1
|
Influence of Dietary Inulin on Fecal Microbiota, Cardiometabolic Risk Factors, Eicosanoids, and Oxidative Stress in Rats Fed a High-Fat Diet. Foods 2022; 11:foods11244072. [PMID: 36553814 PMCID: PMC9778385 DOI: 10.3390/foods11244072] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
The present study examined the influence of inulin on fecal microbiota, cardiometabolic risk factors, eicosanoids, and oxidative stress in rats on a high-fat (HF) diet. Thirty-six male Wistar-Kyoto rats were divided into three dietary groups: standard diet, HF diet, and HF diet + Inulin diet. After 10 weeks, the HF + Inulin diet promoted high dominance of a few bacterial genera including Blautia and Olsenella in feces while reducing richness, diversity, and rarity compared to the HF diet. These changes in fecal microbiota were accompanied by an increased amount of propionic acid in feces. The HF + Inulin diet decreased cardiometabolic risk factors, decreased the amount of the eicosanoids 11(12)-EET and 15-HETrE in the liver, and decreased oxidative stress in blood compared to the HF diet. In conclusion, increasing consumption of inulin may be a useful nutritional strategy to protect against the onset of obesity and its associated metabolic abnormalities by means of modulation of gut microbiota.
Collapse
|
2
|
Sackheim AM, Villalba N, Sancho M, Harraz OF, Bonev AD, D’Alessandro A, Nemkov T, Nelson MT, Freeman K. Traumatic Brain Injury Impairs Systemic Vascular Function Through Disruption of Inward-Rectifier Potassium Channels. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab018. [PMID: 34568829 PMCID: PMC8462507 DOI: 10.1093/function/zqab018] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Trauma can lead to widespread vascular dysfunction, but the underlying mechanisms remain largely unknown. Inward-rectifier potassium channels (Kir2.1) play a critical role in the dynamic regulation of regional perfusion and blood flow. Kir2.1 channel activity requires phosphatidylinositol 4,5-bisphosphate (PIP2), a membrane phospholipid that is degraded by phospholipase A2 (PLA2) in conditions of oxidative stress or inflammation. We hypothesized that PLA2-induced depletion of PIP2 after trauma impairs Kir2.1 channel function. A fluid percussion injury model of traumatic brain injury (TBI) in rats was used to study mesenteric resistance arteries 24 hours after injury. The functional responses of intact arteries were assessed using pressure myography. We analyzed circulating PLA2, hydrogen peroxide (H2O2), and metabolites to identify alterations in signaling pathways associated with PIP2 in TBI. Electrophysiology analysis of freshly-isolated endothelial and smooth muscle cells revealed a significant reduction of Ba2+-sensitive Kir2.1 currents after TBI. Additionally, dilations to elevated extracellular potassium and BaCl2- or ML 133-induced constrictions in pressurized arteries were significantly decreased following TBI, consistent with an impairment of Kir2.1 channel function. The addition of a PIP2 analog to the patch pipette successfully rescued endothelial Kir2.1 currents after TBI. Both H2O2 and PLA2 activity were increased after injury. Metabolomics analysis demonstrated altered lipid metabolism signaling pathways, including increased arachidonic acid, and fatty acid mobilization after TBI. Our findings support a model in which increased H2O2-induced PLA2 activity after trauma hydrolyzes endothelial PIP2, resulting in impaired Kir2.1 channel function.
Collapse
Affiliation(s)
- Adrian M Sackheim
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Nuria Villalba
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Maria Sancho
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Osama F Harraz
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Adrian D Bonev
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Angelo D’Alessandro
- Department of Surgery, University of Colorado School of Medicine, Aurora, CO, USA
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Travis Nemkov
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO, USA
| | - Mark T Nelson
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
- Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Kalev Freeman
- Department of Surgery, University of Vermont Larner College of Medicine, Burlington, VT, USA
- Department of Pharmacology, University of Vermont Larner College of Medicine, Burlington, VT, USA
- Address correspondence to K.F. (e-mail: )
| |
Collapse
|
3
|
Dabaja MZ, Lima EDO, de Oliveira DN, Guerreiro TM, Melo CFOR, Morishita KN, Lancellotti M, Ruiz ALTG, Goulart G, Duarte DA, Catharino RR. Metabolic alterations induced by attenuated Zika virus in glioblastoma cells. Cell Biosci 2018. [DOI: 10.1186/s13578-018-0243-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
|
4
|
Novel approach to reactive oxygen species in nontransfusion-dependent thalassemia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:350432. [PMID: 25121095 PMCID: PMC4119900 DOI: 10.1155/2014/350432] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 06/07/2014] [Indexed: 12/13/2022]
Abstract
The term Nontransfusion dependent thalassaemia (NTDT) was suggested to describe patients who had clinical manifestations that are too severe to be termed minor yet too mild to be termed major. Those patients are not entirely dependent on transfusions for survival.
If left untreated, three main factors are responsible for the clinical sequelae of NTDT: ineffective erythropoiesis, chronic hemolytic anemia, and iron overload. Reactive oxygen species (ROS) generation in NTDT patients is caused by 2 major mechanisms. The first one is chronic hypoxia resulting from chronic anemia and ineffective erythropoiesis leading to mitochondrial damage and the second is iron overload also due to chronic anemia and tissue hypoxia leading to increase intestinal iron absorption in thalassemic patients. Oxidative damage by reactive oxygen species (generated by free globin chains and labile plasma iron) is believed to be one of the main contributors to cell injury, tissue damage, and hypercoagulability in patients with thalassemia. Independently increased ROS has been linked to a myriad of pathological outcomes such as leg ulcers, decreased wound healing, pulmonary hypertension, silent brain infarcts, and increased thrombosis to count a few. Interestingly many of those complications overlap with those found in NTDT patients.
Collapse
|
5
|
Rocha JT, Hipólito UV, Callera GE, Yogi A, Neto Filho MDA, Bendhack LM, Touyz RM, Tirapelli CR. Ethanol induces vascular relaxation via redox-sensitive and nitric oxide-dependent pathways. Vascul Pharmacol 2011; 56:74-83. [PMID: 22155162 DOI: 10.1016/j.vph.2011.11.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 08/24/2011] [Accepted: 11/28/2011] [Indexed: 11/15/2022]
Abstract
We investigated the role of reactive oxygen species (ROS) and nitric oxide (NO) in ethanol-induced relaxation. Vascular reactivity experiments showed that ethanol (0.03-200 mmol/L) induced relaxation in endothelium-intact and denuded rat aortic rings isolated from male Wistar rats. Pre-incubation of intact or denuded rings with l-NAME (non selective NOS inhibitor, 100 μmol/L), 7-nitroindazole (selective nNOS inhibitor, 100 μmol/L), ODQ (selective inhibitor of guanylyl cyclase enzyme, 1 μmol/L), glibenclamide (selective blocker of ATP-sensitive K(+) channels, 3 μmol/L) and 4-aminopyridine (selective blocker of voltage-dependent K(+) channels, 4-AP, 1 mmol/L) reduced ethanol-induced relaxation. Similarly, tiron (superoxide anion (O(2)(-)) scavenger, 1 mmol/L) and catalase (hydrogen peroxide (H(2)O(2)) scavenger, 300 U/mL) reduced ethanol-induced relaxation to a similar extent in both endothelium-intact and denuded rings. Finally, prodifen (non-selective cytochrome P450 enzymes inhibitor, 10 μmol/L) and 4-methylpyrazole (selective alcohol dehydrogenase inhibitor, 10 μmol/L) reduced ethanol-induced relaxation. In cultured aortic vascular smooth muscle cells (VSMCs), ethanol stimulated generation of NO, which was significantly inhibited by l-NAME. In endothelial cells, flow cytometry studies showed that ethanol increased cytosolic Ca(2+) concentration ([Ca(2+)]c), O(2)(-) and cytosolic NO concentration ([NO]c). Tiron inhibited ethanol-induced increase in [Ca(2+)]c and [NO]c. The major new finding of this work is that ethanol induces relaxation via redox-sensitive and NO-cGMP-dependent pathways through direct effects on ROS production and NO signaling. These findings identify putative molecular mechanisms whereby ethanol, at pharmacological concentrations, influences vascular reactivity.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/metabolism
- Cells, Cultured
- Cyclic GMP/metabolism
- Endothelial Cells/drug effects
- Endothelial Cells/metabolism
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Ethanol/pharmacology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Nitric Oxide/metabolism
- Oxidation-Reduction
- Rats
- Rats, Wistar
- Reactive Oxygen Species/metabolism
- Signal Transduction/drug effects
- Vasodilation/drug effects
Collapse
Affiliation(s)
- Juliana T Rocha
- Department of Psychiatric Nursing and Human Sciences, Laboratory of Pharmacology, College of Nursing of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Fike CD, Aschner JL, Slaughter JC, Kaplowitz MR, Zhang Y, Pfister SL. Pulmonary arterial responses to reactive oxygen species are altered in newborn piglets with chronic hypoxia-induced pulmonary hypertension. Pediatr Res 2011; 70:136-41. [PMID: 21516056 PMCID: PMC3131458 DOI: 10.1203/pdr.0b013e3182207ce7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Reactive oxygen species (ROS) have been implicated in the pathogenesis of pulmonary hypertension. ROS might mediate vascular responses, at least in part, by stimulating prostanoid production. Our goals were to determine whether the effect of ROS on vascular tone is altered in resistance pulmonary arteries (PRAs) of newborn piglets with chronic hypoxia-induced pulmonary hypertension and the role, if any, of prostanoids in ROS-mediated responses. In cannulated, pressurized PRA, ROS generated by xanthine (X) plus xanthine oxidase (XO) had minimal effect on vascular tone in control piglets but caused significant vasoconstriction in hypoxic piglets. Both cyclooxygenase inhibition with indomethacin and thromboxane synthase inhibition with dazoxiben significantly blunted constriction to X+XO in hypoxic PRA. X+XO increased prostacyclin production (70 ± 8%) by a greater degree than thromboxane production (50 ± 6%) in control PRA; this was not the case in hypoxic PRA where the increases in prostacyclin and thromboxane production were not statistically different (78 ± 13% versus 216 ± 93%, respectively). Thromboxane synthase expression was increased in PRA from hypoxic piglets, whereas prostacyclin synthase expression was similar in PRA from hypoxic and control piglets. Under conditions of chronic hypoxia, altered vascular responses to ROS may contribute to pulmonary hypertension by a mechanism that involves the prostanoid vasoconstrictor, thromboxane.
