1
|
Kubo Y, Fukuoka H, Shoji K, Mori C, Sakurai K, Nishikawa M, Oshida K, Yamashiro Y, Kawabata T. Longitudinal Analysis of One-Carbon Metabolism-Related Metabolites in Maternal and Cord Blood of Japanese Pregnant Women. Nutrients 2024; 16:1765. [PMID: 38892698 PMCID: PMC11174998 DOI: 10.3390/nu16111765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 05/24/2024] [Accepted: 05/26/2024] [Indexed: 06/21/2024] Open
Abstract
One-carbon metabolism (OCM) is a complex and interconnected network that undergoes drastic changes during pregnancy. In this study, we investigated the longitudinal distribution of OCM-related metabolites in maternal and cord blood and explored their relationships. Additionally, we conducted cross-sectional analyses to examine the interrelationships among these metabolites. This study included 146 healthy pregnant women who participated in the Chiba Study of Mother and Child Health. Maternal blood samples were collected during early pregnancy, late pregnancy, and delivery, along with cord blood samples. We analyzed 18 OCM-related metabolites in serum using stable isotope dilution liquid chromatography/tandem mass spectrometry. We found that serum S-adenosylmethionine (SAM) concentrations in maternal blood remained stable throughout pregnancy. Conversely, S-adenosylhomocysteine (SAH) concentrations increased, and the total homocysteine/total cysteine ratio significantly increased with advancing gestational age. The betaine/dimethylglycine ratio was negatively correlated with total homocysteine in maternal blood for all sampling periods, and this correlation strengthened with advances in gestational age. Most OCM-related metabolites measured in this study showed significant positive correlations between maternal blood at delivery and cord blood. These findings suggest that maternal OCM status may impact fetal development and indicate the need for comprehensive and longitudinal evaluations of OCM during pregnancy.
Collapse
Affiliation(s)
- Yoshinori Kubo
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Saitama, Japan; (K.S.); (T.K.)
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Shiga, Japan
| | - Hideoki Fukuoka
- Department of Perinatal Mesenchymal Stem Cell Research, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Fukushima, Japan;
| | - Kumiko Shoji
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Saitama, Japan; (K.S.); (T.K.)
| | - Chisato Mori
- Department of Bioenvironmental Medicine, Graduate School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8670, Chiba, Japan;
- Department of Sustainable Health Science, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Chiba, Japan
| | - Kenichi Sakurai
- Department of Nutrition and Metabolic Medicine, Center for Preventive Medical Sciences, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Chiba, Japan;
| | - Masazumi Nishikawa
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatadate, Taihaku-ku, Sendai 982-0215, Miyagi, Japan;
| | - Kyoichi Oshida
- Faculty of Beauty & Wellness, Professional University of Beauty & Wellness, 3-9-3 Ushikubo, Tsuzuki-ku, Yokohama 224-0012, Kanagawa, Japan;
| | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Graduate School of Medicine, Juntendo University, 2-9-8-3F, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan;
| | - Terue Kawabata
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Saitama, Japan; (K.S.); (T.K.)
| |
Collapse
|
2
|
Kubo Y, Shoji K, Tajima A, Horiguchi S, Fukuoka H, Nishikawa M, Kagawa Y, Kawabata T. Serum 5-Methyltetrahydrofolate Status Is Associated with One-Carbon Metabolism-Related Metabolite Concentrations and Enzyme Activity Indicators in Young Women. Int J Mol Sci 2023; 24:10993. [PMID: 37446171 DOI: 10.3390/ijms241310993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023] Open
Abstract
Maintaining optimal one-carbon metabolism (OCM) is essential for health and pregnancy. In this cross-sectional study, folate status was assessed based on 5-methyltetrahydrofolate (5-MTHF) levels, and the association between 5-MTHF and OCM-related metabolites was investigated in 227 female Japanese university students aged 18-25 years. The participants were divided into high and low 5-MTHF groups based on their folate status. Serum samples of the participants were collected while they were fasting, and 18 OCM-related metabolites were measured using stable-isotope dilution liquid chromatography-electrospray tandem mass spectrometry. The association between serum 5-MTHF and OCM-related metabolite concentrations was assessed using Spearman's rank correlation coefficient. Serum 5-MTHF concentrations were negatively correlated with total homocysteine (tHcy) concentrations and positively correlated with S-adenosylmethionine (SAM) and total cysteine (tCys) concentrations. Serum 5-MTHF concentrations demonstrated a stronger negative correlation with tHcy/tCys than with tHcy alone. The negative correlation between betaine and tHcy concentrations was stronger in the low 5-MTHF group than in the high 5-MTHF group. The 5-MTHF status could be linked to Hcy flux into the transsulfuration pathway via SAM. Therefore, the tHcy/tCys ratio may be a more sensitive indicator of the 5-MTHF status than tHcy alone. Furthermore, a low 5-MTHF status can enhance Hcy metabolism via betaine.
Collapse
Affiliation(s)
- Yoshinori Kubo
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
- Division of Anatomy and Cell Biology, Department of Anatomy, Shiga University of Medical Science, Seta Tsukinowa-cho, Otsu 520-2192, Japan
| | - Kumiko Shoji
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Akiko Tajima
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Sayaka Horiguchi
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Hideoki Fukuoka
- Department of Perinatal Mesenchymal Stem Cell Research, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima 960-1295, Japan
| | - Masazumi Nishikawa
- Department of Food Management, School of Food, Agricultural and Environmental Sciences, Miyagi University, 2-2-1 Hatadate, Taihaku-ku, Sendai 982-0215, Japan
| | - Yasuo Kagawa
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| | - Terue Kawabata
- Faculty of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado 350-0288, Japan
| |
Collapse
|
3
|
Wang H, Wu Y, Tang W. Methionine cycle in nonalcoholic fatty liver disease and its potential applications. Biochem Pharmacol 2022; 200:115033. [PMID: 35395242 DOI: 10.1016/j.bcp.2022.115033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 11/25/2022]
Abstract
As a chronic metabolic disease affecting epidemic proportions worldwide, the pathogenesis of Nonalcoholic Fatty Liver Disease (NAFLD) is not clear yet. There is also a lack of precise biomarkers and specific medicine for the diagnosis and treatment of NAFLD. Methionine metabolic cycle, which is critical for the maintaining of cellular methylation and redox state, is involved in the pathophysiology of NAFLD. However, the molecular basis and mechanism of methionine metabolism in NAFLD are not completely understood. Here, we mainly focus on specific enzymes that participates in methionine cycle, to reveal their interconnections with NAFLD, in order to recognize the pathogenesis of NAFLD from a new angle and at the same time, explore the clinical characteristics and therapeutic strategies.
Collapse
Affiliation(s)
- Haoyu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Yanwei Wu
- Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China
| | - Wei Tang
- University of Chinese Academy of Sciences, Beijing, 100049, PR China; Laboratory of Anti-inflammation, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, PR China.
| |
Collapse
|
4
|
Kalecký K, Ashcraft P, Bottiglieri T. One-Carbon Metabolism in Alzheimer's Disease and Parkinson's Disease Brain Tissue. Nutrients 2022; 14:599. [PMID: 35276958 PMCID: PMC8838558 DOI: 10.3390/nu14030599] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 12/21/2022] Open
Abstract
Disruptions in one-carbon metabolism and elevated homocysteine have been previously implicated in the development of dementia associated with Alzheimer's disease (AD) and Parkinson's disease (PD). Moreover, a PD diagnosis itself carries substantial risk for the development of dementia. This is the first study that explores alterations in one-carbon metabolism in AD and PD directly in the human brain frontal cortex, the primary center of cognition. Applying targeted liquid chromatography-tandem mass spectrometry (LC-MS/MS), we analyzed post-mortem samples obtained from 136 subjects (35 AD, 65 PD, 36 controls). We found changes in one-carbon metabolites that indicate inefficient activation of cystathionine β-synthase (CBS) in AD and PD subjects with dementia, the latter seemingly accompanied by a restricted re-methylation flow. Levodopa-carbidopa is known to reduce available vitamin B6, which would explain the hindered CBS activity. We present evidence of temporary non-protein-bound homocysteine accumulation upon levodopa intake in the brain of PD subjects with dementia but not in non-demented PD subjects. Importantly, this homocysteine elevation is not related to levodopa dosage, disease progression, or histopathological markers but exclusively to the dementia status. We hypothesize that this levodopa-induced effect is a direct cause of dementia in PD in susceptible subjects with reduced re-methylation capacity. Furthermore, we show that betaine best correlates with cognitive score even among PD subjects alone and discuss nutritional recommendations to improve one-carbon metabolism function.
Collapse
Affiliation(s)
- Karel Kalecký
- Institute of Biomedical Studies, Baylor University, Waco, TX 76712, USA;
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA;
| | - Paula Ashcraft
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA;
| | - Teodoro Bottiglieri
- Institute of Biomedical Studies, Baylor University, Waco, TX 76712, USA;
- Center of Metabolomics, Institute of Metabolic Disease, Baylor Scott & White Research Institute, Dallas, TX 75204, USA;
| |
Collapse
|
5
|
Pascale RM, Simile MM, Calvisi DF, Feo CF, Feo F. S-Adenosylmethionine: From the Discovery of Its Inhibition of Tumorigenesis to Its Use as a Therapeutic Agent. Cells 2022; 11:409. [PMID: 35159219 PMCID: PMC8834208 DOI: 10.3390/cells11030409] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/10/2022] [Accepted: 01/14/2022] [Indexed: 02/07/2023] Open
Abstract
Alterations of methionine cycle in steatohepatitis, cirrhosis, and hepatocellular carcinoma induce MAT1A decrease and MAT2A increase expressions with the consequent decrease of S-adenosyl-L-methionine (SAM). This causes non-alcoholic fatty liver disease (NAFLD). SAM administration antagonizes pathological conditions, including galactosamine, acetaminophen, and ethanol intoxications, characterized by decreased intracellular SAM. Positive therapeutic effects of SAM/vitamin E or SAM/ursodeoxycholic acid in animal models with NAFLD and intrahepatic cholestasis were not confirmed in humans. In in vitro experiments, SAM and betaine potentiate PegIFN-alpha-2a/2b plus ribavirin antiviral effects. SAM plus betaine improves early viral kinetics and increases interferon-stimulated gene expression in patients with viral hepatitis non-responders to pegIFNα/ribavirin. SAM prevents hepatic cirrhosis, induced by CCl4, inhibits experimental tumors growth and is proapoptotic for hepatocellular carcinoma and MCF-7 breast cancer cells. SAM plus Decitabine arrest cancer growth and potentiate doxorubicin effects on breast, head, and neck cancers. Furthermore, SAM enhances the antitumor effect of gemcitabine against pancreatic cancer cells, inhibits growth of human prostate cancer PC-3, colorectal cancer, and osteosarcoma LM-7 and MG-63 cell lines; increases genomic stability of SW480 cells. SAM reduces colorectal cancer progression and inhibits the proliferation of preneoplastic rat liver cells in vivo. The discrepancy between positive results of SAM treatment of experimental tumors and modest effects against human disease may depend on more advanced human disease stage at moment of diagnosis.
