1
|
He L, Kwon D, Trnka MJ, Liu Y, Yang J, Li K, Totah RA, Johnson EF, Burlingame AL, Correia MA. Liver CYP4A autophagic-lysosomal degradation (ALD): A major role for the autophagic receptor SQSTM1/p62 through an uncommon target interaction site. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618315. [PMID: 39464120 PMCID: PMC11507770 DOI: 10.1101/2024.10.14.618315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
The hepatic P450 hemoproteins CYPs 4A are typical N-terminally anchored Type I endoplasmic reticulum (ER)-proteins, that are inducible by hypolipidemic drugs and other "peroxisome proliferators". They are engaged in the ω-/ω-1-oxidation of various fatty acids including arachidonic acid, prostaglandins and leukotrienes and in the biotransformation of some therapeutic drugs. Herein we report that of the mammalian liver CYPs 4A, human CYP4A11 and mouse Cyp4a12a are preferential targets of the ER-lysosome-associated degradation (ERLAD). Consequently, these proteins are stabilized both as 1%Triton X100-soluble and -insoluble species in mouse hepatocytes and HepG2-cells deficient in the autophagic initiation ATG5-gene. Although these proteins exhibit surface LC3-interacting regions (LIRs) that would target them directly to the autophagosome, they nevertheless interact intimately with the autophagic receptor SQSTM1/p62. Through structural deletion analyses and site-directed mutagenesis, we have identified the Cyp4A-interacting p62 subdomain to lie between residues 170 and 233, which include its Traf6-binding and LIM-binding subdomains. Mice carrying a liver-specific genetic deletion of p62 residues 69-251 (p62Mut) that includes the CYP4A-interacting subdomain also exhibit Cyp4a-protein stabilization both as Triton X100-soluble and -insoluble species. Consistently, p62Mut mouse liver microsomes exhibit enhanced ω- and ω-1-hydroxylation of arachidonic acid to its physiologically active metabolites 19- and 20-HETEs relative to the corresponding wild-type mouse liver microsomes. Collectively, our findings suggest that any disruption of CYP4A ERLAD results in functionally active P450 protein and consequent production of proinflammatory metabolites on one hand, and insoluble aggregates on the other, which may contribute to pathological aggregates i.e. Mallory-Denk bodies/inclusions, hallmarks of many liver diseases.
Collapse
|
2
|
Keshtmand Z, Akbaribazm M, Bagheri Y, Oliaei R. The ameliorative effects of Lactobacillus coagulans and Lactobacillus casei probiotics on CCl4-induced testicular toxicity based on biochemical, histological and molecular analyses in rat. Andrologia 2020; 53:e13908. [PMID: 33225493 DOI: 10.1111/and.13908] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 10/09/2020] [Accepted: 10/23/2020] [Indexed: 12/12/2022] Open
Abstract
Probiotics are commonly present in foods and role as dietary adjuncts and alternatives to pharmacological products in many medical fields. The aim of this study was to investigate the effects of Lactobacillus coagulans and Lactobacillus casei probiotics on carbon tetrachloride (CCl4 )-induced reproductive injury and sperm toxicity in rats. Thirty-two Wistar rats were divided into four groups as follows: sham, CCl4 (2 ml/kg), L. casei probiotic + 2 ml/kg CCl4 and L. coagulans probiotic + 2 ml/kg CCl4 . On the 36th day after the intervention, serum levels of follicle-stimulating hormone (FSH), luteinising hormone (LH) and total testosterone (T), as well as catalase (CAT), superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, were measured. Testicular malondialdehyde (MDA) level, the expressions of apoptosis-related genes (Bcl-2 and Bax), Bax/Bcl-2 ratio, histomorphometric indices such as tubular differentiation index (TDI), repopulation index (RI), spermiogenesis index (SPI) and sperm parameters were evaluated. L. casei and L. coagulans probiotics improved the levels of reproductive hormones and antioxidant capacity in rats. Both the probiotics, especially L. casei, increased the rate spermatogenesis which accompanied with significant increments in testicular TDI, RI and SPI. Furthermore, both probiotics down-regulated Bax and up-regulated Bcl-2, following by decreased Bax/Bcl-2 ratio. Our key findings indicated that L. casei and L. coagulans have protective effects against CCl4 -induced testicular toxicity.
Collapse
Affiliation(s)
- Zahra Keshtmand
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Akbaribazm
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Yasin Bagheri
- Young Researchers and Elite Club, Tabriz Branch, Islamic Azad University, Tabriz, Iran
| | - Reyhaneh Oliaei
- Department of Biology, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| |
Collapse
|
3
|
Kwon D, Kim SM, Correia MA. Cytochrome P450 endoplasmic reticulum-associated degradation (ERAD): therapeutic and pathophysiological implications. Acta Pharm Sin B 2020; 10:42-60. [PMID: 31993306 PMCID: PMC6976991 DOI: 10.1016/j.apsb.2019.11.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 10/30/2019] [Accepted: 10/31/2019] [Indexed: 02/07/2023] Open
Abstract
The hepatic endoplasmic reticulum (ER)-anchored cytochromes P450 (P450s) are mixed-function oxidases engaged in the biotransformation of physiologically relevant endobiotics as well as of myriad xenobiotics of therapeutic and environmental relevance. P450 ER-content and hence function is regulated by their coordinated hemoprotein syntheses and proteolytic turnover. Such P450 proteolytic turnover occurs through a process known as ER-associated degradation (ERAD) that involves ubiquitin-dependent proteasomal degradation (UPD) and/or autophagic-lysosomal degradation (ALD). Herein, on the basis of available literature reports and our own recent findings of in vitro as well as in vivo experimental studies, we discuss the therapeutic and pathophysiological implications of altered P450 ERAD and its plausible clinical relevance. We specifically (i) describe the P450 ERAD-machinery and how it may be repurposed for the generation of antigenic P450 peptides involved in P450 autoantibody pathogenesis in drug-induced acute hypersensitivity reactions and liver injury, or viral hepatitis; (ii) discuss the relevance of accelerated or disrupted P450-ERAD to the pharmacological and/or toxicological effects of clinically relevant P450 drug substrates; and (iii) detail the pathophysiological consequences of disrupted P450 ERAD, contributing to non-alcoholic fatty liver disease (NAFLD)/non-alcoholic steatohepatitis (NASH) under certain synergistic cellular conditions.
Collapse
Key Words
- 3MA, 3-methyladenine
- AAA, ATPases associated with various cellular activities
- ACC1, acetyl-CoA carboxylase 1
- ACC2, acetyl-CoA carboxylase 2
- ACHE, acetylcholinesterase
- ACOX1, acyl-CoA oxidase 1
- ALD, autophagic-lysosomal degradation
- AMPK1
- AP-1, activator protein 1
- ASK1, apoptosis signal-regulating kinase
- ATF2, activating transcription factor 2
- AdipoR1, gene of adiponectin receptor 1
- Atg14, autophagy-related 14
- CBZ, carbamazepine
- CHIP E3 ubiquitin ligase
- CHIP, carboxy-terminus of Hsc70-interacting protein
- Cytochromes P450
- Endoplasmic reticulum-associated degradation
- FOXO, forkhead box O
- Fas, fatty acid synthase
- GAPDH, glyceraldehyde 3-phosphate dehydrogenase
- INH, isoniazid
- IRS1, insulin receptor substrate 1
- Il-1β, interleukin 1 β
- Il-6, interleukin 6
- Insig1, insulin-induced gene 1
- JNK1
- Lpl, lipoprotein lipase
- Mcp1, chemokine (C–C motif) ligand 1
- Non-alcoholic fatty liver disease
- Non-alcoholic steatohepatitis
- Pgc1, peroxisome proliferator-activated receptor coactivator 1
- SREBP1c, sterol regulatory element binding transcription factor 1c
- Scd1, stearoyl-coenzyme A desaturase
- Tnf, tumor necrosis factor
- UPD, ubiquitin (Ub)-dependent proteasomal degradation
- Ub, ubiquitin
- gp78/AMFR E3 ubiquitin ligase
- gp78/AMFR, autocrine motility factor receptor
- shRNAi, shRNA interference
Collapse
|
4
|
Abdelmegeed MA, Ha SK, Choi Y, Akbar M, Song BJ. Role of CYP2E1 in Mitochondrial Dysfunction and Hepatic Injury by Alcohol and Non-Alcoholic Substances. Curr Mol Pharmacol 2019; 10:207-225. [PMID: 26278393 DOI: 10.2174/1874467208666150817111114] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 08/07/2015] [Accepted: 08/07/2015] [Indexed: 12/17/2022]
Abstract
Alcoholic fatty liver disease (AFLD) and non-alcoholic fatty liver disease (NAFLD) are two pathological conditions that are spreading worldwide. Both conditions are remarkably similar with regard to the pathophysiological mechanism and progression despite different causes. Oxidative stressinduced mitochondrial dysfunction through post-translational protein modifications and/or mitochondrial DNA damage has been a major risk factor in both AFLD and NAFLD development and progression. Cytochrome P450-2E1 (CYP2E1), a known important inducer of oxidative radicals in the cells, has been reported to remarkably increase in both AFLD and NAFLD. Interestingly, CYP2E1 isoforms expressed in both endoplasmic reticulum (ER) and mitochondria, likely lead to the deleterious consequences in response to alcohol or in conditions of NAFLD after exposure to high fat diet (HFD) and in obesity and diabetes. Whether CYP2E1 in both ER and mitochondria work simultaneously or sequentially in various conditions and whether mitochondrial CYP2E1 may exert more pronounced effects on mitochondrial dysfunction in AFLD and NAFLD are unclear. The aims of this review are to briefly describe the role of CYP2E1 and resultant oxidative stress in promoting mitochondrial dysfunction and the development or progression of AFLD and NAFLD, to shed a light on the function of the mitochondrial CYP2E1 as compared with the ER-associated CYP2E1. We finally discuss translational research opportunities related to this field.
