi.2019.01.015] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 01/04/2019] [Accepted: 01/24/2019] [Indexed: 01/17/2023]
Abstract
Despite the ubiquity of collagens in the animal kingdom, little is known about the biology of the disaccharide Glc(α1-2)Gal(β1-O) bound to hydroxylysine across collagens from sponges to mammals. The extent of collagen glycosylation varies by the types of collagen, with basement membrane collagen type IV being more glycosylated than fibrillar collagens. Beyond true collagens, proteins including collagen domains such as the complement protein 1Q and the hormone adiponectin also feature glycosylated hydroxylysine. Collagen glycosylation is initiated in the endoplasmic reticulum by the galactosyltransferases COLGALT1 and COLGALT2. Mutations in the COLGALT1 gene cause cerebral small vessel abnormality and porencephaly, which are common in collagen type IV deficiency. Beyond the strongly conserved Glc(α1-2)Gal(β1-O) glycan, additional forms of collagen glycosylation have been described in the deep-sea worm Riftia pachyptila and in the giant virus Mimivirus, thereby suggesting that further forms of collagen glycosylation are likely to be identified in the future.
Collapse
|
12
|
Wang AY, Thuy-Boun PS, Stupp GS, Su AI, Wolan DW. Triflic Acid Treatment Enables LC-MS/MS Analysis of Insoluble Bacterial Biomass. J Proteome Res 2018; 17:2978-2986. [PMID: 30019906 DOI: 10.1021/acs.jproteome.8b00166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The lysis and extraction of soluble bacterial proteins from cells is a common practice for proteomics analyses, but insoluble bacterial biomasses are often left behind. Here, we show that with triflic acid treatment, the insoluble bacterial biomass of Gram- and Gram+ bacteria can be rendered soluble. We use LC-MS/MS shotgun proteomics to show that bacterial proteins in the soluble and insoluble postlysis fractions differ significantly. Additionally, in the case of Gram- Pseudomonas aeruginosa, triflic acid treatment enables the enrichment of cell-envelope-associated proteins. Finally, we apply triflic acid to a human microbiome sample to show that this treatment is robust and enables the identification of a new, complementary subset of proteins from a complex microbial mixture.
Collapse
Affiliation(s)
- Ana Y Wang
- Department of Molecular Medicine and Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Peter S Thuy-Boun
- Department of Molecular Medicine and Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Gregory S Stupp
- Department of Molecular Medicine and Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Andrew I Su
- Department of Molecular Medicine and Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| | - Dennis W Wolan
- Department of Molecular Medicine and Department of Integrative Structural and Computational Biology , The Scripps Research Institute , 10550 North Torrey Pines Road , La Jolla , California 92037 , United States
| |
Collapse
|
13
|
De Benedetto G, Salvini L, Gotta S, Cescutti P, Micoli F. Investigation on Sugar–Protein Connectivity in Salmonella O-Antigen Glycoconjugate Vaccines. Bioconjug Chem 2018; 29:1736-1747. [DOI: 10.1021/acs.bioconjchem.8b00178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Gianluigi De Benedetto
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Ed. C11, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Laura Salvini
- Fondazione Toscana Life Sciences, via Fiorentina 1, 53100 Siena, Italy
| | - Stefano Gotta
- GSK Vaccines S.r.l., via Fiorentina 1, 53100 Siena, Italy
| | - Paola Cescutti
- Dipartimento di Scienze della Vita, Università degli Studi di Trieste, Ed. C11, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Francesca Micoli
- GSK Vaccines Institute for Global Health (GVGH) S.r.l., via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
14
|
Fulton KM, Li J, Tomas JM, Smith JC, Twine SM. Characterizing bacterial glycoproteins with LC-MS. Expert Rev Proteomics 2018; 15:203-216. [PMID: 29400572 DOI: 10.1080/14789450.2018.1435276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
INTRODUCTION Though eukaryotic glycoproteins have been studied since their discovery in the 1930s, the first bacterial glycoprotein was not identified until the 1970s. As a result, their role in bacterial pathogenesis is still not well understood and they remain an understudied component of bacterial virulence. In recent years, mass spectrometry has emerged as a leading technology for the study of bacterial glycoproteins, largely due to its sensitivity and versatility. Areas covered: Identification and comprehensive characterization of bacterial glycoproteins usually requires multiple complementary mass spectrometry approaches, including intact protein analysis, top-down analysis, and bottom-up methods used in combination with specialized liquid chromatography. This review provides an overview of liquid chromatography separation technologies, as well as current and emerging mass spectrometry approaches used specifically for bacterial glycoprotein identification and characterization. Expert commentary: Bacterial glycoproteins may have significant clinical utility as a result of their unique structures and exposure on the surface of the cells. Better understanding of these glycoconjugates is an essential first step towards that goal. These often unique structures, and by extension the key enzymes involved in their synthesis, represent promising targets for novel antimicrobials, while unique carbohydrate structures may be used as antigens in vaccines or as biomarkers.
Collapse
Affiliation(s)
- Kelly M Fulton
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| | - Jianjun Li
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| | - Juan M Tomas
- b Departament de Microbiologia, Facultat de Biologia , Universitat de Barcelona , Barcelona , Spain
| | - Jeffrey C Smith
- c Department of Chemistry , Carleton University , Ottawa , Canada
| | - Susan M Twine
- a Human Health Therapeutics Portfolio , National Research Council Canada , Ottawa , Canada
| |
Collapse
|
15
|
PEREIRA ANDRESSAR, SEDENHO GRAZIELAC, SOUZA JOÃOCPDE, CRESPILHO FRANKN. Advances in enzyme bioelectrochemistry. ACTA ACUST UNITED AC 2018; 90:825-857. [DOI: 10.1590/0001-3765201820170514] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 10/11/2017] [Indexed: 11/21/2022]
|
16
|
Deglycosylating enzymes acting on N- glycans in fungi: Insights from a genome survey. Biochim Biophys Acta Gen Subj 2017; 1861:2551-2558. [DOI: 10.1016/j.bbagen.2017.08.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 08/16/2017] [Accepted: 08/28/2017] [Indexed: 11/19/2022]
|
17
|
Ramos‐Martinez EM, Fimognari L, Sakuragi Y. High-yield secretion of recombinant proteins from the microalga Chlamydomonas reinhardtii. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:1214-1224. [PMID: 28207991 PMCID: PMC5552477 DOI: 10.1111/pbi.12710] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 02/07/2017] [Accepted: 02/12/2017] [Indexed: 05/11/2023]
Abstract
Microalga-based biomanufacturing of recombinant proteins is attracting growing attention due to its advantages in safety, metabolic diversity, scalability and sustainability. Secretion of recombinant proteins can accelerate the use of microalgal platforms by allowing post-translational modifications and easy recovery of products from the culture media. However, currently, the yields of secreted recombinant proteins are low, which hampers the commercial application of this strategy. This study aimed at expanding the genetic tools for enhancing secretion of recombinant proteins in Chlamydomonas reinhardtii, a widely used green microalga as a model organism and a potential industrial biotechnology platform. We demonstrated that the putative signal sequence from C. reinhardtii gametolysin can assist the secretion of the yellow fluorescent protein Venus into the culture media. To increase the secretion yields, Venus was C-terminally fused with synthetic glycomodules comprised of tandem serine (Ser) and proline (Pro) repeats of 10 and 20 units [hereafter (SP)n , wherein n = 10 or 20]. The yields of the (SP)n -fused Venus were higher than Venus without the glycomodule by up to 12-fold, with the maximum yield of 15 mg/L. Moreover, the presence of the glycomodules conferred an enhanced proteolytic protein stability. The Venus-(SP)n proteins were shown to be glycosylated, and a treatment of the cells with brefeldin A led to a suggestion that glycosylation of the (SP)n glycomodules starts in the endoplasmic reticulum (ER). Taken together, the results demonstrate the utility of the gametolysin signal sequence and (SP)n glycomodule to promote a more efficient biomanufacturing of microalgae-based recombinant proteins.
