1
|
Humbert A, Lefebvre R, Nawrot M, Caussy C, Rieusset J. Calcium signalling in hepatic metabolism: Health and diseases. Cell Calcium 2023; 114:102780. [PMID: 37506596 DOI: 10.1016/j.ceca.2023.102780] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
The flexibility between the wide array of hepatic functions relies on calcium (Ca2+) signalling. Indeed, Ca2+ is implicated in the control of many intracellular functions as well as intercellular communication. Thus, hepatocytes adapt their Ca2+ signalling depending on their nutritional and hormonal environment, leading to opposite cellular functions, such as glucose storage or synthesis. Interestingly, hepatic metabolic diseases, such as obesity, type 2 diabetes and non-alcoholic fatty liver diseases, are associated with impaired Ca2+ signalling. Here, we present the hepatocytes' toolkit for Ca2+ signalling, complete with regulation systems and signalling pathways activated by nutrients and hormones. We further discuss the current knowledge on the molecular mechanisms leading to alterations of Ca2+ signalling in hepatic metabolic diseases, and review the literature on the clinical impact of Ca2+-targeting therapeutics.
Collapse
Affiliation(s)
- Alexandre Humbert
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Rémy Lefebvre
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Margaux Nawrot
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France
| | - Cyrielle Caussy
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France; Département Endocrinologie, Diabète et Nutrition, Hospices Civils de Lyon, Hôpital Lyon Sud, Pierre-Bénite, France
| | - Jennifer Rieusset
- Laboratoire CarMeN, INSERM U-1060, INRAE U-1397, Université Lyon, Université Claude Bernard Lyon 1, Pierre-Bénite, France.
| |
Collapse
|
2
|
Holeček M. Aspartate-glutamate carrier 2 (citrin): a role in glucose and amino acid metabolism in the liver. BMB Rep 2023; 56:385-391. [PMID: 37254569 PMCID: PMC10390287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 06/01/2023] Open
Abstract
Aspartate-glutamate carrier 2 (AGC2, citrin) is a mitochondrial carrier expressed in the liver that transports aspartate from mitochondria into the cytosol in exchange for glutamate. The AGC2 is the main component of the malate-aspartate shuttle (MAS) that ensures indirect transport of NADH produced in the cytosol during glycolysis, lactate oxidation to pyruvate, and ethanol oxidation to acetaldehyde into mitochondria. Through MAS, AGC2 is necessary to maintain intracellular redox balance, mitochondrial respiration, and ATP synthesis. Through elevated cytosolic Ca2+ level, the AGC2 is stimulated by catecholamines and glucagon during starvation, exercise, and muscle wasting disorders. In these conditions, AGC2 increases aspartate input to the urea cycle, where aspartate is a source of one of two nitrogen atoms in the urea molecule (the other is ammonia), and a substrate for the synthesis of fumarate that is gradually converted to oxaloacetate, the starting substrate for gluconeogenesis. Furthermore, aspartate is a substrate for the synthesis of asparagine, nucleotides, and proteins. It is concluded that AGC2 plays a fundamental role in the compartmentalization of aspartate and glutamate metabolism and linkage of the reactions of MAS, glycolysis, gluconeogenesis, amino acid catabolism, urea cycle, protein synthesis, and cell proliferation. Targeting of AGC genes may represent a new therapeutic strategy to fight cancer. [BMB Reports 2023; 56(7): 385-391].
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine, Charles University, Hradec Králové 500 03, Czech Republic
| |
Collapse
|
3
|
Holeček M. Aspartate-glutamate carrier 2 (citrin): a role in glucose and amino acid metabolism in the liver. BMB Rep 2023; 56:385-391. [PMID: 37254569 PMCID: PMC10390287 DOI: 10.5483/bmbrep.2023-0052] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/19/2023] [Accepted: 05/29/2023] [Indexed: 09/29/2023] Open
Abstract
Aspartate-glutamate carrier 2 (AGC2, citrin) is a mitochondrial carrier expressed in the liver that transports aspartate from mitochondria into the cytosol in exchange for glutamate. The AGC2 is the main component of the malate-aspartate shuttle (MAS) that ensures indirect transport of NADH produced in the cytosol during glycolysis, lactate oxidation to pyruvate, and ethanol oxidation to acetaldehyde into mitochondria. Through MAS, AGC2 is necessary to maintain intracellular redox balance, mitochondrial respiration, and ATP synthesis. Through elevated cytosolic Ca2+ level, the AGC2 is stimulated by catecholamines and glucagon during starvation, exercise, and muscle wasting disorders. In these conditions, AGC2 increases aspartate input to the urea cycle, where aspartate is a source of one of two nitrogen atoms in the urea molecule (the other is ammonia), and a substrate for the synthesis of fumarate that is gradually converted to oxaloacetate, the starting substrate for gluconeogenesis. Furthermore, aspartate is a substrate for the synthesis of asparagine, nucleotides, and proteins. It is concluded that AGC2 plays a fundamental role in the compartmentalization of aspartate and glutamate metabolism and linkage of the reactions of MAS, glycolysis, gluconeogenesis, amino acid catabolism, urea cycle, protein synthesis, and cell proliferation. Targeting of AGC genes may represent a new therapeutic strategy to fight cancer. [BMB Reports 2023; 56(7): 385-391].
Collapse
Affiliation(s)
- Milan Holeček
- Department of Physiology, Faculty of Medicine, Charles University, Hradec Králové 500 03, Czech Republic
| |
Collapse
|
4
|
Modica TME, Dituri F, Mancarella S, Pisano C, Fabregat I, Giannelli G. Calcium Regulates HCC Proliferation as well as EGFR Recycling/Degradation and Could Be a New Therapeutic Target in HCC. Cancers (Basel) 2019; 11:cancers11101588. [PMID: 31635301 PMCID: PMC6826902 DOI: 10.3390/cancers11101588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 10/13/2019] [Indexed: 01/08/2023] Open
Abstract
Calcium is the most abundant element in the human body. Its role is essential in physiological and biochemical processes such as signal transduction from outside to inside the cell between the cells of an organ, as well as the release of neurotransmitters from neurons, muscle contraction, fertilization, bone building, and blood clotting. As a result, intra- and extracellular calcium levels are tightly regulated by the body. The liver is the most specialized organ of the body, as its functions, carried out by hepatocytes, are strongly governed by calcium ions. In this work, we analyze the role of calcium in human hepatoma (HCC) cell lines harboring a wild type form of the Epidermal Growth Factor Receptor (EGFR), particularly its role in proliferation and in EGFR downmodulation. Our results highlight that calcium is involved in the proliferative capability of HCC cells, as its subtraction is responsible for EGFR degradation by proteasome machinery and, as a consequence, for EGFR intracellular signaling downregulation. However, calcium-regulated EGFR signaling is cell line-dependent. In cells responding weakly to the epidermal growth factor (EGF), calcium seems to have an opposite effect on EGFR internalization/degradation mechanisms. These results suggest that besides EGFR, calcium could be a new therapeutic target in HCC.
Collapse
Affiliation(s)
- Teresa Maria Elisa Modica
- Department of Biomedical Science and Human Oncology, Università degli Studi di Bari Aldo Moro, 70121 Bari, Italy.
