1
|
Dose concentration and spatial memory and brain mitochondrial function association after 3,4-methylenedioxymethamphetamine (MDMA) administration in rats. Arch Toxicol 2020; 94:911-925. [DOI: 10.1007/s00204-020-02673-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/11/2020] [Indexed: 01/03/2023]
|
2
|
Locomotor effects of 3,4-methylenedioxymethamphetamine (MDMA) and its deuterated form in mice: psychostimulant effects, stereotypy, and sensitization. Psychopharmacology (Berl) 2020; 237:431-442. [PMID: 31729537 PMCID: PMC7388080 DOI: 10.1007/s00213-019-05380-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 10/16/2019] [Indexed: 12/25/2022]
Abstract
RATIONALE There is a renewed interest in the use of 3,4-methylenedioxymethamphetamine (MDMA) for treating psychiatric conditions. Although MDMA has entered phase II clinical trials and shows promise as an adjunct treatment, there is an extensive literature detailing the potential neurotoxicity and adverse neurobehavioral effects associated with MDMA use. Previous research indicates that the adverse effects of MDMA may be due to its metabolism into reactive catechols that can enter the brain and serve directly as neurotoxicants. One approach to mitigate MDMA's potential for adverse effects is to reduce O-demethylation by deuterating the methylenedioxy ring of MDMA. There are no studies that have evaluated the effects of deuterating MDMA on behavioral outcomes. OBJECTIVES The purpose of the present study was to assess the motor-stimulant effects of deuterated MDMA (d2-MDMA) and compare them to MDMA in male mice. METHODS Two experiments were performed to quantify mouse locomotor activity and to vary the drug administration regimen (single bolus administration or cumulative administration). RESULTS The results of Experiments 1 and 2 indicate that d2-MDMA is less effective at eliciting horizontal locomotion than MDMA; however, the differences between the compounds diminish as the number of cumulative administrations increase. Both d2-MDMA and MDMA can elicit sensitized responses, and these effects cross-sensitize to the prototypical drug of abuse methamphetamine. Thus, d2-MDMA functions as a locomotor stimulant similar to MDMA, but, depending on the dosing regimen, may be less susceptible to inducing sensitization to stereotyped movements. CONCLUSIONS These findings indicate that d2-MDMA is behaviorally active and produces locomotor effects that are similar to MDMA, which warrant additional assessments of d2-MDMA's behavioral and physiological effects to determine the conditions under which this compound may serve as a relatively safer alternative to MDMA for clinical use.
Collapse
|
3
|
Musolino ST, Schartner EP, Hutchinson MR, Salem A. Minocycline attenuates 3,4-methylenedioxymethamphetamine-induced hyperthermia in the rat brain. Eur J Pharmacol 2019; 858:172495. [PMID: 31238065 DOI: 10.1016/j.ejphar.2019.172495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/21/2019] [Accepted: 06/21/2019] [Indexed: 10/26/2022]
Abstract
Hyperthermia is most dangerous clinical symptom of acute MDMA administration, and a key factor related to potentially life-threatening MDMA-induced complications. MDMA induces a consistently faster onset of brain hyperthermia when compared to a delayed and moderate hyperthermia in the body, and the most harmful effects of MDMA are related to its modulation of neural functions. The primary focus of this study was to investigate the effects of minocycline, a centrally acting tetracycline derivative on MDMA-induced brain hyperthermia at high ambient temperature. However, we also simultaneously recorded body temperature, heart rate, and locomotor activity changes, allowing us to gain a better understanding of the mechanisms underlying the MDMA-induced hyperthermic response. We also investigated the effects of MDMA at normal ambient temperature to provide further evidence as to the importance of environmental factors on the intensity of MDMA's temperature effects. At normal ambient temperature, MDMA (10 mg/kg, i.p.) induced a significant brain and body hypothermia for the first 90 min following drug administration, and significantly increased heart rate and locomotor activity compared to saline controls. At high ambient temperature however, MDMA (10 mg/kg, i.p.) induced a robust and extended brain and body hyperthermia, as well as significantly increased heart rate and locomotor activity. A 3-day minocycline (50 mg/kg, i.p.) pre-treatment significantly attenuated MDMA-induced increases in brain temperature, body temperature, heart rate, and locomotor activity. Our findings indicate that minocycline is more effective in attenuating the exacerbated MDMA-induced hyperthermic response in the brain compared to the body at high ambient temperature.
