1
|
Woyda-Ploszczyca AM. Direct and indirect targets of carboxyatractyloside, including overlooked toxicity toward nucleoside diphosphate kinase (NDPK) and mitochondrial H + leak. PHARMACEUTICAL BIOLOGY 2023; 61:372-390. [PMID: 36799406 PMCID: PMC9946330 DOI: 10.1080/13880209.2023.2168704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 12/30/2022] [Accepted: 01/10/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT The toxicity of atractyloside/carboxyatractyloside is generally well recognized and commonly ascribed to the inhibition of mitochondrial ADP/ATP carriers, which are pivotal for oxidative phosphorylation. However, these glycosides may 'paralyze' additional target proteins. OBJECTIVE This review presents many facts about atractyloside/carboxyatractyloside and their plant producers, such as Xanthium spp. (Asteraceae), named cockleburs. METHODS Published studies and other information were obtained from databases, such as 'CABI - Invasive Species Compendium', 'PubMed', and 'The World Checklist of Vascular Plants', from 1957 to December 2022. The following major keywords were used: 'carboxyatractyloside', 'cockleburs', 'hepatotoxicity', 'mitochondria', 'nephrotoxicity', and 'Xanthium'. RESULTS In the third decade of the twenty first century, public awareness of the severe toxicity of cockleburs is still limited. Such toxicity is often only perceived by specialists in Europe and other continents. Interestingly, cocklebur is among the most widely distributed invasive plants worldwide, and the recognition of new European stands of Xanthium spp. is provided here. The findings arising from field and laboratory research conducted by the author revealed that (i) some livestock populations may instinctively avoid eating cocklebur while grazing, (ii) carboxyatractyloside inhibits ADP/GDP metabolism, and (iii) the direct/indirect target proteins of carboxyatractyloside are ambiguous. CONCLUSIONS Many aspects of the Xanthium genus still require substantial investigation/revision in the future, such as the unification of the Latin nomenclature of currently distinguished species, bur morphology status, true fruit (achene) description and biogeography of cockleburs, and a detailed description of the physiological roles of atractyloside/carboxyatractyloside and the toxicity of these glycosides, mainly toward mammals. Therefore, a more careful interpretation of atractyloside/carboxyatractyloside data, including laboratory tests using Xanthium-derived extracts and purified toxins, is needed.
Collapse
|
2
|
Chinopoulos C. From Glucose to Lactate and Transiting Intermediates Through Mitochondria, Bypassing Pyruvate Kinase: Considerations for Cells Exhibiting Dimeric PKM2 or Otherwise Inhibited Kinase Activity. Front Physiol 2020; 11:543564. [PMID: 33335484 PMCID: PMC7736077 DOI: 10.3389/fphys.2020.543564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 11/02/2020] [Indexed: 12/14/2022] Open
Abstract
A metabolic hallmark of many cancers is the increase in glucose consumption coupled to excessive lactate production. Mindful that L-lactate originates only from pyruvate, the question arises as to how can this be sustained in those tissues where pyruvate kinase activity is reduced due to dimerization of PKM2 isoform or inhibited by oxidative/nitrosative stress, posttranslational modifications or mutations, all widely reported findings in the very same cells. Hereby 17 pathways connecting glucose to lactate bypassing pyruvate kinase are reviewed, some of which transit through the mitochondrial matrix. An additional 69 converging pathways leading to pyruvate and lactate, but not commencing from glucose, are also examined. The minor production of pyruvate and lactate by glutaminolysis is scrutinized separately. The present review aims to highlight the ways through which L-lactate can still be produced from pyruvate using carbon atoms originating from glucose or other substrates in cells with kinetically impaired pyruvate kinase and underscore the importance of mitochondria in cancer metabolism irrespective of oxidative phosphorylation.
Collapse
|
3
|
Yang J, Khan MAK, Zhang H, Zhang Y, Certik M, Garre V, Song Y. Mitochondrial Citrate Transport System in the Fungus Mucor circinelloides: Identification, Phylogenetic Analysis, and Expression Profiling During Growth and Lipid Accumulation. Curr Microbiol 2019; 77:220-231. [PMID: 31802201 DOI: 10.1007/s00284-019-01822-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 11/20/2019] [Indexed: 12/21/2022]
Abstract
The mitochondrial citrate transport system, composed of citrate and malate transporters (MTs), can regulate the citrate efflux from mitochondria to cytosol, and then citrate is cleaved into OAA and acetyl-CoA which can be used for fatty acid (FA) biosynthesis. However, in the fungus Mucor circinelloides the molecular mechanism of citrate efflux from the mitochondria by this system and its role in FA synthesis is unclear. In the present study, we have analyzed the genome of high lipid-producing strain WJ11 and the low lipid-producing strain CBS 277.49 to find the potential genes involving in this system. Five potential genes are present in the genome of WJ11. These genes encode one citrate transport protein (CT), one tricarboxylate carrier (TCT), one MT, and two 2-oxoglutarate:malate antiporters (SoDIT-a and SoDIT-b). However, the genome of CBS 277.49 contains the same set of genes, except for the presence of just one SoDIT. The proteins from WJ11 had similar properties as their counterparts in CBS 277.49. Moreover, phylogenetic analyses revealed the evolutionary relationship of these proteins and illuminated their typical motifs related to potential functions. Additionally, the expression of these genes was analyzed to predict the possible functions in lipid metabolism in M. circinelloides. This is the first study to report the in silico analysis of structures and functions of the mitochondrial citrate transport system in M. circinelloides. This work showed a new strategy for research for the selection of candidate genes for further detailed functional investigation of the mitochondrial citrate transport system in lipid accumulation.
Collapse
Affiliation(s)
- Junhuan Yang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China
| | - Md Ahsanul Kabir Khan
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China
| | - Huaiyuan Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China
| | - Yao Zhang
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China
| | - Milan Certik
- Institute of Biotechnology, Faculty of Chemical and Food Technology, Slovak University of Technology, Radlinskeho 9, 812 37, Bratislava, Slovakia
| | - Victoriano Garre
- Departmento de Genética Y Microbiología (Unidad Asociada Al Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, 30100, Murcia, Spain.