Collapse
Affiliation(s)
- Candice D Fike
- Department of Pediatrics, Vanderbilt University School of Medicine and Monroe Carell Jr. Children's Hospital at Vanderbilt, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Angiotensin II-dependent growth of vascular smooth muscle cells requires transactivation of the epidermal growth factor receptor via a cytosolic phospholipase A(2)-mediated release of arachidonic acid. Arch Biochem Biophys 2010; 498:50-6. [PMID: 20388488 DOI: 10.1016/j.abb.2010.04.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2010] [Revised: 04/06/2010] [Accepted: 04/07/2010] [Indexed: 11/19/2022]
Abstract
Angiotensin (Ang) II stimulates vascular smooth muscle cell (VSMC) growth via activation of cytosolic phospholipase A(2) (cPLA(2)), release of arachidonic acid (ArAc) and activation of mitogen-activated protein kinase (MAPK). The mechanism linking AT(1) receptor stimulation of ArAc release with MAPK activation may involve transactivation of the epidermal growth factor receptor (EGFR). In this study, Ang II increased phosphorylation of the EGFR and MAPK in cultured VSMC and these effects were attenuated by the cPLA(2) inhibitor arachidonyl trifluoromethyl ketone (AACOCF(3)), and restored by addition of ArAc. Ang II- or ArAc-induced phosphorylation of the EGFR and MAPK were abolished by the EGFR kinase inhibitor AG1478. Ang II or ArAc also stimulated VSMC growth that was blocked by AG1478 or the MAPK kinase (MEK) inhibitor PD98059. Thus, it appears that the cPLA(2)-dependent release of ArAc may provide a mechanism for the transactivation between the AT(1) receptor and the EGFR signaling cascade.
Collapse
|
8
|
Dennis KE, Aschner JL, Milatovic D, Schmidt JW, Aschner M, Kaplowitz MR, Zhang Y, Fike CD. NADPH oxidases and reactive oxygen species at different stages of chronic hypoxia-induced pulmonary hypertension in newborn piglets. Am J Physiol Lung Cell Mol Physiol 2009; 297:L596-607. [PMID: 19592458 DOI: 10.1152/ajplung.90568.2008] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Recently, we reported that reactive oxygen species (ROS) generated by NADPH oxidase (NOX) contribute to aberrant responses in pulmonary resistance arteries (PRAs) of piglets exposed to 3 days of hypoxia (Am J Physiol Lung Cell Mol Physiol 295: L881-L888, 2008). An objective of the present study was to determine whether NOX-derived ROS also contribute to altered PRA responses at a more advanced stage of pulmonary hypertension, after 10 days of hypoxia. We further wished to advance knowledge about the specific NOX and antioxidant enzymes that are altered at early and later stages of pulmonary hypertension. Piglets were raised in room air (control) or hypoxia for 3 or 10 days. Using a cannulated artery technique, we found that treatments with agents that inhibit NOX (apocynin) or remove ROS [an SOD mimetic (M40403) + polyethylene glycol-catalase] diminished responses to ACh in PRAs from piglets exposed to 10 days of hypoxia. Western blot analysis showed an increase in expression of NOX1 and the membrane fraction of p67phox. Expression of NOX4, SOD2, and catalase were unchanged, whereas expression of SOD1 was reduced, in arteries from piglets raised in hypoxia for 3 or 10 days. Markers of oxidant stress, F(2)-isoprostanes, measured by gas chromatography-mass spectrometry, were increased in PRAs from piglets raised in hypoxia for 3 days, but not 10 days. We conclude that ROS derived from some, but not all, NOX family members, as well as alterations in the antioxidant enzyme SOD1, contribute to aberrant PRA responses at an early and a more progressive stage of chronic hypoxia-induced pulmonary hypertension in newborn piglets.
Collapse
Affiliation(s)
- Kathleen E Dennis
- Dept. of Pediatrics, Vanderbilt Univ. Medical Center, 2215 B Garland Ave., Nashville, TN 37232-0656, USA
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Fike CD, Slaughter JC, Kaplowitz MR, Zhang Y, Aschner JL. Reactive oxygen species from NADPH oxidase contribute to altered pulmonary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 2008; 295:L881-8. [PMID: 18757525 DOI: 10.1152/ajplung.00047.2008] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Our main objective was to determine whether reactive oxygen species (ROS), such as superoxide (O(2)(-)) and hydrogen peroxide (H(2)O(2)), contribute to altered pulmonary vascular responses in piglets with chronic hypoxia-induced pulmonary hypertension. Piglets were raised in either room air (control) or hypoxia for 3 days. The effect of the cell-permeable superoxide dismutase mimetic (SOD; M40403) and/or PEG-catalase (PEG-CAT) on responses to acetylcholine (ACh) was measured in endothelium-intact and denuded pulmonary resistance arteries (PRAs; 90-to-300-microm diameter). To determine whether NADPH oxidase is an enzymatic source of ROS, PRA responses to ACh were measured in the presence and absence of a NADPH oxidase inhibitor, apocynin (APO). A Western blot technique was used to assess expression of the NADPH oxidase subunit, p67phox. A lucigenin-derived chemiluminescence technique was used to measure ROS production stimulated by the NADPH oxidase substrate, NADPH. ACh responses, which were dilation in intact control arteries but constriction in both intact and denuded hypoxic arteries, were diminished by M40403, PEG-CAT, the combination of M40403 plus PEG-CAT, as well as by APO. Although total amounts were not different, membrane-associated p67phox was greater in PRAs from hypoxic compared with control piglets. NADPH-stimulated lucigenin luminescence was nearly doubled in PRAs from hypoxic vs. control piglets. We conclude that ROS generated by NADPH oxidase contribute to the aberrant pulmonary arterial responses in piglets exposed to 3 days of hypoxia.
Collapse
Affiliation(s)
- Candice D Fike
- Department of Pediatrics, Vanderbilt University Medical Center, 2215 B Garland Avenue, Nashville, TN 37232-0656, USA.
| | | | | | | | | |
Collapse
|
10
|
Kwon D, Choi K, Choi C, Benveniste EN. Hydrogen peroxide enhances TRAIL-induced cell death through up-regulation of DR5 in human astrocytic cells. Biochem Biophys Res Commun 2008; 372:870-4. [PMID: 18534188 DOI: 10.1016/j.bbrc.2008.05.148] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 05/24/2008] [Indexed: 12/01/2022]
Abstract
The central nervous system (CNS) is particularly vulnerable to reactive oxygen species (ROS), which have been implicated in the pathogenesis of various neurological disorders. The TNF superfamily of cytokines, especially tumor necrosis factor-related apoptosis-inducing ligand (TRAIL), induces caspase-dependent cell death and is also implicated in various neurodegenerative diseases. In this study, we investigated the relationship between ROS and TRAIL-induced cell death. Exposure to hydrogen peroxide (H(2)O(2)) (100 microM) sensitized human astrocytic cells to TRAIL-induced cell death (up to 7-fold induction). To delineate the molecular mechanisms responsible for H(2)O(2)-induced sensitization, we examined expression of various genes (Caspase-8, Fas, FasL, DR4, DR5, DcR1, DcR2, TRAIL, TNFRp55) related to TRAIL-induced cell death. Treatment with H(2)O(2) significantly increased DR5 mRNA and protein expression in a time- and dose-dependent manner. H(2)O(2)-mediated cell death was blocked upon treatment with DR5:Fc protein, a TRAIL-specific antagonistic protein. These findings collectively suggest that oxidative stress sensitizes human astroglial cells to TRAIL-induced cell death through up-regulation of DR5 expression.
Collapse
Affiliation(s)
- Daeho Kwon
- Medical Research Center for Environmental Toxico-Genomics and Proteomics, Korea University College of Medicine, Anam dong-5ga 126-1, Seongbuk-gu, Seoul 136-705, Republic of Korea.
| | | | | | | |
Collapse
|
11
|
Kwon YS, Hyun DS, Lee YM. Cytosolic Phospholipase A2 Activity in Neutrophilic Oxidative Stress of Platelet-activating Factor-induced Acute Lung Injury. Tuberc Respir Dis (Seoul) 2008. [DOI: 10.4046/trd.2007.63.6.497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Young Shik Kwon
- Department of Physiology, School of Medicine, Daegu Catholic University, Daegu, Korea
| | - Dae Sung Hyun
- Department of Internal Medicine, School of Medicine, Daegu Catholic University, Daegu, Korea
| | - Young Man Lee
- Department of Physiology, School of Medicine, Daegu Catholic University, Daegu, Korea
| |
Collapse
|
12
|
Moon Y, Kim J, Lee YM. Presumptive Role of Neutrophilic Oxidative Stress in Oxygen-induced Acute Lung Injury in Rats. Tuberc Respir Dis (Seoul) 2008. [DOI: 10.4046/trd.2008.65.6.464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Yongsuck Moon
- Department of Anatomy, Catholic University of Daegu, School of Medicine, Daegu, Korea
| | - Jihye Kim
- Department of Physiology, Catholic University of Daegu, School of Medicine, Daegu, Korea
| | - Young Man Lee
- Department of Physiology, Catholic University of Daegu, School of Medicine, Daegu, Korea
| |
Collapse
|
13
|
Brault S, Gobeil F, Fortier A, Honoré JC, Joyal JS, Sapieha PS, Kooli A, Martin E, Hardy P, Ribeiro-da-Silva A, Peri K, Lachapelle P, Varma D, Chemtob S. Lysophosphatidic acid induces endothelial cell death by modulating the redox environment. Am J Physiol Regul Integr Comp Physiol 2006; 292:R1174-83. [PMID: 17122328 DOI: 10.1152/ajpregu.00619.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Oxidant stress plays a significant role in hypoxic-ischemic injury to the susceptible microvascular endothelial cells. During oxidant stress, lysophosphatidic acid (LPA) concentrations increase. We explored whether LPA caused cytotoxicity to neuromicrovascular cells and the potential mechanisms thereof. LPA caused a dose-dependent death of porcine cerebral microvascular as well as human umbilical vein endothelial cells; cell death appeared oncotic rather than apoptotic. LPA-induced cell death was mediated via LPA(1) receptor, because the specific LPA(1) receptor antagonist THG1603 fully abrogated LPA's effects. LPA decreased intracellular GSH levels and induced a p38 MAPK/JNK-dependent inducible nitric oxide synthase (NOS) expression. Pretreatment with the antioxidant GSH precursor N-acetyl-cysteine (NAC), as well as with inhibitors of NOS [N(omega)-nitro-l-arginine (l-NNA); 1400W], significantly prevented LPA-induced endothelial cell death (in vitro) to comparable extents; as expected, p38 MAPK (SB203580) and JNK (SP-600125) inhibitors also diminished cell death. LPA did not increase indexes of oxidation (isoprostanes, hydroperoxides, and protein nitration) but did augment protein nitrosylation. Endothelial cytotoxicity by LPA in vitro was reproduced ex vivo in brain and in vivo in retina; THG1603, NAC, l-NNA, and combined SB-203580 and SP600125 prevented the microvascular rarefaction. Data implicate novel properties for LPA as a modulator of the cell redox environment, which partakes in endothelial cell death and ensued neuromicrovascular rarefaction.