Collapse
Affiliation(s)
- Stefan T Musolino
- ARC Centre of Excellence for Nanoscale BioPhotonics and Institute for Photonics and Advanced Sensing, Adelaide, SA, 5005, Australia; Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia.
| | - Erik P Schartner
- ARC Centre of Excellence for Nanoscale BioPhotonics and Institute for Photonics and Advanced Sensing, Adelaide, SA, 5005, Australia; School of Physical Sciences, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Mark R Hutchinson
- ARC Centre of Excellence for Nanoscale BioPhotonics and Institute for Photonics and Advanced Sensing, Adelaide, SA, 5005, Australia; Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Abdallah Salem
- Discipline of Pharmacology, Adelaide Medical School, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
4
|
Shokry IM, Shields CJ, Callanan JJ, Ma Z, Tao R. Differential role of dose and environment in initiating and intensifying neurotoxicity caused by MDMA in rats. BMC Pharmacol Toxicol 2019; 20:47. [PMID: 31383036 PMCID: PMC6683525 DOI: 10.1186/s40360-019-0326-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 07/18/2019] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND MDMA causes serotonin (5-HT) syndrome immediately after administration and serotonergic injury in a few days or weeks. However, a serotonin syndrome is not always followed by serotonergic injury, indicating different mechanisms responsible for two adverse effects. The goal of present study was to determine causes for two adverse events and further test that dose and environment have a differential role in initiating and intensifying MDMA neurotoxicity. METHODS Initiation and intensification were examined by comparing neurotoxic effects of a high-dose (10 mg/kg × 3 at 2 h intervals) with a low-dose (2 mg/kg × 3) under controlled-environmental conditions. Initiation of a serotonin syndrome was estimated by measuring extracellular 5-HT, body-core temperature, electroencephalogram and MDMA concentrations in the cerebrospinal fluid, while intensification determined in rats examined under modified environment. Initiation and intensification of the serotonergic injury were assessed in rats by measuring tissue 5-HT content, SERT density and functional integrity of serotonergic retrograde transportation. RESULTS Both low- and high-dose could cause increases in extracellular 5-HT to elicit a serotonin syndrome at the same intensity. Modification of environmental conditions, which had no impact on MDMA-elicited increases in 5-HT levels, markedly intensified the syndrome intensity. Although either dose would cause the severe syndrome under modified environments, only the high-dose that resulted in high MDMA concentrations in the brain could cause serotonergic injury. CONCLUSION Our results reveal that extracellular 5-HT is the cause of a syndrome and activity of postsynaptic receptors critical for the course of syndrome intensification. Although the high-dose has the potential to initiate serotonergic injury due to high MDMA concentrations present in the brain, whether an injury is observed depends upon the drug environment via the levels of reactive oxygen species generated. This suggests that brain MDMA concentration is the determinant in the injury initiation while reactive oxygen species generation associated with the injury intensification. It is concluded that the two adverse events utilize distinctly different mediating molecules during the toxic initiation and intensification.