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255000, Shandong, People's Republic of China.
| |
Collapse
|
4
|
Yang J, Li S, Kabir Khan MA, Garre V, Vongsangnak W, Song Y. Increased Lipid Accumulation in Mucor circinelloides by Overexpression of Mitochondrial Citrate Transporter Genes. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.8b05564] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Junhuan Yang
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Shandong zibo 255049, P. R. China
| | - Shaoqi Li
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Shandong zibo 255049, P. R. China
| | - Md. Ahsanul Kabir Khan
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Shandong zibo 255049, P. R. China
| | - Victoriano Garre
- Departmento de Genética y Microbiología (Unidad Asociada al Instituto de Química Física Rocasolano, Consejo Superior de Investigaciones Científicas), Facultad de Biología, Universidad de Murcia, Murcia 30100, Spain
| | - Wanwipa Vongsangnak
- Omics Center for Agriculture, Bioresources, Food and Health, Faculty of Science, Kasetsart University (OmiKU), Bangkok 10900, Thailand
- Department of Zoology, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Yuanda Song
- Colin Ratledge Center for Microbial Lipids, School of Agriculture Engineering and Food Sciences, Shandong University of Technology, Shandong zibo 255049, P. R. China
| |
Collapse
|
5
|
Stark R, Kibbey RG. The mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) and glucose homeostasis: has it been overlooked? BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1840:1313-30. [PMID: 24177027 PMCID: PMC3943549 DOI: 10.1016/j.bbagen.2013.10.033] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/13/2013] [Accepted: 10/18/2013] [Indexed: 01/03/2023]
Abstract
BACKGROUND Plasma glucose levels are tightly regulated within a narrow physiologic range. Insulin-mediated glucose uptake by tissues must be balanced by the appearance of glucose from nutritional sources, glycogen stores, or gluconeogenesis. In this regard, a common pathway regulating both glucose clearance and appearance has not been described. The metabolism of glucose to produce ATP is generally considered to be the primary stimulus for insulin release from beta-cells. Similarly, gluconeogenesis from phosphoenolpyruvate (PEP) is believed to be the primarily pathway via the cytosolic isoform of phosphoenolpyruvate carboxykinase (PEPCK-C). These models cannot adequately explain the regulation of insulin secretion or gluconeogenesis. SCOPE OF REVIEW A metabolic sensing pathway involving mitochondrial GTP (mtGTP) and PEP synthesis by the mitochondrial isoform of PEPCK (PEPCK-M) is associated with glucose-stimulated insulin secretion from pancreatic beta-cells. Here we examine whether there is evidence for a similar mtGTP-dependent pathway involved in gluconeogenesis. In both islets and the liver, mtGTP is produced at the substrate level by the enzyme succinyl CoA synthetase (SCS-GTP) with a rate proportional to the TCA cycle. In the beta-cell PEPCK-M then hydrolyzes mtGTP in the production of PEP that, unlike mtGTP, can escape the mitochondria to generate a signal for insulin release. Similarly, PEPCK-M and mtGTP might also provide a significant source of PEP in gluconeogenic tissues for the production of glucose. This review will focus on the possibility that PEPCK-M, as a sensor for TCA cycle flux, is a key mechanism to regulate both insulin secretion and gluconeogenesis suggesting conservation of this biochemical mechanism in regulating multiple aspects of glucose homeostasis. Moreover, we propose that this mechanism may be important for regulating insulin secretion and gluconeogenesis compared to canonical nutrient sensing pathways. MAJOR CONCLUSIONS PEPCK-M, initially believed to be absent in islets, carries a substantial metabolic flux in beta-cells. This flux is intimately involved with the coupling of glucose-stimulated insulin secretion. PEPCK-M activity may have been similarly underestimated in glucose producing tissues and could potentially be an unappreciated but important source of gluconeogenesis. GENERAL SIGNIFICANCE The generation of PEP via PEPCK-M may occur via a metabolic sensing pathway important for regulating both insulin secretion and gluconeogenesis. This article is part of a Special Issue entitled Frontiers of Mitochondrial Research.
Collapse
Affiliation(s)
- Romana Stark
- Department of Physiology, Monash University, Clayton, Victoria 3800, Australia.
| | - Richard G Kibbey
- Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut 06520-8020, USA.
| |
Collapse
|
6
|
Baily CN, Cason RW, Vadvalkar SS, Matsuzaki S, Humphries KM. Inhibition of mitochondrial respiration by phosphoenolpyruvate. Arch Biochem Biophys 2011; 514:68-74. [PMID: 21867675 DOI: 10.1016/j.abb.2011.08.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 08/02/2011] [Accepted: 08/09/2011] [Indexed: 10/17/2022]
Abstract
The cytosolic factors that influence mitochondrial oxidative phosphorylation rates are relatively unknown. In this report, we examine the effects of phosphoenolpyruvate (PEP), a glycolytic intermediate, on mitochondrial function. It is reported here that in rat heart mitochondria, PEP delays the onset of state 3 respiration in mitochondria supplied with either NADH-linked substrates or succinate. However, the maximal rate of state 3 respiration is only inhibited when oxidative phosphorylation is supported by NADH-linked substrates. The capacity of PEP to delay and/or inhibit state 3 respiration is dependent upon the presence or absence of ATP. Inhibition of state 3 is exacerbated in uncoupled mitochondria, with a 40% decrease in respiration seen with 0.1mM PEP. In contrast, ATP added exogenously or produced by oxidative phosphorylation completely prevents PEP-mediated inhibition. Mechanistically, the results support the conclusion that the main effects of PEP are to impede ADP uptake and inhibit NADH oxidation. By altering the NADH/NAD(+) status of mitochondria, it is demonstrated that PEP enhances succinate dehydrogenase activity and increase free radical production. The results of this study indicate PEP may be an important modulator of mitochondrial function under conditions of decreased ATP.