Collapse
Affiliation(s)
- Sonia Brault
- Department of Pediatrics, Research Center, Hôpital Sainte-Justine, 3175 Côte Sainte-Catherine, Montréal, Québec, Canada H3T 1C5
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gil-Longo J, González-Vázquez C. Characterization of four different effects elicited by H2O2 in rat aorta. Vascul Pharmacol 2006; 43:128-38. [PMID: 15994130 DOI: 10.1016/j.vph.2005.06.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2005] [Revised: 06/01/2005] [Accepted: 06/02/2005] [Indexed: 11/19/2022]
Abstract
Four main vascular effects of hydrogen peroxide (H2O2) were studied in intact and rubbed aortic rings from WKY rats. In rings partially precontracted with phenylephrine: 1-30 microM H2O2 induced an increase of tone, 100 microM H2O2 produced a transient contraction followed by a fast-developing endothelium-independent relaxation, and 0.3 mM H2O2 induced a fast-developing relaxation followed by a slow-developing endothelium-independent relaxation. Superoxide dismutase (SOD) or dimethyl sulfoxide (DMSO)/manitol did not significantly modify the H2O2 effects, while catalase suppressed them. Indomethacin abolished the increase of tone elicited by H2O2 and revealed a small endothelium-dependent relaxation, which was suppressed by N(G)-nitro-L-arginine (L-NA), high K+ or tetraethylammonium (TEA). TEA strongly inhibited the fast-developing relaxation while indomethacin, glybenclamide, 1H-[1,2,4]Oxadiazolo[4,3-a]quinoxalin-1-one (ODQ), cafeic acid or eicosatriynoic acid (ETI) did not affect the relaxation. In rings precontracted with 70 mM KCl, 1-100 microM H2O2 induced a small increase of tone and 0.3 mM a slow-developing relaxation. Catalase or Fe2+-EDTA/vitamin C suppressed the slow-developing relaxation while deferoxamine did not modify it. In rings partially precontracted with arachidonic acid, 1-30 microM H2O2 induced higher contractile effects than in rings partially precontracted with phenylephrine. H2O2 at 0.3 mM for one hour induced a persistent impairment on the reactivity of the rings and the release of lactate dehydrogenase. In summary, H2O2 produces: (1) contractions mediated by direct activation of cyclooxygenase; 2) endothelium-dependent relaxations related to activation of endothelial K+ channels and NO synthesis; 3) reversible endothelium-independent relaxations mediated by activation of smooth muscle K+ channels; and 4) irreversible endothelium-independent relaxations related to cellular damage, caused by H2O2 but not by hydroxyl radicals.
Collapse
Affiliation(s)
- José Gil-Longo
- Department of Pharmacology, Faculty of Pharmacy, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| | | |
Collapse
|
15
|
Abstract
Understanding wound healing today involves much more than simply stating that there are three phases: "inflammation, proliferation, and maturation." Wound healing is a complex series of reactions and interactions among cells and "mediators." Each year, new mediators are discovered and our understanding of inflammatory mediators and cellular interactions grows. This article will attempt to provide a concise report of the current literature on wound healing by first reviewing the phases of wound healing followed by "the players" of wound healing: inflammatory mediators (cytokines, growth factors, proteases, eicosanoids, kinins, and more), nitric oxide, and the cellular elements. The discussion will end with a pictorial essay summarizing the wound-healing process.
Collapse
Affiliation(s)
- George Broughton
- Department of Plastic Surgery, Nancy L and Perry Bass Advanced Wound Healing Laboratory, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9132, USA.
| | | | | |
Collapse
|
16
|
Griffith TM. Endothelium-dependent smooth muscle hyperpolarization: do gap junctions provide a unifying hypothesis? Br J Pharmacol 2005; 141:881-903. [PMID: 15028638 PMCID: PMC1574270 DOI: 10.1038/sj.bjp.0705698] [Citation(s) in RCA: 190] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
An endothelium-derived hyperpolarizing factor (EDHF) that is distinct from nitric oxide (NO) and prostanoids has been widely hypothesized to hyperpolarize and relax vascular smooth muscle following stimulation of the endothelium by agonists. Candidates as diverse as K(+) ions, eicosanoids, hydrogen peroxide and C-type natriuretic peptide have been implicated as the putative mediator, but none has emerged as a 'universal EDHF'. An alternative explanation for the EDHF phenomenon is that direct intercellular communication via gap junctions allows passive spread of agonist-induced endothelial hyperpolarization through the vessel wall. In some arteries, eicosanoids and K(+) ions may themselves initiate a conducted endothelial hyperpolarization, thus suggesting that electrotonic signalling may represent a general mechanism through which the endothelium participates in the regulation of vascular tone.
Collapse
Affiliation(s)
- Tudor M Griffith
- Department of Diagnostic Radiology, Wales Heart Research Institute, University of Wales College of Medicine, Heath Park, Cardiff CF14 4XN.
| |
Collapse
|
17
|
Tommasini I, Sestili P, Guidarelli A, Cantoni O. Hydrogen peroxide generated at the level of mitochondria in response to peroxynitrite promotes U937 cell death via inhibition of the cytoprotective signalling mediated by cytosolic phospholipase A2. Cell Death Differ 2005; 11:974-84. [PMID: 15153939 DOI: 10.1038/sj.cdd.4401419] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
We have studied the relationships existing between delayed formation of H2O2 and activation of cytosolic phospholipase A2 (cPLA2), events respectively promoting toxicity or survival in U937 cells exposed to peroxynitrite. The outcome of an array of different approaches using phospholipase A2 inhibitors, or cPLA2 antisense oligonucleotides, as well as specific respiratory chain inhibitors and respiration-deficient cells led to the demonstration that H2O2 does not mediate toxicity by producing direct molecular damage. Rather, the effects of H2O2 were found to be upstream to the arachidonic acid (AA)-mediated cytoprotective signalling and in fact causally linked to inhibition of cPLA2. Thus, it appears that U937 cells exposed to nontoxic concentrations of peroxynitrite are nevertheless committed to death, which however is normally prevented by the activation of parallel pathways resulting in cPLA2-dependent release of AA. A rapid necrotic response, however, takes place when high concentrations of peroxynitrite promote formation of H2O2 at levels impairing the cPLA2 cytoprotective signalling.
Collapse
Affiliation(s)
- I Tommasini
- Istituto di Farmacologia e Farmacognosia, Università degli Studi di Urbino Carlo Bo, Via S Chiara, 27-61029 Urbino (PU), Italy
| | | | | | | |
Collapse
|
18
|
Ellis A, Triggle CR. Endothelium-derived reactive oxygen species: their relationship to endothelium-dependent hyperpolarization and vascular tone. Can J Physiol Pharmacol 2004; 81:1013-28. [PMID: 14719036 DOI: 10.1139/y03-106] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Opinions on the role of reactive oxygen species (ROS) in the vasculature have shifted in recent years, such that they are no longer merely regarded as indicators of cellular damage or byproducts of metabolism--they may also be putative mediators of physiological functions. Hydrogen peroxide (H2O2), in particular, can initiate vascular myocyte proliferation (and, incongruously, apoptosis), hyperplasia, cell adhesion, migration, and the regulation of smooth muscle tone. Endothelial cells express enzymes that produce ROS in response to various stimuli, and H2O2 is a potent relaxant of vascular smooth muscle. H2O2 itself can mediate endothelium-dependent relaxations in some vascular beds. Although nitric oxide (NO) is well recognized as an endothelium-derived dilator, it is also well established, particularly in the microvasculature, that another factor, endothelium-derived hyperpolarizing factor (EDHF), is a significant determinant of vasodilatory tone. This review primarily focuses on the hypothesis that H2O2 is an EDHF in resistance arteries. Putative endothelial sources of H2O2 and the effects of H2O2 on potassium channels, calcium homeostasis, and vascular smooth muscle tone are discussed. Furthermore, given the perception that ROS can more likely elicit cytotoxic effects than perform signalling functions, the arguments for and against H2O2 being an endogenous vasodilator are assessed.
Collapse
Affiliation(s)
- Anthie Ellis
- Smooth Muscle Research Group, Faculty of Medicine, University of Calgary, AB, Canada
| | | |
Collapse
|
19
|
Fioretti B, Catacuzzeno L, Tata AM, Franciolini F. Histamine activates a background, arachidonic acid-sensitive K channel in embryonic chick dorsal root ganglion neurons. Neuroscience 2004; 125:119-27. [PMID: 15051151 DOI: 10.1016/j.neuroscience.2004.01.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/26/2004] [Indexed: 10/26/2022]
Abstract
Histamine has been proposed to be an important modulator of developing neurons, but its mechanism of action remains unclear. In embryonic chick dorsal root ganglion neurons we found that histamine activates, through the pyrilamine-sensitive H1 receptor, a K-selective, background channel. The K channel activated by histamine was also activated by arachidonic acid in a dose-dependent way, with a KD of 4 microM and a slope of 2.5, had a unitary conductance of about 150 pS (symmetrical 140 KCl) and a moderate voltage dependence. The channel was insensitive to the classical K channel blockers tetraethylammonium, charybdotoxin, 4-aminopyridine, but inhibited by millimolar Ba2+. Channel activity could also be increased by lowering the intracellular pH from 7.2 to 5.5, or by applying negative pressure pulses through the patch pipette. Experiments aimed at delineating the metabotropic pathway leading to K channel activation by histamine indicated the involvement of a pertussis toxin-insensitive G protein, and a quinacrine-sensitive cytosolic phospholipase A2. The histamine-induced K channel activation was observed only with elevated internal Ca2+ (achieved using 0.5 microM ionomycin or elevated external KCl). An increase in the histamine-induced phosphoinositide hydrolysis was also observed upon internal Ca2+ elevation, showing the presence of a Ca2+ dependent step upstream to inositol 1,4,5-triphosphate production. In view of the functional importance of K conductances during cell differentiation, we propose that histamine activation of this K channel may have a significant role during normal development of embryonic chick neurons.