Collapse
Affiliation(s)
- Ibrahim M. Shokry
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Connor J. Shields
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA
| | - John J. Callanan
- Ross University School of Veterinary Medicine, Basseterre, Saint Kitts and Nevis
| | - Zhiyuan Ma
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA
| | - Rui Tao
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431 USA
| |
Collapse
|
5
|
Dunlap LE, Andrews AM, Olson DE. Dark Classics in Chemical Neuroscience: 3,4-Methylenedioxymethamphetamine. ACS Chem Neurosci 2018; 9:2408-2427. [PMID: 30001118 PMCID: PMC6197894 DOI: 10.1021/acschemneuro.8b00155] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Better known as "ecstasy", 3,4-methylenedioxymethamphetamine (MDMA) is a small molecule that has played a prominent role in defining the ethos of today's teenagers and young adults, much like lysergic acid diethylamide (LSD) did in the 1960s. Though MDMA possesses structural similarities to compounds like amphetamine and mescaline, it produces subjective effects that are unlike any of the classical psychostimulants or hallucinogens and is one of the few compounds capable of reliably producing prosocial behavioral states. As a result, MDMA has captured the attention of recreational users, the media, artists, psychiatrists, and neuropharmacologists alike. Here, we detail the synthesis of MDMA as well as its pharmacology, metabolism, adverse effects, and potential use in medicine. Finally, we discuss its history and why it is perhaps the most important compound for the future of psychedelic science-having the potential to either facilitate new psychedelic research initiatives, or to usher in a second Dark Age for the field.
Collapse
Affiliation(s)
- Lee E Dunlap
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
| | - Anne M Andrews
- Departments of Psychiatry and Chemistry & Biochemistry, Semel Institute for Neuroscience and Human Behavior, and Hatos Center for Neuropharmacology , University of California , Los Angeles , California 90095 , United States
| | - David E Olson
- Department of Chemistry , University of California, Davis , One Shields Avenue , Davis , California 95616 , United States
- Department of Biochemistry & Molecular Medicine, School of Medicine , University of California, Davis , 2700 Stockton Blvd, Suite 2102 , Sacramento , California 95817 , United States
- Center for Neuroscience , University of California, Davis , 1544 Newton Ct , Davis , California 95616 , United States
| |
Collapse
|
6
|
Papaseit E, Torrens M, Pérez-Mañá C, Muga R, Farré M. Key interindividual determinants in MDMA pharmacodynamics. Expert Opin Drug Metab Toxicol 2018; 14:183-195. [DOI: 10.1080/17425255.2018.1424832] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- E. Papaseit
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology and Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - M. Torrens
- Department of Pharmacology, Therapeutics and Toxicology and Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
- Drug Addiction Program, Institut de Neuropsiquiatria i Addiccions-INAD, Hospital del Mar Medical Research Institute-IMIM, Barcelona, Spain
| | - C. Pérez-Mañá
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology and Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - R. Muga
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology and Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| | - M. Farré
- Departments of Clinical Pharmacology and Internal Medicine, Hospital Universitari Germans Trias I Pujol-IGTP, Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology and Department of Medicine, Universitat Autònoma de Barcelona, Cerdanyola del Vallés, Spain
| |
Collapse
|
7
|
Vevelstad M, Øiestad EL, Nerem E, Arnestad M, Bogen IL. Studies on Para-Methoxymethamphetamine (PMMA) Metabolite Pattern and Influence of CYP2D6 Genetics in Human Liver Microsomes and Authentic Samples from Fatal PMMA Intoxications. Drug Metab Dispos 2017; 45:1326-1335. [PMID: 28978661 DOI: 10.1124/dmd.117.077263] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/29/2017] [Indexed: 11/22/2022] Open
Abstract
Para-methoxymethamphetamine (PMMA) has caused numerous fatal poisonings worldwide and appears to be more toxic than other ring-substituted amphetamines. Systemic metabolism is suggested to be important for PMMA neurotoxicity, possibly through activation of minor catechol metabolites to neurotoxic conjugates. The aim of this study was to examine the metabolism of PMMA in humans; for this purpose, we used human liver microsomes (HLMs) and blood samples from three cases of fatal PMMA intoxication. We also examined the impact of CYP2D6 genetics on PMMA metabolism by using genotyped HLMs isolated from CYP2D6 poor, population-average, and ultrarapid metabolizers. In HLMs, PMMA was metabolized mainly to 4-hydroxymethamphetamine (OH-MA), whereas low concentrations of para-methoxyamphetamine (PMA), 4-hydroxyamphetamine (OH-A), dihydroxymethamphetamine (di-OH-MA), and oxilofrine were formed. The metabolite profile in the fatal PMMA intoxications were in accordance with the HLM study, with OH-MA and PMA being the major metabolites, whereas OH-A, oxilofrine, HM-MA and HM-A were detected in low concentrations. A significant influence of CYP2D6 genetics on PMMA metabolism in HLMs was found. The catechol metabolite di-OH-MA has previously been suggested to be involved in PMMA toxicity. Our studies show that the formation of di-OH-MA from PMMA was two to seven times lower than from an equimolar dose of the less toxic drug MDMA, and do not support the hypothesis of catechol metabolites as major determinants of fatal PMMA toxicity. The present study revealed the metabolite pattern of PMMA in humans and demonstrated a great impact of CYP2D6 genetics on human PMMA metabolism.