Collapse
Affiliation(s)
- Rosa M. Pascale
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Maria M. Simile
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Diego F. Calvisi
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| | - Claudio F. Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Surgery, University of Sassari, 07100 Sassari, Italy;
| | - Francesco Feo
- Department of Medical, Surgical and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy; (M.M.S.); (D.F.C.); (F.F.)
| |
Collapse
|
6
|
Impano S, Yang H, Shepard EM, Swimley R, Pagnier A, Broderick WE, Hoffman BM, Broderick JB. S-Adenosyl-l-ethionine is a Catalytically Competent Analog of S-Adenosyl-l-methione (SAM) in the Radical SAM Enzyme HydG. Angew Chem Int Ed Engl 2021; 60:4666-4672. [PMID: 33935588 PMCID: PMC8081114 DOI: 10.1002/anie.202014337] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Indexed: 01/02/2023]
Abstract
Radical S-adenosyl-l-methionine (SAM) enzymes initiate biological radical reactions with the 5'-deoxyadenosyl radical (5'-dAdo•). A [4Fe-4S]+ cluster reductively cleaves SAM to form the Ω organometallic intermediate in which the 5'-deoxyadenosyl moiety is directly bound to the unique iron of the [4Fe-4S] cluster, with subsequent liberation of 5'-dAdo•. Here we present synthesis of the SAM analog S-adenosyl-l-ethionine (SAE) and show SAE is a mechanistically-equivalent SAM-alternative for HydG, both supporting enzymatic turnover of substrate tyrosine and forming the organometallic intermediate Ω. Photolysis of SAE bound to HydG forms an ethyl radical trapped in the active site. The ethyl radical withstands prolonged storage at 77 K and its EPR signal is only partially lost upon annealing at 100 K, making it significantly less reactive than the methyl radical formed by SAM photolysis. Upon annealing above 77K, the ethyl radical adds to the [4Fe-4S]2+ cluster, generating an ethyl-[4Fe-4S]3+ organometallic species termed ΩE.
Collapse
Affiliation(s)
- Stella Impano
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - Hao Yang
- Department of Chemistry, Northwestern University, Evanston, IL. USA 60208
| | - Eric M Shepard
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - Ryan Swimley
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - Adrien Pagnier
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - William E Broderick
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - Brian M Hoffman
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| | - Joan B Broderick
- Department of Chemistry & Biochemistry, ontana State University, ozeman, MT. USA. 59717
| |
Collapse
|
7
|
Impano S, Yang H, Shepard EM, Swimley R, Pagnier A, Broderick WE, Hoffman BM, Broderick JB. S
‐Adenosyl‐
l
‐ethionine is a Catalytically Competent Analog of
S
‐Adenosyl‐
l
‐methionine (SAM) in the Radical SAM Enzyme HydG. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Stella Impano
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| | - Hao Yang
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Eric M. Shepard
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| | - Ryan Swimley
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| | - Adrien Pagnier
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| | - William E. Broderick
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| | - Brian M. Hoffman
- Department of Chemistry Northwestern University Evanston IL 60208 USA
| | - Joan B. Broderick
- Department of Chemistry & Biochemistry Montana State University Bozeman MT 59717 USA
| |
Collapse
|
8
|
Pascale RM, Peitta G, Simile MM, Feo F. Alterations of Methionine Metabolism as Potential Targets for the Prevention and Therapy of Hepatocellular Carcinoma. MEDICINA (KAUNAS, LITHUANIA) 2019; 55:E296. [PMID: 31234428 PMCID: PMC6631235 DOI: 10.3390/medicina55060296] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/12/2022]
Abstract
Several researchers have analyzed the alterations of the methionine cycle associated with liver disease to clarify the pathogenesis of human hepatocellular carcinoma (HCC) and improve the preventive and the therapeutic approaches to this tumor. Different alterations of the methionine cycle leading to a decrease of S-adenosylmethionine (SAM) occur in hepatitis, liver steatosis, liver cirrhosis, and HCC. The reproduction of these changes in MAT1A-KO mice, prone to develop hepatitis and HCC, demonstrates the pathogenetic role of MAT1A gene under-regulation associated with up-regulation of the MAT2A gene (MAT1A:MAT2A switch), encoding the SAM synthesizing enzymes, methyladenosyltransferase I/III (MATI/III) and methyladenosyltransferase II (MATII), respectively. This leads to a rise of MATII, inhibited by the reaction product, with a consequent decrease of SAM synthesis. Attempts to increase the SAM pool by injecting exogenous SAM have beneficial effects in experimental alcoholic and non-alcoholic steatohepatitis and hepatocarcinogenesis. Mechanisms involved in hepatocarcinogenesis inhibition by SAM include: (1) antioxidative effects due to inhibition of nitric oxide (NO•) production, a rise in reduced glutathione (GSH) synthesis, stabilization of the DNA repair protein Apurinic/Apyrimidinic Endonuclease 1 (APEX1); (2) inhibition of c-myc, H-ras, and K-ras expression, prevention of NF-kB activation, and induction of overexpression of the oncosuppressor PP2A gene; (3) an increase in expression of the ERK inhibitor DUSP1; (4) inhibition of PI3K/AKT expression and down-regulation of C/EBPα and UCA1 gene transcripts; (5) blocking LKB1/AMPK activation; (6) DNA and protein methylation. Different clinical trials have documented curative effects of SAM in alcoholic liver disease. Furthermore, SAM enhances the IFN-α antiviral activity and protects against hepatic ischemia-reperfusion injury during hepatectomy in HCC patients with chronic hepatitis B virus (HBV) infection. However, although SAM prevents experimental tumors, it is not curative against already established experimental and human HCCs. The recent observation that the inhibition of MAT2A and MAT2B expression by miRNAs leads to a rise of endogenous SAM and strong inhibition of cancer cell growth could open new perspectives to the treatment of HCC.
Collapse
Affiliation(s)
- Rosa M Pascale
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Graziella Peitta
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Maria M Simile
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| | - Francesco Feo
- Department of Clinical, Surgery and Experimental Sciences, Division of Experimental Pathology and Oncology, University of Sassari, 07100 Sassari, Italy.
| |
Collapse
|
9
|
Mistry RK, Brewer AC. Redox-Dependent Regulation of Sulfur Metabolism in Biomolecules: Implications for Cardiovascular Health. Antioxid Redox Signal 2019; 30:972-991. [PMID: 28661184 DOI: 10.1089/ars.2017.7224] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Sulfur-containing amino acids are integral to the molecular mechanisms that underlie many aspects of cellular function and homeostasis, facilitated by reversible changes in the oxidation states of sulfur atoms. Sulfur-containing amino acids are metabolically linked by interacting pathways that impact the one-carbon metabolic cycle and generation of methyl groups, the folate cycle, and maintenance of the major cellular redox buffer; glutathione. Dysregulation of these pathways is associated with diverse pathologies, notably of the cardiovascular (CV) system, which are typically characterized by inappropriate plasma levels of sulfur-containing amino acids. Recent Advances: Perhaps not surprisingly, the cellular redox state has emerged as a major regulator of many enzymatic processes within these metabolic cycles. The metabolism of cysteine can also result in the production of hydrogen sulfide (H2S), a signaling molecule whose activity is potentially linked to intracellular levels of both reactive oxygen species (ROS) and molecular oxygen. CRITICAL ISSUES In most cases, the endogenous physiological sources of ROS that might mediate the interlinked metabolic pathways of sulfur-containing biomolecules remain unknown. However, the family of NADPH oxidases, and Nox4 in particular, is emerging as a likely candidate. FUTURE DIRECTIONS This review focuses on the current knowledge of key aspects of sulfur metabolism, which are regulated by redox-based chemical reactions, and the likely intracellular oxidant sources that might mediate this regulation. This knowledge will be important to guide future targeted therapeutic interventions in diverse CV disorders.
Collapse
Affiliation(s)
- Rajesh K Mistry
- Department of Cardiology, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| | - Alison C Brewer
- Department of Cardiology, BHF Centre of Research Excellence, King's College London, London, United Kingdom
| |
Collapse
|
10
|
Rasch I, Görs S, Tuchscherer A, Htoo JK, Kuhla B, Metges CC. Substitution of Dietary Sulfur Amino Acids by DL-2-hydroxy-4-Methylthiobutyric Acid Increases Remethylation and Decreases Transsulfuration in Weaned Piglets. J Nutr 2019; 149:432-440. [PMID: 30770540 PMCID: PMC6398387 DOI: 10.1093/jn/nxy296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 06/29/2018] [Accepted: 11/06/2018] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND DL-2-hydroxy-4-methylthiobutyric acid (DL-HMTBA), an L-methionine (L-Met) hydroxyl analogue, has been suggested to be a dietary L-Met source. How dietary DL-HMTBA compared with L-Met affects whole-body L-Met kinetics in growing individuals is unknown. OBJECTIVES We determined to what extent DL-HMTBA supplementation of an L-Met-deficient diet affects whole-body L-Met and L-cysteine (L-Cys) kinetics, protein synthesis (PS), and the L-Met incorporation rate in liver protein (L-MetInc) compared with L-Met and DL-Met supplementation in a piglet model. METHODS Forty-five, 28-d-old weaned piglets (male, German Landrace) were allocated to 4 dietary groups: L-Met-deficient diet [Control: 69% of recommended L-Met plus L-Cys supply; 0.22% standardized ileal digestible (SID) L-Met; 0.27% SID L-Cys; n = 12] and Control diet supplemented equimolarly to 100% of recommended intake with either L-Met (n = 12; LMET), DL-Met (n = 11; DLMET), or DL-HMTBA (n = 10; DLHMTBA). At 47 d of age, the piglets were infused with L-[1-13C; methyl-2H3]-Met and [3,3-2H2]-Cys to determine the kinetics and PS rates. Plasma amino acid (AA) concentrations, hepatic mRNA abundances of L-Met cycle and transsulfuration (TS) enzymes, and L-MetInc were measured. RESULTS During feed deprivation, L-Met kinetics did not differ between groups, and were ≤3 times higher in the fed state (P < 0.01). Remethylation (RM) was 31% and 45% higher in DLHMTBA than in DLMET and Control pigs, respectively, and the RM:transmethylation (TM) ratio was 50% higher in DLHMTBA than in LMET (P < 0.05). Furthermore, TS and the TS:TM ratio were 32% lower in DLHMTBA than in LMET (P < 0.05). L-MetInc was 42% lower in DLMET and DLHMTBA than in L-Met-deficient Control pigs, whereas plasma AA and hepatic mRNA abundances were similar among DL-HMTBA-, L-Met-, and DL-Met-supplemented pigs. CONCLUSIONS In piglets, DL-HMTBA compared with L-Met and DL-Met supplementation increases RM and reduces the TS rate to conserve L-Met, but all 3 Met isomers support growth at a comparable rate.
