1
|
Saffarionpour S, Diosady LL. Cyclodextrins and their potential applications for delivering vitamins, iron, and iodine for improving micronutrient status. Drug Deliv Transl Res 2025; 15:26-65. [PMID: 38671315 DOI: 10.1007/s13346-024-01586-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 04/28/2024]
Abstract
Cyclodextrins (CDs) have been investigated as potential biopolymeric carriers that can form inclusion complexes with numerous bioactive ingredients. The inclusion of micronutrients (e.g. vitamins or minerals) into cyclodextrins can enhance their solubility and provide oxidative or thermal stability. It also enables the formulation of products with extended shelf-life. The designed delivery systems with CDs and their inclusion complexes including electrospun nanofibers, emulsions, liposomes, and hydrogels, show potential in enhancing the solubility and oxidative stability of micronutrients while enabling their controlled and sustained release in applications including food packaging, fortified foods and dietary supplements. Nano or micrometer-sized delivery systems capable of controlling burst release and permeation, or moderating skin hydration have been reported, which can facilitate the formulation of several personal and skin care products for topical or transdermal delivery of micronutrients. This review highlights recent developments in the application of CDs for the delivery of micronutrients, i.e. vitamins, iron, and iodine, which play key roles in the human body, emphasizing their existing and potential applications in the food, pharmaceuticals, and cosmeceuticals industries.
Collapse
Affiliation(s)
| | - Levente L Diosady
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
2
|
Oxidant Generation Resulting from the Interaction of Copper with Menadione (Vitamin K3)–a Model for Metal-mediated Oxidant Generation in Living Systems. J Inorg Biochem 2018; 188:38-49. [DOI: 10.1016/j.jinorgbio.2018.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/22/2018] [Accepted: 08/04/2018] [Indexed: 01/19/2023]
|
3
|
Tarento TDC, McClure DD, Talbot AM, Regtop HL, Biffin JR, Valtchev P, Dehghani F, Kavanagh JM. A potential biotechnological process for the sustainable production of vitamin K 1. Crit Rev Biotechnol 2018; 39:1-19. [PMID: 29793354 DOI: 10.1080/07388551.2018.1474168] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The primary objective of this review is to propose an approach for the biosynthesis of phylloquinone (vitamin K1) based upon its known sources, its role in photosynthesis and its biosynthetic pathway. The chemistry, health benefits, market, and industrial production of vitamin K are also summarized. Vitamin K compounds (K vitamers) are required for the normal function of at least 15 proteins involved in diverse physiological processes such as coagulation, tissue mineralization, inflammation, and neuroprotection. Vitamin K is essential for the prevention of Vitamin K Deficiency Bleeding (VKDB), especially in neonates. Increased vitamin K intake may also reduce the severity and/or risk of bone fracture, arterial calcification, inflammatory diseases, and cognitive decline. Consumers are increasingly favoring natural food and therapeutic products. However, the bulk of vitamin K products employed for both human and animal use are chemically synthesized. Biosynthesis of the menaquinones (vitamin K2) has been extensively researched. However, published research on the biotechnological production of phylloquinone is restricted to a handful of available articles and patents. We have found that microalgae are more suitable than plant cell cultures for the biosynthesis of phylloquinone. Many algae are richer in vitamin K1 than terrestrial plants, and algal cells are easier to manipulate. Vitamin K1 can be efficiently recovered from the biomass using supercritical carbon dioxide extraction.
Collapse
Affiliation(s)
- Thomas D C Tarento
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - Dale D McClure
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - Andrea M Talbot
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia.,Agricure Scientific Organics Pty. Ltd., Braemar, NSW, Australia
| | - Hubert L Regtop
- Agricure Scientific Organics Pty. Ltd., Braemar, NSW, Australia
| | - John R Biffin
- Agricure Scientific Organics Pty. Ltd., Braemar, NSW, Australia
| | - Peter Valtchev
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - Fariba Dehghani
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| | - John M Kavanagh
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
4
|
Shearer MJ, Newman P. Recent trends in the metabolism and cell biology of vitamin K with special reference to vitamin K cycling and MK-4 biosynthesis. J Lipid Res 2014; 55:345-62. [PMID: 24489112 PMCID: PMC3934721 DOI: 10.1194/jlr.r045559] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Revised: 01/30/2014] [Indexed: 12/25/2022] Open
Abstract
In contrast to other fat-soluble vitamins, dietary vitamin K is rapidly lost to the body resulting in comparatively low tissue stores. Deficiency is kept at bay by the ubiquity of vitamin K in the diet, synthesis by gut microflora in some species, and relatively low vitamin K cofactor requirements for γ-glutamyl carboxylation. However, as shown by fatal neonatal bleeding in mice that lack vitamin K epoxide reductase (VKOR), the low requirements are dependent on the ability of animals to regenerate vitamin K from its epoxide metabolite via the vitamin K cycle. The identification of the genes encoding VKOR and its paralog VKOR-like 1 (VKORL1) has accelerated understanding of the enzymology of this salvage pathway. In parallel, a novel human enzyme that participates in the cellular conversion of phylloquinone to menaquinone (MK)-4 was identified as UbiA prenyltransferase-containing domain 1 (UBIAD1). Recent studies suggest that side-chain cleavage of oral phylloquinone occurs in the intestine, and that menadione is a circulating precursor of tissue MK-4. The mechanisms and functions of vitamin K recycling and MK-4 synthesis have dominated advances made in vitamin K biochemistry over the last five years and, after a brief overview of general metabolism, are the main focuses of this review.
Collapse
Affiliation(s)
- Martin J. Shearer
- Centre for Haemostasis and Thrombosis, Guy's and St. Thomas’ NHS Foundation Trust, London SE1 7EH, UK; and
| | - Paul Newman
- Cancer Research UK London Research Institute, London WC2A 3LY, UK
| |
Collapse
|
5
|
Elgawish MS, Shimomai C, Kishikawa N, Ohyama K, Wada M, Kuroda N. Development and Validation of the First Assay Method Coupling Liquid Chromatography with Chemiluminescence for the Simultaneous Determination of Menadione and Its Thioether Conjugates in Rat Plasma. Chem Res Toxicol 2013; 26:1409-17. [DOI: 10.1021/tx400253k] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mohamed Saleh Elgawish
- Graduate School of Biomedical
Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
- Pharmaceutical Chemistry Department,
Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt
| | - Chikako Shimomai
- Graduate School of Biomedical
Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naoya Kishikawa
- Graduate School of Biomedical
Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Kaname Ohyama
- Graduate School of Biomedical
Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Mitsuhiro Wada
- Graduate School of Biomedical
Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Naotaka Kuroda
- Graduate School of Biomedical
Sciences, Course of Pharmaceutical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
6
|
Fedotcheva NI, Teplova VV, Beloborodova NV. The role of thiol antioxidants in restoring mitochondrial functions modified by microbial metabolites. Biophysics (Nagoya-shi) 2012. [DOI: 10.1134/s0006350912050065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
7
|
Shimada H, Yamaoka Y, Morita R, Mizuno T, Gotoh K, Higuchi T, Shiraishi T, Imamura Y. Possible mechanism of superoxide formation through redox cycling of plumbagin in pig heart. Toxicol In Vitro 2011; 26:252-7. [PMID: 22198053 DOI: 10.1016/j.tiv.2011.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2011] [Revised: 11/04/2011] [Accepted: 12/07/2011] [Indexed: 11/27/2022]
Abstract
The purpose of this study is to elucidate the possible mechanism of superoxide formation through redox cycling of plumbagin (PLG) in pig heart. Of four 1,4-naphthoquinones tested in this study, PLG was most efficiently reduced in the cytosolic fraction of pig heart. On the other hand, lawsone (LAS) was little reduced. Thus, whether or not PLG and LAS induce the formation of superoxide anion radical in pig heart cytosol was examined, by using the methods of cytochrome c reduction and chemiluminescence. PLG significantly induced the formation of superoxide anion radical, even though LAS had no ability to mediate superoxide formation. PLG was a significant inhibitor for the stereoselective reduction of 4-benzoylpyridine (4-BP) catalyzed by tetrameric carbonyl reductase (TCBR) in pig heart cytosol. Furthermore, PLG was confirmed to competitively inhibit the 4-BP reduction, and the optimal pH for the PLG reduction was around 6.0 similar to that for the 4-BP reduction. These results suggest that PLG mediates superoxide formation through its redox cycling involved in the two-electron reduction catalyzed by TCBR, and induces oxidative stress in pig heart.