- Biogem S.C.A.R.L., 83031 Ariano Irpino (AV), Italy.
| | | | | | | | - Isabel Fabregat
- Bellvitge Biomedical Research Institute (IDIBELL) L'Hospitalet, 08907 Barcelona, Spain.
- Faculty of Medicine and Health Sciences, University of Barcelona, 08907 Barcelona, Spain.
- Oncology Program, CIBEREHD, Instituto de Salud Carlos III, 28029 Madrid, Spain.
| | | |
Collapse
|
5
|
Sun C, Shui B, Zhao W, Liu H, Li W, Lee JC, Doran R, Lee FK, Sun T, Shen QS, Wang X, Reining S, Kotlikoff MI, Zhang Z, Cheng H. Central role of IP 3R2-mediated Ca 2+ oscillation in self-renewal of liver cancer stem cells elucidated by high-signal ER sensor. Cell Death Dis 2019; 10:396. [PMID: 31113961 PMCID: PMC6529459 DOI: 10.1038/s41419-019-1613-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 04/23/2019] [Indexed: 12/28/2022]
Abstract
Ca2+ oscillation is a system-level property of the cellular Ca2+-handling machinery and encodes diverse physiological and pathological signals. The present study tests the hypothesis that Ca2+ oscillations play a vital role in maintaining the stemness of liver cancer stem cells (CSCs), which are postulated to be responsible for cancer initiation and progression. We found that niche factor-stimulated Ca2+ oscillation is a signature feature of CSC-enriched Hep-12 cells and purified α2δ1+ CSC fractions from hepatocellular carcinoma cell lines. In Hep-12 cells, the Ca2+ oscillation frequency positively correlated with the self-renewal potential. Using a newly developed high signal, endoplasmic reticulum (ER) localized Ca2+ sensor GCaMP-ER2, we demonstrated CSC-distinctive oscillatory ER Ca2+ release controlled by the type 2 inositol 1,4,5-trisphosphate receptor (IP3R2). Knockdown of IP3R2 severely suppressed the self-renewal capacity of liver CSCs. We propose that targeting the IP3R2-mediated Ca2+ oscillation in CSCs might afford a novel, physiologically inspired anti-tumor strategy for liver cancer.
Collapse
Affiliation(s)
- Cuiwei Sun
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China.
| | - Bo Shui
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Wei Zhao
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China
| | - Hui Liu
- Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, 200438, China
| | - Wenwen Li
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Jane C Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Robert Doran
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Frank K Lee
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Tao Sun
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Qing Sunny Shen
- Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Xianhua Wang
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| | - Shaun Reining
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA
| | - Michael I Kotlikoff
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, 14853, USA.
| | - Zhiqian Zhang
- Department of Cell Biology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Beijing, 100142, China.
| | - Heping Cheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Peking-Tsinghua Center for Life Sciences, Institute of Molecular Medicine, Peking University, Beijing, 100871, China
| |
Collapse
|
6
|
Oliva-Vilarnau N, Hankeova S, Vorrink SU, Mkrtchian S, Andersson ER, Lauschke VM. Calcium Signaling in Liver Injury and Regeneration. Front Med (Lausanne) 2018; 5:192. [PMID: 30023358 PMCID: PMC6039545 DOI: 10.3389/fmed.2018.00192] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 06/11/2018] [Indexed: 12/12/2022] Open
Abstract
The liver fulfills central roles in metabolic control and detoxification and, as such, is continuously exposed to a plethora of insults. Importantly, the liver has a unique ability to regenerate and can completely recoup from most acute, non-iterative insults. However, multiple conditions, including viral hepatitis, non-alcoholic fatty liver disease (NAFLD), long-term alcohol abuse and chronic use of certain medications, can cause persistent injury in which the regenerative capacity eventually becomes dysfunctional, resulting in hepatic scaring and cirrhosis. Calcium is a versatile secondary messenger that regulates multiple hepatic functions, including lipid and carbohydrate metabolism, as well as bile secretion and choleresis. Accordingly, dysregulation of calcium signaling is a hallmark of both acute and chronic liver diseases. In addition, recent research implicates calcium transients as essential components of liver regeneration. In this review, we provide a comprehensive overview of the role of calcium signaling in liver health and disease and discuss the importance of calcium in the orchestration of the ensuing regenerative response. Furthermore, we highlight similarities and differences in spatiotemporal calcium regulation between liver insults of different etiologies. Finally, we discuss intracellular calcium control as an emerging therapeutic target for liver injury and summarize recent clinical findings of calcium modulation for the treatment of ischemic-reperfusion injury, cholestasis and NAFLD.
Collapse
Affiliation(s)
- Nuria Oliva-Vilarnau
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Simona Hankeova
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Faculty of Science, Institute of Experimental Biology, Masaryk University, Brno, Czechia
| | - Sabine U Vorrink
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Souren Mkrtchian
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Emma R Andersson
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden.,Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
7
|
Abstract
Intracellular free Ca(2+) ([Ca(2+)]i) is a highly versatile second messenger that regulates a wide range of functions in every type of cell and tissue. To achieve this versatility, the Ca(2+) signaling system operates in a variety of ways to regulate cellular processes that function over a wide dynamic range. This is particularly well exemplified for Ca(2+) signals in the liver, which modulate diverse and specialized functions such as bile secretion, glucose metabolism, cell proliferation, and apoptosis. These Ca(2+) signals are organized to control distinct cellular processes through tight spatial and temporal coordination of [Ca(2+)]i signals, both within and between cells. This article will review the machinery responsible for the formation of Ca(2+) signals in the liver, the types of subcellular, cellular, and intercellular signals that occur, the physiological role of Ca(2+) signaling in the liver, and the role of Ca(2+) signaling in liver disease.
Collapse
Affiliation(s)
- Maria Jimena Amaya
- Section of Digestive Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | |
Collapse
|
8
|
Abstract
After partial hepatectomy (PH) the initial mass of the organ is restored through a complex network of cellular interactions that orchestrate both proliferative and hepatoprotective signalling cascades. Among agonists involved in this network many of them drive Ca(2+) movements. During liver regeneration in the rat, hepatocyte cytosolic Ca(2+) signalling has been shown on the one hand to be deeply remodelled and on the other hand to enhance progression of hepatocytes through the cell cycle. Mechanisms through which cytosolic Ca(2+) signals impact on hepatocyte cell cycle early after PH are not completely understood, but at least they include regulation of immediate early gene transcription and ERK and CREB phosphorylation. In addition to cytosolic Ca(2+), there is also evidence that mitochondrial Ca(2+) and also nuclear Ca(2+) may be critical for the regulation of liver regeneration. Finally, Ca(2+) movements in hepatocytes, and possibly in other liver cells, not only impact hepatocyte progression in the cell cycle but more generally may regulate cellular homeostasis after PH.