Collapse
Affiliation(s)
- B Fioretti
- Dipartimento Biologia Cellulare e Molecolare, Universita' di Perugia, Via Pascoli 1, 06100 Perugia, Italy
| | | | | | | |
Collapse
|
20
|
Gobeil F, Bernier SG, Vazquez-Tello A, Brault S, Beauchamp MH, Quiniou C, Marrache AM, Checchin D, Sennlaub F, Hou X, Nader M, Bkaily G, Ribeiro-da-Silva A, Goetzl EJ, Chemtob S. Modulation of pro-inflammatory gene expression by nuclear lysophosphatidic acid receptor type-1. J Biol Chem 2003; 278:38875-83. [PMID: 12847111 DOI: 10.1074/jbc.m212481200] [Citation(s) in RCA: 118] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Lysophosphatidic acid (LPA) is a bioactive molecule involved in inflammation, immunity, wound healing, and neoplasia. Its pleiotropic actions arise presumably by interaction with their cell surface G protein-coupled receptors. Herein, the presence of the specific nuclear lysophosphatidic acid receptor-1 (LPA1R) was revealed in unstimulated porcine cerebral microvascular endothelial cells (pCMVECs), LPA1R stably transfected HTC4 rat hepatoma cells, and rat liver tissue using complementary approaches, including radioligand binding experiments, electron- and cryomicroscopy, cell fractionation, and immunoblotting with three distinct antibodies. Coimmunoprecipitation studies in enriched plasmalemmal fractions of unstimulated pCMVEC showed that LPA1Rs are dually sequestrated in caveolin-1 and clathrin subcompartments, whereas in nuclear fractions LPA1R appeared primarily in caveolae. Immunofluorescent assays using a cell-free isolated nuclear system confirmed LPA1R and caveolin-1 co-localization. In pCMVEC, LPA-stimulated increases in cyclooxygenase-2 and inducible nitric-oxide synthase RNA and protein expression were insensitive to caveolea-disrupting agents but sensitive to LPA-generating phospholipase A2 enzyme and tyrosine kinase inhibitors. Moreover, LPA-induced increases in Ca2+ transients and/or iNOS expression in highly purified rat liver nuclei were prevented by pertussis toxin, phosphoinositide 3-kinase/Akt inhibitor wortmannin and Ca2+ chelator and channel blockers EGTA and SK&F96365, respectively. This study describes for the first time the nucleus as a potential organelle for LPA intracrine signaling in the regulation of pro-inflammatory gene expression.
Collapse
MESH Headings
- Androstadienes/pharmacology
- Animals
- Blotting, Western
- Calcium/metabolism
- Caveolin 1
- Caveolins/metabolism
- Cell Nucleus/metabolism
- Cell-Free System/metabolism
- Cells, Cultured
- Chelating Agents/pharmacology
- Clathrin/metabolism
- Egtazic Acid/pharmacology
- Endothelium, Vascular/cytology
- Enzyme Inhibitors/pharmacology
- Gene Expression Regulation
- Immunoblotting
- Liver/metabolism
- Microcirculation
- Microscopy, Electron
- Microscopy, Fluorescence
- Nitric Oxide Synthase/metabolism
- Nitric Oxide Synthase Type II
- Pertussis Toxin/pharmacology
- Phosphoinositide-3 Kinase Inhibitors
- Phospholipases A/metabolism
- Phospholipases A2
- Precipitin Tests
- Protein Binding
- Protein-Tyrosine Kinases/metabolism
- Rats
- Receptors, Cell Surface/metabolism
- Receptors, Cell Surface/physiology
- Receptors, G-Protein-Coupled
- Receptors, Lysophosphatidic Acid
- Subcellular Fractions/metabolism
- Swine
- Time Factors
- Transfection
- Tumor Cells, Cultured
- Wortmannin
Collapse
Affiliation(s)
- Fernand Gobeil
- Departments of Pediatrics, Ophthalmology and Pharmacology, Research Center of Hôpital Sainte-Justine, Montréal, Québec H3T 1C5, Canada.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Osband AJ, Deitch EA, Lu Q, Zaets S, Dayal S, Lukose B, Xu DZ. The role of oxidant-mediated pathways in the cytotoxicity of endothelial cells exposed to mesenteric lymph from rats subjected to trauma-hemorrhagic shock. Shock 2003; 20:269-73. [PMID: 12923500 DOI: 10.1097/01.shk.0000079422.72656.66] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Because gut-derived factors carried in mesenteric lymph are implicated in multiple organ dysfunction syndrome and have been shown to injure endothelial cells, we investigated several cellular pathways by which this process could occur. To accomplish this, mesenteric lymph (5%, v/v) collected at 1 to 3 h postshock from male rats undergoing trauma (5-cm laparotomy) and hemorrhagic shock (90 min of mean arterial pressure [MAP] of 30 mmHg; T/HS) was tested for endothelial cell cytotoxicity on human umbilical vein endothelial cells (HUVECs). Over 30 pharmacologic agents that had been reported to inhibit endothelial cell death were tested for their ability to prevent T/HS lymph-induced HUVEC cell death. These included agents documented to protect against oxidant-mediated, calcium-mediated, and arachidonic acid pathway-mediated endothelial cell injury and death. These pharmacologic inhibitors were preincubated with HUVECs for 1 h or were added to the HUVECs simultaneously with lymph, and were then incubated for 18 h. Controls were lymph alone, inhibitor alone, or medium alone. Mitochondrial tetrazolium (MTT) and LDH release assays were used to determine cell viability. The inhibitors that significantly protected HUVECs from the cytotoxicity of T/HS lymph (P < 0.001) included the antioxidant combination of vitamins C and E and the antioxidant-lipooxygenase inhibitor nordihydroguaretic acid (NDGA). These agents were equally effective when added simultaneously with lymph or preincubated with the HUVECs, suggesting an extracellular or membrane-bound process. In summary, the inhibitors that provided protection from toxic lymph appear to work at the membrane and are involved in limiting membrane peroxidation. Based on this study, it appears that an oxidant pathway is involved in T/HS lymph-induced endothelial cell injury and death.
Collapse
Affiliation(s)
- Adena J Osband
- Department of Surgery, New Jersey Medical School, Newark, NJ 07101, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Han WK, Sapirstein A, Hung CC, Alessandrini A, Bonventre JV. Cross-talk between cytosolic phospholipase A2 alpha (cPLA2 alpha) and secretory phospholipase A2 (sPLA2) in hydrogen peroxide-induced arachidonic acid release in murine mesangial cells: sPLA2 regulates cPLA2 alpha activity that is responsible for arachidonic acid release. J Biol Chem 2003; 278:24153-63. [PMID: 12676927 DOI: 10.1074/jbc.m300424200] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Oxidant stress and phospholipase A2 (PLA2) activation have been implicated in numerous proinflammatory responses of the mesangial cell (MC). We investigated the cross-talk between group IValpha cytosolic PLA2 (cPLA2alpha) and secretory PLA2s (sPLA2s) during H2O2-induced arachidonic acid (AA) release using two types of murine MC: (i). MC+/+, which lack group IIa and V PLA2s, and (ii). MC-/-, which lack groups IIa, V, and IValpha PLA2s. H2O2-induced AA release was greater in MC+/+ compared with MC-/-. It has been argued that cPLA2alpha plays a regulatory role enhancing the activity of sPLA2s, which act on phospholipids to release fatty acid. Group IIa, V, or IValpha PLA2s were expressed in MC-/- or MC+/+ using recombinant adenovirus vectors. Expression of cPLA2alpha in H2O2-treated MC-/- increased AA release to a level approaching that of H2O2-treated MC+/+. Expression of either group IIa PLA2 or V PLA2 enhanced AA release in MC+/+ but had no effect on AA release in MC-/-. When sPLA2 and cPLA2alpha are both present, the effect of H2O2 is manifested by preferential release of AA compared with oleic acid. Inhibition of the ERK and protein kinase C signaling pathways with the MEK-1 inhibitor, U0126, and protein kinase C inhibitor, GF 1092030x, respectively, and chelating intracellular free calcium with 1,2-bis(2-aminophenoyl)ethane-N,N,N',N'-tetraacetic acid-AM, which also reduced ERK1/2 activation, significantly reduced H2O2-induced AA release in MC+/+ expressing either group IIa or V PLA2s. By contrast, H2O2-induced AA release was not enhanced when ERK1/2 was activated by infection of MC+/+ with constitutively active MEK1-DD. We conclude that the effect of group IIa and V PLA2s on H2O2-induced AA release is dependent upon the presence of cPLA2alpha and the activation of PKC and ERK1/2. Group IIa and V PLA2s are regulatory and cPLA2alpha is responsible for AA release.