Collapse
Affiliation(s)
- Erick Miguel Ramos‐Martinez
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksberg C, CopenhagenDenmark
| | - Lorenzo Fimognari
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksberg C, CopenhagenDenmark
| | - Yumiko Sakuragi
- Department of Plant and Environmental SciencesCopenhagen Plant Science CentreUniversity of CopenhagenFrederiksberg C, CopenhagenDenmark
| |
Collapse
|
18
|
Pereira AR, Luz RAS, Lima FCDA, Crespilho FN. Protein Oligomerization Based on Brønsted Acid Reaction. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00272] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Andressa R. Pereira
- São
Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Paulo, Brazil
| | - Roberto A. S. Luz
- São
Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Paulo, Brazil
| | - Filipe C. D. A. Lima
- Federal Institute of Education, Science and Technology of São Paulo, Campus Matão, 15991-502 São Paulo, Brazil
| | - Frank N. Crespilho
- São
Carlos Institute of Chemistry, University of São Paulo, 13560-970 São Paulo, Brazil
| |
Collapse
|
19
|
Abstract
Chemical tools have accelerated progress in glycoscience, reducing experimental barriers to studying protein glycosylation, the most widespread and complex form of posttranslational modification. For example, chemical glycoproteomics technologies have enabled the identification of specific glycosylation sites and glycan structures that modulate protein function in a number of biological processes. This field is now entering a stage of logarithmic growth, during which chemical innovations combined with mass spectrometry advances could make it possible to fully characterize the human glycoproteome. In this review, we describe the important role that chemical glycoproteomics methods are playing in such efforts. We summarize developments in four key areas: enrichment of glycoproteins and glycopeptides from complex mixtures, emphasizing methods that exploit unique chemical properties of glycans or introduce unnatural functional groups through metabolic labeling and chemoenzymatic tagging; identification of sites of protein glycosylation; targeted glycoproteomics; and functional glycoproteomics, with a focus on probing interactions between glycoproteins and glycan-binding proteins. Our goal with this survey is to provide a foundation on which continued technological advancements can be made to promote further explorations of protein glycosylation.
Collapse
Affiliation(s)
- Krishnan K. Palaniappan
- Verily Life Sciences, 269 East Grand Ave., South San Francisco, California 94080, United States
| | - Carolyn R. Bertozzi
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
20
|
Zahn D, Frömel T, Knepper TP. Halogenated methanesulfonic acids: A new class of organic micropollutants in the water cycle. WATER RESEARCH 2016; 101:292-299. [PMID: 27267477 DOI: 10.1016/j.watres.2016.05.082] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/24/2016] [Accepted: 05/25/2016] [Indexed: 05/06/2023]
Abstract
Mobile and persistent organic micropollutants may impact raw and drinking waters and are thus of concern for human health. To identify such possible substances of concern nineteen water samples from five European countries (France, Switzerland, The Netherlands, Spain and Germany) and different compartments of the water cycle (urban effluent, surface water, ground water and drinking water) were enriched with mixed-mode solid phase extraction. Hydrophilic interaction liquid chromatography - high resolution mass spectrometry non-target screening of these samples led to the detection and structural elucidation of seven novel organic micropollutants. One structure could already be confirmed by a reference standard (trifluoromethanesulfonic acid) and six were tentatively identified based on experimental evidence (chloromethanesulfonic acid, dichloromethanesulfonic acid, trichloromethanesulfonic acid, bromomethanesulfonic acid, dibromomethanesulfonic acid and bromochloromethanesulfonic acid). Approximated concentrations for these substances show that trifluoromethanesulfonic acid, a chemical registered under the European Union regulation REACH with a production volume of more than 100 t/a, is able to spread along the water cycle and may be present in concentrations up to the μg/L range. Chlorinated and brominated methanesulfonic acids were predominantly detected together which indicates a common source and first experimental evidence points towards water disinfection as a potential origin. Halogenated methanesulfonic acids were detected in drinking waters and thus may be new substances of concern.
Collapse
Affiliation(s)
- Daniel Zahn
- Hochschule Fresenius University of Applied Sciences, Limburger Straße 2, 65510 Idstein, Germany
| | - Tobias Frömel
- Hochschule Fresenius University of Applied Sciences, Limburger Straße 2, 65510 Idstein, Germany
| | - Thomas P Knepper
- Hochschule Fresenius University of Applied Sciences, Limburger Straße 2, 65510 Idstein, Germany.
| |
Collapse
|
21
|
Schulte F, Flaschel E, Niehaus K. Proteome-Based Analysis of Colloidal Instability Enables the Detection of Haze-Active Proteins in Beer. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:6752-61. [PMID: 27515584 DOI: 10.1021/acs.jafc.6b02467] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Colloidal haze is a serious quality defect of bright beers that considerably reduces their shelf life and is thought to be triggered by hordeins, a class of proline-rich barley proteins. In this work, the proteomes of fresh and old beers were investigated in bottled pilsners and compared to the protein inventory of haze to identify specific haze-active proteins. Haze isolates dissolved in rehydration buffer contained high concentrations of proteins and sugars but provided protein gels with weak spot signals. Consequently, a treatment for the chemical deglycation with trifluoromethanesulfonic acid was applied, which resulted in the identification of protein Z4, LTP1, CMb, CMe, pUP13, 3a, and Bwiph as constituents of the haze proteome. Because only one hordein was detectable and the proline content in haze hydrolysates was lower than those of barley prolamins, our results suggest that this class of proteins is of minor importance for haze development.