Collapse
Affiliation(s)
- Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, 9000 Rockville Pike, Bethesda, MD 20892. United States
| | - Seung-Kwon Ha
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Youngshim Choi
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| | - Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane, Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD. United States
| |
Collapse
|
5
|
Teschke R. Alcoholic Liver Disease: Alcohol Metabolism, Cascade of Molecular Mechanisms, Cellular Targets, and Clinical Aspects. Biomedicines 2018; 6:E106. [PMID: 30424581 PMCID: PMC6316574 DOI: 10.3390/biomedicines6040106] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/13/2018] [Accepted: 10/20/2018] [Indexed: 02/06/2023] Open
Abstract
Alcoholic liver disease is the result of cascade events, which clinically first lead to alcoholic fatty liver, and then mostly via alcoholic steatohepatitis or alcoholic hepatitis potentially to cirrhosis and hepatocellular carcinoma. Pathogenetic events are linked to the metabolism of ethanol and acetaldehyde as its first oxidation product generated via hepatic alcohol dehydrogenase (ADH) and the microsomal ethanol-oxidizing system (MEOS), which depends on cytochrome P450 2E1 (CYP 2E1), and is inducible by chronic alcohol use. MEOS induction accelerates the metabolism of ethanol to acetaldehyde that facilitates organ injury including the liver, and it produces via CYP 2E1 many reactive oxygen species (ROS) such as ethoxy radical, hydroxyethyl radical, acetyl radical, singlet radical, superoxide radical, hydrogen peroxide, hydroxyl radical, alkoxyl radical, and peroxyl radical. These attack hepatocytes, Kupffer cells, stellate cells, and liver sinusoidal endothelial cells, and their signaling mediators such as interleukins, interferons, and growth factors, help to initiate liver injury including fibrosis and cirrhosis in susceptible individuals with specific risk factors. Through CYP 2E1-dependent ROS, more evidence is emerging that alcohol generates lipid peroxides and modifies the intestinal microbiome, thereby stimulating actions of endotoxins produced by intestinal bacteria; lipid peroxides and endotoxins are potential causes that are involved in alcoholic liver injury. Alcohol modifies SIRT1 (Sirtuin-1; derived from Silent mating type Information Regulation) and SIRT2, and most importantly, the innate and adapted immune systems, which may explain the individual differences of injury susceptibility. Metabolic pathways are also influenced by circadian rhythms, specific conditions known from living organisms including plants. Open for discussion is a 5-hit working hypothesis, attempting to define key elements involved in injury progression. In essence, although abundant biochemical mechanisms are proposed for the initiation and perpetuation of liver injury, patients with an alcohol problem benefit from permanent alcohol abstinence alone.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, Leimenstrasse 20, D-63450 Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, Frankfurt/Main, Germany.
| |
Collapse
|
6
|
Rahmouni F, Daoud S, Rebai T. Teucrium polium
attenuates carbon tetrachloride-induced toxicity in the male reproductive system of rats. Andrologia 2018; 51:e13182. [DOI: 10.1111/and.13182] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Revised: 09/05/2018] [Accepted: 09/13/2018] [Indexed: 12/29/2022] Open
Affiliation(s)
- Fatma Rahmouni
- Laboratory of Histology and Embryology, Faculty of Medicine of Sfax; University of Sfax; Sfax Tunisia
| | - Salima Daoud
- Laboratory of Histology and Embryology, Faculty of Medicine of Sfax; University of Sfax; Sfax Tunisia
| | - Tarek Rebai
- Laboratory of Histology and Embryology, Faculty of Medicine of Sfax; University of Sfax; Sfax Tunisia
| |
Collapse
|
7
|
Teschke R. Liver Injury by Carbon Tetrachloride Intoxication in 16 Patients Treated with Forced Ventilation to Accelerate Toxin Removal via the Lungs: A Clinical Report. TOXICS 2018; 6:E25. [PMID: 29702608 PMCID: PMC6027346 DOI: 10.3390/toxics6020025] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 12/14/2022]
Abstract
Carbon tetrachloride (CCl₄) is an efficient but highly toxic solvent, used in households and commercially in the industry under regulatory surveillance to ensure safety at the working place and to protect the workers’ health. However, acute unintentional or intentional intoxications by CCl₄ may rarely occur and are potentially life-threatening. In this review article, therapy options are discussed that are based on a literature review of traditional poisoning cases and the clinical experience with 16 patients with acute poisoning by CCl₄. Among various therapy options, the CO₂-induced hyperventilation therapy will be considered in detail as the most promising approach. This special therapy was developed because only around 1% of the intoxicating CCl₄ is responsible for the liver injury after conversion to toxic radicals via microsomal cytochrome P450 2E1 whereas 99% of the solvent will leave the body unchanged by exhalation. Therefore, to enhance CCl₄ elimination through the lungs, CO₂ is added to the inspiration air at a flow rate of 2⁻3 L min−1 in order to achieve hyperventilation with a respiratory volume of 25⁻30 L min−1. Under this therapy, the clinical course was favorable in 15/16 patients, corresponding to 93.8%. In essence, patients with acute CCl₄ intoxication should be treated by forced ventilation.
Collapse
Affiliation(s)
- Rolf Teschke
- Department of Internal Medicine II, Division of Gastroenterology and Hepatology, Klinikum Hanau, 63450 Hanau, Academic Teaching Hospital of the Medical Faculty, Goethe University Frankfurt/Main, 60323 Frankfurt/Main, Germany.
| |
Collapse
|
8
|
Kim SM, Wang Y, Nabavi N, Liu Y, Correia MA. Hepatic cytochromes P450: structural degrons and barcodes, posttranslational modifications and cellular adapters in the ERAD-endgame. Drug Metab Rev 2016; 48:405-33. [PMID: 27320797 DOI: 10.1080/03602532.2016.1195403] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The endoplasmic reticulum (ER)-anchored hepatic cytochromes P450 (P450s) are enzymes that metabolize endo- and xenobiotics i.e. drugs, carcinogens, toxins, natural and chemical products. These agents modulate liver P450 content through increased synthesis or reduction via inactivation and/or proteolytic degradation, resulting in clinically significant drug-drug interactions. P450 proteolytic degradation occurs via ER-associated degradation (ERAD) involving either of two distinct routes: Ubiquitin (Ub)-dependent 26S proteasomal degradation (ERAD/UPD) or autophagic lysosomal degradation (ERAD/ALD). CYP3A4, the major human liver/intestinal P450, and the fast-turnover CYP2E1 species are degraded via ERAD/UPD entailing multisite protein phosphorylation and subsequent ubiquitination by gp78 and CHIP E3 Ub-ligases. We are gaining insight into the nature of the structural determinants involved in CYP3A4 and CYP2E1 molecular recognition in ERAD/UPD [i.e. K48-linked polyUb chains and linear and/or "conformational" phosphodegrons consisting either of consecutive sequences on surface loops and/or disordered regions, or structurally-assembled surface clusters of negatively charged acidic (Asp/Glu) and phosphorylated (Ser/Thr) residues, within or vicinal to which, Lys-residues are targeted for ubiquitination]. Structural inspection of select human liver P450s reveals that such linear or conformational phosphodegrons may indeed be a common P450-ERAD/UPD feature. By contrast, although many P450s such as the slow-turnover CYP2E1 species and rat liver CYP2B1 and CYP2C11 are degraded via ERAD/ALD, little is known about the mechanism of their ALD-targeting. On the basis of our current knowledge of ALD-substrate targeting, we propose a tripartite conjunction of K63-linked Ub-chains, P450 structural "LIR" motifs and selective cellular "cargo receptors" as plausible P450-ALD determinants.
Collapse
Affiliation(s)
- Sung-Mi Kim
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - YongQiang Wang
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Noushin Nabavi
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Yi Liu
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA
| | - Maria Almira Correia
- a Department of Cellular & Molecular Pharmacology , University of California San Francisco , San Francisco , CA , USA ;,b Department of Pharmaceutical Chemistry , University of California San Francisco , San Francisco , CA , USA ;,c Department of Bioengineering and Therapeutic Sciences , University of California San Francisco , San Francisco , CA , USA ;,d The Liver Center, University of California San Francisco , San Francisco , CA , USA
| |
Collapse
|
9
|
Ma X, Li C, Qi W, Li X, Wang S, Cao X, Wang C. Protective effect of extracellular polysaccharides from Grifola frondosa mycelium on CCl4-injured liver in vitro. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.bcdf.2015.06.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Song BJ, Akbar M, Jo I, Hardwick JP, Abdelmegeed MA. Translational Implications of the Alcohol-Metabolizing Enzymes, Including Cytochrome P450-2E1, in Alcoholic and Nonalcoholic Liver Disease. ADVANCES IN PHARMACOLOGY 2015; 74:303-72. [PMID: 26233911 DOI: 10.1016/bs.apha.2015.04.002] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Fat accumulation (hepatic steatosis) in alcoholic and nonalcoholic fatty liver disease is a potentially pathologic condition which can progress to steatohepatitis (inflammation), fibrosis, cirrhosis, and carcinogenesis. Many clinically used drugs or some alternative medicine compounds are also known to cause drug-induced liver injury, which can further lead to fulminant liver failure and acute deaths in extreme cases. During liver disease process, certain cytochromes P450 such as the ethanol-inducible cytochrome P450-2E1 (CYP2E1) and CYP4A isozymes can be induced and/or activated by alcohol and/or high-fat diets and pathophysiological conditions such as fasting, obesity, and diabetes. Activation of these P450 isozymes, involved in the metabolism of ethanol, fatty acids, and various drugs, can produce reactive oxygen/nitrogen species directly and/or indirectly, contributing to oxidative modifications of DNA/RNA, proteins and lipids. In addition, aldehyde dehydrogenases including the mitochondrial low Km aldehyde dehydrogenase-2 (ALDH2), responsible for the metabolism of acetaldehyde and lipid aldehydes, can be inactivated by various hepatotoxic agents. These highly reactive acetaldehyde and lipid peroxides, accumulated due to ALDH2 suppression, can interact with cellular macromolecules DNA/RNA, lipids, and proteins, leading to suppression of their normal function, contributing to DNA mutations, endoplasmic reticulum stress, mitochondrial dysfunction, steatosis, and cell death. In this chapter, we specifically review the roles of the alcohol-metabolizing enzymes including the alcohol dehydrogenase, ALDH2, CYP2E1, and other enzymes in promoting liver disease. We also discuss translational research opportunities with natural and/or synthetic antioxidants, which can prevent or delay the onset of inflammation and liver disease.