Collapse
|
9
|
Mangold S, Wu S, Norwood S, Collins B, Hamilton N, Thorn P, Yap A. Hepatocyte Growth Factor Acutely Perturbs Actin Filament Anchorage at the Epithelial Zonula Adherens. Curr Biol 2011; 21:503-7. [DOI: 10.1016/j.cub.2011.02.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2010] [Revised: 01/31/2011] [Accepted: 02/15/2011] [Indexed: 01/13/2023]
|
10
|
Lagoudakis L, Garcin I, Julien B, Nahum K, Gomes DA, Combettes L, Nathanson MH, Tordjmann T. Cytosolic calcium regulates liver regeneration in the rat. Hepatology 2010; 52:602-11. [PMID: 20683958 PMCID: PMC3572840 DOI: 10.1002/hep.23673] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
UNLABELLED Liver regeneration is regulated by growth factors, cytokines, and other endocrine and metabolic factors. Calcium is important for cell division, but its role in liver regeneration is not known. The purpose of this study was to understand the effects of cytosolic calcium signals in liver growth after partial hepatectomy (PH). The gene encoding the calcium-binding protein parvalbumin (PV) targeted to the cytosol using a nuclear export sequence (NES), and using a discosoma red fluorescent protein (DsR) marker, was transfected into rat livers by injecting it, in recombinant adenovirus (Ad), into the portal vein. We performed two-thirds PH 4 days after Ad-PV-NES-DsR or Ad-DsR injection, and liver regeneration was analyzed. Calcium signals were analyzed with fura-2-acetoxymethyl ester in hepatocytes isolated from Ad-infected rats and in Ad-infected Hela cells. Also, isolated hepatocytes were infected with Ad-DsR or Ad-PV-NES-DsR and assayed for bromodeoxyuridine incorporation. Ad-PV-NES-DsR injection resulted in PV expression in the hepatocyte cytosol. Agonist-induced cytosolic calcium oscillations were attenuated in both PV-NES-expressing Hela cells and hepatocytes, as compared to DsR-expressing cells. Bromodeoxyuridine incorporation (S phase), phosphorylated histone 3 immunostaining (mitosis), and liver mass restoration after PH were all significantly delayed in PV-NES rats. Reduced cyclin expression and retinoblastoma protein phosphorylation confirmed this observation. PV-NES rats exhibited reduced c-fos induction and delayed extracellular signal-regulated kinase 1/2 phosphorylation after PH. Finally, primary PV-NES-expressing hepatocytes exhibited less proliferation and agonist-induced cyclic adenosine monophosphate responsive element binding and extracellular signal-regulated kinase 1/2 phosphorylation, as compared with control cells. CONCLUSION Cytosolic calcium signals promote liver regeneration by enhancing progression of hepatocytes through the cell cycle.
Collapse
Affiliation(s)
- Laura Lagoudakis
- Institut National de la Santéet de la Recherche Médicale (INSERM) U757, UniversitéParis-sud, Orsay, France
| | - Isabelle Garcin
- Institut National de la Santéet de la Recherche Médicale (INSERM) U757, UniversitéParis-sud, Orsay, France
| | - Boris Julien
- Institut National de la Santéet de la Recherche Médicale (INSERM) U757, UniversitéParis-sud, Orsay, France
| | - Kis Nahum
- Institut National de la Santéet de la Recherche Médicale (INSERM) U757, UniversitéParis-sud, Orsay, France
| | - Dawidson A. Gomes
- Federal University of Minas Gerais, Belo Horizonte-Minas Gerais, Brazil
| | - Laurent Combettes
- Institut National de la Santéet de la Recherche Médicale (INSERM) U757, UniversitéParis-sud, Orsay, France
| | | | - Thierry Tordjmann
- Institut National de la Santéet de la Recherche Médicale (INSERM) U757, UniversitéParis-sud, Orsay, France
| |
Collapse
|
11
|
Nicou A, Serrière V, Hilly M, Prigent S, Combettes L, Guillon G, Tordjmann T. Remodelling of calcium signalling during liver regeneration in the rat. J Hepatol 2007; 46:247-56. [PMID: 17125880 DOI: 10.1016/j.jhep.2006.08.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2006] [Revised: 07/06/2006] [Accepted: 08/09/2006] [Indexed: 01/01/2023]
Abstract
BACKGROUND/AIMS During liver regeneration, a network of cytokines and growth factors interact with hepatocytes, helping to restore the liver mass and functions after partial tissue loss. Agonists that trigger Ca2+ signals in the liver contribute to this process, although little is known about calcium signalling during liver regeneration. RESULTS We observed two phases in which the hepatocyte response to calcium-mobilising agonists was greatly reduced versus control cells at 24h and five days after partial hepatectomy. We found that both phases of hepatocyte desensitisation involved the down-regulation of cell surface receptors and the type II InsP3 receptor. Single cell studies with flash photolysis of caged InsP3 revealed that InsP3-mediated Ca2+ release was slower in regenerating hepatocytes at 24, 48 h and 5 days than in control cells. Also, the temporal pattern of vasopressin-elicited intracellular calcium oscillations studied on fura2-loaded cells was altered, with the duration of each Ca2+ peak being longer. Finally, we showed an association between hepatocyte desensitisation and progression through the cell cycle towards the S phase at 24 h after hepatectomy. CONCLUSIONS Our study supports the remodelling of hepatocyte calcium signalling during liver regeneration, and that this change is partly linked with cell cycle progression.
Collapse
Affiliation(s)
- Alexandra Nicou
- INSERM U.757, Université Paris Sud, bât. 443, 91405 Orsay, France.
| | | | | | | | | | | | | |
Collapse
|
12
|
Athman R, Louvard D, Robine S. Villin enhances hepatocyte growth factor-induced actin cytoskeleton remodeling in epithelial cells. Mol Biol Cell 2003; 14:4641-53. [PMID: 12937273 PMCID: PMC266779 DOI: 10.1091/mbc.e03-02-0091] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Villin is an actin-binding protein localized to intestinal and kidney brush borders. In vitro, villin has been demonstrated to bundle and sever F-actin in a calcium-dependent manner. Although villin is not necessary for the bundling of F-actin in vivo, it is important for the reorganization of the actin cytoskeleton elicited by stress during both physiological and pathological conditions (Ferrary et al., 1999). These data suggest that villin may be involved in actin cytoskeleton remodeling necessary for many processes requiring cellular plasticity. Here, we study the role of villin in hepatocyte growth factor (HGF)-induced epithelial cell motility and morphogenesis. For this purpose, we used primary cultures of enterocytes derived from wild-type and villin knock-out mice and Madin-Darby canine kidney cells, expressing villin in an inducible manner. In vitro, we show that epithelial cell lysates from villin-expressing cells induced dramatic, calcium-dependent severing of actin filaments. In cell culture, we found that villin-expressing cells exhibit enhanced cell motility and morphogenesis upon HGF stimulation. In addition, we show that the ability of villin to potentiate HGF-induced actin reorganization occurs through the HGF-activated phospholipase Cgamma signaling pathway. Collectively, these data demonstrate that villin acts as a regulator of HGF-induced actin dynamics.