Collapse
Affiliation(s)
- Ilka Rasch
- Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Solvig Görs
- Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Armin Tuchscherer
- Institute of Genetics and Biometry, Leibniz Institute for Farm Animal Biology (FBN), Dummerstorf, Germany
| | - John K Htoo
- Evonik Nutrition & Care GmbH, Hanau-Wolfgang, Germany
| | - Björn Kuhla
- Institute of Nutritional Physiology, Dummerstorf, Germany
| | - Cornelia C Metges
- Institute of Nutritional Physiology, Dummerstorf, Germany,Nutritional Physiology and Animal Nutrition, Faculty of Agriculture and Environmental Sciences, University of Rostock, Rostock, Germany,Address correspondence to CCM (e-mail: )
| |
Collapse
|
11
|
Ostrakhovitch EA, Tabibzadeh S. Homocysteine and age-associated disorders. Ageing Res Rev 2019; 49:144-164. [PMID: 30391754 DOI: 10.1016/j.arr.2018.10.010] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/30/2018] [Accepted: 10/25/2018] [Indexed: 12/26/2022]
Abstract
There are numerous theories of aging, a process which still seems inevitable. Aging leads to cancer and multi-systemic disorders as well as chronic diseases. Decline in age- associated cellular functions leads to neurodegeneration and cognitive decline that affect the quality of life. Accumulation of damage, mutations, metabolic changes, failure in cellular energy production and clearance of altered proteins over the lifetime, and hyperhomocysteinemia, ultimately result in tissue degeneration. The decline in renal functions, nutritional deficiencies, deregulation of methionine cycle and deficiencies of homocysteine remethylation and transsulfuration cofactors cause elevation of homocysteine with advancing age. Abnormal accumulation of homocysteine is a risk factor of cardiovascular, neurodegenerative and chronic kidney disease. Moreover, approximately 50% of people, aged 65 years and older develop hypertension and are at a high risk of developing cardiovascular insufficiency and incurable neurodegenerative disorders. Increasing evidence suggests inverse relation between cognitive impairment, cerebrovascular and cardiovascular events and renal function. Oxidative stress, inactivation of nitric oxide synthase pathway and mitochondria dysfunction associated with impaired homocysteine metabolism lead to aging tissue degeneration. In this review, we examine impact of high homocysteine levels on changes observed with aging that contribute to development and progression of age associated diseases.
Collapse
Affiliation(s)
- E A Ostrakhovitch
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA, USA.
| | - S Tabibzadeh
- Frontiers in Bioscience Research Institute in Aging and Cancer, Irvine, CA, USA.
| |
Collapse
|
12
|
Simile MM, Latte G, Feo CF, Feo F, Calvisi DF, Pascale RM. Alterations of methionine metabolism in hepatocarcinogenesis: the emergent role of glycine N-methyltransferase in liver injury. Ann Gastroenterol 2018; 31:552-560. [PMID: 30174391 PMCID: PMC6102450 DOI: 10.20524/aog.2018.0288] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 05/02/2018] [Indexed: 12/30/2022] Open
Abstract
The methionine and folate cycles play a fundamental role in cell physiology and their alteration is involved in liver injury and hepatocarcinogenesis. Glycine N-methyltransferase is implicated in methyl group supply, DNA methylation, and nucleotide biosynthesis. It regulates the cellular S-adenosylmethionine/S-adenosylhomocysteine ratio and S-adenosylmethionine-dependent methyl transfer reactions. Glycine N-methyltransferase is absent in fast-growing hepatocellular carcinomas and present at a low level in slower growing HCC ones. The mechanism of tumor suppression by glycine N-methyltransferase is not completely known. Glycine N-methyltransferase inhibits hepatocellular carcinoma growth through interaction with Dep domain-containing mechanistic target of rapamycin (mTor)-interacting protein, a binding protein overexpressed in hepatocellular carcinoma. The interaction of the phosphatase and tensin homolog inhibitor, phosphatidylinositol 3,4,5-trisphosphate-dependent rac exchanger, with glycine N-methyltransferase enhances proteasomal degradation of this exchanger by the E3 ubiquitin ligase HectH. Glycine N-methyltransferase also regulates genes related to detoxification and antioxidation pathways. It supports pyrimidine and purine syntheses and minimizes uracil incorporation into DNA as consequence of folate depletion. However, recent evidence indicates that glycine N-methyltransferase targeted into nucleus still exerts strong anti-proliferative effects independent of its catalytic activity, while its restriction to cytoplasm prevents these effects. Our current knowledge suggest that glycine N-methyltransferase plays a fundamental, even if not yet completely known, role in cellular physiology and highlights the need to further investigate this role in normal and cancer cells.
Collapse
Affiliation(s)
- Maria M. Simile
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Gavinella Latte
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Claudio F. Feo
- Department of Clinical, Surgical and Experimental Medicine, Division of Surgery (Claudio F. Feo), University of Sassari, Sassari, Italy
| | - Francesco Feo
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Diego F. Calvisi
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| | - Rosa M. Pascale
- Department of Clinical, Surgical and Experimental Medicine, Division of Experimental Pathology and Oncology (Maria M. Simile, Gavinella Latte, Francesco Feo, Diego F. Calvisi, Rosa M. Pascale), University of Sassari, Sassari, Italy
| |
Collapse
|
13
|
Xu J, Wang F, Jakovlić I, Prisingkorn W, Li JT, Wang WM, Zhao YH. Metabolite and gene expression profiles suggest a putative mechanism through which high dietary carbohydrates reduce the content of hepatic betaine in Megalobrama amblycephala. Metabolomics 2018; 14:94. [PMID: 30830423 DOI: 10.1007/s11306-018-1389-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Accepted: 06/23/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND High-carbohydrate diets (HCD) are favoured by the aquaculture industry for economic reasons, but they can produce negative impacts on growth and induce hepatic steatosis. We hypothesised that the mechanism behind this is the reduction of hepatic betaine content. OBJECTIVE We further explored this mechanism by supplementing betaine (1%) to the diet of a farmed fish Megalobrama amblycephala. METHODS Four diet groups were designed: control (CD, 27.11% carbohydrates), high-carbohydrate (HCD, 36.75% carbohydrates), long-term betaine (LBD, 35.64% carbohydrates) and short-term betaine diet (SBD; 12 weeks HCD + 4 weeks LBD). We analysed growth performance, body composition, liver condition, and expression of genes and profiles of metabolites associated with betaine metabolism. RESULTS HCD resulted in poorer growth and liver health (compared to CD), whereas LBD improved these parameters (compared to HCD). HCD induced the expression of genes associated with glucose, serine and cystathionine metabolisms, and (non-significantly, p = .20) a betaine-catabolizing enzyme betaine-homocysteine-methyltransferase; and decreased the content of betaine, methionine, S-adenosylhomocysteine and carnitine. Betaine supplementation (LBD) reversed these patterns, and elevated betaine-homocysteine-methyltransferase, S-adenosylmethionine and S-adenosylhomocysteine (all p ≤ .05). CONCLUSION We hypothesise that HCD reduced the content of hepatic betaine by enhancing the activity of metabolic pathways from glucose to homocysteine, reflected in increased glycolysis, serine metabolism, cystathionine metabolism and homocysteine remethylation. Long-term dietary betaine supplementation improved the negative impacts of HCD, inculding growth parameters, body composition, liver condition, and betaine metabolism. However, betaine supplementation may have caused a temporary disruption in the metabolic homeostasis.
Collapse
Affiliation(s)
- Jia Xu
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Fan Wang
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan, 430075, People's Republic of China
| | - Wassana Prisingkorn
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Jun-Tao Li
- Institute of Tropical Bioscience and Biotechnology, Haikou, 570102, People's Republic of China
| | - Wei-Min Wang
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China
| | - Yu-Hua Zhao
- College of Fisheries Huazhong Agricultural University, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan, 430070, People's Republic of China.
| |
Collapse
|
14
|
Chandler TL, White HM. Choline and methionine differentially alter methyl carbon metabolism in bovine neonatal hepatocytes. PLoS One 2017; 12:e0171080. [PMID: 28152052 PMCID: PMC5289486 DOI: 10.1371/journal.pone.0171080] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022] Open
Abstract
Intersections in hepatic methyl group metabolism pathways highlights potential competition or compensation of methyl donors. The objective of this experiment was to examine the expression of genes related to methyl group transfer and lipid metabolism in response to increasing concentrations of choline chloride (CC) and DL-methionine (DLM) in primary neonatal hepatocytes that were or were not exposed to fatty acids (FA). Primary hepatocytes isolated from 4 neonatal Holstein calves were maintained as monolayer cultures for 24 h before treatment with CC (61, 128, 2028, and 4528 μmol/L) and DLM (16, 30, 100, 300 μmol/L), with or without a 1 mmol/L FA cocktail in a factorial arrangement. After 24 h of treatment, media was collected for quantification of reactive oxygen species (ROS) and very low-density lipoprotein (VLDL), and cell lysates were collected for quantification of gene expression. No interactions were detected between CC, DLM, or FA. Both CC and DLM decreased the expression of methionine adenosyltransferase 1A (MAT1A). Increasing CC did not alter betaine-homocysteine S-methyltranferase (BHMT) but did increase 5-methyltetrahydrofolate-homocysteine methyltransferase (MTR) and methylenetetrahydrofolate reductase (MTHFR) expression. Increasing DLM decreased expression of BHMT and MTR, but did not affect MTHFR. Expression of both phosphatidylethanolamine N-methyltransferase (PEMT) and microsomal triglyceride transfer protein (MTTP) were decreased by increasing CC and DLM, while carnitine palmitoyltransferase 1A (CPT1A) was unaffected by either. Treatment with FA decreased the expression of MAT1A, MTR, MTHFR and tended to decrease PEMT but did not affect BHMT and MTTP. Treatment with FA increased CPT1A expression. Increasing CC increased secretion of VLDL and decreased the accumulation of ROS in media. Within neonatal bovine hepatocytes, choline and methionine differentially regulate methyl carbon pathways and suggest that choline may play a critical role in donating methyl groups to support methionine regeneration. Stimulating VLDL export and decreasing ROS accumulation suggests that increasing CC is hepato-protective.