Collapse
Affiliation(s)
- C Nathan Baily
- Free Radical Biology and Aging Research Program, Oklahoma Medical Research Foundation, Oklahoma City, USA
| | | | | | | | | |
Collapse
|
7
|
Stark R, Pasquel F, Turcu A, Pongratz RL, Roden M, Cline GW, Shulman GI, Kibbey RG. Phosphoenolpyruvate cycling via mitochondrial phosphoenolpyruvate carboxykinase links anaplerosis and mitochondrial GTP with insulin secretion. J Biol Chem 2009; 284:26578-90. [PMID: 19635791 PMCID: PMC2785346 DOI: 10.1074/jbc.m109.011775] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 07/15/2009] [Indexed: 11/13/2022] Open
Abstract
Pancreatic beta-cells couple the oxidation of glucose to the secretion of insulin. Apart from the canonical K(ATP)-dependent glucose-stimulated insulin secretion (GSIS), there are important K(ATP)-independent mechanisms involving both anaplerosis and mitochondrial GTP (mtGTP). How mtGTP that is trapped within the mitochondrial matrix regulates the cytosolic calcium increases that drive GSIS remains a mystery. Here we have investigated whether the mitochondrial isoform of phosphoenolpyruvate carboxykinase (PEPCK-M) is the GTPase linking hydrolysis of mtGTP made by succinyl-CoA synthetase (SCS-GTP) to an anaplerotic pathway producing phosphoenolpyruvate (PEP). Although cytosolic PEPCK (PEPCK-C) is absent, PEPCK-M message and protein were detected in INS-1 832/13 cells, rat islets, and mouse islets. PEPCK enzymatic activity is half that of primary hepatocytes and is localized exclusively to the mitochondria. Novel (13)C-labeling strategies in INS-1 832/13 cells and islets measured substantial contribution of PEPCK-M to the synthesis of PEP. As high as 30% of PEP in INS-1 832/13 cells and 41% of PEP in rat islets came from PEPCK-M. The contribution of PEPCK-M to overall PEP synthesis more than tripled with glucose stimulation. Silencing the PEPCK-M gene completely inhibited GSIS underscoring its central role in mitochondrial metabolism-mediated insulin secretion. Given that mtGTP synthesized by SCS-GTP is an indicator of TCA flux that is crucial for GSIS, PEPCK-M is a strong candidate to link mtGTP synthesis with insulin release through anaplerotic PEP cycling.
Collapse
Affiliation(s)
| | | | - Adina Turcu
- From the Departments of Internal Medicine and
| | | | - Michael Roden
- the Institute for Clinical Diabetology, German Diabetes Center, 40225 Düsseldorf, Germany
| | | | - Gerald I. Shulman
- From the Departments of Internal Medicine and
- Cellular and Molecular Physiology and
- the Howard Hughes Medical Institute, Yale University School of Medicine, New Haven, Connecticut 06520 and
| | - Richard G. Kibbey
- From the Departments of Internal Medicine and
- Cellular and Molecular Physiology and
| |
Collapse
|
8
|
Zorov DB, Juhaszova M, Yaniv Y, Nuss HB, Wang S, Sollott SJ. Regulation and pharmacology of the mitochondrial permeability transition pore. Cardiovasc Res 2009; 83:213-25. [PMID: 19447775 PMCID: PMC2701724 DOI: 10.1093/cvr/cvp151] [Citation(s) in RCA: 187] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2009] [Revised: 05/04/2009] [Accepted: 05/10/2009] [Indexed: 12/18/2022] Open
Abstract
The 'mitochondrial permeability transition', characterized by a sudden induced change of the inner mitochondrial membrane permeability for water as well as for small substances (=1.5 kDa), has been known for three decades. Research interest in the entity responsible for this phenomenon, the 'mitochondrial permeability transition pore' (mPTP), has dramatically increased after demonstration that it plays a key role in the life and death decision in cells. Therefore, a better understanding of this phenomenon and its regulation by environmental stresses, kinase signalling, and pharmacological intervention is vital. The characterization of the molecular identity of the mPTP will allow identification of possible pharmacological targets and assist in drug design for its precise regulation. However, despite extensive research efforts, at this point the pore-forming core component(s) of the mPTP remain unidentified. Pivotal new genetic evidence has shown that components once believed to be core elements of the mPTP (namely mitochondrial adenine nucleotide translocator and cyclophilin D) are instead only mPTP regulators (or in the case of voltage-dependent anion channels, probably entirely dispensable). This review provides an update on the current state of knowledge regarding the regulation of the mPTP.