Collapse
Affiliation(s)
- Won K Han
- Medical Services, Massachusetts General Hospital, Department of Medicine and Anesthesia, Harvard Medical School, Massachusetts, USA
| | | | | | | | | |
Collapse
|
23
|
Abstract
Excessive generation of reactive oxygen species (ROS) in the central nervous system (CNS) is a leading cause of neuronal injury. Despite yet unknown mechanisms, oxidant compounds such as H(2)O(2) have been shown to stimulate the release of arachidonic acid (AA) in a number of cell systems. In this study, H(2)O(2) and menadione, a compound known to release H(2)O(2) intracellularly, were used to examine the phospholipases A(2) (PLA(2)) responsible for AA release from primary murine astrocytes. Both H(2)O(2) and menadione dose-dependently stimulated AA release, and the release mediated by H(2)O(2) was completely inhibited by catalase. H(2)O(2) also stimulated phosphorylation of extracellular signal-regulated kinases (ERK1/2) and cytosolic phospholipase A(2) (cPLA(2)). However, complete inhibition of cPLA(2) phosphorylation by U0126, an inhibitor for mitogen-activated protein kinase kinase (MEK) and GF109203x, a nonselective PKC inhibitor preferring the conventional and novel isoforms, only reduced H(2)O(2)-stimulated AA release by 50%. MAFP, a selective, active, site-directed, irreversible inhibitor of both cPLA(2) and the Ca(2+)-independent iPLA(2), nearly completely inhibited H(2)O(2)-mediated AA release; but, HELSS, a potent irreversible inhibitor of iPLA(2), only inhibited H(2)O(2)-mediated AA release by 40%. Along with the observation that H(2)O(2)-mediated AA release was only partially inhibited upon chelating intracellular Ca(2+) by BAPTA, these results indicate the involvement of both cPLA(2) and iPLA(2) in H(2)O(2)-mediated AA release in murine astrocytes.
Collapse
Affiliation(s)
- Jianfeng Xu
- Department of Biochemistry, University of Missouri, Columbia, MO 65212, USA
| | | | | | | |
Collapse
|
24
|
David KC, Brady MT, Weimer LK, Hellberg MR, Nixon JC, Graff G. Characterization of the in vitro anti-inflammatory activity of AL-5898 and related benzopyranyl esters and amides. Inflammation 2003; 27:31-43. [PMID: 12772775 DOI: 10.1023/a:1022687111884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Selected ester- (AL-5898 and AL-8417) and amide-linked benzopyran analogues (AL-7538 and AL-12615) were evaluated in vitro for their ability to inhibit key enzymes/processes of the inflammatory response. AL-7538 and AL-12615 exhibited weak intrinsic cyclooxygenase inhibitory activity (IC50 = 13 microM, 37 microM). In contrast, 5-HETE and LTB4 synthesis in A(23187)-stimulated neutrophils was effectively inhibited by both ester and amide analogs (IC50 = 2-3 microM). While there was some indication for differing sensitivities among benzopyran esters and amides in the suppression of cytokine synthesis in stimulated U-937 cells, there appeared to be no great discrimination when assessing their effect on U-937 cell adhesion to IL-1beta activated HMVEC-L cells. Inhibition of cell adhesion was concentration-dependent, with IC50 values ranging between 18 microM and 30 microM for AL-5898. Concentration-dependent inhibition of inflammatory cytokine production (i.e., IL-1beta, TNF-alpha, GM-CSF and IL-6) was also apparent in LPS-stimulated, cultured PBMC as well as in PMA/A(23187) activated U-937 cells monitoring the synthesis of IL-1beta, IL-8, TNF-alpha, and MCP-1. Notably, the hydrolysis products of the benzopyranyl ester, AL-5692 and (S)-6-methoxy-alpha-methyl-2-naphthaleneacetic acid, were devoid of pharmacological activity when assessed for inhibition of monocyte adhesion or IL-1beta synthesis. Collectively, our data demonstrate the unique in vitro polypharmacology of a novel series of benzopyran analogs that suppress pivotal enzymes and processes in the inflammatory response.
Collapse
Affiliation(s)
- Karen C David
- Pharmaceutical Products Research, Alcon Research, Ltd., 6201 S. Freeway, Fort Worth, TX 76134-2099, USA
| | | | | | | | | | | |
Collapse
|
25
|
Marrache AM, Gobeil F, Bernier SG, Stankova J, Rola-Pleszczynski M, Choufani S, Bkaily G, Bourdeau A, Sirois MG, Vazquez-Tello A, Fan L, Joyal JS, Filep JG, Varma DR, Ribeiro-Da-Silva A, Chemtob S. Proinflammatory gene induction by platelet-activating factor mediated via its cognate nuclear receptor. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 169:6474-81. [PMID: 12444157 DOI: 10.4049/jimmunol.169.11.6474] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
It has been postulated that intracellular binding sites for platelet-activating factor (PAF) contribute to proinflammatory responses to PAF. Isolated nuclei from porcine cerebral microvascular endothelial cells (PCECs) produced PAF-molecular species in response to H(2)O(2). Using FACS analysis, we demonstrated the expression of PAF receptors on cell and nuclear surfaces of PCECs. Confocal microscopy studies performed on PCECs, Chinese hamster ovary cells stably overexpressing PAF receptors, and isolated nuclei from PCECs also showed a robust nuclear distribution of PAF receptors. Presence of PAF receptors at the cell nucleus was further revealed in brain endothelial cells by radioligand binding experiments, immunoblotting, and in situ in brain by immunoelectron microscopy. Stimulation of nuclei with methylcarbamate-PAF evoked a decrease in cAMP production and a pertussis toxin-sensitive rise in nuclear calcium, unlike observations in plasma membrane, which exhibited a pertussis toxin-insensitive elevation in inositol phosphates. Moreover, on isolated nuclei methylcarbamate-PAF evoked the expression of proinflammatory genes inducible nitric oxide synthase and cyclooxygenase-2 (COX-2) and was associated with augmented extracellular signal-regulated kinase 1/2 phosphorylation and NF-kappaB binding to the DNA consensus sequence. COX-2 expression was prevented by mitogen-activated protein kinase kinase/extracellular signal-regulated kinase 1/2 and NF-kappaB inhibitors. This study describes for the first time the nucleus as a putative organelle capable of generating PAF and expresses its receptor, which upon stimulation induces the expression of the proinflammatory gene COX-2.
Collapse
Affiliation(s)
- A Marilise Marrache
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Balboa MA, Balsinde J. Involvement of calcium-independent phospholipase A2 in hydrogen peroxide-induced accumulation of free fatty acids in human U937 cells. J Biol Chem 2002; 277:40384-9. [PMID: 12181317 DOI: 10.1074/jbc.m206155200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous studies have demonstrated that U937 cells are able to mobilize arachidonic acid (AA) and synthesize prostaglandins in response to receptor-directed and soluble stimuli by a mechanism that involves the activation of Group IV cytosolic phospholipase A(2)alpha. In this paper we show that these cells also mobilize AA in response to an oxidative stress induced by H(2)O(2) through a mechanism that appears not to be mediated by cytosolic phospholipase A(2)alpha but by the calcium-independent Group VI phospholipase A(2) (iPLA(2)). This is supported by the following lines of evidence: (i) the response is essentially calcium-independent, (ii) it is inhibited by bromoenol lactone, and (iii) it is inhibited by an iPLA(2) antisense oligonucleotide. Enzyme assays conducted under a variety of conditions reveal that the specific activity of the iPLA(2) does not change as a result of H(2)O(2) exposure, which argues against the activation of a specific signaling cascade ending in the iPLA(2). Rather, the oxidant acts to perturb membrane homeostasis in a way that the enzyme susceptibility/accessibility to its substrate increases, and this results in altered fatty acid release. In support of this view, not only AA, but also other fatty acids, were found to be liberated in an iPLA(2)-dependent manner in the H(2)O(2)-treated cells. Collectively, these studies underscore the importance of the iPLA(2) in modulating homeostatic fatty acid deacylation reactions and document a potentially important route under pathophysiological conditions for increasing free fatty acid levels during oxidative stress.
Collapse
Affiliation(s)
- María A Balboa
- Institute of Molecular Biology and Genetics, School of Medicine, University of Valladolid, Avenida Ramón y Cajal 7, E-47005 Valladolid, Spain
| | | |
Collapse
|
27
|
Suppression of Post-Vitrectomy Lens Changes in the Rabbit by Novel Benzopyranyl Esters and Amides. Exp Eye Res 2002. [DOI: 10.1006/exer.2002.2043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
28
|
Estrada-García L, Carrera-Rotllan J, Puig-Parellada P. Effects of oxidative stress and antioxidant treatments on eicosanoid synthesis and lipid peroxidation in long term human umbilical vein endothelial cells culture. Prostaglandins Other Lipid Mediat 2002; 67:13-25. [PMID: 11789894 DOI: 10.1016/s0090-6980(01)00167-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
We analyzed the influence of oxidative stress and agents that modify its effect in human umbilical vein endothelial cell cultures (HUVEC). The parameters analyzed were PGI2, TXA2, PGI2/TXA2 ratio, lipid peroxidation and cell viability. Oxidative stress was induced by H2O2. The agents (treatments) that were tested are: antioxidant enzymes (superoxide dismutase and catalase), oxygen free radical scavenger (vitamin E) and eicosanoids of the series 2 and 3 (Arachidonic acid, Eicosapentanoic acid). In this study we show, in long term endothelial cell cultures, the effects of different levels of oxidative stress alone or in combination with the different treatment agents, over the analyzed parameters. With induced oxidative stress alone the results obtained indicate that it has a harmful effect over cell function and viability, and that this effect is dose and time dependent. In absence of oxidative stress in basal situation, none of the treatments assayed showed significant differences compared to control cultures in the different analyzed parameters. When oxidative stress increased, antioxidant enzymes reduced cell damage and had a protective function, whereas Eicosapentanoic acid and vitamin E presented a lower level of protection. No beneficial effect was observed with arachidonic acid treatments. A significant increase in cell survival was observed in culture cells with oxidative stress when they were treated with antioxidant enzymes.
Collapse
Affiliation(s)
- L Estrada-García
- Servei de Neurofisiologia, Hospital Universitari de Tarragona Joan XXIII, Tarragona, Spain
| | | | | |
Collapse
|
29
|
12(S)-Hydroperoxy-eicosatetraenoic acid increases arachidonic acid availability in collagen-primed platelets. J Lipid Res 2001. [DOI: 10.1016/s0022-2275(20)30280-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
30
|
Jin ZG, Melaragno MG, Liao DF, Yan C, Haendeler J, Suh YA, Lambeth JD, Berk BC. Cyclophilin A is a secreted growth factor induced by oxidative stress. Circ Res 2000; 87:789-96. [PMID: 11055983 DOI: 10.1161/01.res.87.9.789] [Citation(s) in RCA: 295] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Reactive oxygen species have been implicated in the pathogenesis of atherosclerosis, hypertension, and restenosis, in part by promoting vascular smooth muscle cell (VSMC) growth. Many VSMC growth factors are secreted by VSMC and act in an autocrine manner. Here we demonstrate that cyclophilin A (CyPA), a member of the immunophilin family, is secreted by VSMCs in response to oxidative stress and mediates extracellular signal-regulated kinase (ERK1/2) activation and VSMC growth by reactive oxygen species. Human recombinant CyPA can mimic the effects of secreted CyPA to stimulate ERK1/2 and cell growth. The peptidyl-prolyl isomerase activity is required for ERK1/2 activation by CyPA. In vivo, CyPA expression and secretion are increased by oxidative stress and vascular injury. These findings are the first to identify CyPA as a secreted redox-sensitive mediator, establish CyPA as a VSMC growth factor, and suggest an important role for CyPA and enzymes with peptidyl-prolyl isomerase activity in the pathogenesis of vascular diseases.