Collapse
Affiliation(s)
- Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA.
| | - Mohammed Akbar
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| | - Inho Jo
- Department of Molecular Medicine, Ewha Womans University School of Medicine, Seoul, South Korea
| | - James P Hardwick
- Biochemistry and Molecular Pathology in Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, USA
| | - Mohamed A Abdelmegeed
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland, USA
| |
Collapse
|
11
|
Wang Y, Kim SM, Trnka MJ, Liu Y, Burlingame AL, Correia MA. Human liver cytochrome P450 3A4 ubiquitination: molecular recognition by UBC7-gp78 autocrine motility factor receptor and UbcH5a-CHIP-Hsc70-Hsp40 E2-E3 ubiquitin ligase complexes. J Biol Chem 2014; 290:3308-32. [PMID: 25451919 DOI: 10.1074/jbc.m114.611525] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
CYP3A4 is an abundant and catalytically dominant human liver endoplasmic reticulum-anchored cytochrome P450 enzyme engaged in the biotransformation of endo- and xenobiotics, including >50% of clinically relevant drugs. Alterations of CYP3A4 protein turnover can influence clinically relevant drug metabolism and bioavailability and drug-drug interactions. This CYP3A4 turnover involves endoplasmic reticulum-associated degradation via the ubiquitin (Ub)-dependent 26 S proteasomal system that relies on two highly complementary E2 Ub-conjugating-E3 Ub-ligase (UBC7-gp78 and UbcH5a-C terminus of Hsc70-interacting protein (CHIP)-Hsc70-Hsp40) complexes, as well as protein kinases (PK) A and C. We have documented that CYP3A4 Ser/Thr phosphorylation (Ser(P)/Thr(P)) by PKA and/or PKC accelerates/enhances its Lys ubiquitination by either of these E2-E3 systems. Intriguingly, CYP3A4 Ser(P)/Thr(P) and ubiquitinated Lys residues reside within the cytosol-accessible surface loop and/or conformationally assembled acidic Asp/Glu clusters, leading us to propose that such post-translational Ser/Thr protein phosphorylation primes CYP3A4 for ubiquitination. Herein, this possibility was examined through various complementary approaches, including site-directed mutagenesis, chemical cross-linking, peptide mapping, and LC-MS/MS analyses. Our findings reveal that such CYP3A4 Asp/Glu/Ser(P)/Thr(P) surface clusters are indeed important for its intermolecular electrostatic interactions with each of these E2-E3 subcomponents. By imparting additional negative charge to these Asp/Glu clusters, such Ser/Thr phosphorylation would generate P450 phosphodegrons for molecular recognition by the E2-E3 complexes, thereby controlling the timing of CYP3A4 ubiquitination and endoplasmic reticulum-associated degradation. Although the importance of phosphodegrons in the CHIP targeting of its substrates is known, to our knowledge this is the first example of phosphodegron involvement in gp78-substrate recruitment, an important step in CYP3A4 proteasomal degradation.
Collapse
Affiliation(s)
- YongQiang Wang
- From the Departments of Cellular and Molecular Pharmacology
| | - Sung-Mi Kim
- From the Departments of Cellular and Molecular Pharmacology
| | | | - Yi Liu
- From the Departments of Cellular and Molecular Pharmacology
| | | | - Maria Almira Correia
- From the Departments of Cellular and Molecular Pharmacology, Pharmaceutical Chemistry, and Bioengineering and Therapeutic Sciences, The Liver Center, University of California at San Francisco, San Francisco, California 94158-2517
| |
Collapse
|
12
|
Abdel Moneim AE. Prevention of carbon tetrachloride (CCl4)-induced toxicity in testes of rats treated with Physalis peruviana L. fruit. Toxicol Ind Health 2014; 32:1064-73. [DOI: 10.1177/0748233714545502] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Treatment of rats with carbon tetrachloride (CCl4; 2 ml/kg body weight) once a week for 12 weeks caused a significant decrease in serum levels of testosterone, luteinizing hormone, and follicle-stimulating hormone. These decreases in sex hormones were reduced with Physalis peruviana L. (Cape gooseberry) juice supplementation. In addition, testicular activity of antioxidant enzymes such as superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, and glutathione- S-transferase suppressed with CCl4 were elevated after P. peruviana juice supplements. P. peruviana juice supplementation significantly increased the testicular glutathione and significantly decreased the level of lipid peroxidation and the nitric oxide production compared with the CCl4 group. In addition, the decline in the activity of antioxidant enzymes after CCl4 was ameliorated by P. peruviana. Moreover, degeneration of germ and Leydig cells along with deformities in spermatogenesis induced after CCl4 injections were prevented with the supplementation of P. peruviana juice. Furthermore, P. peruviana juice attenuated CCl4-induced apoptosis in testes tissue by inhibition of caspase-3 activity. The results clearly demonstrate that P. peruviana juice augments the antioxidants defense mechanism against CCl4-induced reproductive toxicity and provides evidence that the juice may have a therapeutic role in free radical-mediated diseases and infertility.
Collapse
Affiliation(s)
- Ahmed E Abdel Moneim
- Department of Zoology and Entomology, Faculty of Science, Helwan University, Cairo, Egypt
| |
Collapse
|
13
|
Protective effects of pomegranate (Punica granatum) juice on testes against carbon tetrachloride intoxication in rats. Altern Ther Health Med 2014; 14:164. [PMID: 24884677 PMCID: PMC4041339 DOI: 10.1186/1472-6882-14-164] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 05/13/2014] [Indexed: 12/22/2022]
Abstract
Background Pomegranate fruit has been extensively used as a natural medicine in many cultures. The present study was aimed at evaluating the protective effects of pomegranate (Punica granatum) juice against carbon tetrachloride (CCl4)-induced oxidative stress and testes injury in adult Wistar rats. Methods Twenty eight Wistar albino male rats were divided equally into 4 groups for the assessment of protective potential of pomegranate juice. Rats of group I (control) received only vehicles and had free access to food and water. Rats of groups II and IV were treated with CCl4 (2 ml/kg bwt) via the intraperitoneal route once a week for ten weeks. The pomegranate juice was supplemented via drinking water 2 weeks before and concurrent with CCl4 treatment to group IV. Group III was supplemented with pomegranate juice for twelve weeks. The protective effects of pomegranate on serum sex hormones, oxidative markers, activities of antioxidant enzymes and histopathology of testes were determined in CCl4-induced reproductive toxicity in rats. Results Pomegranate juice showed significant elevation in testosterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH) those depleted by the injection of CCl4. Activity levels of endogenous testesticular antioxidant enzymes; superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), glutathione-S-transferase (GST) and glutathione reductase (GR) and glutathione (GSH) contents were increased while lipid peroxidation (LPO) and nitric oxide (NO) were decreased with pomegranate juice. Moreover, degeneration of germ and Leydig cells along with deformities in spermatogenesis induced after CCl4 injections were restored with the treatment of pomegranate juice. Conclusion The results clearly demonstrated that pomegranate juice augments the antioxidant defense mechanism against carbon tetrachloride-induced reproductive toxicity and provides evidence that it may have a therapeutic role in free radical mediated diseases.
Collapse
|
14
|
The potential protective effect of Physalis peruviana L. against carbon tetrachloride-induced hepatotoxicity in rats is mediated by suppression of oxidative stress and downregulation of MMP-9 expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:381413. [PMID: 24876910 PMCID: PMC4020166 DOI: 10.1155/2014/381413] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 02/03/2014] [Accepted: 02/06/2014] [Indexed: 01/12/2023]
Abstract
The active constituent profile in Cape gooseberry (Physalis peruviana L.) juice was determined by GC-MS. Quercetin and kaempferol were active components in the juice. In this study we have evaluated its potential protective effect on hepatic injury and fibrosis induced by carbon tetrachloride (CCl4). Twenty-eight rats divided into 4 groups: Group I served as control group, and Group II received weekly i.p. injection of 2 mL CCl4/kg bwt for 12 weeks. Group III were supplemented with Physalis juice via the drinking water. The animals of Group IV received Physalis juice as Group III and also were intraperitoneally injected weekly with 2 mL CCl4/kg bwt for 12 weeks. Hepatoprotective effect was evaluated by improvement in liver enzymes serum levels, reduction in collagen areas, downregulation in expression of the fibrotic marker MMP-9, reduction in the peroxidative marker malonaldehyde and the inflammatory marker nitric oxide, and restoration of the activity of antioxidant enzymatic and nonenzymatic systems, namely, glutathione content, superoxide dismutase, catalase, glutathione-S-transferase, glutathione peroxidase, and glutathione reductase activities. The results show that the potential hepatoprotective effects of Physalis peruviana may be due to physalis acts by promotion of processes that restore hepatolobular architecture and through the inhibition of oxidative stress pathway.