Collapse
Affiliation(s)
| | | | | | | | | | - Steven J. Sollott
- Laboratory of Cardiovascular Science, Gerontology Research Center, Box 13, Intramural Research Program, National Institute on Aging, NIH, 5600 Nathan Shock Drive, Baltimore, MD 21224-6825, USA
| |
Collapse
|
9
|
Klingenberg M. The ADP and ATP transport in mitochondria and its carrier. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2008; 1778:1978-2021. [PMID: 18510943 DOI: 10.1016/j.bbamem.2008.04.011] [Citation(s) in RCA: 461] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 04/24/2008] [Accepted: 04/24/2008] [Indexed: 10/22/2022]
Abstract
Different from some more specialised short reviews, here a general although not encyclopaedic survey of the function, metabolic role, structure and mechanism of the ADP/ATP transport in mitochondria is presented. The obvious need for an "old fashioned" review comes from the gateway role in metabolism of the ATP transfer to the cytosol from mitochondria. Amidst the labours, 40 or more years ago, of unravelling the role of mitochondrial compartments and of the two membranes, the sequence of steps of how ATP arrives in the cytosol became a major issue. When the dust settled, a picture emerged where ATP is exported across the inner membrane in a 1:1 exchange against ADP and where the selection of ATP versus ADP is controlled by the high membrane potential at the inner membrane, thus uplifting the free energy of ATP in the cytosol over the mitochondrial matrix. Thus the disparate energy and redox states of the two major compartments are bridged by two membrane potential responsive carriers to enable their symbiosis in the eukaryotic cell. The advance to the molecular level by studying the binding of nucleotides and inhibitors was facilitated by the high level of carrier (AAC) binding sites in the mitochondrial membrane. A striking flexibility of nucleotide binding uncovered the reorientation of carrier sites between outer and inner face, assisted by the side specific high affinity inhibitors. The evidence of a single carrier site versus separate sites for substrate and inhibitors was expounded. In an ideal setting principles of transport catalysis were elucidated. The isolation of intact AAC as a first for any transporter enabled the reconstitution of transport for unravelling, independently of mitochondrial complications, the factors controlling the ADP/ATP exchange. Electrical currents measured with the reconstituted AAC demonstrated electrogenic translocation and charge shift of reorienting carrier sites. Aberrant or vital para-functions of AAC in basal uncoupling and in the mitochondrial pore transition were demonstrated in mitochondria and by patch clamp with reconstituted AAC. The first amino acid sequence of AAC and of any eukaryotic carrier furnished a 6-transmembrane helix folding model, and was the basis for mapping the structure by access studies with various probes, and for demonstrating the strong conformation changes demanded by the reorientation mechanism. Mutations served to elucidate the function of residues, including the particular sensitivity of ATP versus ADP transport to deletion of critical positive charge in AAC. After resisting for decades, at last the atomic crystal structure of the stabilised CAT-AAC complex emerged supporting the predicted principle fold of the AAC but showing unexpected features relevant to mechanism. Being a snapshot of an extreme abortive "c-state" the actual mechanism still remains a conjecture.
Collapse
|
10
|
Soboll S, Conrad A, Eistert A, Herick K, Krämer R. Uptake of creatine phosphate into heart mitochondria: a leak in the creatine shuttle. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1320:27-33. [PMID: 9186778 DOI: 10.1016/s0005-2728(97)00004-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
CrP uptake into isolated rat heart mitochondria was studied using silicone oil centrifugation. Further, the involvement of the mitochondrial adenine nucleotide translocase was examined by measuring CrP accumulation in mitochondria in the presence of substrates and inhibitors of the ATP/ADP-carrier and by investigating uptake kinetics in liposomes reconstituted with purified bovine heart adenine nucleotide translocase protein. CrP is accumulated in the matrix space of isolated rat heart mitochondria and mitoplasts. The uptake is inhibited by carboxyatractyloside, a specific inhibitor of the mitochondrial adenine nucleotide translocase, and by ADP, phosphoenolpyruvate, 3-phosphoglycerate and pyrophosphate, compounds which are able to bind to the carrier. It is not inhibited when the mitochondrial membrane potential is decreased. CrP is transported into reconstituted liposomes at a rate which is about 3 orders of magnitude lower than the rate for ATP uptake. The transport is sensitive to temperature change and to carboxyatractyloside. It is concluded that CrP is specifically taken up by heart mitochondria via the mitochondrial adenine nucleotide translocase. The transport in mitochondria in situ is facilitated by the close local and functional interaction of the mitochondrial creatine kinase and the adenine nucleotide translocase within contact sites between inner and outer mitochondrial membrane. A certain amount of CrP synthesized by the mitochondrial creatine kinase thus escapes its usage at cytosolic energy consuming processes.
Collapse
Affiliation(s)
- S Soboll
- Institut für Physiologische Chemie I, Heinrich-Heine-Universität Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
11
|
Schönfeld P, Jezek P, Belyaeva EA, Borecký J, Slyshenkov VS, Wieckowski MR, Wojtczak L. Photomodification of mitochondrial proteins by azido fatty acids and its effect on mitochondrial energetics. Further evidence for the role of the ADP/ATP carrier in fatty-acid-mediated uncoupling. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:387-393. [PMID: 8841403 DOI: 10.1111/j.1432-1033.1996.0387h.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Azido derivatives of long-chain fatty acids, 12-(4-azido-2-nitrophenylamino)dodecanoic acid (N3-NpNH-Lau) and 16-(4-azido-2-nitrophenylamino)hexadecanoic acid (N3-NpNH-Pam), were used to study the mechanism of the protonophoric function of long-chain fatty acids in mitochondrial membranes. N3-NpNH-Lau was found to increase resting-state respiration and decrease the membrane potential in a dose-dependent way in a manner similar to that of the natural fatty acid, myristate. Both effects of N3-NpNH-Lau as well as of the myristate were reversed or prevented by the inhibitor of the mitochondrial ADP/ATP carrier (AAC), carboxyatractyloside. This protective effect of carboxyatractyloside was well expressed in rat heart mitochondria and less so in mitochondria within digitonin-permeabilized Ehrlich ascites tumour cells. Photomodification of Ehrlich ascites tumour mitochondria by ultraviolet irradiation in the presence of N3-NpNH-Lau made them more resistant to the uncoupling effect of myristate, and photomodification of rat heart mitochondria resulted in a strong inhibition of AAC which could not be reversed by serum albumin. Photolabelling of rat heart mitochondria with tritiated N3-NpNH-Pam revealed around 10 labelled bands on SDS/polyacrylamide gel electrophoresis. Based on immunodetection with a specific antibody, one of them, corresponding to 30 kDa, was identified as AAC. Specific interaction of AAC with azido fatty acids was confirmed by a high radiolabelling of this band. The role of fatty acids in fine control of the efficiency of oxidative phosphorylation is discussed.