Collapse
Affiliation(s)
- Fabian Schulte
- Fakultät für Biologie, Proteom- und Metabolomforschung and ‡Technische Fakultät, Fermentationstechnik, Universität Bielefeld , 33615 Bielefeld, Germany
| | - Erwin Flaschel
- Fakultät für Biologie, Proteom- und Metabolomforschung and ‡Technische Fakultät, Fermentationstechnik, Universität Bielefeld , 33615 Bielefeld, Germany
| | - Karsten Niehaus
- Fakultät für Biologie, Proteom- und Metabolomforschung and ‡Technische Fakultät, Fermentationstechnik, Universität Bielefeld , 33615 Bielefeld, Germany
| |
Collapse
|
22
|
Wang T, Zhao M, Rotgans BA, Ni G, Dean JFD, Nahrung HF, Cummins SF. Proteomic analysis of the venom and venom sac of the woodwasp, Sirex noctilio - Towards understanding its biological impact. J Proteomics 2016; 146:195-206. [PMID: 27389852 DOI: 10.1016/j.jprot.2016.07.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 06/27/2016] [Accepted: 07/01/2016] [Indexed: 10/21/2022]
Abstract
UNLABELLED The European horntail woodwasp, Sirex noctilio, is an invasive insect that attacks conifer hosts, particularly Pinus species. Venom injected by female S. noctilio, together with its symbiotic fungus, damages the normal physiology of Pinus, leading to death of the tree. To identify the proteinaceous components in the venom and uncover the interplay between venom proteins and tree proteins, clarification of the overall profile of proteins produced in the venom gland apparatus was carried out in this work. The venom sac proteome utilised in-solution digested in either a natural or deglycosylated state, prior to nanoHPLC LTQ-Orbitrap under CID/ETD mode. Here, we report the identification of 1454 and 1225 proteins in venom and sac, respectively, with 410 mutual proteins. Approximately 90 proteins were predicted to be secretory, of which 8 have features characteristic of toxins. Chemosensory binding proteins were also identified. Gene ontology and KEGG pathway analysis were employed to predict the protein functions and biological pathways in venom and sac. Protein-protein interaction (PPI) analysis suggested that one-step responses represent the majority of the Sirex-Pinus PPIs, and the proteins representing network hub nodes could be of importance for the development of pest management strategies. SIGNIFICANCE The woodwasp Sirex noctilio is an invasive species in many parts of the world, including Australia and North America, where it is considered within the top 10 most serious forest insects. Where they have been introduced, the female woodwasps attack living pine trees, causing significant economic losses. Central to this destruction is the woodwasp's life cycle requirement to bore a hole to deposit eggs and a toxic mucus that disables the tree's network for transporting water and nutrients, yet aids in larval survival. Here we specifically examine the mucus gland apparatus and its contents, revealing the protein components that together with 'noctilisin' facilitate this complex association. The identification of chemosensory binding proteins further supports a role for the woodwasp ovipositor as an instrument for early stages of host tree selection. These findings could provide important clues towards the development of novel control tools against this pest.
Collapse
Affiliation(s)
- Tianfang Wang
- Genecology Research Centre, University of The Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Min Zhao
- Genecology Research Centre, University of The Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Bronwyn A Rotgans
- Genecology Research Centre, University of The Sunshine Coast, Maroochydore DC 4558, Queensland, Australia
| | - Guoying Ni
- Genecology Research Centre, University of The Sunshine Coast, Maroochydore DC 4558, Queensland, Australia; School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast 4222, Australia
| | - Jeffrey F D Dean
- Warnell School of Forestry and Natural Resources, University of Georgia, Athens, GA 30602, USA; Department of Biochemistry, Molecular Biology, Entomology & Plant Pathology, Mississippi State University, MS 39762, USA
| | - Helen F Nahrung
- Genecology Research Centre, University of The Sunshine Coast, Maroochydore DC 4558, Queensland, Australia; Forest Industries Research Centre, University of the Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.
| | - Scott F Cummins
- Genecology Research Centre, University of The Sunshine Coast, Maroochydore DC 4558, Queensland, Australia.
| |
Collapse
|
23
|
Lowenthal MS, Davis KS, Formolo T, Kilpatrick LE, Phinney KW. Identification of Novel N-Glycosylation Sites at Noncanonical Protein Consensus Motifs. J Proteome Res 2016; 15:2087-101. [PMID: 27246700 DOI: 10.1021/acs.jproteome.5b00733] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
N-glycosylation of proteins is well known to occur at asparagine residues that fall within the canonical consensus sequence N-X-S/T but has also been identified at a small number of asparagine residues within N-X-C motifs, including the N491 residue of human serotransferrin. Here we report novel glycosylation sites within noncanonical consensus motifs, in the conformation N-X-C, based on mass spectrometry analysis of partially deglycosylated glycopeptide targets. Alpha-1-acid glycoprotein (A1AG) and serotransferrin (Tf) were observed for the first time to be N-glycosylated on asparagine residues within a total of six unique noncanonical motifs. N-glycosylation was initially predicted in silico based on the evolutionary conservation of the N-X-C motif among related mammalian species and demonstrated experimentally in A1AG from porcine, canine, and feline sources and in human serotransferrin. High-resolution liquid chromatography-tandem mass spectrometry was employed to collect fragmentation data of predicted GlcNAcylated peptides and to assign modification sites within N-X-C motifs. A combination of targeted analytical techniques that includes complementary mass spectrometry platforms, enzymatic digestions, and partial-deglycosylation procedures was developed to confirm the novel observations. Additionally, we found that A1AG in porcine and canine sources is highly N-glycosylated at a noncanonical motif (N-Q-C) based on semiquantitative multiple reaction monitoring analysis-the first report of an N-X-C motif exhibiting substantial N-glycosylation. Although reports of N-X-C motif N-glycosylation are relatively uncommon in the literature, this work adds to a growing list of glycoproteins reported with glycosylation at various forms of noncanonical motifs.
Collapse
Affiliation(s)
- Mark S Lowenthal
- Material Measurement Laboratory, Biomolecular Measurement Division, National Institute of Standards and Technology , 100 Bureau Drive, Stop 8314, Gaithersburg, Maryland 20899, United States
| | - Kiersta S Davis
- Material Measurement Laboratory, Biomolecular Measurement Division, National Institute of Standards and Technology , 100 Bureau Drive, Stop 8314, Gaithersburg, Maryland 20899, United States
| | - Trina Formolo
- Material Measurement Laboratory, Biomolecular Measurement Division, National Institute of Standards and Technology , 100 Bureau Drive, Stop 8314, Gaithersburg, Maryland 20899, United States
| | - Lisa E Kilpatrick
- Material Measurement Laboratory, Biomolecular Measurement Division, National Institute of Standards and Technology , 100 Bureau Drive, Stop 8314, Gaithersburg, Maryland 20899, United States
| | - Karen W Phinney
- Material Measurement Laboratory, Biomolecular Measurement Division, National Institute of Standards and Technology , 100 Bureau Drive, Stop 8314, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
24
|
Chumakov AM, Yuhina ES, Frolova EI, Kravchenko JE, Chumakov SP. Expanding the application potential of DNA aptamers by their functionalization. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2016. [DOI: 10.1134/s1068162016010027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
25
|
Astafieva AA, Enyenihi AA, Rogozhin EA, Kozlov SA, Grishin EV, Odintsova TI, Zubarev RA, Egorov TA. Novel proline-hydroxyproline glycopeptides from the dandelion (Taraxacum officinale Wigg.) flowers: de novo sequencing and biological activity. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:323-9. [PMID: 26259198 DOI: 10.1016/j.plantsci.2015.07.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 07/01/2015] [Accepted: 07/02/2015] [Indexed: 05/22/2023]
Abstract
Two novel homologous peptides named ToHyp1 and ToHyp2 that show no similarity to any known proteins were isolated from Taraxacum officinale Wigg. flowers by multidimensional liquid chromatography. Amino acid and mass spectrometry analyses demonstrated that the peptides have unusual structure: they are cysteine-free, proline-hydroxyproline-rich and post-translationally glycosylated by pentoses, with 5 carbohydrates in ToHyp2 and 10 in ToHyp1. The ToHyp2 peptide with a monoisotopic molecular mass of 4350.3Da was completely sequenced by a combination of Edman degradation and de novo sequencing via top down multistage collision induced dissociation (CID) and higher energy dissociation (HCD) tandem mass spectrometry (MS(n)). ToHyp2 consists of 35 amino acids, contains eighteen proline residues, of which 8 prolines are hydroxylated. The peptide displays antifungal activity and inhibits growth of Gram-positive and Gram-negative bacteria. We further showed that carbohydrate moieties have no significant impact on the peptide structure, but are important for antifungal activity although not absolutely necessary. The deglycosylated ToHyp2 peptide was less active against the susceptible fungus Bipolaris sorokiniana than the native peptide. Unique structural features of the ToHyp2 peptide place it into a new family of plant defense peptides. The discovery of ToHyp peptides in T. officinale flowers expands the repertoire of molecules of plant origin with practical applications.