Collapse
Affiliation(s)
- Rafika Athman
- Laboratoire de Morphogenèse et Signalisation Cellulaires, Institut Curie Unité Mixte Recherche 144, 75248 Paris, France
| | | | | |
Collapse
|
13
|
Kawanishi T, Kiuchi T, Asoh H, Shibayama R, Kawai H, Ohata H, Momose K, Hayakawa T. Effect of tributyltin chloride on the release of calcium ion from intracellular calcium stores in rat hepatocytes. Biochem Pharmacol 2001; 62:863-72. [PMID: 11543721 DOI: 10.1016/s0006-2952(01)00740-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The effects of tri-n-butyltin chloride (TBT), an environmental pollutant, on the release of Ca(2+) from intracellular stores were investigated in isolated rat hepatocytes. Isolated hepatocytes permeabilized with digitonin were suspended in solution, and the concentration of extracellular Ca(2+) was measured, using a fluorescent Ca(2+) dye, fura-2. In the solution containing permeabilized hepatocytes that had been preincubated with 4.0 microM TBT for 30 min, the extracellular Ca(2+) concentration was high, but the inositol 1,4,5-trisphosphate (InsP(3))-induced increase in Ca(2+) concentration was suppressed, suggesting that the extracellular release of Ca(2+) in response to TBT treatment was from intracellular stores. Images of the Ca(2+) concentration in the intracellular stores of primary cultured hepatocytes loaded with fura-2 were obtained after digitonin-permeabilization, using digitalized fluorescence microscopy. The permeabilized hepatocytes that had been preincubated with 4.0 microM TBT for 30 min had a very low fura-2 fluorescence ratio (340/380 nm), suggesting that stored Ca(2+) was released. When the hepatocytes were treated with 4.0 microM TBT after digitonin-permeabilization, the decrease in the fura-2 fluorescence ratio was very small. However, when the permeabilized hepatocytes were incubated with 4.0 microM TBT and 2.0 microM NADPH, the decrease was enhanced, raising the possibility that TBT might be metabolized to the active form(s), thus releasing Ca(2+) from intracellular stores. When the hepatocytes were preincubated with 0.1 microM TBT for 30 min and then were permeabilized, the fura-2 fluorescence ratio was almost the same as that in the control permeabilized hepatocytes. However, the InsP(3)-induced decrease in the fluorescence ratio was suppressed significantly in the permeabilized hepatocytes. These results suggest that TBT released Ca(2+) from the intracellular stores at high concentrations, and suppressed the InsP(3)-induced Ca(2+) release at non-toxic low concentrations. It is probable that the latter effect was responsible for the previously reported suppression of Ca(2+) response induced by hormonal stimulations (Kawanish et al., Toxicol Appl Pharmacol 1999;155:54-61).
Collapse
Affiliation(s)
- T Kawanishi
- Division of Biological Chemistry & Biologicals, National Institute of Health Sciences, 1-18-1 Kamiyoga, Setagaya-ku, 158-8501, Tokyo, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Fukujin H, Fujita T, Mine T. Additivity of the proliferative effects of HGF/SF and EGF on hepatocytes. Biochem Biophys Res Commun 2000; 278:698-703. [PMID: 11095971 DOI: 10.1006/bbrc.2000.3863] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The additivity of DNA synthesis induced by hepatocyte growth factor/scatter factor (HGF/SF) and epidermal growth factor (EGF) was revealed in periportal hepatocytes (PPH), perivenous hepatocytes (PVH), and primary hepatocytes. Furthermore, additivity of the signal transduction pathway of HGF/SF and EGF was investigated (i.e., the activity of mitogen-activated protein kinase (MAPK) induced by HGF/SF and EGF), but it was not seen in PPH, PVH, or primary hepatocytes, although wortomannin, a PI 3-kinase inhibitor, abolished the additivity. The additivity of DNA synthesis induced by HGF/SF and EGF was not related to hepatocyte heterogeneity, but to a difference in the signal transduction pathway, probably another pathway that is different from the classical MAPK (MAPK/ERK1,2) path.
Collapse
Affiliation(s)
- H Fukujin
- Department of Internal Medicine, University of Tokyo School of Medicine, Tokyo, Japan
| | | | | |
Collapse
|
15
|
Suzuki J, Yamazaki Y, Li G, Kaziro Y, Koide H, Guang L. Involvement of Ras and Ral in chemotactic migration of skeletal myoblasts. Mol Cell Biol 2000; 20:4658-65. [PMID: 10848592 PMCID: PMC85875 DOI: 10.1128/mcb.20.13.4658-4665.2000] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In skeletal myoblasts, Ras has been considered to be a strong inhibitor of myogenesis. Here, we demonstrate that Ras is involved also in the chemotactic response of skeletal myoblasts. Expression of a dominant-negative mutant of Ras inhibited chemotaxis of C2C12 myoblasts in response to basic fibroblast growth factor (bFGF), hepatocyte growth factor (HGF), and insulin-like growth factor 1 (IGF-1), key regulators of limb muscle development and skeletal muscle regeneration. A dominant-negative Ral also decreased chemotactic migration by these growth factors, while inhibitors for phosphatidylinositol 3-kinase and mitogen-activated protein kinase kinase (MEK) showed no effect. Activation of the Ras-Ral pathway by expression of an activated mutant of either Ras, the guanine-nucleotide dissociation stimulator for Ral, or Ral resulted in increased motility of myoblasts. The ability of Ral to stimulate motility was reduced by introduction of a mutation which prevents binding to Ral-binding protein 1 or phospholipase D. These results suggest that the Ras-Ral pathway is essential for the migration of myoblasts. Furthermore, we found that Ras and Ral are activated in C2C12 cells by bFGF, HGF and IGF-1 and that the Ral activation is regulated by the Ras- and the intracellular Ca(2+)-mediated pathways. Taken together, our data indicate that Ras and Ral regulate the chemotactic migration of skeletal muscle progenitors.
Collapse
Affiliation(s)
- J Suzuki
- Faculty of Bioscience and Biotechnology, Tokyo Institute of Technology, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | | | |
Collapse
|
16
|
Stuart KA, Riordan SM, Lidder S, Crostella L, Williams R, Skouteris GG. Hepatocyte growth factor/scatter factor-induced intracellular signalling. Int J Exp Pathol 2000; 81:17-30. [PMID: 10718861 PMCID: PMC2517792 DOI: 10.1046/j.1365-2613.2000.00138.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Hepatocyte growth factor (HGF) identical to scatter factor (SF) is a glycoprotein involved in the development of a number of cellular phenotypes, including proliferation, mitogenesis, formation of branching tubules and, in the case of tumour cells, invasion and metastasis. This fascinating cytokine transduces its activities via its receptor encoded by the c-met oncogene, coupled to a number of transducers integrating the HGF/SF signal to the cytosol and the nucleus. The downstream transducers coupled to HGF/MET, most of which participate in overlapping pathways, determine the development of the cell's phenotype, which in most cell types is dual.