Collapse
Affiliation(s)
- P Schönfeld
- Institute of Biochemistry, Otto-von-Guericke University, Magdeburg, Germany
| | | | | | | | | | | | | |
Collapse
|
12
|
Soboll S, Conrad A, Hebisch S. Influence of mitochondrial creatine kinase on the mitochondrial/extramitochondrial distribution of high energy phosphates in muscle tissue: evidence for a leak in the creatine shuttle. Mol Cell Biochem 1994; 133-134:105-13. [PMID: 7808448 DOI: 10.1007/bf01267950] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The influence of mitochondrial creatine kinase on subcellular high energy systems has been investigated using isolated rat heart mitochondria, mitoplasts and intact heart and skeletal muscle tissue. In isolated mitochondria, the creatine kinase is functionally coupled to oxidative phosphorylation at active respiratory chain, so that it catalyses the formation of creatine phosphate against its thermodynamic equilibrium. Therefore the mass action ratio is shifted from the equilibrium ratio to lower values. At inhibited respiration, it is close to the equilibrium value, irrespective of the mechanism of the inhibition. The same results were obtained for mitoplasts under conditions where the mitochondrial creatine kinase is still associated with the inner membrane. In intact tissue increasing amounts of creatine phosphate are found in the mitochondrial compartment when respiration and/or muscle work are increased. It is suggested that at high rates of oxidative phosphorylation creatine phosphate is accumulated in the intermembrane space due to the high activity of mitochondrial creatine kinase and the restricted permeability of reactants into the extramitochondrial space. A certain amount of this creatine phosphate 'leaks' into the mitochondrial matrix. This leak is confirmed in isolated rat heart mitochondria where creatine phosphate is taken up when it is generated by the mitochondrial creatine kinase reaction. At inhibited creatine kinase, external creatine phosphate is not taken up. Likewise, mitoplasts only take up creatine phosphate when creatine kinase is still associated with the inner membrane. Both findings indicate that uptake is dependent on the functional active creatine kinase coupled to oxidative phosphorylation. Creatine phosphate uptake into mitochondria is inhibited with carboxyatractyloside.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Soboll
- Institut für Physiologische Chemie I, Universität Düsseldorf, Germany
| | | | | |
Collapse
|
13
|
Wojtczak L, Schönfeld P. Effect of fatty acids on energy coupling processes in mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1993; 1183:41-57. [PMID: 8399375 DOI: 10.1016/0005-2728(93)90004-y] [Citation(s) in RCA: 244] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Long-chain fatty acids are natural uncouplers of oxidative phosphorylation in mitochondria. The protonophoric mechanism of this action is due to transbilayer movement of undissociated fatty acid in one direction and the passage of its anion in the opposite direction. The transfer of the dissociated form of fatty acid can be, at least in some kinds of mitochondrion, facilitated by adenine nucleotide translocase. Apart from dissipating the electrochemical proton gradient, long-chain fatty acids decrease the activity of the respiratory chain by mechanism(s) not fully understood. In intact cells and tissues fatty acids operate mostly as excellent respiratory substrates, providing electrons to the respiratory chain. This function masks their potential uncoupling effect which becomes apparent only under special physiological or pathological conditions characterized by unusual fatty acid accumulation. Short- and medium-chain fatty acids do not have protonophoric properties. Nevertheless, they contribute to energy dissipation because of slow intramitochondrial hydrolysis of their activation products, acyl-AMP and acyl-CoA. Long-chain fatty acids increase permeability of mitochondrial membranes to alkali metal cations. This is due to their ionophoric mechanism of action. Regulatory function of fatty acids with respect to specific cation channels has been postulated for the plasma membrane of muscle cells, but not demonstrated in mitochondria. Under cold stress, cold acclimation and arousal from hibernation the uncoupling effect of fatty acids may contribute to increased thermogenesis, especially in the muscle tissue. In brown adipose tissue, the special thermogenic organ of mammals, long-chain fatty acids promote operation of the unique natural uncoupling protein, thermogenin. As anionic amphiphiles, long-chain fatty acids increase the negative surface charge of biomembranes, thus interfering in their enzymic and transporting functions.
Collapse
Affiliation(s)
- L Wojtczak
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | |
Collapse
|
14
|
Abstract
In summary, the vitamin pantothenic acid is an integral part of the acylation carriers, CoA and acyl carrier protein (ACP). The vitamin is readily available from diverse dietary sources, a fact which is underscored by the difficulty encountered in attempting to induce pantothenate deficiency. Although pantothenic acid deficiency has not been linked with any particular disease, deficiency of the vitamin results in generalized malaise clinically. In view of the fact that pantothenate is required for the synthesis of CoA, it is surprising that tissue CoA levels are not altered in pantothenate deficiency. This suggests that the cell is equipped to conserve its pantothenate content, possibly by a recycling mechanism for utilizing pantothenate obtained from degradation of pantothenate-containing molecules. Although the steps involved in the conversion of pantothenate to CoA have been characterized, much remains to be done to understand the regulation of CoA synthesis. In particular, in view of what is known about the in vitro regulation of pantothenate kinase, it is surprising that the enzyme is active in vivo, since factors that are known to inhibit the enzyme are present in excess of the concentrations known to inhibit the enzyme. Thus, other physiological regulatory factors (which are largely unknown) must counteract the effects of these inhibitors, since the pantothenate-to-CoA conversion is operative in vivo. Another step in the biosynthetic pathway