Collapse
Affiliation(s)
- Hideaki Shimada
- Faculty of Education, Kumamoto University, 2-40-1 Kurokami, Kumamoto 860-8555, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Miura T, Shinkai Y, Jiang HY, Iwamoto N, Sumi D, Taguchi K, Yamamoto M, Jinno H, Tanaka-Kagawa T, Cho AK, Kumagai Y. Initial Response and Cellular Protection through the Keap1/Nrf2 System during the Exposure of Primary Mouse Hepatocytes to 1,2-Naphthoquinone. Chem Res Toxicol 2011; 24:559-67. [DOI: 10.1021/tx100427p] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
| | | | | | | | | | - Keiko Taguchi
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Masayuki Yamamoto
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, 2-1 Seiryo-cho, Aoba-ku, Sendai 980-8575, Japan
| | - Hideto Jinno
- Division of Environmental Chemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Toshiko Tanaka-Kagawa
- Division of Environmental Chemistry, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, Tokyo 158-8501, Japan
| | - Arthur K. Cho
- Southern California Particle Center, University of California, Los Angeles, California 90095, United States
| | - Yoshito Kumagai
- Southern California Particle Center, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
9
|
Sa DJ, Lee EJ, Yoo BS. Apoptosis Induction by Menadione in Human Promyelocytic Leukemia HL-60 Cells. Toxicol Res 2009; 25:113-118. [PMID: 32038828 PMCID: PMC7006246 DOI: 10.5487/tr.2009.25.3.113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2009] [Revised: 07/15/2009] [Accepted: 07/28/2009] [Indexed: 11/20/2022] Open
Abstract
Cell death induced by menadione (vitamin K-3,2-methyl-1,4-naphthoquinone) has been investigated in human promyelocytic leukemia HL-60 cells. Menadione was found to induce both apoptosis and necrosis in HL-60 cells. Low concentration (1~50 µM) of menadione induced apoptotic cell death, which was demonstrated by typical DNA ladder patterns on agarose gel electrophoresis and flow cytometry analysis. In contrast, a high concentration of menadione (100 µM) induced necrotic cell death, which was demonstrated by DNA smear pattern in agarose gel electrophoresis. Necrotic cell death was accompanied with a great reduction of cell viability. Menadione activated caspase-3, as evidenced by both increased protease activity and proteolytic cleavage of 116 kDa poly(ADP-ribose) polymerase (PARP) into 85 kDa cleavage product. Caspase-3 activity was maximum at 50 µM of menadione, and very low at 100 µM of menadione. Taken together, our results showed that menadi-one induced mixed types of cell death, apoptosis at low concentrations and necrosis at high concentrations in HL-60 cells.
Collapse
Affiliation(s)
- Duck-Jin Sa
- Present Address: Department of Life Science, Kyonggi University, Suwon, 443-760 Korea
| | - Eun-Jee Lee
- Present Address: Department of Life Science, Kyonggi University, Suwon, 443-760 Korea
| | - Byung-Sun Yoo
- Present Address: Department of Life Science, Kyonggi University, Suwon, 443-760 Korea
| |
Collapse
|
10
|
|
11
|
Ferreira MAD, do Nascimento NRF, de Sousa CM, Pessoa ODL, de Lemos TLG, Ventura JS, Schattner M, Chudzinski-Tavassi AM. Oncocalyxone A inhibits human platelet aggregation by increasing cGMP and by binding to GP Ibalpha glycoprotein. Br J Pharmacol 2008; 154:1216-24. [PMID: 18516074 DOI: 10.1038/bjp.2008.199] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND AND PURPOSE Oncocalyxone A (OncoA) has a concentration-dependent anti-platelet activity. The present study aimed to further understand the mechanisms related to this effect. EXPERIMENTAL APPROACH Human platelet aggregation was measured by means of a turbidimetric method. OncoA (32-256 microM) was tested against several platelet-aggregating agents, such as adenosine diphosphate (ADP), collagen, arachidonic acid (AA), ristocetin and thrombin. KEY RESULTS OncoA completely inhibited platelet aggregation with a calculated mean inhibitory concentration (IC50-microM) of 122 for ADP, 161 for collagen, 159 for AA, 169 for ristocetin and 85 for thrombin. The anti-aggregatory activity of OncoA was not inhibited by 1H-[1,2,4]oxadiazolo[4,3-a]quinoxalin-1-one (ODQ). OncoA, at a concentration that caused no significant anti-aggregatory activity, potentiated sodium nitroprusside (SNP) anti-aggregatory activity (18.8+/-2.9%-SNP vs 85.0+/-8.2%-SNP+OncoA). The levels of nitric oxide (NO) or cAMP were not altered by OncoA while cGMP levels were increased more than 10-fold by OncoA in resting or ADP-activated platelets. Flow cytometry revealed that OncoA does not interact with receptors for fibrinogen, collagen or P-selectin. Nevertheless, OncoA decreased the binding of antibodies to GP Ibalpha, a glycoprotein that is related both to von Willebrand factor and to thrombin-induced platelet aggregation. CONCLUSION AND IMPLICATIONS OncoA showed anti-aggregatory activity in platelets that was associated with increased cGMP levels, not dependent on NO and with blocking GP Ibalpha glycoprotein. This new mechanism has the prospect of leading to new anti-thrombotic drugs.
Collapse
Affiliation(s)
- M A D Ferreira
- College of Pharmacy, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Oginuma M, Shimada H, Imamura Y. Involvement of carbonyl reductase in superoxide formation through redox cycling of adrenochrome and 9,10-phenanthrenequinone in pig heart. Chem Biol Interact 2005; 155:148-54. [PMID: 16026774 DOI: 10.1016/j.cbi.2005.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2005] [Revised: 06/14/2005] [Accepted: 06/14/2005] [Indexed: 11/24/2022]
Abstract
The effects of adrenochrome, a metabolite of epinephrine (adrenaline), and 9,10-phenanthrenequinone (PQ), a component of diesel exhaust particles, on the stereoselective reduction of 4-benzoylpyridine (4-BP) were examined in pig heart cytosol. PQ was a potent inhibitor for the 4-BP reduction, while adrenochrome was a poor inhibitor. A similar result was observed in the effects of adrenochrome and PQ on the reduction of all-trans retinal. Furthermore, although PQ mediated efficiently the formation of superoxide anion radical through its redox cycling in pig heart cytosol, adrenochrome had no ability to mediate the superoxide formation. These may be because the reactivity for adrenochrome, catalyzed by pig heart carbonyl reductase (PHCR), is much lower than that for PQ. The optimal pH for the reduction of PQ in pig heart cytosol was around 5.5. Dicumarol, a potent inhibitor of DT-diaphorase, had little effect on the time course of NADPH oxidation during the reduction of PQ. Therefore, it is concluded that PHCR plays a critical role in superoxide formation through redox cycling of PQ.
Collapse
Affiliation(s)
- Michiko Oginuma
- Faculty of Education, Kumamoto University, 2-40-1, Kurokami, Kumamoto 860-8555, Japan
| | | | | |
Collapse
|
13
|
Li WW, Heinze J, Haehnel W. Site-Specific Binding of Quinones to Proteins through Thiol Addition and Addition−Elimination Reactions. J Am Chem Soc 2005; 127:6140-1. [PMID: 15853297 DOI: 10.1021/ja050974x] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ubiquinone-0, menaquinone-0, and 2,3,5-trimethyl-1,4-benzoquinone were site-specifically bound to free cysteine of proteins (yeast iso-1 cytochrome c as a model protein) through thioether bond formation. Model thioether quinone conjugates showed unexpected reactivity to cysteine of proteins as their parent quinones by thiol addition-elimination reaction. Cyclic voltammetry studies of the model compounds showed only minor differences in their redox potentials as compared to their parent quinones. Thioether ligation provides a general, simple, and fast method to construct model quinone protein systems. In addition, these studies also contribute to the understanding of biological activities, toxicity, and anti-cancer mechanism of quinones and thioether quinone adducts.