Collapse
Affiliation(s)
- Merete Vevelstad
- Department of Forensic Sciences, Oslo University Hospital (M.V., E.L.Ø., E.N., M.A., I.L.B.), and Institute of Clinical Medicine (M.V.), School of Pharmacy (E.L.Ø.), and Institute of Basic Medical Sciences (I.L.B.), University of Oslo, Oslo, Norway
| | - Elisabeth Leere Øiestad
- Department of Forensic Sciences, Oslo University Hospital (M.V., E.L.Ø., E.N., M.A., I.L.B.), and Institute of Clinical Medicine (M.V.), School of Pharmacy (E.L.Ø.), and Institute of Basic Medical Sciences (I.L.B.), University of Oslo, Oslo, Norway
| | - Elisabeth Nerem
- Department of Forensic Sciences, Oslo University Hospital (M.V., E.L.Ø., E.N., M.A., I.L.B.), and Institute of Clinical Medicine (M.V.), School of Pharmacy (E.L.Ø.), and Institute of Basic Medical Sciences (I.L.B.), University of Oslo, Oslo, Norway
| | - Marianne Arnestad
- Department of Forensic Sciences, Oslo University Hospital (M.V., E.L.Ø., E.N., M.A., I.L.B.), and Institute of Clinical Medicine (M.V.), School of Pharmacy (E.L.Ø.), and Institute of Basic Medical Sciences (I.L.B.), University of Oslo, Oslo, Norway
| | - Inger Lise Bogen
- Department of Forensic Sciences, Oslo University Hospital (M.V., E.L.Ø., E.N., M.A., I.L.B.), and Institute of Clinical Medicine (M.V.), School of Pharmacy (E.L.Ø.), and Institute of Basic Medical Sciences (I.L.B.), University of Oslo, Oslo, Norway
| |
Collapse
|
8
|
Fonseca DA, Guerra AF, Carvalho F, Fernandes E, Ferreira LM, Branco PS, Antunes PE, Antunes MJ, Cotrim MD. Hyperthermia Severely Affects the Vascular Effects of MDMA and Metabolites in the Human Internal Mammary Artery In Vitro. Cardiovasc Toxicol 2017; 17:405-416. [PMID: 28084566 DOI: 10.1007/s12012-017-9398-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA or "ecstasy") is a recreational drug used worldwide for its distinctive psychotropic effects. Although important cardiovascular effects, such as increased blood pressure and heart rate, have also been described, the vascular effects of MDMA and metabolites and their correlation with hyperthermia (major side effect of MDMA) are not yet fully understood and have not been previously reported. This study aimed at evaluating the effects of MDMA and its main catechol metabolites, alpha-methyldopamine (α-MeDA), N-methyl-alpha-methyldopamine (N-Me-α-MeDA), 5-(glutathion-S-yl)-alpha-methyldopamine [5-(GSH)-α-MeDA] and 5-(glutathion-S-yl)-N-methyl-alpha-methyldopamine [5-(GSH)-N-Me-α-MeDA], on the 5-HT-dependent vasoactivity in normothermia (37 °C) and hyperthermia (40 °C) of the human internal mammary artery (IMA) in vitro. The results showed the ability of MDMA, α-MeDA and N-Me-α-MeDA to exert vasoconstriction of the IMA which was considerably higher in hyperthermic conditions (about fourfold for MDMA and α-MeDA and twofold for N-Me-α-MeDA). The results also showed that all the compounds may influence the 5-HT-mediated concentration-dependent response of IMA, as MDMA, α-MeDA and N-Me-α-MeDA behaved as partial agonists and 5-(GSH)-α-MeDA and 5-(GSH)-N-Me-α-MeDA as antagonists. In conclusion, MDMA abuse may imply a higher cardiovascular risk associated both to MDMA and its metabolites that might be relevant in patients with underlying cardiovascular diseases, particularly in hyperthermia.