Collapse
|
15
|
Correia MA, Wang Y, Kim SM, Guan S. Hepatic cytochrome P450 ubiquitination: conformational phosphodegrons for E2/E3 recognition? IUBMB Life 2014; 66:78-88. [PMID: 24488826 DOI: 10.1002/iub.1247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/19/2014] [Indexed: 01/25/2023]
Abstract
Hepatic endoplasmic reticulum (ER) integral cytochromes P450 (P450s) are monooxygenases engaged in the biotransformation and elimination of endo- as well as xenobiotics. Of the human liver P450s, CYP3A4 is the major and most dominant catalyst responsible for the biotransformation of over 50% of clinically prescribed drugs. CYP2E1 metabolizes smaller molecular weight compounds (EtOH), carcinogens, environmental toxins, and endobiotics, and is justly implicated in various toxigenic/pathogenic mechanisms of human disease. Both P450s are notorious for their potential to generate pathogenic reactive oxygen species (ROS) during futile oxidative cycling and/or oxidative uncoupling. Such ROS not only oxidatively damage the P450 catalytic cage, but on their escape into the cytosol, also the P450 outer surface and any surrounding cell organelles. Given their ER-monotopic topology coupled with this high potential to acquire oxidative lesions in their cytosolic (C) domain, not surprisingly these P450 proteins exhibit shorter lifespans and are excellent prototype substrates of ER-associated degradation ("ERAD-C") pathway. Indeed, we have shown that both CYP3A4 and CYP2E1 incur ERAD-C, during which they are first phosphorylated by protein kinases A and C, which greatly enhance/accelerate their ubiquitination by UBC7/gp78 and UbcH5a/CHIP/Hsp70/Hsp40 E2/E3 ubiquitin ligase complexes. Such P450 phosphorylation occurs on Ser/Thr residues within linear sequences as well as spatially clustered acidic (Asp/Glu) residues. We propose that such S/T phosphorylation within these clusters creates negatively charged patches or conformational phosphodegrons for interaction with positively charged E2/E3 domains. Such P450 S/T phosphorylation we posit serves as a molecular switch to turn on its ubiquitination and ERAD-C.
Collapse
Affiliation(s)
- Maria Almira Correia
- Department of Cellular & Molecular Pharmacology, University of California, San Francisco, CA; Department of Pharmaceutical Chemistry, University of California, San Francisco, CA; Department of Bioengineering & Therapeutic Sciences, University of California, San Francisco, CA; The Liver Center, University of California, San Francisco, CA
| | | | | | | |
Collapse
|
16
|
Abdel Moneim AE, El-Khadragy MF. The potential effects of pomegranate (Punica granatum) juice on carbon tetrachloride-induced nephrotoxicity in rats. J Physiol Biochem 2012; 69:359-70. [DOI: 10.1007/s13105-012-0218-3] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2012] [Accepted: 10/23/2012] [Indexed: 01/20/2023]
|
17
|
Song BJ, Abdelmegeed MA, Yoo SH, Kim BJ, Jo SA, Jo I, Moon KH. Post-translational modifications of mitochondrial aldehyde dehydrogenase and biomedical implications. J Proteomics 2011; 74:2691-702. [PMID: 21609791 DOI: 10.1016/j.jprot.2011.05.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/27/2011] [Accepted: 05/06/2011] [Indexed: 12/20/2022]
Abstract
Aldehyde dehydrogenases (ALDHs) represent large family members of NAD(P)+-dependent dehydrogenases responsible for the irreversible metabolism of many endogenous and exogenous aldehydes to the corresponding acids. Among 19 ALDH isozymes, mitochondrial ALDH2 is a low Km enzyme responsible for the metabolism of acetaldehyde and lipid peroxides such as malondialdehyde and 4-hydroxynonenal, both of which are highly reactive and toxic. Consequently, inhibition of ALDH2 would lead to elevated levels of acetaldehyde and other reactive lipid peroxides following ethanol intake and/or exposure to toxic chemicals. In addition, many East Asian people with a dominant negative mutation in ALDH2 gene possess a decreased ALDH2 activity with increased risks for various types of cancer, myocardial infarct, alcoholic liver disease, and other pathological conditions. The aim of this review is to briefly describe the multiple post-translational modifications of mitochondrial ALDH2, as an example, after exposure to toxic chemicals or under different disease states and their pathophysiological roles in promoting alcohol/drug-mediated tissue damage. We also briefly mention exciting preclinical translational research opportunities to identify small molecule activators of ALDH2 and its isozymes as potentially therapeutic/preventive agents against various disease states where the expression or activity of ALDH enzymes is altered or inactivated.
Collapse
Affiliation(s)
- Byoung-Joon Song
- Section of Molecular Pharmacology and Toxicology, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD 20892-9410, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Wang Y, Guan S, Acharya P, Koop DR, Liu Y, Liao M, Burlingame AL, Correia MA. Ubiquitin-dependent proteasomal degradation of human liver cytochrome P450 2E1: identification of sites targeted for phosphorylation and ubiquitination. J Biol Chem 2011; 286:9443-56. [PMID: 21209460 DOI: 10.1074/jbc.m110.176685] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Human liver CYP2E1 is a monotopic, endoplasmic reticulum-anchored cytochrome P450 responsible for the biotransformation of clinically relevant drugs, low molecular weight xenobiotics, carcinogens, and endogenous ketones. CYP2E1 substrate complexation converts it into a stable slow-turnover species degraded largely via autophagic lysosomal degradation. Substrate decomplexation/withdrawal results in a fast turnover CYP2E1 species, putatively generated through its futile oxidative cycling, that incurs endoplasmic reticulum-associated ubiquitin-dependent proteasomal degradation (UPD). CYP2E1 thus exhibits biphasic turnover in the mammalian liver. We now show upon heterologous expression of human CYP2E1 in Saccharomyces cerevisiae that its autophagic lysosomal degradation and UPD pathways are evolutionarily conserved, even though its potential for futile catalytic cycling is low due to its sluggish catalytic activity in yeast. This suggested that other factors (i.e. post-translational modifications or "degrons") contribute to its UPD. Indeed, in cultured human hepatocytes, CYP2E1 is detectably ubiquitinated, and this is enhanced on its mechanism-based inactivation. Studies in Ubc7p and Ubc5p genetically deficient yeast strains versus corresponding isogenic wild types identified these ubiquitin-conjugating E2 enzymes as relevant to CYP2E1 UPD. Consistent with this, in vitro functional reconstitution analyses revealed that mammalian UBC7/gp78 and UbcH5a/CHIP E2-E3 ubiquitin ligases were capable of ubiquitinating CYP2E1, a process enhanced by protein kinase (PK) A and/or PKC inclusion. Inhibition of PKA or PKC blocked intracellular CYP2E1 ubiquitination and turnover. Here, through mass spectrometric analyses, we identify some CYP2E1 phosphorylation/ubiquitination sites in spatially associated clusters. We propose that these CYP2E1 phosphorylation clusters may serve to engage each E2-E3 ubiquitination complex in vitro and intracellularly.
Collapse
Affiliation(s)
- YongQiang Wang
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California 94158-2517, USA
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Moon KH, Lee YM, Song BJ. Inhibition of hepatic mitochondrial aldehyde dehydrogenase by carbon tetrachloride through JNK-mediated phosphorylation. Free Radic Biol Med 2010; 48:391-8. [PMID: 19922789 PMCID: PMC2831234 DOI: 10.1016/j.freeradbiomed.2009.11.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 10/26/2009] [Accepted: 11/11/2009] [Indexed: 12/11/2022]
Abstract
The aim of this study was to investigate the mechanism of inhibition of mitochondrial aldehyde dehydrogenase (ALDH2) by carbon tetrachloride (CCl(4)). CCl(4) administration caused marked hepatocyte ballooning and necrosis in the pericentral region. CCl(4) also inhibited hepatic ALDH2 activity in a time-dependent manner without altering the protein level, suggesting ALDH2 inhibition through covalent modifications such as phosphorylation by JNK. To demonstrate phosphorylation, the isoelectric point (pI) of ALDH2 in CCl(4)-exposed rats was compared to that of untreated controls. Immunoblot analysis revealed that immunoreactive ALDH2 bands in CCl(4)-exposed rats were shifted to acidic pI ranges on two-dimensional electrophoresis (2-DE) gels. Incubation with alkaline phosphatase significantly restored the suppressed ALDH2 activity with a concurrent alkaline pI shift of the ALDH2 spots. Both JNK and activated JNK were translocated to mitochondria after CCl(4) exposure. In addition, incubation with catalytically active JNK led to significant inhibition of ALDH2 activity, with an acidic pI shift on 2-DE gels. Furthermore, immunoprecipitation followed by immunoblot analysis with anti-phospho-Ser-Pro antibody revealed phosphorylation of a Ser residue(s) of ALDH2. These results collectively indicate a novel underlying mechanism by which CCl(4) exposure activates JNK, which translocates to mitochondria and phosphorylates ALDH2, contributing to inhibition of ALDH2 activity accompanied by decreased cellular defense capacity and increased lipid peroxidation.