Collapse
Affiliation(s)
- Wen-Wu Li
- Institut für Biologie II/Biochemie, Schänzlestrasse 1, D-79104 Freiburg, Germany.
| | | | | |
Collapse
|
14
|
Wang J, Mongayt DA, Lukyanov AN, Levchenko TS, Torchilin VP. Preparation and in vitro synergistic anticancer effect of vitamin K3 and 1,8-diazabicyclo[5,4,0]undec-7-ene in poly(ethylene glycol)-diacyllipid micelles. Int J Pharm 2004; 272:129-35. [PMID: 15019076 DOI: 10.1016/j.ijpharm.2003.12.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 11/17/2003] [Accepted: 12/05/2003] [Indexed: 11/18/2022]
Abstract
Polymeric micelles consisting of poly(ethylene glycol)-distearoyl phosphoethanolamine conjugates (PEG-DSPE) loaded with Vitamin K3 (VK3) to 0.2 mg of drug/mg of carrier and with 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU) to 0.06 mg of drug/mg of carrier were prepared. These micelles were stable for as long as 6 months during storage at 4 degrees C and did not change their size or release the incorporated drugs. Co-encapsulation of VK3 and DBU into PEG-DSPE micelles resulted in synergistic anticancer effects against both murine and human cancer cells in vitro. The synergism may be explained by the fact that the presence of DBU promotes the escape of drug-loaded micelles from the endosomes of cancer cells directly into the cytoplasm as demonstrated by fluorescent microscopy.
Collapse
Affiliation(s)
- Junping Wang
- Department of Pharmaceutical Sciences, Bouvé College of Health Sciences, Northeastern University, Mugar Building 312, 360 Huntington Avenue, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
15
|
Affiliation(s)
- Nobuo Watanabe
- Department of Environmental Health Sciences, School of Public Health, University of Alabama at Birmingham, 35294, USA
| | | | | | | |
Collapse
|
16
|
Abstract
The main function of K vitamins is to act as co-factors for gamma-glutamyl carboxylase. However, they have also recently been shown to inhibit cell growth. We have chemically synthesized a series of K vitamin analogs with various side chains at the 2 or 3 position of the core naphthoquinone structure. The analogs with short thio-ethanol side chains are found to be more potent growth inhibitors in vitro of various tumor cell lines. Cpd 5 or [2-(2-mercaptoethanol)-3-methyl-1,4-naphthoquinone] is one of the most potent. The anti-proliferation activity of these compounds is antagonized by exogenous thiols but not by non-thiol antioxidants. This suggests that the growth inhibition is mediated by sulfhydryl arylation of cellular glutathione and cysteine-containing proteins and not by oxidative stress. The protein tyrosine phosphatases (PTP) are an important group of proteins that contain cysteine at their catalytic site. PTPs regulate mitogenic signal transduction and cell cycle progression. PTP inhibition by Cpd 5 results in prolonged tyrosine phosphorylation and activation of several kinases and transcription factors including EGFR, ERK1/2, and Elk1. Cpd 5 could activate ERK1/2 either by signaling from an activated EGFR, which is upstream in the signaling cascade, or by direct inhibition of ERK1/2 phosphatase(s). Prolonged ERK1/2 phosphorylation strongly correlates with Cpd 5-mediated growth inhibition. Cpd 5 can also bind to and inhibit the Cdc25 family of dual specific phosphatases. As a result, several Cdc25 substrates (Cdk1, Cdk2, Cdk4) involved in cell cycle progression are tyrosine phosphorylated and thereby inhibited by its action. Cpd 5 could also inhibit both normal liver regeneration and hepatoma growth in vivo. DNA synthesis during rat liver regeneration following partial hepatectomy, transplantable rat hepatoma cell growth, and glutathione-S-transferase-pi expressing hepatocytes after administration of the chemical carcinogen diethylnitrosamine, are all inhibited by Cpd 5 administration. The growth inhibitory effect during liver regeneration and transplantable tumor growth is also correlated with ERK1/2 phosphorylation induced by Cpd 5. Thus, Cpd 5-mediated inhibition of PTPs, such as Cdc25 leads to cell growth arrest due to altered activity of key cellular kinases involved in signal transduction and cell cycle progression. This prototype K vitamin analog represents a novel class of growth inhibitor based upon its action as a selective PTP antagonist. It is clearly associated with prolonged ERK1/2 phosphorylation, which is in contrast with the transient ERK1/2 phosphorylation induced by growth stimulatory mitogens.
Collapse
Affiliation(s)
- Brian I Carr
- Liver Cancer Center, Starzl Transplantation Institute, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, USA.
| | | | | |
Collapse
|
17
|
Chen C, Liu YZ, Shia KS, Tseng HY. Synthesis and anticancer evaluation of vitamin K(3) analogues. Bioorg Med Chem Lett 2002; 12:2729-32. [PMID: 12217364 DOI: 10.1016/s0960-894x(02)00532-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Novel vitamin K(3) analogues were synthesized and evaluated for their anticancer activity. Compound 6, 9, 10, 11, 14, and (+/-)15 demonstrated a strong inhibitory activity against the tumor cells of A-549, Hep G2, MCF7, MES-SA, MES-SA/Dx5, MKN45, SW-480, and TW-039. Compound (+/-)15 displayed potent tumor cell cytotoxicity, and compound 14 selectively affected MCF7, even though it did not influence normal cells Detroit551 and WI-38. Compound (+/-)15 inhibited MES-SA and MES-SA/Dx5, and this specific result shows that compound (+/-)15 may become a good anticancer drug candidate.
Collapse
Affiliation(s)
- Chinpiao Chen
- Department of Chemistry, National Dong Hwa University, Shoufeng, Hualien, Taiwan, ROC.
| | | | | | | |
Collapse
|
18
|
Adachi T, Kar S, Wang M, Carr BI. Transient and sustained ERK phosphorylation and nuclear translocation in growth control. J Cell Physiol 2002; 192:151-9. [PMID: 12115721 DOI: 10.1002/jcp.10124] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Growth stimulation and inhibition are both associated with tyrosine phosphorylation. We examined the effects of epidermal growth factor (EGF), a growth stimulant, and compound 5 (Cpd 5), a protein-tyrosine phosphatase (PTPase) inhibitor, which inhibits the growth of the same Hep3B hepatoma cells. We found that both EGF and Cpd 5 induced tyrosine phosphorylation of EGF receptor (EGFR) and ERK. However, the phosphorylation caused by EGF was transient and that caused by Cpd 5 was prolonged. Furthermore, Cpd 5 action caused a strong nuclear phospho-ERK signal and induced phospho-Elk-1, a nuclear target of ERK activation, in contrast to the weak effects of EGF. An ERK kinase assay demonstrated that ERK activated by Cpd 5 could phosphorylate its physiological substrate, Elk-1. The MEK inhibitors PD098056 and U0126 abrogated both the induction by Cpd 5 of phospho-ERK, its nuclear translocation and phospho-Elk-1 and also antagonized its growth inhibitory effects. Furthermore, phospho-ERK phosphatase and phospho-Elk-1 activities were lost from nuclear extracts from Cpd 5 treated, but not EGF treated cells. In conclusion, the data show that Cpd 5 causes growth inhibition as a consequence of prolonged ERK and Elk-1 phosphorylation, likely a result of inhibition of multiple PTPases, including those acting on phospho-EGFR, on phospho-ERK, and on phospho-Elk-1, in contrast to the kinase driven transient activation resulting from EGF.