Collapse
Affiliation(s)
- Alexandra A Astafieva
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Atim A Enyenihi
- Division of Physiological Chemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Eugene A Rogozhin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Sergey A Kozlov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Eugene V Grishin
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| | - Tatyana I Odintsova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, ul. Gubkina 3, Moscow, 119991, Russian Federation
| | - Roman A Zubarev
- Division of Physiological Chemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Tsezi A Egorov
- Shemyakin & Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, Moscow, 117997, Russian Federation
| |
Collapse
|
26
|
Pastells C, Acosta G, Pascual N, Albericio F, Royo M, Marco MP. An immunochemical strategy based on peptidoglycan synthetic peptide epitopes to diagnose Staphylococcus aureus infections. Anal Chim Acta 2015; 889:203-11. [DOI: 10.1016/j.aca.2015.07.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 07/07/2015] [Accepted: 07/16/2015] [Indexed: 11/24/2022]
|
27
|
Prabhu SA, Wagenknecht M, Melvin P, Gnanesh Kumar BS, Veena M, Shailasree S, Moerschbacher BM, Kini KR. Immuno-affinity purification of PglPGIP1, a polygalacturonase-inhibitor protein from pearl millet: studies on its inhibition of fungal polygalacturonases and role in resistance against the downy mildew pathogen. Mol Biol Rep 2015; 42:1123-38. [PMID: 25596722 DOI: 10.1007/s11033-015-3850-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Accepted: 01/09/2015] [Indexed: 11/30/2022]
Abstract
Polygalacturonase-inhibitor proteins (PGIPs) are important plant defense proteins which modulate the activity of microbial polygalacturonases (PGs) leading to elicitor accumulation. Very few studies have been carried out towards understanding the role of PGIPs in monocot host defense. Hence, present study was taken up to characterize a native PGIP from pearl millet and understand its role in resistance against downy mildew. A native glycosylated PGIP (PglPGIP1) of ~43 kDa and pI 5.9 was immunopurified from pearl millet. Comparative inhibition studies involving PglPGIP1 and its non-glycosylated form (rPglPGIP1; recombinant pearl millet PGIP produced in Escherichia coli) against two PGs, PG-II isoform from Aspergillus niger (AnPGII) and PG-III isoform from Fusarium moniliforme, showed both PGIPs to inhibit only AnPGII. The protein glycosylation was found to impact only the pH and temperature stability of PGIP, with the native form showing relatively higher stability to pH and temperature changes. Temporal accumulation of both PglPGIP1 protein (western blot and ELISA) and transcripts (real time PCR) in resistant and susceptible pearl millet cultivars showed significant Sclerospora graminicola-induced accumulation only in the incompatible interaction. Further, confocal PGIP immunolocalization results showed a very intense immuno-decoration with highest fluorescent intensities observed at the outer epidermal layer and vascular bundles in resistant cultivar only. This is the first native PGIP isolated from millets and the results indicate a role for PglPGIP1 in host defense. This could further be exploited in devising pearl millet cultivars with better pathogen resistance.
Collapse
Affiliation(s)
- Sreedhara Ashok Prabhu
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore, 570 006, Karnataka, India
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Nishimoto K, Tanaka K, Murakami T, Nakashita H, Sakamoto H, Oguri S. Datura stramonium agglutinin: Cloning, molecular characterization and recombinant production in Arabidopsis thaliana. Glycobiology 2014; 25:157-69. [DOI: 10.1093/glycob/cwu098] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
29
|
Molecular Structure and Properties of Lectin from Tomato Fruit. Biosci Biotechnol Biochem 2014; 72:2640-50. [DOI: 10.1271/bbb.80310] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Hanuszkiewicz A, Pittock P, Humphries F, Moll H, Rosales AR, Molinaro A, Moynagh PN, Lajoie GA, Valvano MA. Identification of the flagellin glycosylation system in Burkholderia cenocepacia and the contribution of glycosylated flagellin to evasion of human innate immune responses. J Biol Chem 2014; 289:19231-44. [PMID: 24841205 DOI: 10.1074/jbc.m114.562603] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Burkholderia cenocepacia is an opportunistic pathogen threatening patients with cystic fibrosis. Flagella are required for biofilm formation, as well as adhesion to and invasion of epithelial cells. Recognition of flagellin via the Toll-like receptor 5 (TLR5) contributes to exacerbate B. cenocepacia-induced lung epithelial inflammatory responses. In this study, we report that B. cenocepacia flagellin is glycosylated on at least 10 different sites with a single sugar, 4,6-dideoxy-4-(3-hydroxybutanoylamino)-D-glucose. We have identified key genes that are required for flagellin glycosylation, including a predicted glycosyltransferase gene that is linked to the flagellin biosynthesis cluster and a putative acetyltransferase gene located within the O-antigen lipopolysaccharide cluster. Another O-antigen cluster gene, rmlB, which is required for flagellin glycan and O-antigen biosynthesis, was essential for bacterial viability, uncovering a novel target against Burkholderia infections. Using glycosylated and nonglycosylated purified flagellin and a cell reporter system to assess TLR5-mediated responses, we also show that the presence of glycan in flagellin significantly impairs the inflammatory response of epithelial cells. We therefore suggest that flagellin glycosylation reduces recognition of flagellin by host TLR5, providing an evasive strategy to infecting bacteria.