that may be rate limiting is the conversion of 4'-phosphopantetheine (4'-PP) to dephospho-CoA, a step catalyzed by 4'-phosphopantetheine adenylyl-transferase. In mammalian systems, this step may occur in the mitochondria or in the cytosol. The teleological significance of these two pathways remains to be established, particularly since mitochondria are capable of transporting CoA from the cytosol. Altered homeostasis of CoA has been observed in diverse disease states including starvation, diabetes, alcoholism, Reye syndrome (RS), medium-chain acyl CoA dehydrogenase deficiency, vitamin B12 deficiency, and certain tumors. Hormones, such as glucocorticoids, insulin, and glucagon, as well as drugs, such as clofibrate, also affect tissue CoA levels. It is not known whether the abnormal metabolism observed in these conditions is the result of altered CoA metabolism or whether CoA levels change in response to hormonal or nonhormonal perturbations brought about in these conditions. In other words, a cause-effect relation remains to be elucidated. It is also not known whether the altered CoA metabolism (be it cause or result of abnormal metabolism) can be implicated in the manifestations of a disease. Besides CoA, pantothenic acid is also an integral part of the ACP molecule.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- A G Tahiliani
- Geisinger Clinic, Weis Center for Research, Danville, Pennsylvania 17822
| | | |
Collapse
|
15
|
Woldegiorgis G, Voss S, Shrago E, Werner-Washburne M, Keegstra K. Adenine nucleotide translocase-dependent anion transport in pea chloroplasts. BIOCHIMICA ET BIOPHYSICA ACTA 1985; 810:340-5. [PMID: 2998460 DOI: 10.1016/0005-2728(85)90219-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Pea chloroplasts were found to take up actively ATP and ADP and exchange the external nucleotides for internal ones. Using carrier-free [14C]ATP, the rate of nucleotide transport in chloroplasts prepared from 12-14-day-old plants was calculated to be 330 mumol ATP/g chlorophyll/min, and the transport was not affected by light or temperature between 4 and 22 degrees C. Adenine nucleotide uptake was inhibited only slightly by carboxyatractylate, whereas bongkrekic acid was nearly as effective an inhibitor of the translocator in pea chloroplasts as it was in mammalian mitochondria. There was no counter-transport of adenine nucleotides with substrates carried on the phosphate translocator including inorganic phosphate, 3-phosphoglycerate and dihydroxyacetone phosphate. However, internal or external phosphoenolpyruvate, normally considered to be transported on the phosphate carrier in chloroplasts, was able to exchange readily with adenine nucleotides. Furthermore, inorganic pyrophosphate which is not transported by the phosphate carrier initiated efflux of phosphoenolpyruvate as well as ATP from the chloroplast. These findings illustrate some interesting similarities as well as differences between the various plant phosphate and nucleotide transport systems which may relate to their role in photosynthesis.
Collapse
|
16
|
Woldegiorgis G, Voss S, Shrago E, Werner-Washburne M, Keegstra K. An adenine nucleotide-phosphoenolpyruvate counter-transport system in C3 and C4 plant chloroplasts. Biochem Biophys Res Commun 1983; 116:945-51. [PMID: 6316974 DOI: 10.1016/s0006-291x(83)80233-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
A rapid counter-exchange between ATP and phosphoenolpyruvate (PEP) has been demonstrated in pea and maize mesophyll chloroplasts. Chloroplasts preloaded with either [14C] ATP or [14C] PEP readily exchange the radioactive compound with the externally added anions, ATP or PEP, whereas, cold external Pi counter-transports only with internal [14C] PEP. Flooding the system with cold Pi, however, will significantly reduce the counter-transport of external cold PEP with internal [14C] ATP. This ATP-PEP exchange is also markedly decreased by lowering the incubation temperature. The results indicate that the ATP-PEP counter-exchange could represent a key transport system in plant chloroplasts and may be particularly important in the photosynthesis of C4 plants. Furthermore, they provide information required to elucidate the mechanism of the ATP-PEP counter-transport system.
Collapse
|
17
|
Yousufzai SY, Bradford MW, Shrago E, Ewart RB. Characterization of the adenine nucleotide translocase of pancreatic islet mitochondria. FEBS Lett 1982; 137:205-8. [PMID: 6277690 DOI: 10.1016/0014-5793(82)80350-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Bryła J, Dzik JM. Phosphoenolpyruvate efflux from kidney cortex mitochondria of rabbit. BIOCHIMICA ET BIOPHYSICA ACTA 1981; 638:250-6. [PMID: 7317387 DOI: 10.1016/0005-2728(81)90234-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
(1) The relationship between phosphoenolpyruvate formation and its accumulation in kidney cortex mitochondria of rabbit was studied in the presence of glutamate as substrate. (2) In mitochondria incubated in either State 4 or under uncoupled conditions, both 1,2,3-benzenetricarboxylate and atractyloside resulted in a marked elevation of the intramitochondrial phosphoenolpyruvate accompanied by a 2-4-fold decline in production of this compound. The same effect was induced by n-butylmalonate in uncoupled mitochondria, while both phosphoenolpyruvate efflux and its production were inhibited to a smaller extent in mitochondria incubated with 1,2,3-benzenetricarboxylate in State 3. (3) Citrate, malate or 2-phosphoglycerate caused a fast displacement of phosphoenolpyruvate from atractyloside-inhibited mitochondria to the reaction medium. In contrast, on the addition of ATP to mitochondria incubated with 1,2,3-benzenetricarboxylate, the rate of phosphoenolpyruvate efflux was lower than that induced by either malate or citrate. (4) Despite the presence of both 1,2,3-benzenetricarboxylate and atractyloside, arsenite and rotenone plus antimycin resulted in a leakage of phosphoenolpyruvate from the mitochondria, probably via a carrier-independent mechanism. (5) Based on the present results it seems that depending on the metabolic condition, the tricarboxylate carrier and the adenine nucleotide translocase are functioning to different extents in the efflux of phosphoenolpyruvate from rabbit renal mitochondria to the surrounding medium.