Collapse
Affiliation(s)
- D A Fonseca
- Pharmacology and Pharmaceutical Care Group, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
- CNC.IBILI, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal.
| | - A F Guerra
- Pharmacology and Pharmaceutical Care Group, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| | - F Carvalho
- UCIBIO/REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313, Porto, Portugal
| | - E Fernandes
- UCIBIO/REQUIMTE, Laboratory of Applied Chemistry, Department of Chemical Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313, Porto, Portugal
| | - L M Ferreira
- REQUIMTE/CQFB (Centro de Química Fina e Biotecnologia), Department of Chemistry, Faculty of Sciences and Technology, University Nova of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - P S Branco
- REQUIMTE/CQFB (Centro de Química Fina e Biotecnologia), Department of Chemistry, Faculty of Sciences and Technology, University Nova of Lisbon, Quinta da Torre, 2829-516, Caparica, Portugal
| | - P E Antunes
- Center of Cardiothoracic Surgery, Coimbra University Hospitals, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - M J Antunes
- Center of Cardiothoracic Surgery, Coimbra University Hospitals, Praceta Prof. Mota Pinto, 3000-075, Coimbra, Portugal
| | - M D Cotrim
- Pharmacology and Pharmaceutical Care Group, Faculty of Pharmacy, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- Institute for Biomedical Imaging and Life Sciences (IBILI), Faculty of Medicine, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
- CNC.IBILI, University of Coimbra, Pólo das Ciências da Saúde, Azinhaga de Santa Comba, 3000-548, Coimbra, Portugal
| |
Collapse
|
9
|
Pharmacokinetic Profiles and Pharmacodynamic Effects for Methylone and Its Metabolites in Rats. Neuropsychopharmacology 2017; 42:649-660. [PMID: 27658484 PMCID: PMC5240186 DOI: 10.1038/npp.2016.213] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 09/05/2016] [Accepted: 09/10/2016] [Indexed: 01/17/2023]
Abstract
3,4-Methylenedioxy-N-methylcathinone (methylone) is a new psychoactive substance and the β-keto analog of 3,4-methylenedioxy-N-methylamphetamine (MDMA). It is well established that MDMA metabolism produces bioactive metabolites. Here we tested the hypothesis that methylone metabolism in rats can form bioactive metabolites. First, we examined the pharmacokinetics (PKs) of methylone and its metabolites after subcutaneous (sc) methylone administration (3, 6, 12 mg/kg) to male rats fitted with intravenous (iv) catheters for repeated blood sampling. Plasma specimens were assayed by liquid chromatography tandem mass spectrometry to quantify methylone and its phase I metabolites: 3,4-methylenedioxycathinone (MDC), 3,4-dihydroxy-N-methylcathinone (HHMC), and 4-hydroxy-3-methoxy-N-methylcathinone (HMMC). The biological activity of methylone and its metabolites was then compared using in vitro transporter assays and in vivo microdialysis in rat nucleus accumbens. For the PK study, we found that methylone and MDC peaked early (Tmax=15-45 min) and were short lived (t1/2=60-90 min), while HHMC and HMMC peaked later (Tmax=60-120 min) and persisted (t1/2=120-180 min). Area-under-the-curve values for methylone and MDC were greater than dose-proportional, suggesting non-linear accumulation. Methylone produced significant locomotor activation, which was correlated with plasma methylone, MDC, and HHMC concentrations. Methylone, MDC, and HHMC were substrate-type releasers at monoamine transporters as determined in vitro, but only methylone and MDC (1, 3 mg/kg, iv) produced significant elevations in brain extracellular dopamine and 5-HT in vivo. Our findings demonstrate that methylone is extensively metabolized in rats, but MDC is the only centrally active metabolite that could contribute to overall effects of the drug in vivo.