Collapse
Affiliation(s)
- Kwan-Hoon Moon
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
| | - Young-Mi Lee
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
- Department of Oriental Pharmacy, College of Pharmacy, Wonkwang University, Iksan, Korea
| | - Byoung-Joon Song
- Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, USA
- To whom correspondence should be addressed: Dr. B. J. Song, Laboratory of Membrane Biochemistry and Biophysics, National Institute on Alcohol Abuse and Alcoholism, NIH, Rockville, Maryland, 20892-9410, Phone: +1-301-496-3985; Fax: +1-301-594-3113;
| |
Collapse
|
20
|
Sergent T, Dupont I, Van Der Heiden E, Scippo ML, Pussemier L, Larondelle Y, Schneider YJ. CYP1A1 and CYP3A4 modulation by dietary flavonoids in human intestinal Caco-2 cells. Toxicol Lett 2009; 191:216-22. [DOI: 10.1016/j.toxlet.2009.09.002] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 08/31/2009] [Accepted: 09/01/2009] [Indexed: 02/07/2023]
|
21
|
Zhang F, Shu R, Wu X, Zhao X, Feng D, Wang L, Lu S, Liu Q, Xiang Y, Fei J, Huang L, Wang Z. Delayed liver injury and impaired hepatocyte proliferation after carbon tetrachloride exposure in BPOZ2-deficient mice. Toxicol Lett 2009; 188:201-7. [PMID: 19393728 DOI: 10.1016/j.toxlet.2009.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 04/11/2009] [Accepted: 04/14/2009] [Indexed: 12/28/2022]
Abstract
BPOZ2 is a tumor suppressive mediator in PTEN signaling pathway and plays an important role in cell proliferation. In this study, we investigated the physiology functions of BPOZ2 in CCl(4)-induced liver injury and hepatocyte proliferation afterwards. After acute CCl(4) administration, BPOZ2 null mice exhibited delayed liver injury and impaired hepatocyte proliferation, which was accompanied by altered kinetics of CYP2E1 protein expression, compromised cyclin D1 expression and shortened duration of ERK activation. These results for the first time define that BPOZ2 is an important regulator involved in the injury and repair process induced by acute CC1(4) administration in mouse liver.
Collapse
Affiliation(s)
- Feng Zhang
- Institute of Health Sciences, Shanghai Institutes for Biological Sciences of Chinese Academy of Sciences and Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cederbaum AI, Lu Y, Wu D. Role of oxidative stress in alcohol-induced liver injury. Arch Toxicol 2009; 83:519-48. [PMID: 19448996 DOI: 10.1007/s00204-009-0432-0] [Citation(s) in RCA: 437] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 04/28/2009] [Indexed: 02/06/2023]
Abstract
Reactive oxygen species (ROS) are highly reactive molecules that are naturally generated in small amounts during the body's metabolic reactions and can react with and damage complex cellular molecules such as lipids, proteins, or DNA. Acute and chronic ethanol treatments increase the production of ROS, lower cellular antioxidant levels, and enhance oxidative stress in many tissues, especially the liver. Ethanol-induced oxidative stress plays a major role in the mechanisms by which ethanol produces liver injury. Many pathways play a key role in how ethanol induces oxidative stress. This review summarizes some of the leading pathways and discusses the evidence for their contribution to alcohol-induced liver injury. Special emphasis is placed on CYP2E1, which is induced by alcohol and is reactive in metabolizing and activating many hepatotoxins, including ethanol, to reactive products, and in generating ROS.
Collapse
Affiliation(s)
- Arthur I Cederbaum
- Department of Pharmacology and Systems Therapeutics, Mount Sinai School of Medicine, Box 1603, One Gustave L Levy Place, New York, NY 10029, USA.
| | | | | |
Collapse
|
23
|
Correia MA, Liao M. Cellular proteolytic systems in P450 degradation: evolutionary conservation from Saccharomyces cerevisiae to mammalian liver. Expert Opin Drug Metab Toxicol 2007; 3:33-49. [PMID: 17269893 DOI: 10.1517/17425255.3.1.33] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Mammalian hepatic cytochromes P450 (P450s) are endoplasmic reticulum (ER)-anchored haemoproteins with the bulk of their catalytic domains exposed to the cytosol and engaged in the metabolism of numerous xeno- and endobiotics. The native P450s exhibit widely ranging half-lifes and predominantly turn over via either autophagic-lysosomal degradation (ALD) or ubiquitin-dependent 26S proteasomal degradation (UPD). The basis for this heterogeneity and differential proteolytic targeting is unknown. On the other hand, structurally/functionally inactivated P450s are predominantly degraded via UPD in a process known as ER-associated degradation (ERAD). ALD/UPD/ERAD pathways are evolutionarily highly conserved. The availability of Saccharomyces cerevisiae mutants with specific genetic defects/deletions in various ALD/UPD/ERAD-associated proteins and corresponding isogenic wild-type strains has enabled the molecular dissection of the degradation pathways for heterologously expressed mammalian P450s, leading to the identification of specific protein participants. These findings collectively attest to a highly versatile cellular system for the physiological disposal of native, senescent and/or inactivated, structurally damaged mammalian liver P450s.
Collapse
Affiliation(s)
- Maria Almira Correia
- University of California, Department of Cellular and Molecular Pharmacology, Mission Bay Campus, San Francisco, CA 94158-2517, USA.
| | | |
Collapse
|
24
|
Faouzi S, Medzihradszky KF, Hefner C, Maher JJ, Correia MA. Characterization of the physiological turnover of native and inactivated cytochromes P450 3A in cultured rat hepatocytes: a role for the cytosolic AAA ATPase p97? Biochemistry 2007; 46:7793-803. [PMID: 17550236 PMCID: PMC2536616 DOI: 10.1021/bi700340n] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Mammalian hepatic cytochromes P450 (P450s) are endoplasmic reticulum (ER)-anchored hemoproteins engaged in the metabolism of numerous xeno- and endobiotics. P450s exhibit widely ranging half-lives, utilizing both autophagic-lysosomal (ALD) and ubiquitin-dependent 26S proteasomal (UPD) degradation pathways. Although suicidally inactivated hepatic CYPs 3A and "native" CYP3A4 in Saccharomyces cerevisiae are degraded via UPD, the turnover of native hepatic CYPs 3A in their physiological milieu has not been elucidated. Herein, we characterize the degradation of native, dexamethasone-inducible CYPs 3A in cultured primary rat hepatocytes, using proteasomal (MG-132 and MG-262) and ALD [NH4Cl and 3-methyladenine (3-MA)] inhibitors to examine their specific degradation route. Pulse-chase with immunoprecipitation analyses revealed a basal 52% 35S-CYP3A loss over 6 h, which was stabilized by both proteasomal inhibitors. By contrast, no corresponding CYP3A stabilization was detected with either ALD inhibitor NH4Cl or 3-MA. Furthermore, MG-262-induced CYP3A stabilization was associated with its polyubiquitylation, thereby verifying that native CYPs 3A were also degraded via UPD. To identify the specific participants in this process, cellular proteins were cross-linked in situ with paraformaldehyde (PFA) in cultured hepatocytes. Immunoblotting analyses of CYP3A immunoprecipitates after PFA-cross-linking revealed the presence of p97, a cytosolic AAA ATPase instrumental in the extraction and delivery of ubiquitylated ER proteins for proteasomal degradation. Such native CYP3A-p97 interactions were greatly magnified after CYP3A suicidal inactivation (which accelerates UPD), and/or proteasomal inhibition, and were confirmed by proteomic and confocal immunofluorescence microscopic analyses. These findings clearly reveal that native CYPs 3A undergo UPD and implicate a role for p97 in this process.
Collapse
Affiliation(s)
- Saadia Faouzi
- Department of Cellular & Molecular Pharmacology and The Liver Center, University of California, San Francisco, CA 94158
| | - Katalin F. Medzihradszky
- Department of Pharmaceutical Chemistry and The Liver Center, University of California, San Francisco, CA 94158
| | - Colleen Hefner
- Department of Medicine and The Liver Center, University of California, San Francisco, CA 94158
| | - Jacquelyn J. Maher
- Department of Medicine and The Liver Center, University of California, San Francisco, CA 94158
| | - Maria Almira Correia
- Departments of Cellular & Molecular Pharmacology, Pharmaceutical Chemistry, Biopharmaceutical Sciences, and Medicine and The Liver Center, University of California, San Francisco, CA 94158
- Corresponding Author: M. A. Correia Dept. of Cellular and Molecular Pharmacology, Mission Bay Campus, Genentech Hall 600 16th Street, N572F/Box 2280 University of California San Francisco, CA 94158−2280 415−476−3992 (TEL) 415−476−5292 (FAX) e-mail:
| |
Collapse
|
25
|
Cherng SH, Hsu SL, Yang JL, Yu CTR, Lee H. Suppressive effect of 1-nitropyrene on benzo[a]pyrene-induced CYP1A1 protein expression in HepG2 cells. Toxicol Lett 2005; 161:236-43. [PMID: 16280210 DOI: 10.1016/j.toxlet.2005.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2005] [Revised: 10/06/2005] [Accepted: 10/06/2005] [Indexed: 11/22/2022]
Abstract
The genotoxicity of polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs may be influenced by the interaction of the compounds. In this study, our data showed that benzo[a]pyrene (BaP)-DNA adduct levels were decreased in a dose-dependent manner when the human hepatoma cell line HepG2 simultaneously treated with BaP and 1-nitropyrene (1-NP). To further investigate the molecular mechanism by which 1-NP interferes with the covalent binding of BaP to DNA, we conducted experiments to analyze the mRNA level and protein stability of cytochrome P450 1A1 (CYP1A1), which is engaged in the activation of BaP, leading to the generation of BaP-DNA adducts. Northern blot analysis presented that 1-NP attenuated BaP-induced CYP1A1 mRNA expression by 30.4-39.6% (p < 0.05). Western blot analysis revealed that the co-treatment with BaP and 1-NP resulted in a significant inhibition of BaP-induced CYP1A1 protein expression (70.7-88.2%, p < 0.05). However, the decrease in CYP1A1 protein levels was significantly larger than that in CYP1A1 mRNA levels. To confirm the effect of 1-NP on the CYP1A1 protein expression, in vitro proteolysis of CYP1A1 protein was evaluated. The results demonstrated that the addition of 1-NP enhanced CYP1A1 protein degradation and the proteolysis of CYP1A1 protein was inhibited by the addition of an antioxidant, dithiothreitol. In addition, the relative levels of reactive oxygen species (ROS) were elevated in HepG2 cells co-treated with BaP and 1-NP, indicating that the decrease of CYP1A1 protein level was probably attributed to the production of ROS generated by binary mixture. Taken together, these findings suggested that the transcriptional suppression and posttranslational mechanism may be involved in loss of CYP1A1 protein, causing the decrease of BaP-DNA adduct levels in the presence of binary mixtures of 1-NP and BaP.