Collapse
Affiliation(s)
- Tawny L. Chandler
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, United States of America
| | - Heather M. White
- Department of Dairy Science, University of Wisconsin-Madison, Madison, WI, United States of America
| |
Collapse
|
15
|
Colomina JM, Cavallé-Busquets P, Fernàndez-Roig S, Solé-Navais P, Fernandez-Ballart JD, Ballesteros M, Ueland PM, Meyer K, Murphy MM. Maternal Folate Status and the BHMT c.716G>A Polymorphism Affect the Betaine Dimethylglycine Pathway during Pregnancy. Nutrients 2016; 8:nu8100621. [PMID: 27735840 PMCID: PMC5084009 DOI: 10.3390/nu8100621] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/20/2016] [Accepted: 09/27/2016] [Indexed: 12/31/2022] Open
Abstract
The effect of the betaine: homocysteine methyltransferase BHMT c.716G>A (G: guanosine; A: adenosine) single nucleotide polymorphism (SNP) on the BHMT pathway is unknown during pregnancy. We hypothesised that it impairs betaine to dimethylglycine conversion and that folate status modifies its effect. We studied 612 women from the Reus Tarragona Birth Cohort from ≤12 gestational weeks (GW) throughout pregnancy. The frequency of the variant BHMT c.716A allele was 30.8% (95% confidence interval (CI): 28.3, 33.5). In participants with normal-high plasma folate status (>13.4 nmol/L), least square geometric mean [95% CI] plasma dimethylglycine (pDMG, µmol/L) was lower in the GA (2.35 [2.23, 2.47]) versus GG (2.58 [2.46, 2.70]) genotype at ≤12 GW (p < 0.05) and in the GA (2.08 [1.97, 2.19]) and AA (1.94 [1.75, 2.16]) versus GG (2.29 [2.18, 2.40]) genotypes at 15 GW (p < 0.05). No differences in pDMG between genotypes were observed in participants with possible folate deficiency (≤13.4 nmol/L) (p for interactions at ≤12 GW: 0.023 and 15 GW: 0.038). PDMG was lower in participants with the AA versus GG genotype at 34 GW (2.01 [1.79, 2.25] versus 2.44 [2.16, 2.76] and at labour, 2.51 [2.39, 2.64] versus 3.00 [2.84, 3.18], (p < 0.01)). Possible deficiency compared to normal-high folate status was associated with higher pDMG in multiple linear regression analysis (β coefficients [SEM] ranging from 0.07 [0.04], p < 0.05 to 0.20 [0.04], p < 0.001 in models from early and mid-late pregnancy) and the AA compared to GG genotype was associated with lower pDMG (β coefficients [SEM] ranging from −0.11 [0.06], p = 0.055 to −0.23 [0.06], p < 0.001). Conclusion: During pregnancy, the BHMT pathway is affected by folate status and by the variant BHMT c.716A allele.
Collapse
Affiliation(s)
- Jose M Colomina
- Area of Preventive Medicine and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, IISPV, C/Sant Llorenç 21, Reus 43201, Spain.
- Ciberobn Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto Carlos III, Madrid 28029, Spain.
| | - Pere Cavallé-Busquets
- Ciberobn Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto Carlos III, Madrid 28029, Spain.
- Area of Obstetrics and Gynaecology, Hospital Universitari Sant Joan, Reus and Universitat Rovira i Virgili, Reus 43204, Spain.
| | - Sílvia Fernàndez-Roig
- Area of Preventive Medicine and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, IISPV, C/Sant Llorenç 21, Reus 43201, Spain.
- Ciberobn Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto Carlos III, Madrid 28029, Spain.
| | - Pol Solé-Navais
- Area of Preventive Medicine and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, IISPV, C/Sant Llorenç 21, Reus 43201, Spain.
- Ciberobn Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto Carlos III, Madrid 28029, Spain.
| | - Joan D Fernandez-Ballart
- Area of Preventive Medicine and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, IISPV, C/Sant Llorenç 21, Reus 43201, Spain.
- Ciberobn Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto Carlos III, Madrid 28029, Spain.
| | - Mónica Ballesteros
- Area of Obstetrics and Gynaecology, Hospital Universitari Joan XXIII, Tarragona and Universitat Rovira i Virgili, Tarragona 43005, Spain.
| | - Per M Ueland
- Section for Pharmacology, Department of Internal Medicine, University of Bergen, Bergen N-5020, Norway.
| | - Klaus Meyer
- Bevital A/S, Laboratory building, 9th floor, Bergen N-5021, Norway.
| | - Michelle M Murphy
- Area of Preventive Medicine and Public Health, Faculty of Medicine and Health Sciences, Universitat Rovira i Virgili, IISPV, C/Sant Llorenç 21, Reus 43201, Spain.
- Ciberobn Fisiopatología de la Obesidad y Nutrición (CB06/03), Instituto Carlos III, Madrid 28029, Spain.
| |
Collapse
|
16
|
Zhang Q, Bertics SJ, Luchini N, White HM. The effect of increasing concentrations of dl-methionine and 2-hydroxy-4-(methylthio) butanoic acid on hepatic genes controlling methionine regeneration and gluconeogenesis. J Dairy Sci 2016; 99:8451-8460. [DOI: 10.3168/jds.2016-11312] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 06/16/2016] [Indexed: 12/21/2022]
|
17
|
Quercetin Increases Hepatic Homocysteine Remethylation and Transsulfuration in Rats Fed a Methionine-Enriched Diet. BIOMED RESEARCH INTERNATIONAL 2015; 2015:815210. [PMID: 26558284 PMCID: PMC4629001 DOI: 10.1155/2015/815210] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2015] [Revised: 08/24/2015] [Accepted: 09/01/2015] [Indexed: 01/12/2023]
Abstract
This study was aimed at investigating the effects of quercetin on mRNA expression and activity of critical enzymes in homocysteine metabolism in rats fed a methionine-enriched diet. Rats were fed for 6 weeks the following diets, that is, control, 0.5% quercetin, 1.0% methionine, and 1.0% methionine plus 0.5% quercetin diets. Serum homocysteine was significantly increased after methionine treatment and decreased after the addition of quercetin. The mRNA expression of methionine synthase was significantly increased after methionine or methionine plus quercetin supplementation, while its enzymatic activity was significantly increased after methionine plus quercetin supplementation. The mRNA expression and enzymatic activity of cystathionine β-synthase and cystathionine γ-lyase were upregulated after quercetin, methionine, or quercetin plus methionine treatment and a more significant increase was observed for hepatic cystathionine β-synthase in the methionine plus quercetin treated rats, suggesting an interaction between methionine and quercetin. Meanwhile, hepatic ratio of S-adenosylmethionine to S-adenosylhomocysteine was significantly decreased in response to methionine supplementation and normalized after the addition of quercetin. It is concluded that quercetin reduces serum homocysteine by increasing remethylation and transsulfuration of homocysteine in rats exposed to a methionine-enriched diet.
Collapse
|
18
|
Mathematical analysis of the regulation of competing methyltransferases. BMC SYSTEMS BIOLOGY 2015; 9:69. [PMID: 26467983 PMCID: PMC4606511 DOI: 10.1186/s12918-015-0215-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 09/22/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Methyltransferase (MT) reactions, in which methyl groups are attached to substrates, are fundamental to many aspects of cell biology and human physiology. The universal methyl donor for these reactions is S-adenosylmethionine (SAM) and this presents the cell with an important regulatory problem. If the flux along one pathway is changed then the SAM concentration will change affecting all the other MT pathways, so it is difficult for the cell to regulate the pathways independently. METHODS We created a mathematical model, based on the known biochemistry of the folate and methionine cycles, to study the regulatory mechanisms that enable the cell to overcome this difficulty. Some of the primary mechanisms are long-range allosteric interactions by which substrates in one part of the biochemical network affect the activity of enzymes at distant locations in the network (not distant in the cell). Because of these long-range allosteric interactions, the dynamic behavior of the network is very complicated, and so mathematical modeling is a useful tool for investigating the effects of the regulatory mechanisms and understanding the complicated underlying biochemistry and cell biology. RESULTS We study the allosteric binding of 5-methyltetrahydrofolate (5 mTHF) to glycine-N-methyltransferase (GNMT) and explain why data in the literature implies that when one molecule binds, GNMT retains half its activity. Using the model, we quantify the effects of different regulatory mechanisms and show how cell processes would be different if the regulatory mechanisms were eliminated. In addition, we use the model to interpret and understand data from studies in the literature. Finally, we explain why a full understanding of how competing MTs are regulated is important for designing intervention strategies to improve human health. CONCLUSIONS We give strong computational evidence that once bound GNMT retains half its activity. The long-range allosteric interactions enable the cell to regulate the MT reactions somewhat independently. The low K m values of many MTs also play a role because the reactions then run near saturation and changes in SAM have little effect. Finally, the inhibition of the MTs by the product S-adenosylhomocysteine also stabilizes reaction rates against changes in SAM.