Collapse
Affiliation(s)
- Anna Hanuszkiewicz
- From the Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast BT9 7AE, Ireland, United Kingdom
| | - Paula Pittock
- the Don Rix Protein Identification Facility, Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Fiachra Humphries
- the Institute of Immunology, Department of Biology, National University of Ireland at Maynooth, Maynooth, County Kildare, Ireland
| | - Hermann Moll
- the Bioanalytical Chemistry, Research Centre Borstel, 23845 Borstel, Germany
| | - Amanda Roa Rosales
- the Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada, and
| | - Antonio Molinaro
- the Dipartimento di Scienze Chimiche, Università di Napoli, Federico II, 80134 Naples, Italy
| | - Paul N Moynagh
- From the Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast BT9 7AE, Ireland, United Kingdom, the Institute of Immunology, Department of Biology, National University of Ireland at Maynooth, Maynooth, County Kildare, Ireland
| | - Gilles A Lajoie
- the Don Rix Protein Identification Facility, Department of Biochemistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Miguel A Valvano
- From the Centre for Infection and Immunity, School of Medicine, Dentistry and Biomedical Sciences, Queen's University, Belfast BT9 7AE, Ireland, United Kingdom, the Department of Microbiology and Immunology, University of Western Ontario, London, Ontario N6A 5C1, Canada, and
| |
Collapse
|
31
|
Waffenschm S, Kuhne DBW, Jaenicke L. Immunological Characterization of Gamete Autolysins inChlamydomonas reinhardtii. ACTA ACUST UNITED AC 2014. [DOI: 10.1111/j.1438-8677.1989.tb00069.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Chen W, Smeekens JM, Wu R. Comprehensive Analysis of Protein N-Glycosylation Sites by Combining Chemical Deglycosylation with LC–MS. J Proteome Res 2014; 13:1466-73. [DOI: 10.1021/pr401000c] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Weixuan Chen
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Johanna M. Smeekens
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ronghu Wu
- School
of Chemistry and Biochemistry
and the Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
33
|
Chuang WH, Lee KK, Liu PC. Characterization of alpha-2-macroglobulin from groupers. FISH & SHELLFISH IMMUNOLOGY 2013; 35:389-398. [PMID: 23711467 DOI: 10.1016/j.fsi.2013.04.050] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Revised: 04/11/2013] [Accepted: 04/29/2013] [Indexed: 06/02/2023]
Abstract
Alpha-2-macroglobulin (α-2-M) is a protease inhibitor broadly present in the plasma of vertebrates and invertebrates, and is an important non-specific humoral factor in defence system of the animals. This study conducted the immuno-analysis and mass spectrometric analysis methods to investigate the characteristics of the protease inhibitor, α-2-M, among groupers and related species. Rabbit antiserum to the purified α-2-M of Epinephelus coioides was used in different immunological methods to determine the immune cross-reactions of the α-2-M in samples. Plasma of Epinephelus bruneus, Epinephelus fuscoguttatus, Epinephelus lanceolatus, and Epinephelus quoyanus exhibited high protease inhibitory activities by BAPNA-trypsin assay. To purify the α-2-M protein, plasma protein of grouper E. coioides was first precipitated by using PEG 6000, then Blue Sepharose 6 Fast Flow, DEAE Sephacel, Con A Separose 4B and Phenyl Sepharose High Performance columns were used on FPLC system for purification. The molecular mass of grouper plasma α-2-M was determined as a 180 kDa protein on non-reduced SDS-PAGE. In addition, it was determined as 97 and 80 kDa protein on reduced SDS-PAGE. Enzymatic and chemical deglycosylation of glycogen revealed that the contents of glycogen in 97 and 80 kDa subunits were 12.4% and 15%, respectively, and were all belonging to N-linked type. Only one precipitation arc was visualized in all plasma of Epinephelus spp. using the rabbit antiserum to the purified α-2-M of E. coioides, on crossed immunoelectrophoresis (CIE) gels. The plasma of Epinephelus spp. and seawater fish species showed stronger responses than freshwater fish species while that of other animal species showed no response by dot-blot assay. One single band was detected on Native PAGE-Western blotting assay, one single 180 kDa band was detected on non-reduced SDS-PAGE-Western blotting, and four bands (80, 97, 160, 250 kDa) were detected on reduced SDS-PAGE when various grouper plasma was performed respectivity. However, no band was detected using plasma from the freshwater fish species and other animal species. Thus, further indicates that the protein structure of α-2-M of Epinephelus spp. was closely related among seawater fish species. In addition the identity of the two subunits was identified using LC/MS/MS which was similar to α-2-M of grass carp (Ctenopharyngodon idella) and bluegill sunfish (Lepomis macrochirus) on the protein hit.
Collapse
Affiliation(s)
- Wen-Hsiao Chuang
- Department of Aquaculture, National Taiwan Ocean University, 2 Pei-Ning Road, Keelung 202, Taiwan
| | | | | |
Collapse
|
34
|
Murai Y, Wang L, Masuda K, Sakihama Y, Hashidoko Y, Hatanaka Y, Hashimoto M. Rapid and Controllable Hydrogen/Deuterium Exchange on Aromatic Rings of α-Amino Acids and Peptides. European J Org Chem 2013. [DOI: 10.1002/ejoc.201300405] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
One single basic amino acid at the ω-1 or ω-2 site is a signal that retains glycosylphosphatidylinositol-anchored protein in the plasma membrane of Aspergillus fumigatus. EUKARYOTIC CELL 2013; 12:889-99. [PMID: 23584992 DOI: 10.1128/ec.00351-12] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Although the plasma membrane is the terminal destination for glycosylphosphatidylinositol (GPI) proteins in higher eukaryotes, cell wall-attached GPI proteins (GPI-CWPs) are found in many fungal species. In yeast, some of the cis-requirements directing localization of GPI proteins to the plasma membrane or cell wall are now understood. However, it remains to be determined how Aspergillus fumigatus, an opportunistic fungal pathogen, signals, and sorts GPI proteins to either the plasma membrane or the cell wall. In this study, chimeric green fluorescent proteins (GFPs) were constructed as fusions with putative C-terminal GPI signal sequences from A. fumigatus Mp1p, Gel1p, and Ecm33p, as well as site-directed mutations thereof. By analyzing cellular localization of chimeric GFPs using Western blotting, electron microscopy, and fluorescence microscopy, we showed that, in contrast to yeast, a single Lys residue at the ω-1 or ω-2 site alone could retain GPI-anchored GFP in the plasma membrane. Although the signal for cell wall distribution has not been identified yet, it appeared that the threonine/serine-rich region at the C-terminal half of AfMp1 was not required for cell wall distribution. Based on our results, the cis-requirements directing localization of GPI proteins in A. fumigatus are different from those in yeast.
Collapse
|
36
|
Pathogen-Related Yeast (PRY) proteins and members of the CAP superfamily are secreted sterol-binding proteins. Proc Natl Acad Sci U S A 2012; 109:16882-7. [PMID: 23027975 DOI: 10.1073/pnas.1209086109] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Sterols and related membrane-perturbing agents are subject to a quality control cycle. Compounds that fail to pass this control are acetylated and secreted into the culture media, whereas lipids that pass the cycle are deacetylated and retained within the cell. Here we describe the identification of a family of conserved proteins, the Pathogen-Related Yeast (PRY) proteins, as a class of sterol-binding proteins. Saccharomyces cerevisiae has three members of this family, two of which, Pry1 and Pry2, are secreted, whereas Pry3 is a cell wall-associated protein. Cells lacking both PRY1 and PRY2 have a complete block in secretion of the acetylated lipid and Pry1 and Pry2 proteins bind free cholesterol and cholesteryl acetate in vitro. PRY proteins belong to a large protein superfamily of unknown mode of action, the CAP protein superfamily [i.e. cysteine-rich secretory proteins (CRISP), antigen 5, and pathogenesis related 1 proteins]. The conserved CAP domain of Pry1 is necessary and sufficient for lipid export and sterol binding. Expression of a human CAP superfamily member, the cysteine-rich secretory protein 2 (CRISP2), rescues the phenotype of yeast mutants lacking Pry function and purified CRISP2 binds cholesterol in vitro, indicating that lipid binding is a conserved function of the CAP superfamily proteins.