Collapse
Affiliation(s)
- Shur-Hueih Cherng
- Department of Biotechnology, Hung Kuang University, Taichung, Taiwan, ROC
| | | | | | | | | |
Collapse
|
26
|
Nieto N, Cederbaum AI. S-adenosylmethionine blocks collagen I production by preventing transforming growth factor-beta induction of the COL1A2 promoter. J Biol Chem 2005; 280:30963-74. [PMID: 15983038 DOI: 10.1074/jbc.m503569200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To study the anti-fibrogenic mechanisms of S-adenosylmethionine (AdoMet), transgenic mice harboring the -17 kb to +54 bp of the collagen alpha2 (I) promoter (COL1A2) cloned upstream from the beta-gal reporter gene were injected with carbon tetrachloride (CCl4) to induce fibrosis and coadministered either AdoMet or saline. Control groups received AdoMet or mineral oil. AdoMet lowered the pathology in CCl4-treated mice as shown by transaminase levels, hematoxylin and eosin, Masson's trichrome staining, and collagen I expression. beta-Galactosidase activity indicated activation of the COL1A2 promoter in stellate cells from CCl4-treated mice and repression of such activation by AdoMet. Lipid peroxidation, transforming growth factor-beta (TGFbeta) expression, and decreases in glutathione levels were prevented by AdoMet. Incubation of primary stellate cells with AdoMet down-regulated basal and TGFbeta-induced collagen I and alpha-smooth muscle actin proteins. AdoMet metabolites down-regulated collagen I protein and mRNA levels. AdoMet repressed basal and TGFbeta-induced reporter activity in stellate cells transfected with COL1A2 promoter deletion constructs. AdoMet blocked TGFbeta induction of the -378 bp region of the COL1A2 promoter and prevented the phosphorylation of extracellular signal-regulated kinase 1/2 and the binding of Sp1 to the TGFbeta-responsive element. These observations unveil a novel mechanism by which AdoMet could ameliorate liver fibrosis.
Collapse
Affiliation(s)
- Natalia Nieto
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, New York 10029, USA.
| | | |
Collapse
|
27
|
Gyamfi MA, Tanaka T, Aniya Y. Selective suppression of cytochrome P450 gene expression by the medicinal herb, Thonningia sanguinea in rat liver. Life Sci 2004; 74:1723-37. [PMID: 14741731 DOI: 10.1016/j.lfs.2003.07.049] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The effect of the administration of Thonningia sanguinea (T. S.) on the abundance of individual components of the cytochrome P450 monooxygenase enzyme was examined using Western blotting and competitive reverse-transcriptase-polymerase chain reaction (RT-PCR). We also investigated the time-course of inhibition of T. S. on drug metabolizing enzymes. A single intraperitoneal dose of T. S. extract (5 ml/kg) suppressed CYP, cytochrome b5 and NADPH-CYP reductase activity by 45%, 34% and 22% respectively 24 h after T. S. administration. While T. S. did not have any significant effect on microsomal glutathione S-transferase activity, it inhibited p-nitrophenol hydroxylase (PNPH, CYP2E1) and 7-methoxyresorufin O-demethylase (MROD, CYP 1A2) activities by 37% and 32% respectively at 12 h post-T. S. administration. PNPH, erythromycin N-demethylase (ERDM, CYP 3A1/2) and MROD activities were inhibited by 28-36% 24 h after T. S. injection. Consistent with these observations, the levels of CYP2E1, CYP1A2 and CYP3A2 proteins were also suppressed 24 h post-T. S. administration. While CYP2E1 mRNA was unaffected by T. S. administration, CYP1A2 and CYP3A2 mRNAs were decreased by T. S. Cytosolic glutathione S-transferase activity was increased by 30%, 6 h after T. S injection. These data demonstrate that administration of T. S. differentially affect CYP isoforms in the liver of rats and that T. S. selectively suppresses CYP3A2 and CYP1A2 gene expression.
Collapse
Affiliation(s)
- Maxwell Afari Gyamfi
- Laboratory of Physiology and Pharmacology, Graduate School of Health Sciences, Faculty of Medicine, University of the Ryukyus, Nishihara, Okinawa 903-0215, Japan
| | | | | |
Collapse
|
28
|
Correia MA. Hepatic cytochrome P450 degradation: mechanistic diversity of the cellular sanitation brigade. Drug Metab Rev 2003; 35:107-43. [PMID: 12959413 DOI: 10.1081/dmr-120023683] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Hepatic cytochromes P450 (P450s) are monotopic endoplasmic reticulum (ER)-anchored hemoproteins that exhibit heterogenous physiological protein turnover. The molecular/cellular basis for such heterogeneity is not well understood. Although both autophagic-lysosomal and nonlysosomal pathways are available for their cellular degradation, native P450s such as CYP2B1 are preferentially degraded by the former route, whereas others such as CYPs 3A are degraded largely by the proteasomal pathway, and yet others such as CYP2E1 may be degraded by both. The molecular/structural determinants that dictate this differential proteolytic targeting of the native P450 proteins remain to be unraveled. In contrast, the bulk of the evidence indicates that inactivated and/or otherwise posttranslationally modified P450 proteins undergo adenosine triphosphate-dependent proteolytic degradation in the cytosol. Whether this process specifically involves the ubiquitin (Ub)-/26S proteasome-dependent, the Ub-independent 20S proteasome-dependent, or even a recently characterized Ub- and proteasome-independent pathway may depend on the particular P450 species targeted for degradation. Nevertheless, the collective evidence on P450 degradation attests to a remarkably versatile cellular sanitation brigade available for their disposal. Given that the P450s are integral ER proteins, this mechanistic diversity in their cellular disposal should further expand the repertoire of proteolytic processes available for ER proteins, thereby extending the currently held general notion of ER-associated degradation.
Collapse
Affiliation(s)
- Maria Almira Correia
- Department of Cellular and Molecular Pharmacology, the Liver Center, University of California, San Francisco, California 94143-0450, USA.
| |
Collapse
|
29
|
Yu C, Wang F, Jin C, Wu X, Chan WK, McKeehan WL. Increased carbon tetrachloride-induced liver injury and fibrosis in FGFR4-deficient mice. THE AMERICAN JOURNAL OF PATHOLOGY 2002; 161:2003-10. [PMID: 12466116 PMCID: PMC1850898 DOI: 10.1016/s0002-9440(10)64478-1] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Carbon tetrachloride (CCl(4)) intoxification in rodents is a commonly used model of both acute and chronic liver injury. Recently, we showed that mice in which FGFR4 was ablated from the germline exhibited elevated cholesterol metabolism and bile acid synthesis coincident with unrepressed levels of cytochrome P450 7A (CYP7A), the rate-limiting enzyme in cholesterol disposal. Of the four fibroblast growth factor (FGF) receptor genes expressed in adult liver, FGFR4 is expressed specifically in mature hepatocytes. To determine whether FGFR4 plays a broader role in liver-specific metabolic functions, we examined the impact of both acute and chronic exposure to CCl(4) in FGFR4-deficient mice. Following acute CCl(4) exposure, the FGFR4-deficient mice exhibited accelerated liver injury, a significant increase in liver mass and delayed hepatolobular repair. Chronic CCl(4) exposure resulted in severe fibrosis in livers of FGFR4-deficient mice compared to normal mice. Analysis at both mRNA and protein levels indicated an 8-hour delay in FGFR4-deficient mice in the down-regulation of cytochrome P450 2E1 (CYP2E1) protein, the major enzyme whose products underlie CCl(4)-induced injury. These results show that hepatocyte FGFR4 protects against acute and chronic insult to the liver and prevents accompanying fibrosis. The results show that FGFR4 acts by promotion of processes that restore hepatolobular architecture rather than cellularity while limiting damage due to prolonged CYP2E1 activity.
Collapse
Affiliation(s)
- Chundong Yu
- Department of Biochemistry and Biophysics, Institute of Biosciences and Technology, Texas A&M University System Health Science Center, 2121 W. Holcombe Boulevard, Houston, TX 77030-3303, USA
| | | | | | | | | | | |
Collapse
|
30
|
Wong FW, Chan WY, Lee SS. Resistance to carbon tetrachloride-induced hepatotoxicity in mice which lack CYP2E1 expression. Toxicol Appl Pharmacol 1998; 153:109-18. [PMID: 9875305 DOI: 10.1006/taap.1998.8547] [Citation(s) in RCA: 185] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CYP2E1 knockout mice (cyp2e1-/-) were used to investigate the involvement of CYP2E1 in the development of carbon tetrachloride (CCl4)-induced hepatotoxicity. Male cyp2e1-/- and wild-type (cyp2e1+/+) mice were given a single i.p. injection of 1 ml/kg (= 1.59 g/kg) CCl4 and 24 h later liver injury was assessed by elevations of serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and histopathology. No significant increases in serum ALT and AST activities were observed in cyp2e1-/- mice when compared to wild-type counterparts after CCl4 exposure. No detectable abnormality in liver histology was found in cyp2e1-/- mice after CCl4 exposure. In contrast, CCl4 treatment resulted in 442- and 125-fold increases in serum ALT and AST activities, respectively, in wild-type mice. Consistent with the results of serum ALT and AST activities, severe hepatic damage was noted in livers of wild-type mice, indicating the importance of CYP2E1 in mediating the hepatic damage following CCl4 exposure in these mice. In addition, a dramatic decrease in CYP2E1-catalyzed p-nitrophenol activity and complete loss of immunoreactive CYP2E1 were observed in wild-type mice after CCl4 treatment, suggesting that CYP2E1 was degraded during the process of CCl4-induced hepatotoxicity. These studies conclusively demonstrate that CYP2E1 is the major factor involved in the CCl4-induced hepatotoxicity in mice.