Collapse
|
19
|
Alsayed R, Al Quobaili F, Srour S, Geisel J, Obeid R. Elevated dimethylglycine in blood of children with congenital heart defects and their mothers. Metabolism 2013; 62:1074-80. [PMID: 23481916 DOI: 10.1016/j.metabol.2013.01.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 01/07/2013] [Accepted: 01/31/2013] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Congenital Heart Defects (CHD) may be related to nutritional deficiencies affecting the methylation cycle. We aimed to study the metabolic markers of the betaine homocysteine methyl transferase (BHMT) pathway in children with CHD and their mothers compared to children without CHD and their mothers. MATERIALS AND METHODS Children with CHD (n=105, age < 3 years) and mothers of 80 of the affected children were studied. The controls were non-CHDs children of comparable age as the CHD group (n=52) and their mothers (n=50). We measured serum or plasma concentrations of the metabolites of the methylation cycle homocysteine (HCY), methylmalonic acid (MMA), cystathionine, S-adenosylmethionine (SAM), S-adenosylhomocysteine (SAH), betaine, choline, and dimethylglycine (DMG). RESULTS Children with CHD had higher plasma SAM (131 vs. 100 nmol/L) and DMG (8.7 vs. 6.0 μmol/L) and lower betaine/DMG ratio (7.5 vs. 10.2) compared to the controls. Mothers of CHD children showed also higher DMG (6.1 vs. 4.1 µmol/L) and lower betaine/DMG ratio compared with the mothers of the controls. Higher SAM levels were related to higher cystathionine, MMA, betaine, choline, and DMG. MMA elevation in the patients was related to higher HCY, SAM, betaine and DMG. CONCLUSIONS Elevated DMG in CHD children and their mothers compared to the controls can indicate upregulation of the BHMT pathway in this disease group. Nutritional factors are related to metabolic imbalance during pregnancy that may be related to worse birth outcome.
Collapse
Affiliation(s)
- Ranwa Alsayed
- Damascus University, Faculty of Pharmacy, Department of Biochemistry, Damascus, Syria.
| | | | | | | | | |
Collapse
|
20
|
Abstract
Sulfur is the seventh most abundant element measurable in the human body and is supplied mainly by the intake of methionine (Met), an indispensable amino acid found in plant and animal proteins. Met controls the initiation of protein synthesis, governs major metabolic and catalytic activities, and may undergo reversible redox processes safeguarding protein integrity. Withdrawal of Met from customary diets causes the greatest downsizing of lean body mass following either unachieved replenishment (malnutrition) or excessive losses (inflammation). These physiopathologically unrelated morbidities nevertheless stimulate comparable remethylation reactions from homocysteine, indicating that Met homeostasis benefits from high metabolic priority. Inhibition of cystathionine-β-synthase activity causes the upstream sequestration of homocysteine and the downstream drop in cysteine and glutathione. Consequently, the enzymatic production of hydrogen sulfide and the nonenzymatic reduction of elemental sulfur to hydrogen sulfide are impaired. Sulfur operates as cofactor of several enzymes critically involved in the regulation of oxidative processes. A combination of malnutrition and nutritional deprivation of sulfur maximizes the risk of cardiovascular disorders and stroke, constituting a novel clinical entity that threatens plant-eating population groups.
Collapse
Affiliation(s)
- Yves Ingenbleek
- Laboratory of Nutrition, Faculty of Pharmacy, University Louis Pasteur, Strasbourg, France.
| | | |
Collapse
|
21
|
Reyes-Palomares A, Montañez R, Sánchez-Jiménez F, Medina MA. A combined model of hepatic polyamine and sulfur amino acid metabolism to analyze S-adenosyl methionine availability. Amino Acids 2011; 42:597-610. [PMID: 21814788 DOI: 10.1007/s00726-011-1035-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/26/2011] [Indexed: 12/12/2022]
Abstract
Many molecular details remain to be uncovered concerning the regulation of polyamine metabolism. A previous model of mammalian polyamine metabolism showed that S-adenosyl methionine availability could play a key role in polyamine homeostasis. To get a deeper insight in this prediction, we have built a combined model by integration of the previously published polyamine model and one-carbon and glutathione metabolism model, published by different research groups. The combined model is robust and it is able to achieve physiological steady-state values, as well as to reproduce the predictions of the individual models. Furthermore, a transition between two versions of our model with new regulatory factors added properly simulates the switch in methionine adenosyl transferase isozymes occurring when the liver enters in proliferative conditions. The combined model is useful to support the previous prediction on the role of S-adenosyl methionine availability in polyamine homeostasis. Furthermore, it could be easily adapted to get deeper insights on the connections of polyamines with energy metabolism.
Collapse
Affiliation(s)
- Armando Reyes-Palomares
- Department of Molecular Biology and Biochemistry, Faculty of Science, University of Málaga, 29071, Málaga, Spain
| | | | | | | |
Collapse
|
22
|
Qipshidze N, Tyagi N, Sen U, Givvimani S, Metreveli N, Lominadze D, Tyagi SC. Folic acid mitigated cardiac dysfunction by normalizing the levels of tissue inhibitor of metalloproteinase and homocysteine-metabolizing enzymes postmyocardial infarction in mice. Am J Physiol Heart Circ Physiol 2010; 299:H1484-93. [PMID: 20802128 DOI: 10.1152/ajpheart.00577.2010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Myocardial infarction (MI) results in significant metabolic derangement, causing accumulation of metabolic by product, such as homocysteine (Hcy). Hcy is a nonprotein amino acid generated during nucleic acid methylation and demethylation of methionine. Folic acid (FA) decreases Hcy levels by remethylating the Hcy to methionine, by 5-methylene tetrahydrofolate reductase (5-MTHFR). Although clinical trials were inconclusive regarding the role of Hcy in MI, in animal models, the levels of 5-MTHFR were decreased, and FA mitigated the MI injury. We hypothesized that FA mitigated MI-induced injury, in part, by mitigating cardiac remodeling during chronic heart failure. Thus, MI was induced in 12-wk-old male C57BL/J mice by ligating the left anterior descending artery, and FA (0.03 g/l in drinking water) was administered for 4 wk after the surgery. Cardiac function was assessed by echocardiography and by a Millar pressure-volume catheter. The levels of Hcy-metabolizing enzymes, cystathionine β-synthase (CBS), cystathionine γ-lyase (CSE), and 5-MTHFR, were estimated by Western blot analyses. The results suggest that FA administered post-MI significantly improved cardiac ejection fraction and induced tissue inhibitor of metalloproteinase, CBS, CSE, and 5-MTHFR. We showed that FA supplementation resulted in significant improvement of myocardial function after MI. The study eluted the importance of homocysteine (Hcy) metabolism and FA supplementation in cardiovascular disease.
Collapse
Affiliation(s)
- Natia Qipshidze
- Department of Physiology and Biophysics, School of Medicine, University of Louisville, Louisville, Kentucky 40202, USA
| | | | | | | | | | | | | |
Collapse
|
23
|
Sárdi É, Stefanovits-Bányai É, Kocsis I, Takács-Hájos M, Fébel H, Blázovics A. Effect of bioactive compounds of table beet cultivars on alimentary induced fatty livers of rats. ACTA ALIMENTARIA 2009. [DOI: 10.1556/aalim.38.2009.3.1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
24
|
Robaey P, Krajinovic M, Marcoux S, Moghrabi A. Pharmacogenetics of the neurodevelopmental impact of anticancer chemotherapy. ACTA ACUST UNITED AC 2009; 14:211-20. [PMID: 18924160 DOI: 10.1002/ddrr.29] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Pharmacogenetics holds the promise of minimizing adverse neurodevelopmental outcomes of cancer patients by identifying patients at risk, enabling the individualization of treatment and the planning of close follow-up and early remediation. This review focuses first on methotrexate, a drug often implicated in neurotoxicity, especially when used in combination with brain irradiation. The second focus is on glucocorticoids that have been found to be linked to adverse developmental effects in relation with the psychosocial environment. For both examples, we review how polymorphisms of genes encoding enzymes involved in specific mechanisms of action could moderate adverse neurodevelopmental consequences, eventually through common final pathways such as oxidative stress. We discuss a multiple hit model and possible strategies required to rise to the challenge of this integrative research.
Collapse
Affiliation(s)
- Philippe Robaey
- Centre de Recherche de l'Hôpital Sainte-Justine, Université de Montréal, Montréal, Québec.
| | | | | | | |
Collapse
|
25
|
Finkelstein JD. Metabolic regulatory properties of S-adenosylmethionine and S-adenosylhomocysteine. Clin Chem Lab Med 2008; 45:1694-9. [PMID: 17963455 DOI: 10.1515/cclm.2007.341] [Citation(s) in RCA: 122] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In mammalian liver, two intersecting pathways, remethylation and transsulfuration, compete for homocysteine that has been formed from methionine. Remethylation of homocysteine, employing either methyltetrahydrofolate or betaine as the methyl donor, forms a methionine cycle that functions to conserve methionine. In contrast, the transsulfuration sequence -- cystathionine synthase and cystathionase -- serves to irreversibly catabolize the homocysteine while synthesizing cysteine. The rate of homocysteine formation and its distribution between these two pathways are the sites for metabolic regulation and coordination. The mechanisms for regulation include both the tissue content and the kinetic properties of the component enzymes as well as the concentrations of their substrates and other metabolic effectors. Adenosylmethionine and adenosylhomocysteine are important regulatory metabolites and may use one or more mechanisms to affect the enzymes. Adenosylmethionine is a positive effector of its own synthesis, cystathionine synthase and glycine methyltransferase but impairs both homocysteine methylases. Thus, the concentration of adenosylmethionine may be self-regulatory in mammalian liver. By means of other enzymatic mechanisms, the hepatic concentration of adenosylhomocysteine, an index of homocysteine accumulation, is also self-regulated. These considerations pertain primarily to liver, which has the unique capacity to synthesize more adenosylmethionine in the presence of excess methionine. However, there are organ-specific patterns of methionine metabolism and its regulation. All tissues possess the methionine cycle with methyltetrahydrofolate as the methyl donor but only liver, kidney, pancreas, intestine and brain also contain the transsulfuration pathway. The limitation of adenosylmethionine concentrations may make adenosylhomocysteine a more significant metabolic regulator in extrahepatic tissues. However, estimates of regulatory changes based on determinations of the plasma concentrations of the two metabolites are of limited value and must be used with caution. In addition, the recent description of "cystathionine (CBS) domains" in proteins not involved with methionine metabolism raises the possibility that abnormal concentrations of the adenosyl metabolites may impact on other metabolic pathways.
Collapse
Affiliation(s)
- James D Finkelstein
- Veterans Affairs Medical Center and George Washington University, Washington, DC 20016, USA.
| |
Collapse
|
26
|
Ingenbleek Y, Young VR. The essentiality of sulfur is closely related to nitrogen metabolism: a clue to hyperhomocysteinaemia. Nutr Res Rev 2007; 17:135-51. [DOI: 10.1079/nrr200489] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
AbstractN and S metabolisms are closely interwoven throughout both the plant and animal kingdoms. The essentiality of S relates to its participation in the structure of S-containing amino acids (SAA), to its inclusion in many sulfonated molecules, and to a myriad of metabolic and catalytic reactions of vital importance. Methionine (Met) is the indispensable SAA supplied by food proteins and its plasma homeostasis is achieved via a number of highly efficient regulatory mechanisms. In all conditions characterised by a negative body protein balance such as in dietary restriction or cytokine-induced hypercatabolic losses, N and S endogenous pools manifest parallel tissue depletion rates. Adaptive conservation of N and S body stores is reached by a functional restraint of the trans-sulfuration cascade, through the depression of cystathionine β-synthase activity. As a result, upstream accumulation of homocysteine favours its re-methylation conversion to Met which helps maintain metabolic pathways of survival value. In addition to the measurement of vitamin indices, that of plasma transthyretin, a sensitive marker of protein nutritional status, is proposed to identify the fluctuations of the total body N component accountable for the alterations of homocysteine concentrations in body fluids.