Collapse
|
37
|
Snégaroff J, Bouchez I, Smaali MEA, Pecquet C, Raison-Peyron N, Jolivet P, Laurière M. Barley γ3-hordein: glycosylation at an atypical site, disulfide bridge analysis, and reactivity with IgE from patients allergic to wheat. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:395-403. [PMID: 22885023 DOI: 10.1016/j.bbapap.2012.07.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Revised: 07/27/2012] [Accepted: 07/28/2012] [Indexed: 10/28/2022]
Abstract
Post translational modifications of a seed storage protein, barley γ3-hordein, were determined using immunochemical and mass spectrometry methods. IgE reactivity towards this protein was measured using sera from patients diagnosed with allergies to wheat. N-glycosylation was found at an atypical Asn-Leu-Cys site. The observed glycan contains xylose. This indicates that at least some γ3-hordein molecules trafficked through the Golgi apparatus. Disulfide bridges in native γ3-hordein were almost the same as those found in wheat γ46-gliadin, except the bridge involving the cysteine included in the glycosylation site. IgE reacted more strongly towards the recombinant than the natural γ3-hordein protein. IgE binding to γ3-hordein increased when the protein sample was reduced. Glycosylation and disulfide bridges therefore decrease epitope accessibility. Thus the IgE from patients sensitized to wheat cross-react with γ3-hordein due to sequence homology with wheat allergens rather than through shared carbohydrate determinants.
Collapse
Affiliation(s)
- Jacques Snégaroff
- INRA, UMR1318, Institut Jean-Pierre Bourgin, RD10, F-78000 Versailles, France
| | | | | | | | | | | | | |
Collapse
|
38
|
Herrmann A, König S, Lechtenberg M, Sehlbach M, Vakhrushev SY, Peter-Katalinic J, Hensel A. Proteoglycans from Boswellia serrata Roxb. and B. carteri Birdw. and identification of a proteolytic plant basic secretory protein. Glycobiology 2012; 22:1424-39. [PMID: 22773449 DOI: 10.1093/glycob/cws107] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Water-soluble high molecular weight compounds were isolated in yields of 21-22% from the oleogum of Boswellia serrata and B. carteri. Using anion exchange chromatography and gel permeation chromatography, different proteoglycans were purified and characterized, leading to four principally different groups: (i) Hyp-/Ser-rich extensins with O-glycosidic attached arabinan side chains; (ii) Modified extensins, with arabinogalactosylated side chains containing GlA and 4-O-Me-GlcA; (iii) Glycoproteins with N-glycosidic side chains containing higher amounts of Fuc, Man and GluNH(2,) featuring a 200 kD metalloproteinase that has been de novo sequenced and is described for the first time; (iv) Type II arabinogalactans-proteins. Significant differences between the gums from the two species were observed in the protein content (6% vs 22%), offering the possibility of a quick differentiation of gums from both species for analytical quality control. The data also offer an insight into the plant response towards wound-closing by the formation of extensin and AGP-containing gum.
Collapse
Affiliation(s)
- Andreas Herrmann
- University of Münster, Institute of Pharmaceutical Biology and Phytochemistry, Münster, Germany
| | | | | | | | | | | | | |
Collapse
|
39
|
Medeiros A, Berois N, Incerti M, Bay S, Franco Fraguas L, Osinaga E. A Tn antigen binding lectin from Myrsine coriacea displays toxicity in human cancer cell lines. J Nat Med 2012; 67:247-54. [PMID: 22645079 DOI: 10.1007/s11418-012-0671-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 04/11/2012] [Indexed: 02/06/2023]
Abstract
The Tn antigen (GalNAc-O-Ser/Thr) is one of the most specific human cancer-associated structures. In the present study we characterize the biochemical and functional properties of the Myrsine coriacea lectin (McL). We show that McL is an unusual high molecular weight highly glycosylated protein, which displays a strong Tn binding activity. The lectin exhibits in vitro inhibition of proliferation in the six cancer cell lines evaluated, in a dose-dependent manner (the strongest activity being against HT-29 and HeLa cells), whereas it does not exhibit toxicity against normal lymphocytes. McL could be exploited in the design of potential new tools for the diagnosis or treatment of cancer.
Collapse
Affiliation(s)
- Andrea Medeiros
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Av. Gral. Flores 2125, 11800, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
40
|
Singh N, Kayastha AM. Purification and characterization of α-galactosidase from white chickpea (Cicer arietinum). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:3253-3259. [PMID: 22385353 DOI: 10.1021/jf204538m] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Glycosylated α-galactosidase (melibiase) has been purified from white chickpea ( Cicer arietinum ) to 340-fold with a specific activity of 61 units/mg. Cicer α-galactosidase showed a M(r) of 45 kDa on SDS-PAGE and by MALDI-TOF. The optimum pH and temperature with pNPGal were 4.5 and 50 °C, respectively. The K(m) for hydrolysis of pNPGal was 0.70 mM. Besides hydrolyzing the pNPGal, Cicer α-galactosidase also hydrolyzed natural substrates such as melibiose, raffinose, and stachyose very effectively; hence, it can be exploited commercially for improving the nutritional value of soy milk. Galactose was found to be a competitive inhibitor. The property of this enzyme to cleave the terminal galactose residues can be utilized for converting the group B erythrocytes to group O erythrocytes.
Collapse
Affiliation(s)
- Neelesh Singh
- School of Biotechnology, Faculty of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
41
|
Prakash R, Bharathi Raja S, Devaraj H, Devaraj SN. Up-regulation of MUC2 and IL-1β expression in human colonic epithelial cells by Shigella and its interaction with mucins. PLoS One 2011; 6:e27046. [PMID: 22073249 PMCID: PMC3208570 DOI: 10.1371/journal.pone.0027046] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 10/09/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The entire gastrointestinal tract is protected by a mucous layer, which contains complex glycoproteins called mucins. MUC2 is one such mucin that protects the colonic mucosa from invading microbes. The initial interaction between microbes and mucins is an important step for microbial pathogenesis. Hence, it was of interest to investigate the relationship between host (mucin) and pathogen interaction, including Shigella induced expression of MUC2 and IL-1β during shigellosis. METHODS The mucin-Shigella interaction was revealed by an in vitro mucin-binding assay. Invasion of Shigella dysenteriae into HT-29 cells was analyzed by Transmission electron microscopy. Shigella induced mucin and IL-1β expression were analyzed by RT-PCR and Immunofluorescence. RESULTS The clinical isolates of Shigella were found to be virulent by a congo-red binding assay. The in vitro mucin-binding assay revealed both Shigella dysenteriae and Shigella flexneri have binding affinity in the increasing order of: guinea pig small intestinal mucin CONCLUSIONS Our study concludes that the Shigella species specifically binds to guinea pig colonic mucin, but not to guinea pig small intestinal mucin. The guinea pig colonic mucin showed a greater binding parameter (R), and more saturable binding, suggesting the presence of a finite number of receptor binding sites in the colonic mucin of the host. In addition, modification of mucins with TFMS and sodium metaperiodate significantly reduced mucin-bacterial binding; suggesting that the mucin-Shigella interaction occurs through carbohydrate epitopes on the mucin backbones. Overproduction of MUC2 may alter adherence and invasion of Shigella dysenteriae into human colonic epithelial cells.