Collapse
|
10
|
Baumann MH, Bukhari MO, Lehner KR, Anizan S, Rice KC, Concheiro M, Huestis MA. Neuropharmacology of 3,4-Methylenedioxypyrovalerone (MDPV), Its Metabolites, and Related Analogs. Curr Top Behav Neurosci 2017; 32:93-117. [PMID: 27830575 PMCID: PMC5392131 DOI: 10.1007/7854_2016_53] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
3,4-Methylenedioxypyrovalerone (MDPV) is a psychoactive component of so-called bath salts products that has caused serious medical consequences in humans. In this chapter, we review the neuropharmacology of MDPV and related analogs, and supplement the discussion with new results from our preclinical experiments. MDPV acts as a potent uptake inhibitor at plasma membrane transporters for dopamine (DAT) and norepinephrine (NET) in nervous tissue. The MDPV formulation in bath salts is a racemic mixture, and the S isomer is much more potent than the R isomer at blocking DAT and producing abuse-related effects. Elevations in brain extracellular dopamine produced by MDPV are likely to underlie its locomotor stimulant and addictive properties. MDPV displays rapid pharmacokinetics when injected into rats (0.5-2.0 mg/kg), with peak plasma concentrations achieved by 10-20 min and declining quickly thereafter. MDPV is metabolized to 3,4-dihydroxypyrovalerone (3,4-catechol-PV) and 4-hydroxy-3-methoxypyrovalerone (4-OH-3-MeO-PV) in vivo, but motor activation produced by the drug is positively correlated with plasma concentrations of parent drug and not its metabolites. 3,4-Catechol-PV is a potent uptake blocker at DAT in vitro but has little activity after administration in vivo. 4-OH-3-MeO-PV is the main MDPV metabolite but is weak at DAT and NET. MDPV analogs, such as α-pyrrolidinovalerophenone (α-PVP), display similar ability to inhibit DAT and increase extracellular dopamine concentrations. Taken together, these findings demonstrate that MDPV and its analogs represent a unique class of transporter inhibitors with a high propensity for abuse and addiction.
Collapse
Affiliation(s)
- Michael H Baumann
- Designer Drug Research Unit of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA.