Collapse
Affiliation(s)
- Takahito Adachi
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | |
Collapse
|
19
|
Lusini L, Rossi R, Giustarini D, Simplicio PD. The pro-oxidant role of protein SH groups of hemoglobin in rat erythrocytes exposed to menadione. Chem Biol Interact 2002; 139:97-114. [PMID: 11803031 DOI: 10.1016/s0009-2797(01)00296-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Menadione is selectively toxic to erythrocytes. Although GSH is considered a primary target of menadione, intraerythrocyte thiolic alterations consequent to menadione exposure are only partially known. In this study alterations of GSH and protein thiols (PSH) and their relationship with methemoglobin formation were investigated in human and rat red blood cells (RBC) exposed to menadione. In both erythrocyte types, menadione caused a marked increase in methemoglobin associated with GSH depletion and increased oxygen consumption. However, in human RBC, GSH formed a conjugate with menadione, whereas, in rat RBC it was converted to GSSG, concomitantly with a loss of protein thiols (corresponding to menadione arylation), and an increase in glutathione-protein mixed disulfides (GS-SP). Such differences were related to the presence of highly reactive cysteines, which characterize rat hemoglobin (cys beta125). In spite of the greater thiol oxidation in rat than in human RBC, methemoglobin formation and the rate of oxygen consumption elicited by menadione in both species were rather similar. Moreover, in repeated experiments under N2 or CO-blocked heme, it was found that menadione conjugation (arylation) in both species was not dependent on the presence of oxygen or the status of heme. Therefore, we assumed that GSH (human RBC) and protein (rat RBC) arylation was equally responsible for increased oxygen consumption and Hb oxidation. Moreover, thiol oxidation of rat RBC was strictly related to methemoglobin formation.
Collapse
Affiliation(s)
- Lorenzo Lusini
- Department of Neuroscience, Pharmacology Unit, University of Siena, Via A. Moro 4, 53100 Siena, Italy
| | | | | | | |
Collapse
|
20
|
Kim SR, Lee JY, Lee MY, Chung SM, Bae ON, Chung JH. Association of quinone-induced platelet anti-aggregation with cytotoxicity. Toxicol Sci 2001; 62:176-82. [PMID: 11399805 DOI: 10.1093/toxsci/62.1.176] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Various anti-platelet drugs, including quinones, are being investigated as potential treatments for cardiovascular disease because of their ability to prevent excessive platelet aggregation. In the present investigation 3 naphthoquinones (2,3-dimethoxy-1,4-naphthoquinone [DMNQ], menadione, and 1,4-naphthoquinone [4-NQ]) were compared for their abilities to inhibit platelet aggregation, deplete glutathione (GSH) and protein thiols, and cause cytotoxicity. Platelet-rich plasma, isolated from Sprague-Dawley rats, was used for all experiments. The relative potency of the 3 quinones to inhibit platelet aggregation, deplete intracellular GSH and protein thiols, and cause cytotoxicity was 1,4-NQ > menadione >> DMNQ. Experiments using 2 thiol-modifying agents, dithiothreitol (DTT) and 1-chloro-2,4-dintrobenzene (CDNB), confirmed the key roles for GSH in quinone-induced platelet anti-aggregation and for protein thiols in quinone-induced cytotoxicity. Furthermore, the anti-aggregative effects of a group of 12 additional quinone derivatives were positively correlated with their ability to cause platelet cytotoxicity. Quinones that had a weak anti-aggregative effect did not induce cytotoxicity (measured as LDH leakage), whereas quinones that had a potent anti-aggregative effect resulted in significant LDH leakage (84-96%). In one instance, however, p-chloranil demonstrated a potent anti-aggregative effect, but did not induce significant LDH leakage. This can be explained by the inability of p-chloranil to deplete protein thiols, even though intracellular GSH levels decreased rapidly. These results suggest that quinones that deplete GSH in platelets demonstrate a marked anti-aggregative effect. If this anti-aggregative effect is subsequently followed by depletion of protein thiols, cytotoxicity results.
Collapse
Affiliation(s)
- S R Kim
- College of Pharmacy, Seoul National University, Shinrim-dong San 56-1, Seoul 151-742, Korea
| | | | | | | | | | | |
Collapse
|
21
|
Ossola JO, Kristoff G, Tomaro ML. Heme oxygenase induction by menadione bisulfite adduct-generated oxidative stress in rat liver. Comp Biochem Physiol C Toxicol Pharmacol 2000; 127:91-9. [PMID: 11081416 DOI: 10.1016/s0742-8413(00)00133-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The in vivo effect of menadione bisulfite adduct on both hepatic oxidative stress and heme oxygenase induction was studied. A marked increase in lipid peroxidation was observed 1 h after menadione bisulfite adduct administration. To evaluate liver antioxidant enzymatic defenses, superoxide dismutase, catalase and glutathione peroxidase activities were determined. Antioxidant enzymes significantly decreased 3 h after menadione bisulfite adduct injection. Heme oxygenase activity appeared 6 h after treatment, peaking 9 h after menadione bisulfite adduct administration. Such induction was preceded by a decrease in the intrahepatic GSH pool and an increase in hydrogen peroxide steady-state concentration, both effects taking place some hours before induction of heme oxygenase. Iron ferritin levels and ferritin content began to increase 6 h after heme oxygenase induction, and these increases were significantly higher 15 h after treatment and remained high for at least 24 h after menadione bisulfite adduct injection. Administration of bilirubin entirely prevented heme oxygenase induction as well as the decrease in hepatic GSH and the increase in lipid peroxidation when administered 2 h before menadione bisulfite adduct treatment. These results indicate that the induction of heme oxygenase by menadione bisulfite adduct may be a general response to oxidant stress, by increasing bilirubin and ferritin levels and could therefore provide a major cellular defense mechanism against oxidative damage.
Collapse
Affiliation(s)
- J O Ossola
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Argentina
| | | | | |
Collapse
|
22
|
Ip SP, Yiu HY, Ko KM. Schisandrin B protects against menadione-induced hepatotoxicity by enhancing DT-diaphorase activity. Mol Cell Biochem 2000; 208:151-5. [PMID: 10939639 DOI: 10.1023/a:1007029625406] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Pretreating mice with schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, at a daily dose of 1 mmol/kg for 3 days protected against menadione-induced hepatic oxidative damage in mice, as evidenced by decreases in plasma alanine aminotransferase activity (78%) and hepatic malondialdehyde level (70%), when compared with the menadione intoxicated control. In order to define the biochemical mechanism involved in the hepatoprotection afforded by Sch B pretreatment, we examined the activity of DT-diaphorase (DTD) in hepatocytes isolated from Sch B pretreated rats. Hepatocytes isolated from Sch B pretreated (a daily dose of 1 mmol/kg for 3 days) rats showed a significant increase (25%) in DTD activity. The increase in DTD activity was associated with the enhanced rate of menadione elimination in the hepatocyte culture. The ensemble of results suggests that the ability of Sch B pretreatment to enhance hepatocellular DTD activity may at least in part be attributed to the protection against menadione hepatotoxicity.