Collapse
|
19
|
|
20
|
Hensgens HE, Verhoeven AJ, Meijer AJ. The relationship between intramitochondrial N-acetylglutamate and activity of carbamoyl-phosphate synthetase (ammonia). The effect of glucagon. EUROPEAN JOURNAL OF BIOCHEMISTRY 1980; 107:197-205. [PMID: 6249585 DOI: 10.1111/j.1432-1033.1980.tb04640.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
1. The relationship between urea synthesis, intracellular N-acetylglutamate and the capacity of rat-liver mitochondria to synthesize citrulline was investigated. 2. Treatment of rats with glucagon prior to killing results not only in an increased intramitochondrial ATP concentration and an increased capacity of the mitochondria to synthesize citrulline, but also in an increased concentration of intramitochondrial N-acetylglutamate. 3. Comparison of the rate of citrulline synthesis in mitochondria from glucagon-treated and from control rats, incubated under different conditions, shows that the increased N-acetylglutamate concentration after glucagon treatment is at least in part responsible for the observed increased capacity of the mitochondria to synthesize citrulline. 4. Ureogenic flux in isolated hepatocytes under different incubation conditions correlated with the intracellular concentration of N-acetylglutamate and with the capacity of the mitochondria to synthesize citrulline. 5. When isolated hepatocytes were incubated with NH3, ornithine, lactate and oleate, intracellular N-acetylglutamate increased about eightfold in the first 10 min; during this period the rate of urea synthesis increased considerably. 6. It is concluded that the concentration of intramitochondrial N-acetylglutamate plays an important role in the short-term control of flux through the urea cycle under different nutritional and hormonal conditions.
Collapse
|
21
|
|
22
|
|
23
|
Sul HS, Shrago E, Goldfarb S, Rose F. Comparison of the adenine nucleotide translocase in hepatomas and rat liver mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1979; 551:148-55. [PMID: 427150 DOI: 10.1016/0005-2736(79)90361-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Various biochemical properties of the adenine nucleotide translocase were compared with mitochondria prepared from control and host liver, and Morris hepatomas 7777, 7800 and 5123C. The transport of phosphoenolpyruvate on the adenine nucleotide translocase was found to be three to four times more active, and inhibition of the transporter by palmitoyl-CoA and atractylate considerably less in hepatoma the active transport of phosphoenolypyruvate was associated with a greater stimulation of calcium egress from the mitochondria matrix by the anion in the hepatoma. The diminished sensitivity of the adenine nucleotide translocase to palmitoyl-CoA in hepatoma mitochondria was associated with lower levels of long chain acyl-CoA esters in the whole tissue. A change in activation energy at 6 degrees C for the adenine nucleotide translocase was found in host liver mitochondria while no break point in the temperature curve was observed in hepatoma mitochondria. These results are most consistent with a change in the structure-function relationship of hepatoma mitochondria due to differences in lipid composition.
Collapse
|
24
|
Wu-Rideout MY, Shrago E, Elson C. Flavaspidic acid: a biochemical probe for the study of metabolic pathway in hepatocytes. Life Sci 1979; 24:587-93. [PMID: 440007 DOI: 10.1016/0024-3205(79)90154-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
25
|
Roos I, Crompton M, Carafoli E. The effect of phosphoenolpyruvate on the retention of calcium by liver mitochondria. FEBS Lett 1978; 94:418-21. [PMID: 700162 DOI: 10.1016/0014-5793(78)80990-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Barritt GJ. Effects of mitochondria concentration and age, energy and inhibitors of mitochondrial anion transport on malate transport in isolated rat heart mitochondria. THE INTERNATIONAL JOURNAL OF BIOCHEMISTRY 1978; 9:317-22. [PMID: 566683 DOI: 10.1016/0020-711x(78)90104-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
27
|
Peng CF, Straub KD, Kane JJ, Murphy ML, Wadkins CL. Effects of adenine nucleotide translocase inhibitors on dinitrophenol-induced Ca2+ efflux from pig heart mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1977; 462:403-13. [PMID: 588575 DOI: 10.1016/0005-2728(77)90138-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Bongkrekic acid and atractyloside, inhibitors of adenine nucleotide translocase, do not inhibit Ca2+ uptake and H+ production by pig heart mitochondria. However, bongkrekic acid, but not atractyloside, inhibits dinitrophenol-induced Ca2+ efflux and H+ uptake. Conversely, ruthenium red blocks Ca2+ uptake and H+ production but does not prevent dinitrophenol-induced Ca2+ efflux and H+ uptake by mitochondria. These results suggest that mitochondrial Ca2+ uptake and release exist as two independent pathways. The efflux of Ca2+ from mitochondria is mediated by a bongkrekic acid sensitive component which is apparently not identical to the ruthenium red sensitive Ca2+ uptake carrier.
Collapse
|
28
|
Kimura S, Rasmussen H. Adrenal glucocorticoids, adenine nucleotide translocation, and mitochondrial calcium accumulation. J Biol Chem 1977. [DOI: 10.1016/s0021-9258(17)40643-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
29
|
Wojtczak L. Effect of long-chain fatty acids and acyl-CoA on mitochondrial permeability, transport, and energy-coupling processes. J Bioenerg Biomembr 1976; 8:293-311. [PMID: 137237 DOI: 10.1007/bf00765158] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The following effects of fatty acids and acyl-CoA thioesters on energy metabolism of mitochondria can now be assumed: (1) Inhibition of adenine nucleotide translocation. This effect may increase the energy state of mitochondria respiring under state 3 conditions and decrease phosphorylation potential in the surrounding medium (the cytoplasm). (2) Increased permeability to monovalent cations. This may lead to a partial energy dissipation due to a futile recycling of K+ (or another cation), namely and energy-dependent uptake and a passive outflow. (3) True uncoupling due to increased permeability to protons. This effect probably occurs at high concentrations of fatty acids only. (4) Substrate effect. Fatty acids in the form of acyl-CoA are excellent respiratory substrates for mitochondria of most tissues. Their oxidation is coupled to the generation of high energy state of the mitochondrial membrane and, consequently, to ATP synthesis.