Collapse
|
27
|
Affiliation(s)
- J D Finkelstein
- Department of Veterans Affairs Medical Center and George Washington University School of Medicine, Washington, DC, USA
| |
Collapse
|
28
|
Oliveriusová J, Kery V, Maclean KN, Kraus JP. Deletion mutagenesis of human cystathionine beta-synthase. Impact on activity, oligomeric status, and S-adenosylmethionine regulation. J Biol Chem 2002; 277:48386-94. [PMID: 12379655 DOI: 10.1074/jbc.m207087200] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cystathionine beta-synthase is a tetrameric hemeprotein that catalyzes the pyridoxal 5'-phosphate-dependent condensation of serine and homocysteine to cystathionine. We have used deletion mutagenesis of both the N and C termini to investigate the functional organization of the catalytic and regulatory regions of this enzyme. Western blot analysis of these mutants expressed in Escherichia coli indicated that residues 497-543 are involved in tetramer formation. Deletion of the 70 N-terminal residues resulted in a heme-free protein retaining 20% of wild type activity. Additional deletion of 151 C-terminal residues from this mutant resulted in an inactive enzyme. Expression of this double-deletion mutant as a glutathione S-transferase fusion protein generated catalytically active protein (15% of wild type activity) that was unaffected by subsequent removal of the fusion partner. The function of the N-terminal region appears to be primarily steric in nature and involved in the correct folding of the enzyme. The C-terminal region of human cystathionine beta-synthase contains two hydrophobic motifs designated "CBS domains." Partial deletion of the most C-terminal of these domains decreased activity and caused enzyme aggregation and instability. Removal of both of these domains resulted in stable constitutively activated enzyme. Deletion of as few as 8 C-terminal residues increased enzyme activity and abolished any further activation by S-adenosylmethionine indicating that the autoinhibitory role of the C-terminal region is not exclusively a function of the CBS domains.
Collapse
Affiliation(s)
- Jana Oliveriusová
- Department of Pediatrics, University of Colorado School of Medicine, Denver 80262, USA
| | | | | | | |
Collapse
|
29
|
Martínez-Chantar ML, García-Trevijano ER, Latasa MU, Pérez-Mato I, Sánchez del Pino MM, Corrales FJ, Avila MA, Mato JM. Importance of a deficiency in S-adenosyl-l-methionine synthesis in the pathogenesis of liver injury. Am J Clin Nutr 2002. [DOI: 10.1093/ajcn/76.5.1177s] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
|
30
|
Teague B, Asiedu S, Moore PK. The smooth muscle relaxant effect of hydrogen sulphide in vitro: evidence for a physiological role to control intestinal contractility. Br J Pharmacol 2002; 137:139-45. [PMID: 12208769 PMCID: PMC1573483 DOI: 10.1038/sj.bjp.0704858] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2002] [Revised: 06/26/2002] [Accepted: 06/27/2002] [Indexed: 01/02/2023] Open
Abstract
1. Sodium hydrogen sulphide (NaHS), a donor of hydrogen sulphide (H(2)S), produced dose-related relaxation of the rabbit isolated ileum (EC(50), 76.4+/-7.9 microM) and rat vas deferens (EC(50), 64.8+/-5.4 microM) and reduced ACh-mediated contraction of the guinea-pig isolated ileum. 2. NaHS also reduced the response of the guinea-pig (EC(50), 80.0+/-5.7 microM) and rat (EC(50), 108.2+/-11.2 microM) ileum preparations to electrical stimulation of the intramural nerves. In guinea-pig ileum this effect was spontaneously reversible and mimicked by sodium nitroprusside (SNP, EC(50), 2.1 microM). Combination of NaHS (20 microM) with SNP (0.5 microM) produced a greater than additive inhibition of the twitch response of the ileum to electrical stimulation. 3. The inhibitory effect of NaHS on the field-stimulated guinea-pig ileum was unaffected by pretreatment with L-NAME (100 microM), indomethacin (10 microM), naloxone (1 microM) or glibenclamide (100 microM). Furthermore, NaHS (200 microM) did not affect the contractile response of the ileum to KCl (10 to 60 mM). 4. Propargylglycine (PAG, 1 mM) and beta-cyanoalanine (BCA, 1 mM) (inhibitors of cystathionine-gamma-lyase) but not aminooxyacetic acid (AOAA, 1 mM) (inhibitor of cystathionine-beta-synthetase) caused a slowly developing increase in the contraction of the guinea-pig ileum to field stimulation. This effect was reversed by cysteine (1 mM). 5. These results show that NaHS relaxes gastrointestinal and urogenital smooth muscle and suggest that H(2)S is responsible for these effects. The possibility that endogenous H(2)S, formed as a consequence of activation of intramural nerves, plays a part in controlling the contractility of the guinea-pig ileum is discussed.
Collapse
Affiliation(s)
- B Teague
- Centre for Cardiovascular Biology and Medicine, King's College, University of London, London SE1 1UL
| | - S Asiedu
- Centre for Cardiovascular Biology and Medicine, King's College, University of London, London SE1 1UL
| | - P K Moore
- Centre for Cardiovascular Biology and Medicine, King's College, University of London, London SE1 1UL
| |
Collapse
|
31
|
Lambert BD, Titgemeyer EC, Stokka GL, DeBey BM, Löest CA. Methionine supply to growing steers affects hepatic activities of methionine synthase and betaine-homocysteine methyltransferase, but not cystathionine synthase. J Nutr 2002; 132:2004-9. [PMID: 12097683 DOI: 10.1093/jn/132.7.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The effects of supplemental methionine (Met), supplied abomasally, on the activities of methionine synthase (MS), cystathionine synthase (CS) and betaine-homocysteine methyltransferase (BHMT) were studied in growing steers. Six Holstein steers (205 kg) were used in a replicated 3 x 3 Latin square experiment. Steers were fed 2.6 kg dry matter daily of a diet containing 83% soybean hulls and 8% wheat straw. Ruminal infusions of 180 g/d acetate, 180 g/d propionate, 45 g/d butyrate, and abomasal infusion of 300 g/d dextrose provided additional energy. An amino acid mixture (299 g/d) limiting in Met was infused into the abomasum to ensure that nonsulfur amino acids did not limit growth. Treatments were infused abomasally and included 0, 5 or 10 g/d L-Met. Retained N (20.5, 26.9 and 31.6 g/d for 0, 5 and 10 g/d L-Met, respectively) increased (P < 0.01) linearly with increased supplemental Met. Hepatic Met, vitamin B-12, S-adenosylmethionine and S-adenosylhomocysteine were not affected by Met supplementation. Hepatic folates tended (P = 0.07) to decrease linearly with Met supplementation. All three enzymes were detected in hepatic tissue of our steers. Hepatic CS activity was not affected by Met supplementation. Hepatic MS decreased (P < 0.01) linearly with increasing Met supply, and hepatic BHMT activity responded quadratically (P = 0.04), with 0 and 10 g/d Met being higher than the intermediate level. Data from this experiment indicate that sulfur amino acid metabolism may be regulated differently in cattle than in other tested species.
Collapse
Affiliation(s)
- Barry D Lambert
- Department of Animal Sciences and Industry, Kansas State University, Manhattan 66506-1600, USA
| | | | | | | | | |
Collapse
|
32
|
Bose N, Greenspan P, Momany C. Expression of recombinant human betaine: homocysteine S-methyltransferase for x-ray crystallographic studies and further characterization of interaction with S-adenosylmethionine. Protein Expr Purif 2002; 25:73-80. [PMID: 12071701 DOI: 10.1006/prep.2001.1611] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Elevated homocysteine as a result of dysfunctional metabolic enzymes is an independent risk factor for arteriosclerosis. Betaine:homocysteine S-methyltransferase (BHMT) (EC 2.1.1.5) is an important enzyme in the pathway of homocysteine metabolism in that it recycles methionine from homocysteine and nonfolate methyl donors. To initiate X-ray crystallographic structural studies, we created a BHMT expression construct for use in Escherichia coli that has a polyhistidine purification tag with no extraneous protein, usually found in commercial vectors, between the tag and protein sequence. The extra amino acids can hinder the crystallization process. A modified pET28b vector was designed to produce N-terminal polyhistidine-tagged proteins with a simple construction scheme having broad applicability because of the use of rare SapI cloning sites. BHMT expressed using this vector could be rapidly purified using metal chelate chromatography. Gel exclusion chromatography analysis showed that recombinant polyhistidine-tagged human BHMT is a tetramer. S-Adenosylmethionine (SAMe) has no effect on the recombinant BHMT's ability to methylate homocysteine nor does the enzyme appear to bind SAMe when examined by microcalorimetry.
Collapse
Affiliation(s)
- Nandita Bose
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, Athens, Georgia 30605, USA
| | | | | |
Collapse
|
33
|
Mato JM, Corrales FJ, Lu SC, Avila MA. S-Adenosylmethionine: a control switch that regulates liver function. FASEB J 2002; 16:15-26. [PMID: 11772932 DOI: 10.1096/fj.01-0401rev] [Citation(s) in RCA: 311] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genome sequence analysis reveals that all organisms synthesize S-adenosylmethionine (AdoMet) and that a large fraction of all genes is AdoMet-dependent methyltransferases. AdoMet-dependent methylation has been shown to be central to many biological processes. Up to 85% of all methylation reactions and as much as 48% of methionine metabolism occur in the liver, which indicates the crucial importance of this organ in the regulation of blood methionine. Of the two mammalian genes (MAT1A, MAT2A) that encode methionine adenosyltransferase (MAT, the enzyme that makes AdoMet), MAT1A is specifically expressed in adult liver. It now appears that growth factors, cytokines, and hormones regulate liver MAT mRNA levels and enzyme activity and that AdoMet should not be viewed only as an intermediate metabolite in methionine catabolism, but also as an intracellular control switch that regulates essential hepatic functions such as regeneration, differentiation, and the sensitivity of this organ to injury. The aim of this review is to integrate these recent findings linking AdoMet with liver growth, differentiation, and injury into a comprehensive model. With the availability of AdoMet as a nutritional supplement and evidence of its beneficial role in various liver diseases, this review offers insight into its mechanism of action.