Collapse
Affiliation(s)
- F W Wong
- Department of Biochemistry, Chinese University of Hong Kong, Shatin, New Territories, Hong Kong
| | | | | |
Collapse
|
31
|
Kim MK, Song BJ, Seidel J, Soh Y, Jeong KS, Kim IS, Kobayashi H, Green MV, Carrasquillo JA, Paik CH. Use of 99mTc-mercaptoacetyltriglycine (MAG3)-biocytin hepatobiliary scintigraphy to study the protective effect of a synthetic enzyme inhibitor on acute hepatotoxicity in mice. Nucl Med Biol 1998; 25:561-8. [PMID: 9751424 DOI: 10.1016/s0969-8051(98)00019-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Recent data suggest that inhibitors of ethanol-inducible cytochrome P450 (CYP2E1) can protect the liver from injury caused by various substrates of CYP2E1. In this study, we measured the protective effect of isopropyl-2-(1,3-dithioetane-2-ylidene)-2[N-(4-methylthiazol -2-yl)-carbamoyl]acetate (YH439), a transcriptional inhibitor of CYP2E1, against carbon tetrachloride (CCl4)-induced hepatotoxicity by using various conventional methods and dynamic scintigraphy with 99mTc-mercaptoacetyltriglycine (MAG3)-biocytin, a recently developed scintigraphic agent. Balb/c mice were pretreated with two doses of YH439 (50 or 150 mg/kg per day) at 48 h and 24 h and one dose of CCl4 (0.25 mL/kg) at 18 h before scintigraphy. The results were compared with those of two other groups, one that received CCl4 but not YH439, and the other that received neither (control). Scintigraphic images were acquired continuously at 15-sec intervals for 30 min. Pharmacokinetic parameters, such as peak liver/heart ratio (r(max)), peak liver uptake time (t(max)), and hepatic half-clearance time (HCT), were obtained from time-activity curves derived from regions-of-interest (ROI) over the liver and the heart. Acute administration of CCl4 alone caused centrilobular necrosis and serum transaminase levels to rise more than 5 times higher than those of the control group. Pharmacokinetic parameters also changed significantly from those of the control group. Administration of YH439 prevented centrilobular necrosis and significantly improved pharmacokinetic parameters. This study demonstrates for the first time that hepatobiliary scintigraphy can be used to study in vivo biochemistry of the CYP2E1 inhibitor (YH439) against liver toxicity.
Collapse
Affiliation(s)
- M K Kim
- Department of Nuclear Medicine, Warren G. Magnuson Clinical Center, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, Maryland, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Roberts BJ, Song BJ, Soh Y, Park SS, Shoaf SE. Ethanol induces CYP2E1 by protein stabilization. Role of ubiquitin conjugation in the rapid degradation of CYP2E1. J Biol Chem 1995; 270:29632-5. [PMID: 8530344 DOI: 10.1074/jbc.270.50.29632] [Citation(s) in RCA: 194] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
In the present study, we demonstrate that ethanol induces CYP2E1 by protein stabilization in vivo. The control half-life of CYP2E1 was determined to be 6-7 h followed by a slower secondary phase. The half-life of ethanol-stabilized CYP2E1 was calculated to be 38 h. The mechanism underlying the rapid degradation of CYP2E1 was also investigated and appears to involve the ubiquitin-proteasome proteolytic pathway. An in vitro assay using the cytosolic fraction was developed to further characterize CYP2E1 degradation. Using this assay, 40-50% loss of CYP2E1 was observed in 1 h, coincident with the formation of high M(r) ubiquitin-CYP2E1 conjugates. At concentrations approximating those found in vivo, ethanol protects CYP2E1 from cytosolic degradation. No loss of CYP2B1/2 was observed under identical conditions, suggesting that this reaction is specific for certain P-450s which are rapidly turned over.
Collapse
Affiliation(s)
- B J Roberts
- Laboratory of Clinical Studies, National Institute on Alcohol Abuse and Alcoholism, Bethesda, Maryland 20892-1256, USA
| | | | | | | | | |
Collapse
|
33
|
Ubeda A, Esteve ML, Alcaraz MJ, Cheeseman KH, Slater TF. Effects of flavonoids on cytochrome P-450 from rat liver microsomes: Inhibition of enzyme activities and protection against peroxidative damage. Phytother Res 1995. [DOI: 10.1002/ptr.2650090606] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
A study for regulation of ethanol-inducible P450(CYP2E1) on CCl4-induced hepatic damage. Arch Pharm Res 1995. [DOI: 10.1007/bf02979192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
35
|
George J, Liddle C, Murray M, Byth K, Farrell GC. Pre-translational regulation of cytochrome P450 genes is responsible for disease-specific changes of individual P450 enzymes among patients with cirrhosis. Biochem Pharmacol 1995; 49:873-81. [PMID: 7741759 DOI: 10.1016/0006-2952(94)00515-n] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have recently reported that disease-specific differential alterations in the hepatic expression of xenobiotic-metabolizing cytochrome P450 (CYP P450) enzymes occur in patients with advanced liver disease. In order to determine whether the observed changes in CYP proteins are modulated at pre- or post-translational levels, we have now examined the hepatic levels of mRNA for CYPs 1A2, 2C9, 2E1 and 3A4 by solution hybridization in the same livers of 20 controls (surgical waste from histologically normal livers), 32 cases of hepatocellular and 18 of cholestatic severe chronic liver disease. CYP1A2 mRNA and CYP1A immunoreactive protein were both reduced in livers with hepatocellular and cholestatic types of cirrhosis. In contrast, CYP3A4 mRNA and protein were reduced only in livers from patients with hepatocellular diseases. For 1A2 and 3A4 there were significant correlations between mRNA species and the respective protein contents (rS1A2 = 0.74, rS3A4 = 0.64, P < 0.0001). CYP2C9 mRNA was reduced in patients with both cholestatic and hepatocellular types of liver disease, but 2C protein was reduced only in patients with cholestatic dysfunction. The correlation between CYP2C9 mRNA and protein, was also significant (rs = 0.36, P < 0.005) but mRNA levels accounted for only 13% of the variability in protein rankings. This is probably a consequence of other CYP2C proteins apart from 2C9 being detected by the anti-2C antibody. CYP2E1 mRNA and protein were reduced in patients with cholestatic liver disease, but in hepatocellular disease the expression of only CYP2E1 mRNA was decreased. CYP2E1 mRNA was significantly correlated with CYP2E1 protein but accounted for only 18% of the variability in protein rankings (rs = 0.43, P < 0.0005). Taken collectively these data indicate that the disease-specific alterations of xenobiotic-metabolizing CYP enzymes among patients with cirrhosis is due, at least in part, to pre-translational mechanisms. The lack of a strong correlation between CYP2E1 mRNA and protein suggests that this gene, like its rat orthologue, may be subject to pre-translational as well as translational and/or post-translational regulation.
Collapse
Affiliation(s)
- J George
- Department of Gastroenterology and Hepatology, University of Sydney at Westmead Hospital, NSW, Australia
| | | | | | | | | |
Collapse
|
36
|
Colby HD, Purcell H, Kominami S, Takemori S, Kossor DC. Adrenal activation of carbon tetrachloride: role of microsomal P450 isozymes. Toxicology 1994; 94:31-40. [PMID: 7801328 DOI: 10.1016/0300-483x(94)90026-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Previous investigations demonstrated that carbon tetrachloride (CCl4) was activated by adrenal microsomes, resulting in various functional changes and ultimately in necrosis of the zona reticularis of the gland. Experiments were done to identify the adrenal P450 isozyme(s) involved in the bioactivation of CCl4. Incubation of microsomes from the zona reticularis (ZR) of the guinea pig adrenal cortex with CCl4 plus NADPH caused initiation of lipid peroxidation, covalent binding of CCl4-derived radioactivity to protein, and degradation of cytochrome(s) P450. Preincubation of the microsomal preparations with inhibitory antibodies to P450(17 alpha) or P450C21 decreased the corresponding enzyme activities (17 alpha-hydroxylation and 21-hydroxylation), but did not affect the activation of CCl4. 1-Aminobenzotriazole (ABT), a suicide inhibitor of some P450 isozymes, decreased the enzyme activities catalysed by an adrenal 52,000 Da (52 kDa) isozyme, but had no effect on the function of P450(17 alpha) or P450C21. However, ABT completely inhibited the CCl4-induced LP and covalent binding in adrenal microsomes. The results indicate that adrenal CCl4 activation is catalysed by the 52 kDa P450 isozyme and not by the steroid hydroxylases. Localization of the 52 kDa isozyme to the ZR probably accounts for the selective necrosis of this region of the gland by CCl4.