Collapse
|
30
|
Passarella S, Quagliariello E. The citric cycle intermediates transport in rat liver mitochondria. Biochimie 1976; 58:989-1001. [PMID: 990338 DOI: 10.1016/s0300-9084(76)80287-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
31
|
Huber SC, Edwards GE. A highactivity ATP translocator in mesophyll chloroplasts of Digitaria sanguinalis, a plant having the C-4 dicarboxylic acid pathway of photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA 1976; 440:675-87. [PMID: 963046 DOI: 10.1016/0005-2728(76)90050-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The effect of exogenous adenine nucleotides on CO2 fixation and oxygen evolution was studied with mesophyll protoplast extracts of the C4 plant Digitaria sanguinalis. Exogenous ATP was found to stimulate the rate of pyruvate and pyruvate+oxalacetate induced CO2 fixation, as well as reverse the inhibition of CO2 fixation of carbonyl cyanide m-chlorophenyl hydrazone and several electron transport inhibitors. The ATP-dependent stimulation of CO2 fixation varied from 40 to 70 mumol CO2 fixed/mg chlorophyll per h, suggesting that ATP was crossing the chloroplast membranes at rates of 80-140 mumol/mg chlorophyll per h, since 2 ATP are required for each CO2 fixed. Fixation of CO2 could also be induced in the dark by exogenous ATP, in which case ADP accumulated outside the chloroplasts...
Collapse
|
32
|
Lenartowicz E, Winter C, Kunz W, Wojtczak AB. The inhibition of isocitrate oxidation by palmitoyl-l-carnitine and palmitoyl-C0 A in rat liver mitochondria. EUROPEAN JOURNAL OF BIOCHEMISTRY 1976; 67:137-44. [PMID: 183951 DOI: 10.1111/j.1432-1033.1976.tb10642.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Palmitoyl-L carnitine decreases the oxidation of isocitrate in rat liver mitochondria in state 3 by 25-30%. Palmitoyl-L-carnitine acts as an additional substrate raising the rate of oxidative phosphorylation, NAD reduction and ATP/ADP ratio in mitochondria. Palmitoyl-CoA added to mitochondria oxidizing isocitrate in state 3 causes a strong inhibition of isocitrate oxidation and of oxidative phosphorylation and a considerable elevation of intramitochondrial NADH/NAD and ATP/ADP ratios. The effect of palmitoyl-CoA is dependent on its concentration and is competitive with ADP. Carnitine restores only oxidative phosphorylation, but the oxidation of isocitrate remains inhibited. Evidence is presented that the transport of isocitrate is not affected by palmitoyl-CoA is due to the inhibition of adenine nucleotide translocation. The kinetic studies of NAD-dependent isocitrate dehydrogenase in the soluble fraction of sonicated mitochondria revealed that the enzyme is very sensitive towards the inhibition by NADH and only very slightly affected by ATP (Ki for NADH and ATP are 0.017 and 3.6 mM respectively). On the basis of the kinetic data the relative contribution of NADH and ATP in the inhibition of isocitrate oxidation by fatty acids was calculated. It is concluded that the inhibition of isocitrate oxidation caused by palmitoyl-L-carnitine and palmitoyl-CoA is primarily due to the increased reduction of NAD, whereas the increase of ATP/ADP ratio is much less important.
Collapse
|
33
|
Vignais PV. Molecular and physiological aspects of adenine nucleotide transport in mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1976; 456:1-38. [PMID: 131583 DOI: 10.1016/0304-4173(76)90007-0] [Citation(s) in RCA: 322] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
34
|
Sul HS, Shrago E, Shug AL. Relationship of phosphoenolpyruvate transport, acyl coenzyme A inhibition of adenine nucleotide translocase and calcium ion efflux in guinea pig heart mitochondria. Arch Biochem Biophys 1976; 172:230-7. [PMID: 1252077 DOI: 10.1016/0003-9861(76)90071-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
35
|
Gaginella T, Bass P. Fatty acid inhibition of water absorption and energy production in the hamster jejunum. FEBS Lett 1975; 53:347-50. [PMID: 1137963 DOI: 10.1016/0014-5793(75)80052-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
36
|
McCoy GD, Doeg KA. Characterization of the phosphoenolpyruvate inhibition of mitochondrial protein synthesis. J Biol Chem 1975. [DOI: 10.1016/s0021-9258(19)41544-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
37
|
Robinson BH, Cheema-Dhadli S, Halperin ML. The effect of adenosine triphosphate on the tricarboxylate transporting system of rat liver mitochondria. J Biol Chem 1975. [DOI: 10.1016/s0021-9258(19)41445-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
38
|
Meijer AJ, Van Dam K. The metabolic significance of anion transport in mitochondria. BIOCHIMICA ET BIOPHYSICA ACTA 1974; 346:213-44. [PMID: 4613381 DOI: 10.1016/0304-4173(74)90001-9] [Citation(s) in RCA: 190] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
39
|
Ho CH, Pande SV. On the specificity of the inhibition of adenine nucleotide translocase by long chain acyl-coenzyme A esters. BIOCHIMICA ET BIOPHYSICA ACTA 1974; 369:86-94. [PMID: 4278702 DOI: 10.1016/0005-2760(74)90195-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Regulation of Metabolite Transport in Rat and Guinea Pig Liver Mitochondria by Long Chain Fatty Acyl Coenzyme A Esters. J Biol Chem 1974. [DOI: 10.1016/s0021-9258(19)42359-4] [Citation(s) in RCA: 73] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
41
|
Popinigis J. The problem of permeability barrier in mitochondrial respiration: dual effect of protamine on succinate (plus rotenone) oxidation. FEBS Lett 1974; 41:46-9. [PMID: 4855014 DOI: 10.1016/0014-5793(74)80950-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Morel F, Lauquin G, Lunardi J, Duszynski J, Vignais PV. An appraisal of the functional significance of the inhibitory effect of long chain acyl-CoAs on mitochondrial transports. FEBS Lett 1974; 39:133-8. [PMID: 4152771 DOI: 10.1016/0014-5793(74)80035-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
43
|
Peng CF, Price DW, Bhuvaneswaran C, Wadkins CL. Factors that influence phosphoenolpyruvate-induced calcium efflux from rat liver mitochondria. Biochem Biophys Res Commun 1974; 56:134-41. [PMID: 4823433 DOI: 10.1016/s0006-291x(74)80325-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|