Collapse
Affiliation(s)
- Z G Jin
- Center for Cardiovascular Research, University of Rochester, Rochester, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Barlow RS, El-Mowafy AM, White RE. H(2)O(2) opens BK(Ca) channels via the PLA(2)-arachidonic acid signaling cascade in coronary artery smooth muscle. Am J Physiol Heart Circ Physiol 2000; 279:H475-83. [PMID: 10924044 DOI: 10.1152/ajpheart.2000.279.2.h475] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
H(2)O(2) is a reactive oxygen species that contracts or relaxes vascular smooth muscle, but the molecular basis of these effects remains obscure. We previously demonstrated that H(2)O(2) opens the large-conductance, calcium- and voltage-activated (BK(Ca)) potassium channel of coronary myocytes (2) and now report physiological and biochemical evidence that the effect of H(2)O(2) on coronary smooth muscle involves the phospholipase A(2) (PLA(2))/arachidonic acid (AA) signaling cascades. H(2)O(2) stimulation of BK(Ca) channel activity was inhibited by arachidonyl trifluoromethyl ketone, an inhibitor of cytosolic PLA(2). Furthermore, H(2)O(2) stimulated release of [(3)H]AA from coronary myocytes, and exogenous AA mimicked the effect of H(2)O(2) on BK(Ca) channels. Inhibitors of protein kinase C activity attenuated the effect of H(2)O(2) on BK(Ca) channels, [(3)H]AA release, or intact coronary arteries. In addition, the effect of H(2)O(2) or AA on BK(Ca) channels was inhibited by blockers of lipoxygenase metabolism. In contrast, inhibitors of cyclooxygenase or cytochrome P-450 had no effect. We propose that H(2)O(2) relaxes coronary arteries by stimulating BK(Ca) channels via the PLA(2)/AA signaling cascade and that lipoxygenase metabolites mediate this response.
Collapse
Affiliation(s)
- R S Barlow
- Department of Physiology and Biophysics, Wright State University School of Medicine, Dayton, Ohio 45435, USA
| | | | | |
Collapse
|
32
|
Abstract
An increasing body of evidence has demonstrated that NADPH oxidase plays a critical role in several early steps leading toward the development of atherosclerosis. These effects appear to be carried out by both the ability of O2- to act as a small second messenger molecule, and potentially the oxidation of low density lipoprotein by O2-. We describe a model for the initiation and development of atherosclerosis that suggests targeted inhibition of NADPH oxidase as a powerful site for prevention and treatment of this disease.
Collapse
Affiliation(s)
- J W Meyer
- Department of Molecular Genetics, Biochemistry and Microbiology, University of Cincinnati, 231 Bethesda Avenue, P.O. Box 670524, Cincinnati, OH 45267-0524, USA
| | | |
Collapse
|
33
|
Casavant RH, Xu Z, Dryer SE. Fatty acid-activated K+ channels in autonomic neurons: activation by an endogenous source of free fatty acids. J Neurochem 2000; 74:1026-33. [PMID: 10693933 DOI: 10.1046/j.1471-4159.2000.0741026.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Application of arachidonic acid evoked robust activation of large-conductance K+ channels in cell-attached and excised inside-out patches from acutely isolated chick ciliary ganglion neurons. A similar effect was produced by 5,8,11,14-eicosatetraynoic acid, a nonmetabolizable analogue of arachidonic acid. The unitary conductance of fatty acid-activated channels was 35-40 pS at +20 mV with physiological gradients of K+ and 165 pS at +20 mV with an extracellular K+ concentration of 37.5 mM and an intracellular K+ concentration of 150 mM. Gating of these channels in cell-attached patches was potentiated by membrane stretch. Channel gating evoked by both lipids was concentration-dependent, with detectable activation apparent at 4 microM in the majority of patches and maximal activation occurring between 32 and 64 microM. Gating was relatively voltage-independent. Large-conductance K+ channels were also activated in inside-out patches by the monounsaturated fatty acid 11-cis-eicosenoic acid but not by the fully saturated fatty acid arachidic acid. Application of 100 microM H2O2, an agent that activates cytosolic phospholipase A2, also caused activation of large-conductance K+ channels in intact neurons. The stimulatory effects of H2O2 were blocked by pretreatment with 20 microM 4-bromophenacyl bromide, an irreversible inhibitor of phospholipase A2. Therefore, mobilization of endogenous fatty acids can cause activation of large-conductance K+ channels in autonomic neurons.
Collapse
Affiliation(s)
- R H Casavant
- Department of Biology and Biochemistry, University of Houston, Texas 77205-5513, USA
| | | | | |
Collapse
|
34
|
Abe J, Okuda M, Huang Q, Yoshizumi M, Berk BC. Reactive oxygen species activate p90 ribosomal S6 kinase via Fyn and Ras. J Biol Chem 2000; 275:1739-48. [PMID: 10636870 DOI: 10.1074/jbc.275.3.1739] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive oxygen species and growth factors stimulate similar intracellular signal transduction events including activation of Src kinase family members and extracellular signal-regulated kinases (ERK1/2). A potentially important downstream effector of Src and ERK1/2 is p90 ribosomal S6 kinase (p90RSK), which plays an important role in cell growth by activating several transcription factors as well as the Na(+)/H(+) exchanger. In the present study, we determined whether H(2)O(2) activates p90RSK to gain insight into signal transduction mechanisms activated by reactive oxygen species. H(2)O(2) (200 microM) stimulated ERK1/2 and p90RSK activity in lymphocytes, endothelial cells, and fibroblasts. The MEK-1 inhibitor, PD98059 (30 microM), inhibited H(2)O(2)-mediated activation of ERK1/2 but not of p90RSK. An essential role for Fyn and Ras in p90RSK activation was suggested by five findings. 1) The tyrosine kinase inhibitor, herbimycin A, and the specific Src kinase family inhibitor, PP1, blocked p90RSK activation by H(2)O(2) in a concentration-dependent manner. 2) p90RSK activation by H(2)O(2) was significantly reduced in fibroblasts derived from transgenic mice deficient in Fyn, but not c-Src. 3) H(2)O(2) rapidly activated Ras (peak at 2-5 min), which preceded p90RSK activation (peak at 20 min). 4) Dominant negative Ras completely blocked H(2)O(2)-induced activation of p90RSK. 5) In Fyn-/- fibroblasts, activation of Ras by H(2)O(2) was significantly attenuated. These results show essential roles for Fyn and Ras in H(2)O(2)-mediated activation of p90RSK and establish redox-sensitive regulation of Ras and p90RSK as a new function for Fyn.
Collapse
Affiliation(s)
- J Abe
- Center for Cardiovascular Research, University of Rochester, Rochester, New York 14642, USA
| | | | | | | | | |
Collapse
|
35
|
Yasuda Y, Yoshinaga N, Murayama T, Nomura Y. Inhibition of hydrogen peroxide-induced apoptosis but not arachidonic acid release in GH3 cell by EGF. Brain Res 1999; 850:197-206. [PMID: 10629765 DOI: 10.1016/s0006-8993(99)02143-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) and arachidonic acid (AA) can both function as extra- and intra-cellular messengers to regulate various cell functions including cell death. The effect of ROS on phospholipase A2 (PLA2) activity and/or AA release has not been extensively studied in neuronal cells. In this study, we investigated the effects of H2O2 on AA release and apoptosis in GH3 cells, a clonal strain from rat anterior pituitary. Incubation with H2O2 for 1 h stimulated [3H]AA release in a concentration-dependent manner from prelabeled GH3 cells. [3H]AA release was inhibited by arachidonyl trifluoromethyl ketone, a specific inhibitor of cytosolic PLA2, and cytosolic PLA2 protein with a molecular mass of 100 kDa was detected by immunoblotting. Culture with 0.2 mM H2O2 and 30 microM AA for 24 h induced lactate dehydrogenase (LDH) leakage, DNA laddering and DNA fragmentation in GH3 cells. In GH3 cells pretreated with EGF (50 ng/ml) for 24 h, LDH leakage and DNA fragmentation by H2O2 and AA were inhibited, although H2O2-induced [3H]AA release was not modified. Mastoparan, a wasp venom peptide, induced [3H]AA release and cell death in GH3 cells. Neither effect of mastoparan was inhibited by EGF treatment. These findings suggest that (1) H2O2 stimulates AA release via activation of cytosolic PLA2, (2) H2O2 and AA induce apoptotic death of GH3 cells and (3) treatment with EGF protects H2O2- and AA-, but not mastoparan-, induced GH3 cell death.
Collapse
Affiliation(s)
- Y Yasuda
- Department of Pharmacology, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|
36
|
Kohjimoto Y, Kennington L, Scheid CR, Honeyman TW. Role of phospholipase A2 in the cytotoxic effects of oxalate in cultured renal epithelial cells. Kidney Int 1999; 56:1432-41. [PMID: 10504495 DOI: 10.1046/j.1523-1755.1999.00683.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Oxalate, a common constituent of kidney stones, is cytotoxic for renal epithelial cells. Although the exact mechanism of oxalate-induced cell death remains unclear, studies in various cell types, including renal epithelial cells, have implicated phospholipase A2 (PLA2) as a prominent mediator of cellular injury. Thus, these studies examined the role of PLA2 in the cytotoxic effects of oxalate. METHODS The release of [3H]-arachidonic acid (AA) or [3H]-oleic acid (OA) from prelabeled Madin-Darby canine kidney (MDCK) cells was measured as an index for PLA2 activity. The cell viability was assessed by the exclusion of ethidium homodimer-1. RESULTS Oxalate exposure (175 to 550 microM free) increased the release of [3H]-AA in MDCK cells but had no effect on the release of [3H]-OA. Oxalate-induced [3H]-AA release was abolished by arachidonyl trifluoromethyl ketone (AACOCF3), a selective inhibitor of cytosolic PLA2 (cPLA2), but was not affected by selective inhibitors of secretory PLA2 and calcium-independent PLA2. The [3H]-AA release could be demonstrated within 15 minutes after exposure to oxalate, which is considerably earlier than the observed changes in cell viability. Furthermore, AACOCF3 significantly reduced oxalate toxicity in MDCK cells. CONCLUSIONS Oxalate increases AA release from MDCK cells by a process involving cPLA2. In addition, based on the evidence obtained using a selective inhibitor of this isoform, it would appear that the activity of this enzyme is responsible, at least in part, for the cytotoxic effects of oxalate. The finding that oxalate can trigger a known lipid-signaling pathway may provide new insight into the initial events in the pathogenesis of nephrolithiasis.