Collapse
Affiliation(s)
- Radhakrishnan Prakash
- Department of Biochemistry, University of Madras, Guindy Campus, Chennai, Tamilnadu, India
| | | | - Halagowder Devaraj
- Unit of Biochemistry, Department of Zoology, University of Madras, Guindy Campus, Chennai, Tamilnadu, India
| | | |
Collapse
|
42
|
Darville LN, Merchant ME, Murray KK. A mass spectrometry approach for the study of deglycosylated proteins. Microchem J 2011. [DOI: 10.1016/j.microc.2011.05.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
43
|
Ferreira JA, Daniel-da-Silva AL, Alves RMP, Duarte D, Vieira I, Santos LL, Vitorino R, Amado F. Synthesis and Optimization of Lectin Functionalized Nanoprobes for the Selective Recovery of Glycoproteins from Human Body Fluids. Anal Chem 2011; 83:7035-43. [DOI: 10.1021/ac200916j] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- José A. Ferreira
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute, 4200-072 Porto, Portugal
| | | | | | | | | | - Lúcio Lara Santos
- Experimental Pathology and Therapeutics Group, Research Centre, Portuguese Oncology Institute, 4200-072 Porto, Portugal
- University of Fernando Pessoa, Porto, Portugal
| | | | | |
Collapse
|
44
|
Brewster VL, Ashton L, Goodacre R. Monitoring the glycosylation status of proteins using Raman spectroscopy. Anal Chem 2011; 83:6074-81. [PMID: 21699257 DOI: 10.1021/ac2012009] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Protein-based biopharmaceuticals are becoming increasingly widely used as therapeutic agents, and the characterization of these biopharmaceuticals poses a significant analytical challenge. In particular, monitoring posttranslational modifications (PTMs), such as glycosylation, is an important aspect of this characterization because these glycans can strongly affect the stability, immunogenicity, and pharmacokinetics of these biotherapeutic drugs. Raman spectroscopy is a powerful tool, with many emerging applications in the bioprocessing arena. Although the technique has a relatively rich history in protein science, only recently has Raman spectroscopy been investigated for assessing posttranslational modifications, including phosphorylation, acetylation, trimethylation, and ubiquitination. In this investigation, we develop for the first time Raman spectroscopy combined with multivariate data analyses, including principal components analysis and partial least-squares regression, for the determination of the glycosylation status of proteins and quantifying the relative concentrations of the native ribonuclease (RNase) A protein and RNase B glycoprotein within mixtures.
Collapse
Affiliation(s)
- Victoria L Brewster
- School of Chemistry, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester, UK
| | | | | |
Collapse
|
45
|
Wolf-Ringwall AL, Winter PW, Liu J, Van Orden AK, Roess DA, Barisas BG. Restricted lateral diffusion of luteinizing hormone receptors in membrane microdomains. J Biol Chem 2011; 286:29818-27. [PMID: 21690095 DOI: 10.1074/jbc.m111.250969] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single particle tracking was used to evaluate lateral motions of individual FLAG-tagged human luteinizing hormone (LH) receptors expressed on CHO cells and native LH receptors on both KGN human granulosa-derived tumor cells and M17 human neuroblastoma cells before and after exposure to human chorionic gonadotropin (hCG). Compared with LH receptors on untreated cells, LH receptors on cells treated with 100 nm hCG exhibit restricted lateral diffusion and are confined in small, nanometer-scale, membrane compartments. Similar to LH receptors labeled with Au-hCG, LH receptors labeled with gold-deglycosylated hCG, an hCG antagonist, also exhibit restricted lateral diffusion and are confined in nanoscale membrane compartments on KGN cells treated with 100 nm hCG. LH receptor point mutants lacking potential palmitoylation sites remain in large compartments despite treatment with 100 nm hCG as do LH receptors on cells treated with cytochalasin D. Finally, both polarization homotransfer fluorescence resonance energy transfer imaging and photon counting histogram analysis indicate that treatment with hCG induces aggregation of YFP-coupled LH receptors stably expressed on CHO cells. Taken together, our results demonstrate that binding of hCG induces aggregation of LH receptors within nanoscale, cell surface membrane compartments, that hCG binding also affects the lateral motions of antagonist binding LH receptors, and that receptor surface densities must be considered in evaluating the extent of hormone-dependent receptor aggregation.
Collapse
Affiliation(s)
- Amber L Wolf-Ringwall
- Department of Biomedical Sciences, Colorado State University, Fort Collins, Colorado 80523, USA
| | | | | | | | | | | |
Collapse
|
46
|
Marie B, Zanella-Cléon I, Corneillat M, Becchi M, Alcaraz G, Plasseraud L, Luquet G, Marin F. Nautilin-63, a novel acidic glycoprotein from the shell nacre of Nautilus macromphalus. FEBS J 2011; 278:2117-30. [PMID: 21585656 DOI: 10.1111/j.1742-4658.2011.08129.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
UNLABELLED In molluscs, and more generally in metazoan organisms, the production of a calcified skeleton is a complex molecular process that is regulated by the secretion of an extracellular organic matrix. This matrix constitutes a cohesive and functional macromolecular assemblage, containing mainly proteins, glycoproteins and polysaccharides that, together, control the biomineral formation. These macromolecules interact with the extruded precursor mineral ions, mainly calcium and bicarbonate, to form complex organo-mineral composites of well-defined microstructures. For several reasons related to its remarkable mechanical properties and to its high value in jewelry, nacre is by far the most studied molluscan shell microstructure and constitutes a key model in biomineralization research. To understand the molecular mechanism that controls the formation of the shell nacreous layer, we have investigated the biochemistry of Nautilin-63, one of the main nacre matrix proteins of the cephalopod Nautilus macromphalus. After purification of Nautilin-63 by preparative electrophoresis, we demonstrate that this soluble protein is glycine-aspartate-rich, that it is highly glycosylated, that its sugar moieties are acidic, and that it is able to bind chitin in vitro. Interestingly, Nautilin-63 strongly interacts with the morphology of CaCO(3) crystals precipitated in vitro but, unexpectedly, it exhibits an extremely weak ability to inhibit in vitro the precipitation of CaCO(3) . The partial resolution of its amino acid sequence by de novo sequencing of its tryptic peptides indicates that Nautilin-63 exhibits short collagenous-like domains. Owing to specific polyclonal antibodies raised against the purified protein, Nautilin-63 was immunolocalized mainly in the intertabular nacre matrix. In conclusion, Nautilin-63 exhibits 'hybrid' biochemical properties that are found both in the soluble and insoluble proteins, rendering it difficult to classify according to the standard view on nacre proteins. DATABASE The protein sequences of N63 appear on the UniProt Knowledgebase under accession number P86702.