Collapse
Affiliation(s)
- K A Stuart
- Laboratory of Cell Biology, Institute of Hepatology, Department of Medicine, Royal Free and University College London Medical School, London, UK
| | | | | | | | | | | |
Collapse
|
17
|
Kawanishi T, Asoh H, Kato T, Uneyama C, Toyoda K, Teshima R, Ikebuchi H, Ohata H, Momose K, Hayakawa T, Takahashi M. Suppression of calcium oscillation by tri-n-butyltin chloride in cultured rat hepatocytes. Toxicol Appl Pharmacol 1999; 155:54-61. [PMID: 10036218 DOI: 10.1006/taap.1998.8600] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of tri-n-butyltin chloride (TBT), an environmental pollutant, on cytoplasmic free calcium ion concentration ([Ca2+]i) were investigated in primary cultured rat hepatocytes. A high concentration (4.0 microM) of TBT increased resting levels of [Ca2+]i and then induced cell blebs resulting in cell death within 2 h. The increase in [Ca2+]i, but not the cell death, depended on the presence of extracellular Ca2+, suggesting that the increase in [Ca2+]i is not critical for the cytotoxicity of TBT. A low concentration (0.1 microM) of TBT did not have any toxic effect (decrease in ATP content, decrease in viability, and shape change) on cultured hepatocytes and did not change [Ca2+]i. However, the calcium responses induced by phenylephrine, [Arg8]-vasopressin, and ATP were suppressed in the cells pretreated with 0.1 microM TBT for 30 min. The suppression was not observed in the cells pretreated with 0.1 microM TBT for only 1 min. Pretreatment with 0.1 microM TBT for 30 min had no effect on the inositol 1,4,5-triphosphate content or its increase in response to hormonal stimulation. These results suggest that TBT suppresses hormone-induced calcium responses at nontoxic low concentrations.
Collapse
Affiliation(s)
- T Kawanishi
- Division of Biological Chemistry and Biologicals, National Institute of Health Sciences, Tokyo, 158-8501, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Imai K, Mine T, Tagami M, Hanaoka K, Fujita T. Zonal differences in effects of HGF/SF and EGF on DNA synthesis in hepatocytes under fed or starved conditions. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 275:G1394-401. [PMID: 9843777 DOI: 10.1152/ajpgi.1998.275.6.g1394] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Zonal differences of DNA synthesis in hepatocytes induced by hepatocyte growth factor and/or scatter factor (HGF/SF) and epidermal growth factor (EGF) were investigated using male Wistar rats under fed or starved conditions. Overall, DNA synthesis was greater in fed rats than in starved rats. The predominance of EGF in periportal hepatocytes (PPH) on zonal DNA synthesis was reversed by starved conditions, but the predominance of HGF/SF on zonal DNA synthesis in perivenous hepatocytes (PVH) was not influenced by nutritional conditions. 125I-labeled EGF and 125I-labeled HGF/SF-receptor binding studies revealed no significant difference between PPH and PVH in starved or fed rats. To investigate the mechanism of the signal transduction pathway, we used genistein, an inhibitor of tyrosine kinase. Genistein had different effects on zonal difference in EGF and HGF/SF. In EGF, 1 microgram/ml genistein abolished zonal differences, but in HGF/SF 1 microgram/ml genistein did not abolish zonal differences. These data suggest that, in contrast to HGF/SF, zonal difference of DNA synthesis by EGF was dependent on nutritional conditions and DNA synthesis induced by HGF/SF and EGF might be related to tyrosine kinase, but the influence of tyrosine kinase on DNA synthesis was different between HGF/SF and EGF.
Collapse
Affiliation(s)
- K Imai
- Departments of Anesthesiology and Internal Medicine IV, University of Tokyo School of Medicine, Bunkyo-ku, Tokyo 112, Japan
| | | | | | | | | |
Collapse
|
19
|
Liu SI, Chi CW, Lui WY, Mok KT, Wu CW, Wu SN. Correlation of hepatocyte growth factor-induced proliferation and calcium-activated potassium current in human gastric cancer cells. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1368:256-66. [PMID: 9459603 DOI: 10.1016/s0005-2736(97)00183-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Hepatocyte growth factor (HGF) has been found to stimulate proliferation and migration of human gastric carcinoma cells. Whether the HGF-induced responses are correlated with the expressed level of HGF receptors or the changes of ionic currents is not clear. The present study investigated the effects of HGF on the proliferation and ionic currents of two human gastric adenocarcinoma cell lines, which were found to express different amounts of HGF receptor. Results showed that HGF induced a dose-dependent growth stimulation and accelerated cell cycle progression in SC-M1 cells. In patch clamp study, HGF treatment induced an outward K+ current and increased the slope conductance at -80 mV from 110+/-15 pS/pF to 207+/-15 pS/pF. The HGF-induced K+ current was abolished when tetraethylammonium chloride was added in bathing solution or a low Ca2+ solution was included in the recording pipette. Furthermore, HGF (10 ng/ml) induced an oscillatory Ca2+-activated K+ current with a lag period of 5+/-3 min in SC-M1 cells. In contrast, HGF did not induce mitogenesis, cell cycle progression and changes in ionic currents in KATO-III cells, although this cell line expressed a higher level of HGF receptors than SC-M1 cells did. These findings provide evidence that the activity of Ca2+-activated K+ channel may be involved in the HGF-induced cell proliferation in human gastric cancer cells, but it did not correlate with the density of HGF receptors.
Collapse
Affiliation(s)
- S I Liu
- Department of Surgery, Veterans General Hospital-Kaohsiung, Taiwan
| | | | | | | | | | | |
Collapse
|
20
|
Rout UK, Krawetz SA, Armant DR. Ethanol-induced intracellular calcium mobilization rapidly alters gene expression in the mouse blastocyst. Cell Calcium 1997; 22:463-74. [PMID: 9502196 DOI: 10.1016/s0143-4160(97)90074-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The induction of intracellular Ca2+ release in pre-implantation mouse embryos accelerates their subsequent rate of development in vitro through a calmodulin-dependent mechanism [Stachecki J.J., Armant D.R. Transient release of calcium from inositol 1,4,5-trisphosphate-specific stores regulates mouse pre-implantation development. Development 1996; 122: 2485-2496]. To examine the hypothesis that intracellular Ca2+ signaling alters embryonic gene expression, individual transcript levels were compared by mRNA differential display before and 1 h after intracellular Ca2+ mobilization with ethanol in mouse blastocysts. Ten up-regulated and four down-regulated genes were observed, representing 3.5% of approximately 400 transcripts that were resolved. After sequencing, most of the DNA fragments appeared to be novel; however, two amplicons that increased after Ca2+ mobilization were identified as arginase and ubiquitin conjugating enzyme (E2). The up-regulation of arginase mRNA (3.5-fold after 2 h) was confirmed by reverse transcription and the polymerase chain reaction using specific oligonucleotide primers derived from the deduced mouse embryo sequence. A corresponding 2.5-fold increase in arginase enzymatic activity peaked 9 h after ethanol exposure. Increased expression of arginase and other genes may mediate the onset of rapid cell proliferation and differentiation that is induced by Ca2+ signaling during pre-implantation development.