Collapse
Affiliation(s)
- Y Kohjimoto
- Department of Physiology, University of Massachusetts Medical School, Worcester 01655-0127, USA
| | | | | | | |
Collapse
|
37
|
Lorenz RR, Warner DO, Jones KA. Hydrogen peroxide decreases Ca(2+) sensitivity in airway smooth muscle by inhibiting rMLC phosphorylation. THE AMERICAN JOURNAL OF PHYSIOLOGY 1999; 277:L816-22. [PMID: 10516224 DOI: 10.1152/ajplung.1999.277.4.l816] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine the mechanism by which hydrogen peroxide (H(2)O(2)), an important inflammatory mediator, relaxes canine tracheal smooth muscle (CTSM). H(2)O(2) caused concentration-dependent relaxations of CTSM strips contracted with ACh or isotonic KCl [EC(50) of 0.24 +/- 0.04 (SE) and 0.23 +/- 0.04 mM, respectively]. Indomethacin (10 microM) decreased the sensitivity of both KCl- and ACh-contracted strips to H(2)O(2). H(2)O(2) increased intracellular cAMP levels, an increase that was abolished by indomethacin. H(2)O(2) did not affect intracellular cGMP levels. In strips treated with indomethacin and contracted with ACh or isotonic KCl, H(2)O(2)-evoked relaxations were accompanied by increases in intracellular Ca(2+) concentration and decreases in regulatory myosin light chain phosphorylation. We conclude that H(2)O(2) decreases Ca(2+) sensitivity in CTSM by decreasing regulatory myosin light chain phosphorylation through inhibition of myosin light chain kinase and/or activation of smooth muscle protein phosphatases.
Collapse
Affiliation(s)
- R R Lorenz
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | |
Collapse
|
38
|
Aoshiba K, Yasui S, Nishimura K, Nagai A. Thiol depletion induces apoptosis in cultured lung fibroblasts. Am J Respir Cell Mol Biol 1999; 21:54-64. [PMID: 10385593 DOI: 10.1165/ajrcmb.21.1.3411] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Thiol antioxidants are implicated in the protection of cells from oxidative injury. We studied the role of thiols in the regulation of apoptosis in cultured lung fibroblasts. Thiol depletion by culturing fibroblasts in cystine-free medium or with thiol-depleting agents induced oxidant accumulation and cell death by apoptosis. The cell death was prevented by the antioxidants ascorbic acid (AA) and catalase. Thiol depletion also induced leukotriene (LT) C4, LTD4, and LTE4 production and selective phosphorylation of p38-mitogen-activated protein kinase (MAPK) and its nuclear substrate ATF2. LT production and p38-MAPK phosphorylation were required for induction of apoptosis because thiol depletion-induced apoptosis was completely blocked by the 5-lipoxygenase inhibitor AA861, the LT antagonists FPL55712 and ONO1078, and the p38-MAPK inhibitor SB203580. LT production was inhibited by AA and p38-MAPK phosphorylation was inhibited by AA, AA861, and FPL55712. In an in vitro scratch wound model, repopulating fibroblasts at the wound margin, but not quiescent cells at the intact site, selectively underwent thiol depletion- induced apoptosis that was completely blocked by AA861, FPL55712, and SB203580. Thus, thiol depletion induces apoptosis through an ordered pathway involving oxidant accumulation, LT production, and p38-MAPK activation. Apoptosis of wound fibroblasts may be responsible for impaired wound healing in various organs, including the lung.
Collapse
Affiliation(s)
- K Aoshiba
- Department of Medicine, Chest Institute, Tokyo Women's Medical College, Tokyo, Japan
| | | | | | | |
Collapse
|
39
|
Bychkov R, Pieper K, Ried C, Milosheva M, Bychkov E, Luft FC, Haller H. Hydrogen peroxide, potassium currents, and membrane potential in human endothelial cells. Circulation 1999; 99:1719-25. [PMID: 10190882 DOI: 10.1161/01.cir.99.13.1719] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Hydrogen peroxide (H2O2) and reactive oxygen species are implicated in inflammation, ischemia-reperfusion injury, and atherosclerosis. The role of ion channels has not been previously explored. METHODS AND RESULTS K+ currents and membrane potential were recorded in endothelial cells by voltage- and current-clamp techniques. H2O2 elicited both hyperpolarization and depolarization of the membrane potential in a concentration-dependent manner. Low H2O2 concentrations (0.01 to 0.25 micromol/L) inhibited the inward-rectifying K+ current (KIR). Whole-cell K+ current analysis revealed that H2O2 (1 mmol/L) applied to the bath solution increased the Ca2+-dependent K+ current (KCa) amplitude. H2O2 increased KCa current in outside-out patches in a Ca2+-free solution. When catalase (5000 micro/mL) was added to the bath solution, the outward-rectifying K+ current amplitude was restored. In contrast, superoxide dismutase (1000 u/mL) had only a small effect on the H2O2-induced K+ current changes. Next, we measured whole-cell K+ currents and redox potentials simultaneously with a novel redox potential-sensitive electrode. The H2O2-mediated KCa current increase was accompanied by a whole-cell redox potential decrease. CONCLUSIONS H2O2 elicited both hyperpolarization and depolarization of the membrane potential through 2 different mechanisms. Low H2O2 concentrations inhibited inward-rectifying K+ currents, whereas higher H2O2 concentrations increased the amplitude of the outward K+ current. We suggest that reactive oxygen species generated locally increases the KCa current amplitude, whereas low H2O2 concentrations inhibit KIR via intracellular messengers.
Collapse
Affiliation(s)
- R Bychkov
- Franz Volhard Clinic and Max Delbrück Center for Molecular Medicine, Medical Faculty of the Charité, Humboldt University of Berlin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
40
|
Wu Y, Kwon KS, Rhee SG. Probing cellular protein targets of H2O2 with fluorescein-conjugated iodoacetamide and antibodies to fluorescein. FEBS Lett 1998; 440:111-5. [PMID: 9862437 DOI: 10.1016/s0014-5793(98)01415-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent studies suggest that H2O2, at subtoxic concentrations generated in response to the activation of a variety of cell surface receptors, functions as an intracellular messenger. However, the intracellular targets of H2O2 action have not been identified. A procedure to detect proteins with reactive cysteine residues susceptible to oxidation by intracellularly generated H2O2 is now described. This approach is based on the labeling of proteinaceous cysteine with 5-iodoacetamidofluorescein at pH 5.5 and immunoblot analysis of the labeled proteins with antibodies specific to fluorescein. With this procedure, many proteins in human A431 cells were shown to contain reactive cysteines and to be readily oxidized by H2O2 generated in response to cellular stimulation with epidermal growth factor. One of these H2O2-sensitive proteins was identified as protein tyrosine phosphatase 1B.
Collapse
Affiliation(s)
- Y Wu
- Laboratory of Cell Signaling, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
41
|
Carbajal JM, Schaeffer RC. H2O2 and genistein differentially modulate protein tyrosine phosphorylation, endothelial morphology, and monolayer barrier function. Biochem Biophys Res Commun 1998; 249:461-6. [PMID: 9712719 DOI: 10.1006/bbrc.1998.9172] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The effects of hydrogen peroxide (H2O2) and the protein tyrosine kinase (PTK) inhibitor, genistein, to modulate protein tyrosine phosphorylation (PTP) and endothelial barrier function were examined in bovine pulmonary artery endothelial cell (EC) monolayers. H2O2 stimulated a concentration (100-800 microM) and time-dependent increase in the phosphotyrosine (PY) content of multiple (56-72, 93-97, 113-142, and 161-183 kDa) EC proteins. A size-selected solute permeability assay of EC monolayer barrier function showed that (200 microM) H2O2 elevated EC monolayer permeability to large solutes. This effect was associated with paracellular hole formation and a loss of beta-catenin immunostaining at these sites. In contrast, genistein (100 microM, 1 h) reduced basal PY protein content and reorganized F-actin to beta-catenin containing cell-cell junctions, enhancing endothelial monolayer barrier function. In addition, genistein prevented the H2O2-induced increases in tyrosine phosphorylation, monolayer permeability, and paracellular hole formation. These data suggest that H2O2 and genistein differentially regulate PTP, endothelial morphology, and monolayer barrier function.
Collapse
Affiliation(s)
- J M Carbajal
- Department of Veteran Affairs Medical Center, University of Arizona, Tucson, Arizona, 85723, USA
| | | |
Collapse
|
42
|
Fabisiak JP, Kagan VE, Tyurina YY, Tyurin VA, Lazo JS. Paraquat-induced phosphatidylserine oxidation and apoptosis are independent of activation of PLA2. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:L793-802. [PMID: 9612295 DOI: 10.1152/ajplung.1998.274.5.l793] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Paraquat is a pneumotoxin that causes lung injury by enhancing oxidative stress; however, the cellular responses to these redox events are undefined. We previously showed that paraquat produced selective peroxidation of phosphatidylserine that preceded apoptosis in 32D cells. We now report that the phospholipase A2 (PLA2) inhibitor quinacrine can attenuate phosphatidylserine oxidation and also block paraquat-induced apoptosis. Therefore, we investigated the potential for PLA2 to mediate apoptosis after paraquat. We found that, in contrast to quinacrine, the PLA2 inhibitors manoalide, aristolochic acid, and arachidonyl trifluoromethylketone failed to prevent paraquat-induced apoptosis. Moreover, no evidence of PLA2 activation was observed within 7 h after paraquat exposure. Finally, quinacrine failed to inhibit basal and 4-bromo-A-23187-induced release of [3H]arachidonic acid at concentrations that protected paraquat-induced apoptosis. We conclude that paraquat-induced phosphatidylserine oxidation and apoptosis occurred in the absence of PLA2 activation and that quinacrine protected phosphatidylserine and cell viability after paraquat in a PLA2-independent manner.