Collapse
Affiliation(s)
- S P Ip
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P.R. China
| | | | | |
Collapse
|
23
|
Nishikawa Y, Wang Z, Kerns J, Wilcox CS, Carr BI. Inhibition of hepatoma cell growth in vitro by arylating and non-arylating K vitamin analogs. Significance of protein tyrosine phosphatase inhibition. J Biol Chem 1999; 274:34803-10. [PMID: 10574951 DOI: 10.1074/jbc.274.49.34803] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We recently found that a thioether analog of K vitamin (Cpd 5) inhibited the activity of protein-tyrosine phosphatases (PTPases) and induced protein-tyrosine phosphorylation in a human hepatoma cell line (Hep3B). We have now examined the structural requirements for induction of protein-tyrosine phosphorylation and PTPase inhibition by several K vitamin analogs. Thioether analogs with sulfhydryl arylation capacity, especially those with a hydroxy (Cpd 5) or a methoxy group at the end of the side chain, induced protein-tyrosine phosphorylation, but non-arylating analogs, such as those with an all-carbon or O-ether side chain, did not. Among the receptor-tyrosine kinases, epidermal growth factor receptors were tyrosine-phosphorylated by treatment with thioether analogs, whereas insulin and hepatocyte growth factor receptors were not. An increase in tyrosine-phosphorylated ERK2 mitogen-activated protein kinase was also observed. The activity of purified T cell PTPase was inhibited only by the thioether analogs, but not by non-arylating analogs. Furthermore, the epidermal growth factor receptor dephosphorylation activity of Hep3B cell lysates was inhibited by Cpd 5 treatment. A similar induction of protein-tyrosine phosphorylation by Cpd 5 was seen in other human hepatoma cell lines together with growth inhibition. However, one cell line (HepG2), which was relatively resistant to growth inhibition by Cpd 5, did not increase its phosphorylation levels upon Cpd 5 treatment. These results suggest that cell growth inhibition by thioether analogs is closely associated with inhibition of PTPases by sulfhydryl arylation and with tyrosine phosphorylation of selected proteins.
Collapse
Affiliation(s)
- Y Nishikawa
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | |
Collapse
|
24
|
Abstract
Our early reports have indicated that vitamin K3 (VK3) exerts antitumour activity by inhibiting Cdk1 activity and overexpressing the c-myc gene to induce an apoptotic cell death. In the present study, we investigated the effect of VK3 on Cdc25 phosphatase, a Cdk1 activator and c-Myc-downstream protein. Increased protein level but decreased activity of Cdc25A phosphatase was found in cervical carcinoma SiHa cells treated with VK3 for 1 h and allowed to recover for 8, 24, 30 or 45 h. The binding of VK3 to Cdc25 phosphatase was proven by incubating [methyl-3H]-VK3 with the 27 kDa-catalytic domain of Cdc25A phosphatase at 35 degrees C for 2 h. We found that VK3 inhibited cyclin E expression at late G1 phase and cyclin A at G1/S transition of the aphidicolin-synchronised SiHa cells, but had no effect on Cdk2 and Cdk4. The inhibition of cyclins E and A expression was associated with cell cycle progression delay in the S phase. These results indicate that binding of VK3 to the catalytic domain of Cdc25 phosphatase results in the formation of inactive, hyperphosphorylated Cdk1 that subsequently induces cell cycle arrest, leading to cell death. These findings suggest a possible therapeutic strategy, with VK3 serving as a potential antagonist to tumours expressing high levels of proteins containing cysteine such as oncogenic Cdc25A phosphatase.
Collapse
Affiliation(s)
- F Y Wu
- Division of Cancer Research, Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan, R.O.C
| | | |
Collapse
|
25
|
Ham SW, Park J, Lee SJ, Kim W, Kang K, Choi KH. Naphthoquinone analogs as inactivators of cdc25 phosphatase. Bioorg Med Chem Lett 1998; 8:2507-10. [PMID: 9873570 DOI: 10.1016/s0960-894x(98)00411-9] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
cdc25A and cdc25B were significantly overexpressed in certain types of cancers, and they represent potential therapeutic targets for anticancer drug. In this study, naphthoquinone analogs as cdc25A phosphatase inactivators were investigated.
Collapse
Affiliation(s)
- S W Ham
- Department of Chemistry, Chung-Ang University, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
26
|
Ni R, Nishikawa Y, Carr BI. Cell growth inhibition by a novel vitamin K is associated with induction of protein tyrosine phosphorylation. J Biol Chem 1998; 273:9906-11. [PMID: 9545333 DOI: 10.1074/jbc.273.16.9906] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that a synthetic vitamin K analog, 2-(2-mercaptoethanol)-3-methyl-1,4-naphthoquinone or compound 5 (Cpd 5), potently inhibits cell growth and suggested that the analog exerts its effects mainly via sulfhydryl arylation rather than redox cycling. Since protein-tyrosine phosphatases (PTPases), which have pivotal roles in many cellular functions, have a critical cysteine in their active site, we have proposed PTPases as likely targets for Cpd 5. To test this hypothesis, we examined the effects of Cpd 5 on protein tyrosine phosphorylation of cellular proteins and on the activity of PTPases. We found that Cpd 5 rapidly induced protein tyrosine phosphorylation in a human hepatocellular carcinoma cell line (Hep3B) at growth inhibitory doses, and the effect was blocked by thiols but not by non-thiol antioxidants or tyrosine kinase inhibitors. Cpd 5 inhibited PTPase activity, which was also significantly antagonized by reduced glutathione. Furthermore, the well studied PTPase inhibitor orthovanadate also induced protein tyrosine phosphorylation and growth inhibition in Hep3B cells. These results suggest that inhibition of cellular PTPases by sulfhydryl arylation and subsequent perturbation of protein tyrosine phosphorylation may be involved in the mechanisms of Cpd 5-induced cell growth inhibition.
Collapse
Affiliation(s)
- R Ni
- Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, USA
| | | | | |
Collapse
|
27
|
Abstract
Menadione induced oxidative stress in cells. The acute and cumulative toxic effects of menadione were evaluated by intravenous injection of the drug in Wistar rats. For evaluation of acute toxicity, single bolus doses of 25, 50, 100 and 150 mg/kg menadione were used. For evaluation of cumulative toxicity, five doses of 100 and 150 mg/kg menadione were injected every other day. Histologic and ultrastructural examinations were made from tissues of kidney, heart, liver, lung, skeletal muscle of foreleg and smooth muscle of stomach. A dose-response relationship was observed in rats whether treated with single or five doses of menadione. Menadione at a dose of 25 mg/kg produced minimal granular degeneration in the tubular cells of the kidney. Menadione at a dose of 50 mg/kg produced minimal granular degeneration in the tubular cells of the kidney and mild pulmonary hemorrhage in the lung. Menadione at doses of 100 and 150 mg/kg produced lesions in the kidney, heart, liver and lung. The characteristic lesions in the kidney included tubular dilatation, formation of protein casts in the lumen of renal tubules, Ca2+ mineralization, vacuolization in proximal and distal tubules, granular degeneration in the cortex and necrosis. Apoptosis was very obvious in kidney from rats treated at 100 and 150 mg/kg menadione. Lesions found in the heart included inflammation, hemorrhage, vacuolization, edema and necrosis. Mitochondria were swollen. Hepatic changes included inflammation, degeneration, vacuolization and necrosis. The only lesion observed in lung was hemorrhage. At the same dose of menadione, structural damage was more severe in kidney than in other organs. The lesions produced by one dose of single injection of the drug were more severe than five doses of multiple injection of menadione in all observed tissues. We conclude that the acute toxicity of menadione is more severe than the cumulative toxicity of menadione.
Collapse
Affiliation(s)
- T J Chiou
- Department of Medicine, Veterans General Hospital-Taipei, National Yang-Ming University, Taiwan, ROC
| | | | | | | |
Collapse
|
28
|
Tian L, Shi MM, Forman HJ. Increased transcription of the regulatory subunit of gamma-glutamylcysteine synthetase in rat lung epithelial L2 cells exposed to oxidative stress or glutathione depletion. Arch Biochem Biophys 1997; 342:126-33. [PMID: 9185621 DOI: 10.1006/abbi.1997.9997] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
gamma-Glutamylcysteine synthetase (GCS) is the initial and rate-limiting enzyme in the glutathione (GSH) de novo synthesis pathway. GCS is composed of a heavy (73-kDa) catalytic subunit and a light (30-kDa) regulatory subunit, which maintains the Km for glutamate near physiologic concentrations. Previous studies have shown that the steady-state mRNA level and gene transcription for the catalytic subunit increased in response to the redox-cycling quinone 2,3-dimethoxy-1,4-naphthoquinone (DMNQ) in rat lung epithelial L2 cells (M. M. Shi, et al., 1994, J. Biol. Chem. 269,26512-26517). The ratio of the catalytic to regulatory subunit mRNAs varies among tissues, and the anticancer drug cisplatin appears to induce only the catalytic subunit, suggesting independent gene regulation of the two subunits. Nonetheless, the present study found that the steady-state mRNA level and the transcription rate of the GCS regulatory subunit also increased under DMNQ-induced oxidative stress. Changes in mRNA followed a pattern similar to that for the catalytic subunit. The mRNA levels of the two subunits of GCS also both increased above the baseline levels in cells treated with BSO, an inhibitor of GCS enzymatic activity. These data suggest that, under conditions of oxidative stress or glutathione depletion, the regulatory subunit is upregulated at the level of mRNA transcription. Along with the elevation of the catalytic subunit, this increase in GCS regulatory subunit transcription contributes to increases in GCS enzymatic activity and cellular GSH content.