Collapse
Affiliation(s)
- U K Rout
- Department of Obstetrics and Gynecology, C.S. Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
21
|
Zhang BH, Hornsfield BP, Farrell GC. Chronic ethanol administration to rats decreases receptor-operated mobilization of intracellular ionic calcium in cultured hepatocytes and inhibits 1,4,5-inositol trisphosphate production: relevance to impaired liver regeneration. J Clin Invest 1996; 98:1237-44. [PMID: 8787687 PMCID: PMC507546 DOI: 10.1172/jci118907] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We tested the hypothesis that ethanol impairs liver regeneration by abrogating receptor-mediated elevation of cytosolic free calcium ([Ca2+]i). In rats fed for 16 weeks with ethanol, hepatocellular proliferation induced by partial hepatectomy was greatly impaired. Similarly, EGF-induced DNA synthesis was reduced in cultured hepatocytes from ethanol-fed rats. There was no change in the number or affinity of EGF receptors on hepatocytes from ethanol-fed rats. Despite this, EGF-mediated production of inositol 1,4,5-trisphosphate (Ins[1,4,5]P3) was lower in hepatocytes from ethanol-fed rats, and the EGF-induced [Ca2+]i transient appeared to be abrogated. When vasopressin or phenylephrine were used as cell surface receptor ligands, hepatocytes cultured from ethanol-fed rats exhibited major reductions in Ins(1,4,5)P3 synthesis. This was associated with greatly truncated [Ca2+]i transients. These changes were not due to an effect on the Ins(1,4,5)P3 receptor on the endoplasmic reticulum or to a decrease in the size of the Ins(1,4,5)P3-mobilizable intracellular Ca+2 store. Further, mobilization of the same Ca2+ store by 2,5-di-tert-butylhydroquinone or thapsigargin restored the ability of hepatocytes from ethanol-fed rats to proliferate when exposed to EGF. It is concluded that chronic ethanol consumption inhibits liver regeneration by a mechanism that is, at least partly, the result of impaired receptor-operated [Ca2+]i signaling due to reduced generation of Ins(1,4,5)P3.
Collapse
Affiliation(s)
- B H Zhang
- Department of Medicine, University of Sydney at Westmead Hospital, NSW, Australia
| | | | | |
Collapse
|
22
|
Fabregat I, Sánchez A, Alvarez AM, Nakamura T, Benito M. Epidermal growth factor, but not hepatocyte growth factor, suppresses the apoptosis induced by transforming growth factor-beta in fetal hepatocytes in primary culture. FEBS Lett 1996; 384:14-8. [PMID: 8797794 DOI: 10.1016/0014-5793(96)00266-9] [Citation(s) in RCA: 56] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We studied whether the TGF-beta-induced apoptosis in fetal hepatocyte primary cultures may be modulated by the presence of mitogenic stimuli, such as EGF or HGF. EGF prevented cell death, showing a dose dependence that was identical to that observed for its effect on DNA synthesis stimulation. HGF, in contrast, had no effect, even at high concentrations. EGF blocked apoptosis, since in the presence of this factor cells did not show DNA fragmentation. Moreover, EGF, but not HGF, blocked c-fos induction associated with the apoptotic process induced by TGF-beta in these cells.
Collapse
Affiliation(s)
- I Fabregat
- Departamento de Bioquímica y Biología Molecular, Centro Mixto C.S.I.C./U.C.M. Facultad de Farmacia, Madrid, Spain
| | | | | | | | | |
Collapse
|
23
|
Kawanishi T, Kato T, Asoh H, Uneyama C, Toyoda K, Momose K, Takahashi M, Hayashi Y. Hepatocyte growth factor-induced calcium waves in hepatocytes as revealed with rapid scanning confocal microscopy. Cell Calcium 1995; 18:495-504. [PMID: 8746948 DOI: 10.1016/0143-4160(95)90012-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Cytosolic Ca2+ transients induced by hepatocyte growth factor (HGF) were imaged in primary cultured rat hepatocytes using newly developed rapid scanning confocal microscopes and indo-1. HGF (40 ng/ml) increased cytosolic free Ca2+ concentration ([Ca2+]i) in about 60% of hepatocytes, in 45% of which the increases were oscillatory. In each of the oscillatory hepatocytes, the repetitive increases in [Ca2+]i originated from a specific same region adjacent to the cell membrane and propagated across the cell like waves. Phenylephrine (10 microM) also induced Ca2+ waves. The locus where HGF-induced Ca2+ waves and phenylephrine-induced Ca2+ waves were originated was the same, and there was a correlation in the peak height between HGF-induced Ca2+ waves and phenylephrine-induced Ca2+ waves in each cell, although the mechanisms of inositol 1,4,5-trisphosphate (ins(1,4,5)P3) formation induced by HGF should be different from those by phenylephrine. On the other hand, there was no correlation between sensitivity of each cell to HGF and that to phenylephrine which were measured as latent periods prior to Ca2+ rises after an addition of the agonists. These results suggested the following: the spatial patterns of Ca2+ waves were decided by a common mechanism, probably not the propagation of ins(1,4,5)P3 but the distribution of ins(1,4,5)P3-sensitive Ca2+ pools; sensitivities of each cell to the agonists did not mainly depend on the common mechanism.
Collapse
Affiliation(s)
- T Kawanishi
- Division of Pathology, National Institute of Health Sciences, Tokyo, Japan
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Adachi T, Nakashima S, Saji S, Nakamura T, Nozawa Y. Roles of prostaglandin production and mitogen-activated protein kinase activation in hepatocyte growth factor—mediated rat hepatocyte proliferation. Hepatology 1995. [DOI: 10.1002/hep.1840210627] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
|
25
|
Ramírez I, Tebar F, Grau M, Soley M. Role of heterotrimeric G-proteins in epidermal growth factor signalling. Cell Signal 1995; 7:303-11. [PMID: 8527298 DOI: 10.1016/0898-6568(95)00001-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Since in 1986 it was reported that a pertussis toxin-sensitive substrate was involved in the Ca2+ signal induced by epidermal growth factor (EGF) in rat hepatocytes, much evidence accumulated to implicate heterotrimeric G-proteins in EGF action. EGF can also induce a cyclic AMP signal, but while the generation of a Ca2+ signal appears to be quite general in EGF action, the increase in cyclic AMP occurs only in few cell types. In non-transformed cell types these effects appear to involve G-proteins. EGF not only induces cell proliferation but also interacts with hormones in the short-term control of cell function in quiescent cells. Most of the known interactions are on cyclic AMP mediated hormone effects, and in many cases, the interaction between EGF and hormones involves G-proteins. Here we review the evidence accumulated in recent years that implicate G-proteins in EGF action. An understanding of the mechanisms involved may reveal new mechanisms of G-protein regulation and will contribute to our knowledge of EGF function and signal transduction.
Collapse
Affiliation(s)
- I Ramírez
- Departament de Bioquímica i Fisiologia, Facultat de Biologia, Universitat de Barcelona, Spain
| | | | | | | |
Collapse
|
26
|
Zhang BH, Farrell GC. Effects of extracellular Ca2+ and HCO3- on epidermal growth factor-induced DNA synthesis in cultured rat hepatocytes. Gastroenterology 1995; 108:477-86. [PMID: 7835590 DOI: 10.1016/0016-5085(95)90077-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND/AIMS The elevation of cytosolic free calcium concentration ([Ca2+]i) and intracellular pH mediate the growth factor-initiated proliferation of many cells, but it is not known if they trigger mitosis in resting hepatocytes. The maintenance of [Ca2+]i and intracellular pH depends partly on extracellular calcium concentration ([Ca2+]e) and extracellular bicarbonate concentration ([HCO3-]e). Therefore, the effects of [Ca2+]e and [HCO3-]e on hepatocyte proliferation were examined. METHODS Epidermal growth factor induced proliferation in primary cultures of rat hepatocytes. [3H]thymidine incorporation into DNA and nuclear labeling indices were measured. RESULTS Between 0.2 and 0.9 mmol/L of [Ca2+]e, the proliferative response to epidermal growth factor increased, and total hepatocellular Ca2+ content was increased. Increasing [HCO3-]e also stimulated DNA synthesis in a concentration-dependent manner, maximal at 35 mmol/L. Using optimal [Ca2+]e (0.9 mmol/L) and [HCO3-]e (35 mmol/L), a synergistic stimulation of hepatocellular DNA synthesis was shown. Voltage-dependent Ca2+ channel blockers failed to inhibit hepatocyte proliferation when administered in concentrations that inhibit proliferation in other cell types. CONCLUSIONS [Ca2+]e and [HCO3-]e are both essential for hepatocyte proliferation, and their effects are synergistic. The entry of extracellular Ca2+ is critical for epidermal growth factor-induced DNA synthesis in hepatocytes, but this is not mediated by voltage-dependent Ca2+ channels.