Collapse
Affiliation(s)
- H D Colby
- Department of Pharmacology and Toxicology, Philadelphia College of Pharmacy and Science, PA 19104
| | | | | | | | | |
Collapse
|
37
|
Delrat P, Dupin S, Galtier P, Alvinerie M, Voigt JJ, Tufenkji AE, Saivin S, Houin G. Assessment of hepatic insufficiency model in the rabbit using carbon tetrachloride intoxication. J Pharm Sci 1994; 83:1637-42. [PMID: 7891287 DOI: 10.1002/jps.2600831121] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The objective of the present study was to compare two doses (0.035 and 0.1 mL/kg) of carbon tetrachloride given intragastrically or intraperitoneally to rabbits during 8 weeks to induce a model of liver insufficiency. All animals developed pericentrolobular fibrosis. The intensity of the fibrosis was proportional to the dose. An increase in the plasma enzymatic activities (ALAT, ASAT, gamma GT) was related to the dose. Plasma proteins and creatinine levels remained unaltered during the experiment. Hepatic microsomal cytochrome P450 was reduced in treated animals in relation to the dose, as was glutathione-S-transferase enzymatic activity, whereas no change was observed in UDP glucuronyltransferase activity. When antipyrine was administered to the intragastric group, a reduction of total body clearances and an increase in half-lives and areas under the curve were observed in relation to a reduction of oxidation capacities. After intraperitoneal intoxication, only the total body clearance with a 0.1 mL/kg dose increased significantly. With the exception of the intragastric dose of 0.035 mL/kg, the pharmacokinetics of indocyanine green showed a decrease in total body clearances and an increase in areas under the curve. Distribution volumes decreased in treated animals whereas half-lives remained constant. After an intragastric dose of 0.035 mL/kg, only an increase in half-life and a decrease in total body clearance were observed. All these results indicate that rabbits chronically intoxicated with CCl4 may be an adequate model for studying the influence of hepatic insufficiency on pharmacokinetic disposition.
Collapse
Affiliation(s)
- P Delrat
- Laboratoire de Pharmacologie-Pharmacocinétique, Faculté des Sciences Pharmaceutiques, CHU Purpan, Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Thakore KN, Mehendale HM. Effect of phenobarbital and mirex pretreatments on CCl4 autoprotection. Toxicol Pathol 1994; 22:291-9. [PMID: 7817119 DOI: 10.1177/019262339402200307] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Male Sprague-Dawley rats maintained on either normal diet (N) or on a diet containing phenobarbital (PB; 225 ppm) or mirex (M; 10 ppm) for 15 days received either corn oil or 1 single administration of a protective dose of CCl4 (0.3 ml/kg, po) on day 16. At 24, 48, 72, 96, or 144 hr after the protective dose, a high dose of CCl4 (5 ml/kg, po) was administered to rats of all the groups, and they were observed for 14-day lethality. In a second experiment, in rats maintained on N, PB, or M diet, liver microsomal cytochromes P-450, aminopyrine demethylase, and aniline hydroxylase were measured at various time points after the administration of the protective dose of CCl4. Serum aspartate transaminase, alanine transaminase, and sorbitol dehydrogenase elevations and histopathological changes observed under a light microscope were used as toxic end points to assess hepatotoxicity. Autoprotection was 100% when the high dose was given at 24 hr after the protective dose in N rats, whereas it was only 55% in PB- or M-pretreated rats. For later time points of 48, 72, and 96 hr, autoprotection was only around 50% in N rats, whereas it was almost 100% in PB- and M-pretreated rats. When the high dose was administered at 144 hr after the protective dose, autoprotection further declined to 25% in N rats and to 75% in M-treated rats, but it remained at 100% in PB-treated rats.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K N Thakore
- Division of Pharmacology and Toxicology, College of Pharmacy and Health Sciences, Northeast Louisiana University, Monroe 71209-0470
| | | |
Collapse
|
39
|
Pellinen P, Stenbäck F, Rautio A, Pelkonen O, Lang M, Pasanen M. Response of mouse liver coumarin 7-hydroxylase activity to hepatotoxins: dependence on strain and agent and comparison to other monooxygenases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 1993; 348:435-43. [PMID: 8277979 DOI: 10.1007/bf00171345] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Acute effects of a single intraperitoneal dose of allyl alcohol (AA, 64 mg/kg), dimethylnitrosamine (DMNA, 30 mg/kg), hexachlorobutadiene (HCBD, 50 mg/kg), carbon tetrachloride (CCl4, 24 mg/kg), cocaine (60 mg/kg) and pyrazole (300 mg/kg) on the hepatic histology and monooxygenases in DBA/2 and C57Bl/6 strains of mice were investigated. All substances caused histologically verified injury to the liver, which varied in appearance and severity depending on the compound and the mouse strain. Responses of P450-catalyzed reactions were highly dependent on the toxin and varied between different monooxygenase (MO) reactions and two mouse strains. In DBA/2 strain, coumarin 7-hydroxylase (COH) activity was increased from 3- to 5-fold by pyrazole, cocaine, HCBD and CCl4. With respect to P450 content and other MO activities, no changes or even decreases were generally observed. Some exceptions to this rule were found: HCBD significantly increased T15 alpha OH, PROD and EROD activities in C57Bl/6 mice, whereas cocaine caused a significant stimulation of T15 alpha OH and PROD in DBA/2 mice, It is concluded that i) different hepatoxins cause different types of liver injury and responses of the monooxygenase complex ("hepatotoxinspecific finger prints"), ii) although DBA/2 and C57Bl/6 mice responded rather similarly to hepatotoxins, also with respect to P450 content and most MO activities, they displayed a profound difference in the behaviour of COH activity, and iii) within the P450 superfamily, the regulation of COH activity seems to be rather unique, also when compared to its structurally close enzyme, testosterone 15 alpha-hydroxylase.
Collapse
Affiliation(s)
- P Pellinen
- Department of Pharmacology and Toxicology, University of Kuopio, Finland
| | | | | | | | | | | |
Collapse
|
40
|
Park KS, Sohn DH, Veech RL, Song BJ. Translational activation of ethanol-inducible cytochrome P450 (CYP2E1) by isoniazid. Eur J Pharmacol 1993; 248:7-14. [PMID: 8339754 DOI: 10.1016/0926-6917(93)90019-m] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The molecular mechanism of ethanol-inducible cytochrome P450(CYP2E1) induction by isoniazid was studied and compared to that of pyridine, an inducer of CYP2E1. Aniline hydroxylase and immunoreactive CYP2E1 protein were significantly induced by isoniazid without or with only slight activation of other cytochromes P450. In contrast, pyridine increased the activities of a broad range of P450s. The effects of two structural analogs of isoniazid, isonicotinamide and isonicotinic acid were also tested and found to have a markedly decreased ability to induce CYP2E1. The induction of CYP2E1 by isoniazid was not accompanied by an increased level of CYP2E1 mRNA, and was completely blocked by pretreatment with cycloheximide or sodium fluoride, inhibitors of mRNA translation. These data thus suggest that CYP2E1 induction by isoniazid is due to activation of CYP2E1 mRNA translation and that the hydrazide group on the pyridine ring of isoniazid is important both in the selective induction of CYP2E1 and for magnitude of effect.
Collapse
Affiliation(s)
- K S Park
- Laboratory of Metabolism and Molecular Biology, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852
| | | | | | | |
Collapse
|
41
|
Abstract
Numerous halogenated hydrocarbons of the alkane, alkene, and alkyne classes are metabolized by P450 enzymes to products that elicit cytotoxic and/or carcinogenic effects. Such halogenated hydrocarbons include anesthetics (e.g., halothane and enflurane) and industrial solvents (e.g., carbon tetrachloride, chloroform, and vinylidine chloride). Formation of reaction intermediates from these compounds occurs via P450-promoted dehalogenation, reduction, or reductive oxygenation, with certain hydrocarbons undergoing all three reaction types. Of the multiple forms of P450 present in liver microsomes, P4502E1 has been identified as the primary catalyst of hydrocarbon bioactivation in animals and, most likely, in humans as well. As hepatic concentrations of this P450 enzyme are highly inducible by ethanol and similar agents, prior exposure to 2E1-inducing compounds can play a pivotal role in halogenated hydrocarbon toxicity. Considering that metabolism governs the cytotoxicity and carcinogenicity of halogenated hydrocarbons, an understanding of the mechanism(s) underlying 2E1 induction in man becomes all the more important.
Collapse
Affiliation(s)
- J L Raucy
- Toxicology Program, College of Pharmacy, University of New Mexico, Albuquerque 87131
| | | | | |
Collapse
|
42
|
Park KS, Sohn DH, Veech RL, Song BJ. Pre-translational induction of pentoxyresorufin O-depentylase by pyridine. Biochem Biophys Res Commun 1992; 185:676-82. [PMID: 1610360 DOI: 10.1016/0006-291x(92)91678-j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Pentoxyresorufin O-depentylase activity, mainly associated with phenobarbital-inducible cytochrome P450IIB1 (designated CYP2B1), was increased after a single treatment of pyridine (250 mg/kg, i.p.), and further increased by repeated treatments for 5 days. The catalytic activity and immunoreactive protein of CYP2B recognized by polyclonal antibodies were significantly induced by a relatively high dose of pyridine (250 mg/kg, i.p.) while ethanol-inducible cytochrome P450IIE1 (CYP2E1) could be induced by a low dosage (25 mg/kg, i.p.). Unlike CYP2E1 induction without changing its mRNA level, the induction of CYP2B by pyridine was accompanied by an elevation of its mRNA, indicating a pre-translational activation of this enzyme. These results indicate that pyridine induces various isozymes of cytochromes P450 by different induction mechanisms.
Collapse
Affiliation(s)
- K S Park
- Laboratory of Metabolism and Molecular Biology, National Institute on Alcohol Abuse and Alcoholism, Rockville, MD 20852
| | | | | | | |
Collapse
|