Collapse
Affiliation(s)
- L Tian
- Department of Pathology, School of Medicine, University of Southern California, Los Angeles 90033, USA
| | | | | |
Collapse
|
29
|
Jeong JK, Dybing E, Søderlund E, Brunborg G, Holme JA, Lau SS, Monks TJ. DNA damage, gadd153 expression, and cytotoxicity in plateau-phase renal proximal tubular epithelial cells treated with a quinol thioether. Arch Biochem Biophys 1997; 341:300-8. [PMID: 9169019 DOI: 10.1006/abbi.1997.9969] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
2-Bromo-bis-(glutathion-S-yl)hydroquinone [2-Br-bis-(GSyl)HQ] causes DNA single-strand breaks (SSB), causes growth arrest, induces the expression of gadd153 (a gene inducible by growth arrest and DNA damage), and decreases histone H2B mRNA in log-phase renal proximal tubular epithelial cells (LLC-PK1). Renal epithelial cells in vivo normally exhibit a low mitotic index, therefore experiments in both plateau- and log-phase cells are necessary for a comprehensive understanding of the stress response to 2-Br-bis-(GSyl)HQ. In the present article we demonstrate that not all features of the stress response in log-phase cells are reproduced in plateau-phase cells. Thus, although 2-Br-bis-(GSyl)HQ causes concentration and time-dependent increases in DNA SSB, and increases the expression of gadd153, histone H2B mRNA levels are unaltered in plateau-phase cells. The relationship between reactive oxygen species, DNA damage, gene expression, and cytotoxicity was also investigated. Our findings suggest that (i) 2-Br-bis-(GSyl)HQ-mediated DNA damage in LLC-PK1 cells is mediated by the generation of H2O2; (ii) DNA damage, either directly or indirectly, contributes to cell death; and (iii) DNA damage, either directly or indirectly, provides the initial signal for gadd153 expression. In addition, DNA repair is rapid in LLC-PK1 cells, and the DNA-repair inhibitors 1-beta-D-arabinofuranosylcytosine and hydroxyurea have no effect on the amount of DNA SSB. Although the addition of 3-aminobenzamide following 2-Br-bis-(GSyl)HQ exposure has no effect on the removal of DNA SSB, it causes a slight but significant increase in gadd153 expression and cell viability, indicating that activation of poly(ADP-ribose)polymerase may exacerbate toxicity. Finally, aurintricarboxylic acid did not prevent DNA SSB or cytotoxicity in 2-Br-bis-(GSyl) HQ-treated LLC-PK1 cells, implying that activation of endonucleases does not play a role in these processes.
Collapse
Affiliation(s)
- J K Jeong
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin 78712, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Miller RT, Lau SS, Monks TJ. 2,5-Bis-(glutathion-S-yl)-alpha-methyldopamine, a putative metabolite of (+/-)-3,4-methylenedioxyamphetamine, decreases brain serotonin concentrations. Eur J Pharmacol 1997; 323:173-80. [PMID: 9128836 DOI: 10.1016/s0014-2999(97)00044-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
3,4-(+/-)-Methylenedioxyamphetamine (MDA) and 3,4-(+/-)-methylenedioxymethamphetamine (MDMA) are serotonergic neurotoxicants. However, when injected directly into brain, MDA and MDMA are not neurotoxic, suggesting that systemic metabolism plays an important role in the development of neurotoxicity. The nature of the metabolite(s) responsible for MDA- and MDMA-mediated neurotoxicity is unclear. alpha-Methyldopamine is a major metabolite of MDA and is readily oxidized to the o-quinone, followed by conjugation with glutathione (GSH). Because the conjugation of quinones with GSH frequently results in preservation or enhancement of biological (re)activity, we have been investigating the role of quinone-thioethers in the acute and long-term neurochemical changes observed after administration of MDA. Although intracerebroventricular (i.c.v.) administration of 5-(glutathion-S-yl)-alpha-methyldopamine (4 x 720 nmol) and 5-(N-acetylcystein-S-yl)-alpha-methyldopamine (1 x 7 nmol) to Sprague-Dawley rats produced overt behavioral changes similar to those seen following administration of MDA (93 mumol/kg, s.c.) they did not produce long-term decreases in brain serotonin (5-hydroxytryptamine, 5-HT) concentrations. In contrast, 2,5-bis-(glutathion-S-yl)-alpha-methyldopamine (4 x 475 nmol) decreased 5-HT levels by 24%, 65% and 30% in the striatum, hippocampus and cortex, respectively, 7 days after injection. The relative sensitivity of the striatum, hippocampus and cortex to 2,5-bis-(glutathion-S-yl)-alpha-methyldopamine was the same as that observed for MDA; the absolute effects were greater with MDA. The effects of 2,5-bis-(glutathion-S-yl)-alpha-methyldopamine were also selective for serotonergic nerve terminal fields, in that 5-HT levels were unaffected in regions of the cell bodies. Because 2,5-bis-(glutathion-S-yl)-alpha-methyldopamine caused long-term depletion in 5-HT without adversely affecting the dopaminergic system, it also mimics the selectivity of MDA/MDMA. The data imply a possible role for quinone-thioethers in the neurobehavioral and neurotoxicological effects of MDA/MDMA.
Collapse
Affiliation(s)
- R T Miller
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin 78712, USA
| | | | | |
Collapse
|
31
|
Chung JH, Seo DC, Chung SH, Lee JY, Seung SA. Metabolism and cytotoxicity of menadione and its metabolite in rat platelets. Toxicol Appl Pharmacol 1997; 142:378-85. [PMID: 9070361 DOI: 10.1006/taap.1996.8048] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous studies suggest that menadione is cytotoxic to rat platelets by oxidative stress. In order to elucidate the mechanism of this toxicity, metabolism of menadione and the cytotoxicity of a metabolite, menadione-glutathione conjugate (MEN-SG), were investigated in platelet rich plasma and washed platelet (WP) systems. When menadione was incubated in platelets, the primary metabolite was MEN-SG, which was excreted into the incubation medium. Incubation of subcellular fractions of platelets with synthetic MEN-SG led to increases in oxygen consumption that were similar to the parent compound, menadione. However, unlike menadione, exposure of MEN-SG to intact platelets in WP system neither resulted in increased oxygen consumption nor induced cell lysis as measured by lactate dehydrogenase leakage. In contrast to menadione, levels of MEN-SG in the incubation medium were unaffected by the presence of platelets, suggesting that MEN-SG was not consumed (or taken up) by platelets. These results indicate that even though MEN-SG was able to induce oxidative stress within platelets as potently as menadione itself, the MEN-SG formation from menadione in platelets appeared not to contribute to menadione's cytotoxicity. This lack of MEN-SG toxicity was likely due to its rapid excretion outside the cells.