Collapse
Affiliation(s)
- B H Zhang
- Department of Medicine, University of Sydney, Westmead Hospital, New South Wales, Australia
| | | |
Collapse
|
27
|
Graham A, Russell LJ. Stimulation of low-density lipoprotein uptake in HepG2 cells by epidermal growth factor via a tyrosine kinase-dependent, but protein kinase C-independent, mechanism. Biochem J 1994; 298 Pt 3:579-84. [PMID: 8141769 PMCID: PMC1137898 DOI: 10.1042/bj2980579] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Epidermal growth factor (EGF), a potent mitogenic polypeptide, stimulated the uptake and degradation of [3H]sucrose-labelled low-density lipoprotein (LDL) by HepG2 cells. The increase in LDL uptake was prevented by the presence of the tyrosine kinase inhibitor genistein. Activation of protein kinase C with phorbol 12-myristate 13-acetate (PMA) also stimulated the uptake of [3H]LDL by HepG2 cells. When EGF and PMA were added together, PMA increased the response to EGF in an additive manner. The protein kinase C inhibitor Ro-31-8220 prevented the increase in LDL uptake caused by PMA, but did not affect EGF stimulation of LDL uptake. Similarly, down-regulation of protein kinase C activity by chronic treatment with PMA also did not affect the EGF stimulation of LDL uptake. These results suggest that the EGF stimulation of LDL uptake and degradation by HepG2 cells is mediated by a tyrosine kinase-dependent, but protein kinase C-independent, mechanism.
Collapse
Affiliation(s)
- A Graham
- Department of Biochemical Sciences, Wellcome Research Laboratories, Beckenham, Kent, U.K
| | | |
Collapse
|
28
|
Hoshino Y, Enomoto N, Sakamoto N, Kurosaki M, Ikeda T, Marumo F, Sato C. Expression of the hepatocyte growth factor receptor in the regenerating rat liver. Cancer Lett 1993; 71:119-23. [PMID: 7689925 DOI: 10.1016/0304-3835(93)90106-j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The c-met oncogene product is a cell-surface receptor, which ligand is believed to be the hepatocyte growth factor. We studied the expression of c-met oncogene in the regenerating rat liver after either partial hepatectomy or CCl4-induced liver injury. Northern blot analysis showed that after partial hepatectomy the transcripts of c-met decreased at 8 h, reached the minimum at 36 h, and returned to the steady level on the seventh day. In contrast with the hepatectomized liver, the transcripts of c-met increased after CCl4 treatment. These observations suggest that c-met transcription may be regulated differently depending on regeneration signals.
Collapse
Affiliation(s)
- Y Hoshino
- Second Department of Internal Medicine, Faculty of Medicine, Tokyo Medical and Dental University, Japan
| | | | | | | | | | | | | |
Collapse
|
29
|
Leoni S, Spagnuolo S, Marino M, Terenzi F, Massimi M, Conti Devirgiliis L. Different signal transduction by epidermal growth factor may be responsible for the difference in modulation of amino acid transport between fetal and adult hepatocytes. J Cell Physiol 1993; 155:549-55. [PMID: 8491792 DOI: 10.1002/jcp.1041550313] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
[1-14C]-2-aminoisobutyric acid (AIB) uptake and signal transduction pattern after epidermal growth factor (EGF) stimulation were examined in freshly isolated hepatocytes from 20-day-old fetuses and 3-month-old rats. EGF induced a transient increase of AIB transport after 10 min only in adult animals; the observed unresponsiveness of fetal liver is not dependent on a lack of EGF receptors which are present though to a lesser extent on the plasma membrane in this period. As far as the production of the second messengers, inositol trisphosphate (IP3) and calcium, is concerned, substantial differences were found: EGF increased IP3 production in adult hepatocytes, whereas it had no effect in fetal ones. Moreover, the addition of EGF induced a calcium transient in hepatocytes from adult animals, while there was no increase in fetal cells. The lack of EGF effect on amino acid transport in fetal cells could be due to its inability to produce both IP3 and calcium transients, suggesting that this transduction pathway is not activated during fetal life.
Collapse
Affiliation(s)
- S Leoni
- Department of Cellular and Developmental Biology, University of Rome La Sapienza, Italy
| | | | | | | | | | | |
Collapse
|
30
|
Fabregat I, de Juan C, Nakamura T, Benito M. Growth stimulation of rat fetal hepatocytes in response to hepatocyte growth factor: modulation of c-myc and c-fos expression. Biochem Biophys Res Commun 1992; 189:684-90. [PMID: 1281997 DOI: 10.1016/0006-291x(92)92255-v] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatocyte growth factor, which is a potent growth factor for primary cultured adult hepatocytes, strongly stimulated DNA synthesis of rat fetal (20-day of gestation) hepatocytes. Its mitogenic capacity, measured as (3H)-thymidine incorporation into acid precipitable material was dose dependent, being detectable at 1 ng/ml and maximal at 5 ng/ml. Over 15% of the cells entered into S-phase and mitosis as judged by flow cytometric analysis of the cell cycle. HGF had additive effects with transforming growth factor-alpha, whereas transforming growth factor-beta strongly inhibited DNA synthesis of fetal hepatocytes stimulated by HGF. HGF induced c-fos and c-myc expression in a time-dependent manner, with a maximum at 30 min for c-fos and 8 h for c-myc. These results suggest that HGF may act as a proliferative factor during fetal liver growth.
Collapse
Affiliation(s)
- I Fabregat
- Departamento de Bioquímica y Biología Molecular, Centro Mixto C.S.I.C./U.C.M., Facultad de Farmacia, Ciudad Universitaria, Madrid, Spain
| | | | | | | |
Collapse
|
31
|
Hatano M, Nakata K, Nakao K, Tsutsumi T, Ohtsuru A, Nakamura T, Tamaoki T, Nagataki S. Hepatocyte growth factor down-regulates the alpha-fetoprotein gene expression in PLC/PRF/5 human hepatoma cells. Biochem Biophys Res Commun 1992; 189:385-91. [PMID: 1280422 DOI: 10.1016/0006-291x(92)91570-g] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Hepatocyte growth factor (HGF) is a potent mitogen for hepatocytes; however, in certain human hepatoma cell lines, the growth is inhibited by HGF. In the present study, the effect of HGF on the alpha-fetoprotein (AFP) gene expression was analyzed in PLC/PRF/5 human hepatoma cells. HGF did not inhibit cell proliferation, but dose-dependently suppressed AFP secretion at the concentrations of 10 ng/ml or less. By Northern blot analysis, the levels of AFP mRNA were suppressed by HGF, whereas the levels of beta-actin mRNA used as a control did not show any significant changes. In the transient chloramphenicol acetyltransferase plasmid transfection assays, the AFP promoter activity was repressed by HGF, in contrast, the AFP enhancer activity was not affected by HGF. These results suggest that the AFP gene expression is down-regulated by HGF through the suppression of its promoter activity in human hepatoma cells.