Collapse
Affiliation(s)
- Jose M Mato
- Division of Hepatology and Gene Therapy, School of Medicine, University of Navarra, 31008 Pamplona, Spain.
| | | | | | | |
Collapse
|
34
|
Medina M, Urdiales JL, Amores-Sánchez MI. Roles of homocysteine in cell metabolism: old and new functions. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:3871-82. [PMID: 11453979 DOI: 10.1046/j.1432-1327.2001.02278.x] [Citation(s) in RCA: 145] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mild hyperhomocysteinemia has been suggested as a new, independent risk factor for cardiovascular disease. This fact has produced a new, increased interest in the study of homocysteine metabolism and its relation to pathogenesis. This emergent area of biomedical research is reviewed here, stressing the biochemical and metabolic basis of the pathogenicity of increased levels of homocysteine.
Collapse
Affiliation(s)
- M Medina
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Spain.
| | | | | |
Collapse
|
35
|
Abstract
This paper shows that the linkage between basic science and clinical research has characterized the field of sulfur amino acid metabolism since 1810, when Wollaston isolated cystine from a human bladder stone. The nature and consequences of this relationship are discussed.
Collapse
Affiliation(s)
- J D Finkelstein
- Veterans Affairs Medical Center, George Washington University, DC 20422, USA
| |
Collapse
|
36
|
Park EI, Renduchintala MS, Garrow TA. Diet-Induced Changes in Hepatic Betaine-Homocysteine Methyltransferase Activity Are Mediated By Changes in the Steady-State Level of Its mRNA. J Nutr Biochem 1997. [DOI: 10.1016/s0955-2863(97)00101-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Poirson-Bichat F, Lopez R, Bras Gonçalves RA, Miccoli L, Bourgeois Y, Demerseman P, Poisson M, Dutrillaux B, Poupon MF. Methionine deprivation and methionine analogs inhibit cell proliferation and growth of human xenografted gliomas. Life Sci 1997; 60:919-31. [PMID: 9061049 DOI: 10.1016/s0024-3205(96)00672-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Growth of numerous malignant tumors depends on an exogenous methionine (MET) supply, while endogenously synthesized MET supports normal cell proliferation. Because an antitumor effect should be obtained by aggravating the altered MET metabolism in gliomas, MET dependency of human xenografted gliomas was evaluated and a therapeutic approach using MET deprivation or MET analogs to induce MET starvation was applied. In vitro proliferation inhibition of glioma cell lines by MET deprivation and two MET analogs, ethionine (ETH) and trifluoromethylhomocysteine (TFH), was measured. Proliferation of 7 human glioma cell lines tested was inhibited in MET-free medium, and was poorly or not reversed by homocysteine (HCY). ETH or TFH (concentration range: 0.005-2 mg/ml) inhibited proliferation of all cell lines tested. MET analog-induced inhibition was abolished by MET and enhanced by HCY. Cell-cycle alterations due to MET deprivation were optimally assessed after 30 h of culture and bromodeoxyuridine incorporation. In MET- medium, cells were arrested in the G1-phase. ETH induced a dramatic accumulation of cells in the G2-phase. ATP contents were reduced by MET analogs only in HCY+ medium, suggesting complementary effects of MET analogs and HCY. Human glioma bearing nude mice were fed an amino acid-substituted MET- HCY-supplemented diet (MET-HCY+) and/or treated with MET analogs, injected intraperitoneally daily. Using two human xenografted tumors derived from gliomas, antitumor effects were obtained by subjecting tumor-bearing nude mice to MET starvation. TG-1-MA was more sensitive to MET depletion (40% of growth inhibition, P < 0.10) than TG-8-OZ (no growth inhibition). Antitumor effects of a MET-HCY+ diet and 200 mg/kg of ETH were potentiated when co-administered to glioma-bearing mice (77% GI, P < 0.025 and 67%, P < 0.0057 to TG-1-MA and TG-8-OZ respectively). A dose-response effect with no toxicity was obtained when the ETH dose was increased 10 fold. Potentiation of the effects of ETH and a MET-free diet indicates that they probably act on the same pathway but not the same target. In conclusion, experimentally induced MET deprivation and MET-analog treatment retarded the growth of human gliomas. Combination of MET-analog therapy with MET substitution by HCY enhanced their respective effects.
Collapse
|
38
|
Mato JM, Alvarez L, Ortiz P, Pajares MA. S-adenosylmethionine synthesis: molecular mechanisms and clinical implications. Pharmacol Ther 1997; 73:265-80. [PMID: 9175157 DOI: 10.1016/s0163-7258(96)00197-0] [Citation(s) in RCA: 349] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Methionine adenosyltransferase (MAT) is an ubiquitous enzyme that catalyzes the synthesis of S-adenosylmethionine from methionine and ATP. In mammals, there are two genes coding for MAT, one expressed exclusively in the liver and a second enzyme present in all tissues. Molecular studies indicate that liver MAT exists in two forms: as a homodimer and as a homotetramer of the same oligomeric subunit. The liver-specific isoenzymes are inhibited in human liver cirrhosis, and this is the cause of the abnormal metabolism of methionine in these subjects.
Collapse
Affiliation(s)
- J M Mato
- Instituto de Investigaciones Biomédicas, CSIC, Madrid, Spain
| | | | | | | |
Collapse
|
39
|
Sánchez-Góngora E, Pastorino JG, Alvarez L, Pajares MA, García C, Viña JR, Mato JM, Farber JL. Increased sensitivity to oxidative injury in chinese hamster ovary cells stably transfected with rat liver S-adenosylmethionine synthetase cDNA. Biochem J 1996; 319 ( Pt 3):767-73. [PMID: 8920979 PMCID: PMC1217855 DOI: 10.1042/bj3190767] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Chinese hamster ovary cells were stably transfected with rat liver S-adenosylmethionine synthetase cDNA. As a result, S-adenosylmethionine synthetase activity increased 2.3-fold, an effect that was accompanied by increased S-adenosylmethionine, a depletion of ATP and NAD levels, elevation of the S-adenosylmethionine/S-adenosylhomocysteine ratio (the methylation ratio), increased DNA methylation and polyamine levels (spermidine and spermine), and normal GSH levels. By contrast, the transfected cells showed normal growth curves and morphology. Exposure to an oxidative stress by the addition of H2O2 resulted in a greater consumption of ATP and NAD in the transfected cells than in the wild-type cells. In turn, cell killing by H2O2 was greater in the transfected cells than in the wild-type cells. This killing of Chinese hamster ovary cells by H2O2 involved the activation of poly(ADP-ribose) polymerase with the resultant loss of NAD and ATP. 3-Aminobenzamide, an inhibitor of poly(ADP-ribose) polymerse, but not the antioxidant N,N'-diphenylphenylenediamine, prevented the killing of Chinese hamster ovary cells by H2O2 and maintained the contents of NAD and ATP. The results of this study indicate that a moderate activation of the synthesis of S-adenosylmethionine leads to ATP and NAD depletion and to a greater sensitivity to cell killing by oxidative stress.
Collapse
Affiliation(s)
- E Sánchez-Góngora
- Instituto de Investigaciones Biomédicas, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Garrow TA. Purification, kinetic properties, and cDNA cloning of mammalian betaine-homocysteine methyltransferase. J Biol Chem 1996; 271:22831-8. [PMID: 8798461 DOI: 10.1074/jbc.271.37.22831] [Citation(s) in RCA: 178] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Porcine liver betaine-homocysteine methyltransferase (BHMT; EC) was purified to homogeneity, and the Michaelis constants for betaine, dimethylacetothetin, and L-homocysteine are 23, 155, and 32 microM, respectively. The maximum rate of catalysis is 47-fold greater using dimethylacetothetin as a methyl donor compared with betaine. Partial amino acid sequence of porcine BHMT was obtained, and inosine-containing redundant oligonucleotide primers were used to amplify an 815-base pair sequence of the porcine cDNA by polymerase chain reaction (PCR). Nondegenerate oligonucleotide primers based on the porcine cDNA were synthesized and used to isolate a 463-base pair fragment of the human cDNA by PCR. The human PCR DNA product was then used to screen a cDNA library by plaque hybridization, and cDNAs encoding human BHMT were isolated. The primary structure of the human cDNA is reported here, and the open reading frame encodes a 406-residue protein of Mr 44,969. The deduced amino acid sequence of human BHMT shows limited homology to bacterial vitamin B12-dependent methionine synthases (EC). A plasmid containing the human BHMT cDNA fused in frame to the N terminus of beta-galactosidase was transformed into Escherichia coli, and transformants expressed BHMT activity, an activity that is absent from wild type E. coli.
Collapse
Affiliation(s)
- T A Garrow
- Department of Food Science and Human Nutrition, University of Illinois, Urbana, Illinois 61801, USA
| |
Collapse
|
41
|
Kretzschmar M. Regulation of hepatic glutathione metabolism and its role in hepatotoxicity. EXPERIMENTAL AND TOXICOLOGIC PATHOLOGY : OFFICIAL JOURNAL OF THE GESELLSCHAFT FUR TOXIKOLOGISCHE PATHOLOGIE 1996; 48:439-46. [PMID: 8765689 DOI: 10.1016/s0940-2993(96)80054-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The regulation of hepatic glutathione (GSH) metabolism have been reviewed. Key steps in the regulation of hepatic GSH are GSH biosynthesis, the GSH-redox-cycle, the cystathionine pathway, and the carrier-mediated export processes. Possible influences of xenobiotics on these different pathways are discussed. GSH fulfills several essential functions; detoxification of oxygen-derived free radicals, thioldisulfide exchange and storage and transfer of cysteine. GSH is present in all mammalian cells, but may be especially important for organs with intensive exposure to exogenous toxins such as the liver. Within the cell mitochondrial GSH is the main defense against physiological oxidative stress generated by cellular respiration and may be a critical target for toxins. Glutathione homeostasis of the organism is a highly complex process, which is predominantly regulated by the liver but also by skeletal muscle, lung and kidney.