Collapse
Affiliation(s)
- J H Chung
- College of Pharmacy, Seoul National University, Korea
| | | | | | | | | |
Collapse
|
32
|
Haenen HE, Spenkelink A, Teunissen C, Temmink JH, Koeman JH, van Bladeren PJ. Transport and metabolism of glutathione conjugates of menadione and ethacrynic acid in confluent monolayers of rat renal proximal tubular cells. Toxicology 1996; 112:117-30. [PMID: 8814341 DOI: 10.1016/0300-483x(96)82323-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Confluent monolayers of primary rat renal proximal tubular (RPT) cells were used to compare transepithelial transport and concomitant metabolism of two different glutathione (GSH) S-conjugates. For the GSH-conjugated quinone compound, [35S]GSH-conjugated menadione (MGNQ), no specific transepithelial transport was observed. Most likely, [35S]MGNQ passed the monolayer via paracellular leakage as the result of a reduction in monolayer integrity due to toxicity via extensive redox cycling of the quinone under the culture conditions. RPT cell monolayers metabolise MGNQ into a cysteinylglycine conjugate, which after intramolecular cyclization yields 2H-(3-glycinyl)-9-hydroxy-10-methyl-1,4-naphthothiazine. Acivicin, an inhibitor of gamma-glutamyltranspeptidase, inhibited the formation of this 1,4-napthothiazine adduct. The second product formed is 1,4-napthothiazine formed by loss of glycine via the action of dipeptidases. Similarly, no basolateral (B) to apical (A) transport of a GSH-conjugated alpha, beta unsaturated ketone, [14C]ethacrynic acid (EASG), occurred. However, net transport of [14C] radioactivity could be observed from A=>B direction. After 8 h, 23% of total [14C] radioactivity was transported from the apical to the basolateral chamber. In both the apical and basolateral chambers, free, unconjugated ethacrynic acid (EA) was observed. gamma GT-mediated metabolism of EASG to the much more unstable cysteinylglycine conjugate leads to relatively large amounts of free EA. Thus, the GSH conjugate is not transported but rather the cysteine adduct and/or free, unconjugated EA. In agreement with this, acivicin reduced A=>B transport of EASG and inhibited the formation of free EA. In conclusion, the confluent monolayers of RPT cells do not or no longer possess active basolateral transport systems for GSH conjugates. However, they are still quite useful for studying biotransformation reactions of thioether conjugates.
Collapse
Affiliation(s)
- H E Haenen
- Department of Toxicology, Agricultural University, Wageningen, Netherlands
| | | | | | | | | | | |
Collapse
|
33
|
Monks TJ, Rivera MI, Mertens JJ, Peters MM, Lau SS. The kidney as a target for biological reactive metabolites: linking metabolism to toxicity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 1996; 387:203-12. [PMID: 8794214 DOI: 10.1007/978-1-4757-9480-9_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- T J Monks
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, USA
| | | | | | | | | |
Collapse
|
34
|
Nishikawa Y, Carr BI, Wang M, Kar S, Finn F, Dowd P, Zheng ZB, Kerns J, Naganathan S. Growth inhibition of hepatoma cells induced by vitamin K and its analogs. J Biol Chem 1995; 270:28304-10. [PMID: 7499329 DOI: 10.1074/jbc.270.47.28304] [Citation(s) in RCA: 94] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Congeners of vitamin K are known to inhibit cell growth, although the precise mechanisms of growth inhibition are not well understood. To investigate the mechanisms involved, we synthesized several vitamin K analogs and examined their growth inhibitory activities for a human hepatoma cell line (Hep3B). The analogs included 2-methyl-1,4-naphthoquinone and trimethyl-benzoquinone, with and without aliphatic side chains at position 3. The side chains were all-carbon, thioethers, or O-ethers. Growth inhibition was potent in the compounds with short chains. The presence of a sulfur (thioether) or oxygen atom (O-ether) at the site of attachment of the side chain to the ring potentiated the activity. Apoptotic cell death was induced by the potent growth inhibitory compounds at low concentrations (20-60 microM), whereas necrotic cell death followed treatment with the same compounds at high concentrations. Expression of c-myc, which is thought to be associated with apoptosis, was increased by most of the compounds tested. Both reduced glutathione and cysteine almost completely abrogated the growth inhibitory effects of the thioether analogs as well as of vitamin K3. The effect of glutathione was less prominent for the all-carbon and O-ether analogs, and cysteine had no effect on these analogs. Catalase and deferoxamine mesylate had no significant effect on the thioether analogs, although they showed partial antagonistic effects on the growth inhibition of vitamin K3 and the all-carbon and O-ether analogs. Other non-thiol antioxidants tested had no effect on any of the analogs. Our results indicated that vitamin K-related quinoid compounds cause growth inhibition and both apoptotic and necrotic cell death and that the effects may be mediated by interaction at position 3 of their quinoid nuclei with cellular thiols.
Collapse
Affiliation(s)
- Y Nishikawa
- Pittsburgh Transplantation Institute, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Morello A, Pavani M, Garbarino JA, Chamy MC, Frey C, Mancilla J, Guerrero A, Repetto Y, Ferreira J. Effects and mode of action of 1,4-naphthoquinones isolated from Calceolaria sessilis on tumoral cells and Trypanosoma parasites. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1995; 112:119-28. [PMID: 8788584 DOI: 10.1016/0742-8413(95)02003-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The naphthoquinones 2-hydroxy-3-(1,1-dimethylallyl)-1,4-naphthoquinone (CS-1), (-)-2,3,3-trimethyl-2-3-dihydronaphtho[2,3-b]furan-4,9-quinone (CS-3), and 2-acetoxy-3-(1,1-dimethylallyl)-1,4-naphthoquinone (CS-5) isolated from Calceolaria sessilis were tested against Trypanosoma cruzi epimastigotes, the TA3 tumor cell line and the methotrexate-resistant subline TA3-MTX-R. Naphthoquinone CS-3 was the most active; the 50% culture growth inhibition (I50) on T. cruzi (Tulahuén and LQ strain and DM28c clone) was at concentrations ranging from 2.1 to 5.2 mumolar. Also CS-3 inhibited TA3 and TA3-MTX-R culture growth with an I50 of 2.1 and 3.8 mumolar, respectively. Naphthoquinone CS-3 inhibited the respiration of the tumor cells by interfering with the electron transport at some point between NADH and ubiquinone. The respiration of T. cruzi was not inhibited by naphthoquinone CS-3. Naphthoquinone CS-3 produced a temporary increase of oxygen consumption in T. cruzi and tumor cells, suggesting the generation and participation of free radicals.
Collapse
Affiliation(s)
- A Morello
- Department of Biochemistry, University of Chile Santiago
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Affiliation(s)
- E Cadenas
- Department of Molecular Pharmacology and Toxicology, School of Pharmacy, University of Southern California, Los Angeles 90033
| |
Collapse
|
37
|
Abstract
A variety of cytotoxic, mutagenic, and carcinogenic conjugates of GSH require processing by enzymes of the mercapturic acid pathway to produce toxicity. However, metabolism of quinone-thioethers by gamma-GT can result in either activation or detoxication. For example, inhibition of gamma-GT completely protects against the nephrotoxicity caused by 2-bromo-bis-(glutathion-S-yl)hydroquinone and 2,3,5-tris-(glutathion-S-ly)hydroquinone, whereas the same protocol potentiates the nephrotoxicity of 2,5-dichloro-3-(glutathion-S-yl)hydroquinone and 2,5,6-trichloro-3-(glutathion-S-yl)hydroquinone. Which of these two scenarios occur as a consequence of metabolism by gamma-GT appears to be determined by the relative rate at which the product is transported into cells and/or interacts with cellular constituents, and the rate which the product undergoes intramolecular detoxication (cyclization) to a 1,4-benzothiazine. The same reaction may also explain why the mercapturic acid metabolite of menadione is nephrotoxic following systemic administration, whereas the GSH conjugate is without activity. Species differences exist in susceptibility to both 2-bromo-bis-(glutathion-S-ly)hydroquinone and 2,3,5-tris(glutathion-S-ly)hydroquinone induced nephrotoxicity. In this case, however, susceptibility does not correlate with renal gamma-GT activity, but rather to differences in the rate at which the corresponding cysteine and N-acetylcysteine conjugates undergo N-acetylation/N-deacetylation cycling. Thus the guinea pig--which is the only other rodent species (in addition to the rat), that is susceptible to 2-bromo-bis-(glutathion-S-ly)hydroquinone and 2,3,5-tris-(glutathion-S-ly)hydroquinone mediated nephrotoxicity--expresses the lowest activity of renal gamma-GT but exhibits the highest N-deacetylation:N-acetylation ratio. Differences in kinetics of these two reactions therefore contribute to species susceptibility. The toxicity of quinol/quinone thioethers is dependent upon a number of physiological, biochemical, and electrochemical factors. The rates at which quinol-thioethers undergo oxidation, with the concomitant generation of reactive oxygen species (IV, Fig. 1), macromolecular arylation (V, Fig. 1), intramolecular cyclization (VI, Fig. 1), and acetylation-deacetylation cycling (III, Fig. 1) is dependent upon the substrate in question. All these factors will contribute to the cell, tissue, and species susceptibility of this interesting class of GSH conjugates.