Collapse
|
47
|
Pérez-Nadales E, Di Pietro A. The membrane mucin Msb2 regulates invasive growth and plant infection in Fusarium oxysporum. THE PLANT CELL 2011; 23:1171-85. [PMID: 21441438 PMCID: PMC3082261 DOI: 10.1105/tpc.110.075093] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2010] [Revised: 02/18/2011] [Accepted: 03/08/2011] [Indexed: 05/20/2023]
Abstract
Fungal pathogenicity in plants requires a conserved mitogen-activated protein kinase (MAPK) cascade homologous to the yeast filamentous growth pathway. How this signaling cascade is activated during infection remains poorly understood. In the soil-borne vascular wilt fungus Fusarium oxysporum, the orthologous MAPK Fmk1 (Fusarium MAPK1) is essential for root penetration and pathogenicity in tomato (Solanum lycopersicum) plants. Here, we show that Msb2, a highly glycosylated transmembrane protein, is required for surface-induced phosphorylation of Fmk1 and contributes to a subset of Fmk1-regulated functions related to invasive growth and virulence. Mutants lacking Msb2 share characteristic phenotypes with the Δfmk1 mutant, including defects in cellophane invasion, penetration of the root surface, and induction of vascular wilt symptoms in tomato plants. In contrast with Δfmk1, Δmsb2 mutants were hypersensitive to cell wall targeting compounds, a phenotype that was exacerbated in a Δmsb2 Δfmk1 double mutant. These results suggest that the membrane mucin Msb2 promotes invasive growth and plant infection upstream of Fmk1 while contributing to cell integrity through a distinct pathway.
Collapse
|
48
|
Vandenborre G, Smagghe G, Ghesquière B, Menschaert G, Nagender Rao R, Gevaert K, Van Damme EJM. Diversity in protein glycosylation among insect species. PLoS One 2011; 6:e16682. [PMID: 21373189 PMCID: PMC3044136 DOI: 10.1371/journal.pone.0016682] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2010] [Accepted: 12/23/2010] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND A very common protein modification in multicellular organisms is protein glycosylation or the addition of carbohydrate structures to the peptide backbone. Although the Class of the Insecta is the largest animal taxon on Earth, almost all information concerning glycosylation in insects is derived from studies with only one species, namely the fruit fly Drosophila melanogaster. METHODOLOGY/PRINCIPAL FINDINGS In this report, the differences in glycoproteomes between insects belonging to several economically important insect orders were studied. Using GNA (Galanthus nivalis agglutinin) affinity chromatography, different sets of glycoproteins with mannosyl-containing glycan structures were purified from the flour beetle (Tribolium castaneum), the silkworm (Bombyx mori), the honeybee (Apis mellifera), the fruit fly (D. melanogaster) and the pea aphid (Acyrthosiphon pisum). To identify and characterize the purified glycoproteins, LC-MS/MS analysis was performed. For all insect species, it was demonstrated that glycoproteins were related to a broad range of biological processes and molecular functions. Moreover, the majority of glycoproteins retained on the GNA column were unique to one particular insect species and only a few glycoproteins were present in the five different glycoprotein sets. Furthermore, these data support the hypothesis that insect glycoproteins can be decorated with mannosylated O-glycans. CONCLUSIONS/SIGNIFICANCE The results presented here demonstrate that oligomannose N-glycosylation events are highly specific depending on the insect species. In addition, we also demonstrated that protein O-mannosylation in insect species may occur more frequently than currently believed.
Collapse
Affiliation(s)
- Gianni Vandenborre
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Guy Smagghe
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Bart Ghesquière
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Gerben Menschaert
- Laboratory for Bioinformatics and Computational Genomics, Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Rameshwaram Nagender Rao
- Laboratory of Agrozoology, Department of Crop Protection, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| | - Kris Gevaert
- Department of Medical Protein Research, VIB, Ghent, Belgium
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Els J. M. Van Damme
- Laboratory of Biochemistry and Glycobiology, Department of Molecular Biotechnology, Faculty of Bioscience Engineering, Ghent University, Ghent, Belgium
| |
Collapse
|
49
|
Tran S, Smith T. Determination of optimal conditions for hydrolysis of conjugated deoxynivalenol in corn and wheat with trifluoromethanesulfonic acid. Anim Feed Sci Technol 2011. [DOI: 10.1016/j.anifeedsci.2010.10.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
50
|
Dreon MS, Ituarte S, Heras H. The role of the proteinase inhibitor ovorubin in apple snail eggs resembles plant embryo defense against predation. PLoS One 2010; 5:e15059. [PMID: 21151935 PMCID: PMC2997075 DOI: 10.1371/journal.pone.0015059] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Accepted: 10/14/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Fieldwork has thoroughly established that most eggs are intensely predated. Among the few exceptions are the aerial egg clutches from the aquatic snail Pomacea canaliculata which have virtually no predators. Its defenses are advertised by the pigmented ovorubin perivitellin providing a conspicuous reddish coloration. The nature of the defense however, was not clear, except for a screening for defenses that identified a neurotoxic perivitellin with lethal effect on rodents. Ovorubin is a proteinase inhibitor (PI) whose role to protect against pathogens was taken for granted, according to the prevailing assumption. Through biochemical, biophysical and feeding experiments we studied the proteinase inhibitor function of ovorubin in egg defenses. METHODOLOGY/PRINCIPAL FINDINGS Mass spectrometry sequencing indicated ovorubin belongs to the Kunitz-type serine proteinase inhibitor family. It specifically binds trypsin as determined by small angle X-ray scattering (SAXS) and cross-linking studies but, in contrast to the classical assumption, it does not prevent bacterial growth. Ovorubin was found extremely resistant to in vitro gastrointestinal proteolysis. Moreover feeding studies showed that ovorubin ingestion diminishes growth rate in rats indicating that this highly stable PI is capable of surviving passage through the gastrointestinal tract in a biologically active form. CONCLUSIONS To our knowledge, this is the first direct evidence of the interaction of an egg PI with a digestive protease of potential predators, limiting predator's ability to digest egg nutrients. This role has not been reported in the animal kingdom but it is similar to plant defenses against herbivory. Further, this would be the only defense model with no trade-offs between conspicuousness and noxiousness by encoding into the same molecule both the aposematic warning signal and an antinutritive/antidigestive defense. These defenses, combined with a neurotoxin and probably unpalatable factors would explain the near absence of predators, opening new perspectives in the study of the evolution and ecology of egg defensive strategies.
Collapse
Affiliation(s)
- Marcos Sebastián Dreon
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Santiago Ituarte
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| | - Horacio Heras
- Instituto de Investigaciones Bioquímicas de La Plata (INIBIOLP), CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|