Collapse
Affiliation(s)
- J P Fabisiak
- Department of Pharmacology, School of Medicine, University of Pittsburgh, Pennsylvania 15261, USA
| | | | | | | | | |
Collapse
|
43
|
Cane A, Breton M, Koumanov K, Béréziat G, Colard O. Oxidant-induced arachidonic acid release and impairment of fatty acid acylation in vascular smooth muscle cells. THE AMERICAN JOURNAL OF PHYSIOLOGY 1998; 274:C1040-6. [PMID: 9575801 DOI: 10.1152/ajpcell.1998.274.4.c1040] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Oxidative damage, which plays a major role in the early stages of atherosclerosis, is associated with arachidonic acid (AA) release in vascular smooth muscle cells (VSMC) as in other cell types. In this study, H2O2 was used to investigate mechanisms of AA release from VSMC on oxidative stress. Cell treatment with H2O2 inhibited AA incorporation in an inverse relationship to prolonged H2O2-induced AA release. Identical kinetics of inhibition of AA incorporation and AA release were observed after cell treatment with AlF4-, a process not involving phospholipase A2 (PLA2) activation as recently described (A. Cane, M. Breton, G. Béréziat, and O. Colard. Biochem. Pharmacol. 53: 327-337, 1997). AA release was not specific, since oleic acid also increased in the extracellular medium of cells treated with H2O2 or AlF4- as measured by gas chromatography-mass spectrometry. In contrast, AA and oleic acid cell content decreased after cell treatment. Oleoyl and arachidonoyl acyl-CoA synthases and acyltransferases, assayed using a cell-free system, were not significantly modified. In contrast, a good correlation was observed between decreases in AA acylation and cell ATP content. The decrease in ATP content is only partially accounted for by mitochondrial damage as assayed by rhodamine 123 assay. We conclude that oxidant-induced arachidonate release results from impairment of fatty acid esterification and that ATP availability is probably responsible for free AA accumulation on oxidative stress by preventing its reesterification and/or transmembrane transport.
Collapse
Affiliation(s)
- A Cane
- Centre National de la Recherche Scientifique Unité de Recherche Associée 1283, Centre Hospitalier Universitaire Saint-Antoine, Paris, France
| | | | | | | | | |
Collapse
|
44
|
Arai T, Bhunia AK, Chatterjee S, Bulkley GB. Lactosylceramide stimulates human neutrophils to upregulate Mac-1, adhere to endothelium, and generate reactive oxygen metabolites in vitro. Circ Res 1998; 82:540-7. [PMID: 9529158 DOI: 10.1161/01.res.82.5.540] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Glycosphingolipids (GSLs) and their metabolites play important roles in a variety of biological processes. We have previously reported that lactosylceramide (LacCer), a ubiquitous GSL, stimulates NADPH oxidase-dependent superoxide generation by aortic smooth muscle cells and their consequent proliferation. We postulated that LacCer may upregulate adhesion molecules on human polymorphonuclear leukocytes (hPMNs), perhaps also via NADPH oxidase-dependent reactive oxygen metabolite (ROM) generation. Incubation of hPMNs with LacCer upregulated CD11b/CD18 (Mac-1) and CD11c/CD18, as determined by fluorescence-automated cell sorting. LacCer also stimulated these hPMNs to generate superoxide via NADPH oxidase, as determined by lucigenin-enhanced chemiluminescence. However, the upregulation of Mac-1 by LacCer did not itself appear to be mediated by ROMs, since neither an antioxidant nor an NADPH oxidase inhibitor substantially inhibited the Mac-1 upregulation. However, this Mac-1 upregulation was significantly inhibited by two disparate phospholipase A2 (PLA2) inhibitors. Moreover, LacCer induced arachidonic acid metabolism, which was inhibited by the PLA2 inhibitors, but not by an NADPH oxidase inhibitor. To evaluate the effect of LacCer on hPMN adhesion to endothelium, hPMNs stimulated with LacCer were allowed to adhere to unstimulated human endothelial cell monolayers. LacCer stimulated hPMN adhesion to endothelial cells, which was blocked by anti-CD18 and by the PLA2 inhibitors. We conclude that LacCer stimulates both Mac-1 upregulation and superoxide generation in hPMNs but that ROMs are not the upstream signal for Mac-1 upregulation. This mechanism may well be relevant to acute endothelial injury in inflammation and other pathological conditions.
Collapse
Affiliation(s)
- T Arai
- Department of Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21287-4685, USA
| | | | | | | |
Collapse
|
45
|
Weigel G, Griesmacher A, Toma CD, Baecker C, Heinzl H, Mueller MM. Endothelial eicosanoid metabolism and signal transduction during exposure to oxygen radicals injury. Thromb Res 1997; 87:363-75. [PMID: 9271814 DOI: 10.1016/s0049-3848(97)00140-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Several physiological agonists that induce elevation of cytosolic free calcium (Ca2+)-levels act via receptor coupled G-proteins, involving activation of phospholipase C (PLC) and hydrolysis of phosphatidylinositol 4,5-bisphosphate. Activation of the inositol signal transduction pathway that precedes Ca2+ ion mobilization is a well accepted signaling pathway in endothelial cell eicosanoid synthesis. This study was designed to examine possible involvement of phosphoinositides in the effects of oxygen free radicals on Ca2+ liberation and eicosanoid synthesis in human umbilical venous endothelial cells (HUVEC). Hydrogen peroxide (H2O2) was chosen as oxygen radicals generating agent. Stimulation of HUVEC with H2O2 (0.1 mmol/l) led to significant rises in inositol phosphate and diacylglycerol (DAG) levels within 300 seconds and an inhibition of Ca2+ release from internal stores. Eicosanoid formation was detectable despite unchanged levels of cytosolic free Ca2+ and no detectable activation of membrane associated phospholipase A2 (PLA2). This suggests that eicosanoid formation may be mediated through the activation of a Ca2+ independent, cytosolic 40 kDa PLA2 isoenzyme and that DAG could serve as an alternative source for arachidonic acid and seems to sensitize a cytosolic PLA2.
Collapse
Affiliation(s)
- G Weigel
- Dept. of Cardiothoracic Surgery, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
46
|
Holland JA, Meyer JW, Schmitt ME, Sauro MD, Johnson DK, Abdul-Karim RW, Patel V, Ziegler LM, Schillinger KJ, Small RF, Lemanski LF. Low-density lipoprotein stimulated peroxide production and endocytosis in cultured human endothelial cells: mechanisms of action. ENDOTHELIUM : JOURNAL OF ENDOTHELIAL CELL RESEARCH 1997; 5:191-207. [PMID: 9272382 DOI: 10.3109/10623329709053398] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effects of arachidonic acid metabolism and NADPH oxidase inhibitor on the hydrogen peroxide (H2O2) generation and endocytotic activity of cultured human endothelial cells (EC) exposed to atherogenic low-density lipoprotein (LDL) levels have been investigated. EC were incubated with 240 mg/dl LDL cholesterol and cellular H2O2 production and endocytotic activity measured in the presence and absence of the arachidonic acid metabolism inhibitors, indomethacin, nordihydroguaiaretic acid, and SKF525A, and NADPH oxidase inhibitor, apocynin. All inhibitors, with the exception of indomethacin, markedly reduced high LDL-induced increases in EC H2O2 generation and endocytotic activity. EC exposed to exogenously applied arachidonic acid had cellular functional changes similar to those induced by high LDL concentrations. EC incubated with 1-25 uM arachidonic acid had increased H2O2 production and heightened endocytotic activity. Likewise, EC pre-loaded with [3H]arachidonic acid when exposed to increasing LDL levels (90-330 mg/dl cholesterol) had a dose-dependent rise in cytosolic [3H]arachidonic acid. The phospholipase A2 inhibitors, 4-bromophenacyl bromide and 7,7-dimethyleicosadienoic acid, markedly inhibited H2O2 production in EC exposed to 240 mg/dl LDL cholesterol. These findings suggest that arachidonic acid contributes mechanistically to high LDL-perturbed EC H2O2 generation and heightened endocytosis. Such cellular functional changes add to our understanding of endothelial perturbation, which has been hypothesized to be a major contributing factor in the pathogenesis of atherosclerosis.
Collapse
Affiliation(s)
- J A Holland
- Department of Medicine, State University of New York Health Science Center Syracuse 13210, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Darley-Usmar V, Halliwell B. Blood radicals: reactive nitrogen species, reactive oxygen species, transition metal ions, and the vascular system. Pharm Res 1996; 13:649-62. [PMID: 8860419 DOI: 10.1023/a:1016079012214] [Citation(s) in RCA: 242] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Free radicals, such as superoxide, hydroxyl and nitric oxide, and other "reactive species", such as hydrogen peroxide, hypochlorous acid and peroxynitrite, are formed in vivo. Some of these molecules, e.g. superoxide and nitric oxide, can be physiologically useful, but they can also cause damage under certain circumstances. Excess production of reactive oxygen or nitrogen species (ROS, RNS), their production in inappropriate relative amounts (especially superoxide and NO) or deficiencies in antioxidant defences may result in pathological stress to cells and tissues. This oxidative stress can have multiple effects. It can induce defence systems, and render tissues more resistant to subsequent insult. If oxidative stress is excessive or if defence and repair responses are inadequate, cell injury can be caused by such mechanisms as oxidative damage to essential proteins, lipid peroxidation, DNA strand breakage and base modification, and rises in the concentration of intracellular "free" Ca(2+). Considerable evidence supports the view that oxidative damage involving both ROS and RNS is an important contributor to the development of atherosclerosis. Peroxynitrite (derived by reaction of superoxide with nitric oxide) and transition metal ions (perhaps released by injury to the vessel wall) may contribute to lipid peroxidation in atherosclerotic lesions.
Collapse
Affiliation(s)
- V Darley-Usmar
- Department of Pathology, Division of Molecular and Cellular Pathology, University of Birmingham, Alabama 35294, USA
| | | |
Collapse
|