Collapse
Affiliation(s)
- T J Monks
- Division of Pharmacology and Toxicology College of Pharmacy University of Texas at Austin 78712, USA
| |
Collapse
|
38
|
Kawana M, Kawana C, Amesara R, Juhn SK, Giebink GS. Neutrophil oxygen metabolite inhibition of cultured chinchilla middle ear epithelial cell growth. Ann Otol Rhinol Laryngol 1994; 103:812-6. [PMID: 7944174 DOI: 10.1177/000348949410301012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Middle ear inflammation in acute bacterial otitis media is characterized by accumulation of neutrophils in middle ear effusion. Since neutrophils release products that may injure surrounding tissues, we studied the effect of neutrophil metabolic products on middle ear epithelial cells (MEECs) in vitro. Chinchilla MEECs were incubated with phorbol myristate acetate (PMA)-activated human neutrophils or with hydrogen peroxide (H2O2). Cell growth, which was measured by 3H-thymidine incorporation, was inhibited by activated neutrophils and by H2O2. Unstimulated neutrophils, PMA alone, and catalase alone did not affect the viability of MEECs. Catalase, an enzyme that reduces H2O2, partially blocked the inhibitory effect of activated neutrophils and completely blocked the inhibitory effect of H2O2. Inhibition of MEEC metabolism by neutrophil-reactive oxygen species may contribute to epithelial injury, which may prolong the middle ear inflammatory response and lead to chronic tissue damage.
Collapse
Affiliation(s)
- M Kawana
- Otitis Media Research Center, University of Minnesota School of Medicine, Minneapolis
| | | | | | | | | |
Collapse
|
39
|
Haenen H, Rogmans P, Temmink J, van Bladeren P. Differential detoxification of two thioether conjugates of menadione in confluent monolayers of rat renal proximal tubular cells. Toxicol In Vitro 1994; 8:207-14. [DOI: 10.1016/0887-2333(94)90184-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/1992] [Revised: 06/14/1993] [Indexed: 11/28/2022]
|
40
|
Monks TJ, Lau SS. Glutathione conjugation as a mechanism for the transport of reactive metabolites. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 1994; 27:183-210. [PMID: 7915133 DOI: 10.1016/s1054-3589(08)61033-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
From this and other chapters in this volume, it should be clear that GSH conjugation no longer represents a mechanism for the detoxication of xenobiotics or their metabolites. Although the majority of conjugations with GSH do facilitate the efficient excretion of xenobiotics from the body, many examples now exist where this process results in enhanced biological reactivity (Monks et al., 1990a; Monks and Lau, 1992, 1994). The number of examples in which GSH conjugation plays an important role in the generation of biologically reactive intermediates is expanding rapidly and GSH-dependent toxicity is manifested in many diverse ways. As emphasized in this chapter, GSH can act as a transport form for reactive metabolites, permitting the delivery of such metabolites to target tissues distal to the site of the initial conjugation. This type of GSH conjugate may be important in the mutagenic, carcinogenic, nephrotoxic, embryotoxic, cataractogenic, methemoglobinemic, and neurotoxic properties of a variety of redox active compounds (Monks and Lau, 1992).
Collapse
Affiliation(s)
- T J Monks
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin 78712
| | | |
Collapse
|
41
|
Abstract
Cytotoxicity associated with exposure to quinones has generally been attributed to either redox cycling, and the subsequent development of "oxidative stress," and/or to their interaction with cellular nucleophiles, such as protein and non-protein sulfhydryls. Glutathione (GSH) is the major non-protein sulfhydryl present in cells, and conjugation of potentially toxic electrophiles with GSH is usually associated with detoxication and excretion. However, this review discusses the biological (re)activity of quinone-thioethers. For example, quinone-thioethers are (1) capable of redox cycling (2) substrates for, and inhibitors of, a variety of enzymes (3) methemoglobinemic (4) potent nephrotoxicants (5) DNA reactive and (6) may contribute to quinone-mediated carcinogenicity and neurotoxicity. The ubiquitous nature of quinones, and the high intracellular concentrations of GSH, ensures that cells and tissues will be exposed to quinone-thioethers. The toxicological importance of quinone-thioethers in quinone-mediated toxicities therefore deserves further attention.
Collapse
Affiliation(s)
- T J Monks
- Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas, Austin 78712
| | | |
Collapse
|
42
|
Affiliation(s)
- T J Monks
- Division of Pharmacology & Toxicology, College of Pharmacy, University of Texas, Austin 78712
| | | | | | | | | |
Collapse
|
43
|
Mertens JJ, Temmink JH, van Bladeren PJ, Jones TW, Lo HH, Lau SS, Monks TJ. Inhibition of gamma-glutamyl transpeptidase potentiates the nephrotoxicity of glutathione-conjugated chlorohydroquinones. Toxicol Appl Pharmacol 1991; 110:45-60. [PMID: 1678558 DOI: 10.1016/0041-008x(91)90288-p] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Administration of either 2,5-dichloro-3-(glutathion-S-yl)-1, 4-benzoquinone (DC-[GSyl]BQ) or 2,5,6-trichloro-3-(glutathion-S-yl)-1,4-benzoquinone (TC-[GSyl]BQ) to male Sprague-Dawley rats caused dose-dependent (50-200 mumol/kg; iv) renal proximal tubular necrosis, as evidenced by elevations in blood urea nitrogen (BUN), and in the urinary excretion of lactate dehydrogenase (LDH), gamma-glutamyl transpeptidase (gamma-GT) and glucose. Renal proximal tubular necrosis was also confirmed by histological examination of kidney slices prepared from DC-(GSyl)BQ- and TC-(GSyl)BQ-treated animals. Administration of the corresponding hydroquinone conjugates (DC-[GSyl]HQ and TC-[GSyl]HQ), prepared by reducing the quinones with a threefold molar excess of ascorbic acid, resulted in a substantial increase in nephrotoxicity. Moreover, in contrast to other glutathione (GSH)-conjugated hydroquinones, the nephrotoxicity of both DC-(GSyl)HQ and TC-(GSyl)HQ was potentiated when rats were pretreated with AT-125, an irreversible inhibitor of gamma-GT. Neither the quinone-GSH nor the hydroquinone-GSH conjugates caused any effect on liver histology or serum glutamate-pyruvate transaminase levels. The results suggest that coadministration of ascorbic acid with DC-(GSyl)BQ or TC-(GSyl)BQ decreases their interactions with extrarenal nucleophiles, including plasma proteins, and thus increases the concentration of the conjugates delivered to the kidney, and hence toxicity. Furthermore the ability of AT-125 to potentiate the nephrotoxicity of DC-(GSyl)HQ and TC-(GSyl)HQ suggests that metabolism of these conjugates by gamma-GT constitutes a detoxication reaction.
Collapse
Affiliation(s)
- J J Mertens
- Department of Toxicology, Agricultural University Wageningen, The Netherlands
| | | | | | | | | | | | | |
Collapse
|