Collapse
Affiliation(s)
- M Kretzschmar
- Clinic of Anesthesiology and Intensive Care Medicine, General Hospital Gera, Germany
| |
Collapse
|
42
|
Abstract
Cbl and folate are both necessary for the metabolism of HCYS, whereas only Cbl is required for MMA metabolism. During the past decade, analytical methods have been developed that are sensitive enough to detect low levels of MMA and HCYS normally present in the plasma. These methods are sufficiently precise to be used in the clinical laboratory and measurements of the serum levels of the metabolites provide sensitive and specific techniques for the identification of Cbl and folate deficiencies. These techniques constitute an important addition to the battery of diagnostic tests that are available for detecting the vitamin deficiencies and for distinguishing each from the other. By virtue of the role of Cbl and folate in the metabolic pathways that involve MMA and HCYS, levels of both metabolites rise in Cbl deficiency, but only HCYS rises in folate deficiency. During the development of Cbl or folate deficiencies, accumulation of these metabolites in the plasma signals the existence of a condition of biochemical vitamin deficiency of sufficient degree to cause impairment in the metabolic pathways which are dependent on these vitamins. Circulating metabolite levels appear to accurately reflect the nutritional status of the vitamins and a rise in serum metabolite levels is therefore one of the earliest and most reliable indicators of developing Cbl and folate deficiencies. Elevations of serum metabolites above the reference range not only precede a fall in the serum vitamin levels but also show a more consistent correlation with objective evidence of vitamin deficiency than do low blood vitamin levels. The advent of serum metabolite measurements has also made it possible to identify subtle or atypical forms of vitamin deficiency that may be associated with unusual or previously undiscovered disease manifestations. Thus, in patients who display only neurological manifestations of disease, underlying Cbl deficiency may be revealed by the finding of raised serum or urine levels of MMA. Similarly, unsuspected folate deficiency may be disclosed by the finding of a raised serum HCYS. This may have important implications with respect to disease risk, since there is mounting evidence that sub-optimal folate nutritional status may be associated with increased risks of vascular disease, neoplasia and birth defects. Finally, the measurement of serum levels of MMA, HCYS and other metabolites that accumulate in Cbl and folate deficiencies may provide important new insights into the mechanism whereby these vitamin deficiencies lead to different patterns and manifestations of disease.
Collapse
Affiliation(s)
- R Green
- Department of Clinical Pathology, Cleveland Clinic Foundation, Ohio 44195, USA
| |
Collapse
|
43
|
Kery V, Bukovska G, Kraus JP. Transsulfuration depends on heme in addition to pyridoxal 5'-phosphate. Cystathionine beta-synthase is a heme protein. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47244-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
44
|
Manteuffel-Cymborowska M, Chmurzynska W, Grzelakowska-Sztabert B. Tissue-specific effects of testosterone on S-adenosylmethionine formation and utilization in the mouse. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1116:166-72. [PMID: 1581345 DOI: 10.1016/0304-4165(92)90113-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Exogenous administration of testosterone produced several metabolic tissue-specific changes in female mouse kidneys, but not in the liver. The hormone induced ornithine decarboxylase (ODC) activity, and also profoundly influenced metabolism of S-adenosylmethionine (AdoMet). Therefore, the activity of the AdoMet-synthesizing enzyme (AdoMet synthetase) and of cystathionine synthase, which commits homocysteine irreversibly to the transsulfuration pathway, were significantly increased. In contrast to the level of AdoMet in the liver the renal level of this metabolite was augmented, whereas the level of S-adenosylhomocysteine (AdoHcy) did not change. This resulted in an increase of the AdoMet/AdoHcy ratio. In testosterone-treated mice, pulse-labelled with [methyl-14C]methionine, the radioactivity recovered in the kidneys doubled, but in the liver remained the same. The rise in radioactivity recovered occurred mainly in TCA-soluble compounds and lipids, and to a smaller extent, in proteins and nucleic acids.
Collapse
|
45
|
Lee KH, Cava M, Amiri P, Ottoboni T, Lindquist RN. Betaine:Homocysteine methyltransferase from rat liver: Purification and inhibition by a boronic acid substrate analog. Arch Biochem Biophys 1992; 292:77-86. [PMID: 1370132 DOI: 10.1016/0003-9861(92)90053-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Betaine:homocysteine methyltransferase (BHMT) from rat liver has been highly purified by an efficient procedure requiring only two chromatographic steps: Sephadex G-100 chromatography and fast protein liquid chromatography chromatofocusing. A 170-fold purification and 7.5% overall yield were achieved. Chromatofocusing yielded three active forms of BHMT with pI values near 8.0, 7.6, and 7.0. The subunit molecular weight of each active form is 45,000 Da as determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis, and the native enzyme has a molecular weight of 270,000 as determined by exclusion chromatography. The stability of the purified enzyme was found to be potentiated by the presence of 1 mM dimethylglycine and 1 mM homocysteine. Boronate analogs of betaine (pinanyl N,N,N-trimethylaminomethaneboronate) (4) and dimethylglycine (pinanyl N,N-dimethylaminomethaneboronate) were synthesized from pinanyl iodomethaneboronate (3) and trimethylamine or dimethylamine, respectively. The free acid of the betaine analog (5) was reversibly generated from (4). The inhibition of BHMT by (5) appears competitive with a Ki = 45 microM. Since the Km for betaine measured with the purified enzyme is near 0.1 mM, the boronic acid analog of betaine appears to function effectively as a substrate analog inhibitor of BHMT. The analog does not appear to act as a methyl donor to homocysteine when (5) is substituted for betaine in the enzyme reaction. In addition, an enzyme assay based upon C3-cyano reverse phase HPLC detection of the o-phthalaldehyde derivative of methionine was developed as an alternative to the standard radiochemical assay. Betaine:homocysteine methyltransferase in the picomole range can be quantitated using this assay as indicated by a linear response of enzyme activity to protein concentration.
Collapse
Affiliation(s)
- K H Lee
- Department of Chemistry and Biochemistry, San Francisco State University, California 94132
| | | | | | | | | |
Collapse
|
46
|
Kozich V, Kraus JP. Screening for mutations by expressing patient cDNA segments in E. coli: homocystinuria due to cystathionine beta-synthase deficiency. Hum Mutat 1992; 1:113-23. [PMID: 1301198 DOI: 10.1002/humu.1380010206] [Citation(s) in RCA: 80] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Deficiency of cystathionine beta-synthase (CBS) causes the most common form of inherited homocystinuria. We developed a simple CBS expression system in E. coli to screen for pathogenic mutations in affected individuals. Portions of patient cDNAs were amplified by PCR and used to replace the corresponding segments of normal human CBS cDNA in the bacterial expression plasmid pHCS3. Hybrid CBS was expressed in E. coli and the segments of patient's cDNA which extinguished CBS activity were sequenced to identify the mutation. The first study of a pyridoxine-responsive patient using this screen revealed that of the clones which contained either the middle or the 3'-portion of his cDNA, about half were devoid of catalytic activity. Subsequent sequencing of the affected segments confirmed a compound heterozygosity for a maternal T833-->C transition (I278T) and for a paternal A-->C transversion in the intron 11 splice acceptor. The latter mutation leads to an in-frame deletion of exon 12 (nt 1224-1358, amino acids W408 to G453). This bacterial expression system proved to be a rapid screening method for localizing pathogenic mutations in CBS, allowing us to sequence the affected portions of mutant cDNA within 7-10 days of harvesting cultured fibroblasts.
Collapse
Affiliation(s)
- V Kozich
- Department of Pediatrics, University of Colorado School of Medicine, Denver 80262
| | | |
Collapse
|
47
|
Christensen B, Refsum H, Vintermyr O, Ueland PM. Homocysteine export from cells cultured in the presence of physiological or superfluous levels of methionine: methionine loading of non-transformed, transformed, proliferating, and quiescent cells in culture. J Cell Physiol 1991; 146:52-62. [PMID: 1990019 DOI: 10.1002/jcp.1041460108] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Determination of the transient increase in plasma homocysteine following administration of excess methionine is an established procedure for the diagnosis of defects in homocysteine metabolism in patients. This so-called methionine loading test has been used for 25 years, but the knowledge of the response of various cell types to excess methionine is limited. In the present paper we investigated homocysteine export from various cell types cultured in the presence of increasing concentrations (15-1,000 microM) of methionine. For comparison of homocysteine export, the export rates per million cells were plotted versus cell density for proliferating cells, and versus time for quiescent cells. The homocysteine export from growing cells was greatest during early to mid-exponential growth phase, and then decreased as a function of cell density. The export rate was higher from phytohemagglutinin-stimulated than non-stimulated lymphocytes, and higher from proliferating than from quiescent fibroblasts. The hepatocytes showed highest export rate among the cell types investigated. The enhancement of homocysteine export by excess methionine ranged from no stimulation to marked enhancement, depending on cell type investigated, and three different response patterns could be distinguished: 1) quiescent fibroblasts and growing murine lymphoma cell showed no significant increase in homocysteine export following methionine loading; export from human lymphocytes was only slightly enhanced in the presence of excess methionine; 2) the homocysteine export from proliferating hepatoma cells and benign and transformed fibroblasts was stimulated three to eightfold by increasing the methionine concentration in the medium from 15 to 1,000 microM; and 3) the response to methionine loading was particularly increased (about 15-fold) in non-transformed primary hepatocytes in stationary culture. The results outline a potentially useful procedure for the comparison of homocysteine export during cell growth in the presence of various concentrations of methionine. The results are discussed in relation to the special feature of homocysteine metabolism in various cell types and tissues including liver, and to the possible source of plasma homocysteine following methionine loading in vivo.
Collapse
Affiliation(s)
- B Christensen
- Department of Pharmacology and Toxicology, University of Bergen, Haukeland Hospital, Norway
| | | | | | | |
Collapse
|
48
|
Head Group Specificity in the Requirement of Phosphatidylcholine Biosynthesis for Very Low Density Lipoprotein Secretion from Cultured Hepatocytes. J Biol Chem 1989. [DOI: 10.1016/s0021-9258(18)60474-0] [Citation(s) in RCA: 104] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Reicks M, Hathcock JN. Effects of methionine and other sulfur compounds on drug conjugations. Pharmacol Ther 1988; 37:67-79. [PMID: 3289055 DOI: 10.1016/0163-7258(88)90020-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- M Reicks
- Food and Drug Administration, Division of Nutrition, Washington, DC 20204
| | | |
Collapse
|
50
|
Finkelstein JD, Martin JJ. Methionine metabolism in mammals. Adaptation to methionine excess. J Biol Chem 1986. [DOI: 10.1016/s0021-9258(17)35979-3] [Citation(s) in RCA: 233] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|