Collapse
Affiliation(s)
- M Hatano
- First Department of Internal Medicine, Nagasaki University School of Medicine, Japan
| | | | | | | | | | | | | | | |
Collapse
|
32
|
Cerpovicz PF, Ochs RS. Effects of EGF on the mass of inositol 1,4,5-trisphosphate and SN(1,2)-diacylglycerol in freshly isolated rat hepatocytes: comparison with vasopressin. Biochem Biophys Res Commun 1992; 187:1055-62. [PMID: 1326947 DOI: 10.1016/0006-291x(92)91304-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
We measured the masses of inositol 1,4,5 trisphosphate (Ins(1,4,5)P3) and diacylglycerol (DAG) in hepatocytes in response to both epidermal growth factor (EGF) and vasopressin. EGF at 25 nM did not alter Ins(1,4,5)P3 content of hepatocytes. However, the combination of 100 nM EGF concentration and incubation with lithium did increase Ins(1,4,5)P3 content. This increase was only one tenth of that elicited by vasopressin in parallel incubations. This finding resolves a controversy concerning the ability of EGF to increase Ins(1,4,5)P3 in hepatocytes, and argues against a role for phosphoinositide hydrolysis in EGF action in hepatocytes. Both EGF and vasopressin caused a rapid (30 s) increase in DAG content. A delayed increase in DAG content, that was maximal after several minutes, was observed only for vasopressin. The rapid increase in DAG content implies an activation of protein kinase C for both EGF and vasopressin.
Collapse
Affiliation(s)
- P F Cerpovicz
- Department of Biochemistry, Kansas State University, Manhattan 66506
| | | |
Collapse
|
33
|
Marino M, Mangiantini MT, Spagnuolo S, Luly P, Leoni S. Signal transduction during liver regeneration: role of insulin and vasopressin. J Cell Physiol 1992; 152:403-9. [PMID: 1639871 DOI: 10.1002/jcp.1041520223] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The relationship between cell proliferation and inositol lipid turnover has been studied by comparing the steady state of inositol derivative metabolism in quiescent and regenerating rat hepatocytes isolated at 4 h (G1 phase of first cell cycle) and 24 h (onset of M phase) after partial hepatectomy. The effect of two hormones able to regulate hepatic regeneration, insulin and vasopressin, has been considered, and the results can be summarized as follows: (i) at 4 h after partial hepatectomy, the precursor incorporation into inositol polyphosphates and the particulate phospholipase C activity increase with respect to quiescent hepatocytes, whereas the content of 11, 4, 5P3 does not change, suggesting an increased turnover of this molecule in this step of cell cycle priming; (ii) 24 h after partial hepatectomy, the radioactivity linked to IP3 and IP4, as well as soluble and particulate phospholipase C activity, and IP3 content increase, suggesting the presence, at the onset of M phase, of second messenger accumulation; (iii) only 24 h after partial hepatectomy, the inositol derivative metabolism is affected by vasopressin; and (iv) insulin exerts a modulatory role on inositol polyphosphate production without involving membrane-bound PLC activity or phosphoinositide hydrolysis. These data suggest that inositol-derived signal molecules are associated with hepatic regeneration; moreover, the metabolic pathway of such compounds seems to be regulated so that only specific inositol phosphates are present in each step of the cell cycle.
Collapse
Affiliation(s)
- M Marino
- Department of Cellular and Developmental Biology, University of Rome La Sapienza, Italy
| | | | | | | | | |
Collapse
|
34
|
Osada S, Saji S, Nakamura T, Nozawa Y. Cytosolic calcium oscillations induced by hepatocyte growth factor (HGF) in single fura-2-loaded cultured hepatocytes: effects of extracellular calcium and protein kinase C. BIOCHIMICA ET BIOPHYSICA ACTA 1992; 1135:229-32. [PMID: 1616943 DOI: 10.1016/0167-4889(92)90142-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hepatocyte growth factor (HGF) induced the periodic fluctuations of cytosolic calcium concentration ([Ca2+]i) in primary cultured rat hepatocytes, which were dependent on extracellular calcium. The HGF-induced [Ca2+]i oscillations were suppressed by the pretreatment with phorbol 12-myristate 13-acetate (PMA). Administration of PMA during oscillations also caused their blockade, but the subsequent addition of protein kinase C (PKC) inhibitor H-7 reversed the inhibitory effects of PMA, thereby resulting in the resumption of the oscillatory responses. Moreover, the prior exposure to H-7 caused apparent increases in [Ca2+]i spike peaks elicited by HGF. These results suggest a negative modulation via PKC in HGF-induced repetitive [Ca2+]i transients. The absence of HGF-induced oscillations after the thapsigargin treatment indicates that the agonist-sensitive intracellular Ca2+ pool plays a crucial role in the [Ca2+] oscillations.
Collapse
Affiliation(s)
- S Osada
- Second Department of Surgery, Gifu University School of Medicine, Japan
| | | | | | | |
Collapse
|
35
|
Arakaki N, Hirono S, Kawakami S, Tsubouchi H, Ishii T, Hara H, Daikuhara Y. Effects of protein kinase inhibitors on the mitogenic activity of human hepatocyte growth factor on rat hepatocytes in primary culture. Biochem Biophys Res Commun 1992; 185:22-8. [PMID: 1534655 DOI: 10.1016/s0006-291x(05)80949-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
To evaluate the role of protein phosphorylation reactions in signal transduction of human hepatocyte growth factor (hHGF), now known to be the same protein as the scatter factor and tumor cytotoxic factor, we examined the effects of various inhibitors of protein kinases on the mitogenic activity of hHGF on rat hepatocytes in primary culture. Genistein, a specific inhibitor of tyrosine kinase, dose-dependently inhibited the effect of hHGF in stimulating DNA synthesis of hepatocytes. By contrast, 1-(5-isoquinolinesulfonyl)-2- methylpiperazine (H7), a specific inhibitor of protein kinase C, potentiated the stimulatory effect of hHGF on DNA synthesis of hepatocytes. H7 was effective at over 2 micrograms/ml and potentiated the effect of hHGF over 2-fold at 20 micrograms/ml. On the other hand, an inhibitor of Ca++/calmodulin-dependent protein kinase inhibited both the basal and hHGF-stimulated DNA synthesis in the cells, whereas an inhibitor of cyclic nucleotide-dependent protein kinases had little effect on the action of hHGF. These results suggest that tyrosine phosphorylation is required for stimulation of hepatocyte DNA synthesis by hHGF and that the action of hHGF is negatively regulated by protein kinase C activation.
Collapse
Affiliation(s)
- N Arakaki
- Department of Biochemistry, Kagoshima University Dental School, Japan
| | | | | | | | | | | | | |
Collapse
|