| | - Mohammad O Bukhari
- Designer Drug Research Unit of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA
| | - Kurt R Lehner
- Designer Drug Research Unit of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA
| | - Sebastien Anizan
- Chemistry and Drug Metabolism Section of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA
| | - Marta Concheiro
- Chemistry and Drug Metabolism Section of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA
- Department of Sciences, John Jay College of Criminal Justice, City University of New York, New York, NY, USA
| | - Marilyn A Huestis
- Chemistry and Drug Metabolism Section of the Intramural Research Program, National Institute on Drug Abuse (NIDA), National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
11
|
Soleimani Asl S, Mehdizadeh M, Hamedi Shahraki S, Artimani T, Joghataei MT. Sex differences in MDMA-induced toxicity in Sprague-Dawley rats. FUNCTIONAL NEUROLOGY 2016; 30:131-7. [PMID: 26415786 DOI: 10.11138/fneur/2015.30.2.131] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent evidence demonstrates that female subjects show exaggerated responses to 3,4-methylenedioxymethamphetamine (MDMA) compared with males. The aim of our study was to evaluate sex differences and the role of endogenous gonadal hormones on the effects of MDMA. Fifty-six intact and gonadectomized male and female Sprague-Dawley rats were randomly assigned to either MDMA (5 mg/kg) or saline treatment. Learning and memory were assessed using the Morris water maze (MWM). The expression of Bax and Bcl-2 in the hippocampus was detected by Western blotting. Behavioral analysis showed that MDMA led to memory impairment in both male and female rats. The female rats showed more sensitivity to impairment than the males, as assessed using all the memory parameters in the MWM. Ovariectomy attenuated the MDMA-induced memory impairment. By contrast, orchiectomized rats showed more impairment than MDMA-treated intact male rats. Bcl-2 and Bax were down-regulated and up-regulated in MDMA-treated male and female rats, respectively. MDMA treatment in the orchiectomized rats led to upregulation of Bax and down-regulation of Bcl-2. Ovariectomy attenuated the MDMA-induced up-regulation of Bax and caused more expression of Bcl-2 compared with what was observed in the MDMA-treated intact female rats. In summary, female rats showed exaggerated responses to the effects of MDMA and this may be explained by endogenous gonadal hormones.
Collapse
|
12
|
Abstract
Alcohol consumption with psychostimulants is very common among drug addicts. There is little known about the possible pharmacological interactions between alcohol and psychostimulants. Among most commonly co-abused psychostimulants with alcohol are methamphetamine, cocaine, 3,4-methylenedioxymethamphetaminen, and nicotine. Co-abuse of alcohol with psychostimulants can lead to several neurophysiological dysfunctions such as decrease in brain antioxidant enzymes, disruption of learning and memory processes, cerebral hypo-perfusion, neurotransmitters depletion as well as potentiation of drug seeking behaviour. Moreover, co-abuse of alcohol and psychostimulants can lead to increase in heart rate, blood pressure, myocardial oxygen consumption and cellular stress, and the risk of developing different types of cancer. Co-abuse of alcohol with psychostimulants during pregnancy can lead to fetal brain abnormalities. Further studies are needed to investigate the pharmacokinetics, pharmacodynamics, and neurochemical changes on co-abuse of alcohol and psychostimulants.
Collapse
Affiliation(s)
- Yusuf S Althobaiti
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, USA
| | - Youssef Sari
- University of Toledo, College of Pharmacy and Pharmaceutical Sciences, Department of Pharmacology and Experimental Therapeutics, Toledo, OH, USA
| |
Collapse
|
13
|
Shokry IM, Callanan JJ, Sousa J, Tao R. New Insights on Different Response of MDMA-Elicited Serotonin Syndrome to Systemic and Intracranial Administrations in the Rat Brain. PLoS One 2016; 11:e0155551. [PMID: 27192423 PMCID: PMC4871448 DOI: 10.1371/journal.pone.0155551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Accepted: 04/29/2016] [Indexed: 11/19/2022] Open
Abstract
In spite of the fact that systemic administration of MDMA elicits serotonin syndrome, direct intracranial administration fails to reproduce the effect. To reconcile these findings, it has been suggested that the cause of serotonin syndrome is attributed mainly to MDMA hepatic metabolites, and less likely to MDMA itself. Recently, however, this explanation has been challenged, and alternative hypotheses need to be explored. Here, we tested the hypothesis that serotonin syndrome is the result of excessive 5HT simultaneously in many brain areas, while MDMA administered intracranially fails to cause serotonin syndrome because it produces only a localized effect at the delivery site and not to other parts of the brain. This hypothesis was examined using adult male Sprague Dawley rats by comparing 5HT responses in the right and left hemispheric frontal cortices, right and left hemispheric diencephalons, and medullar raphe nucleus. Occurrence of serotonin syndrome was confirmed by measuring change in body temperature. Administration routes included intraperitoneal (IP), intracerebroventricular (ICV) and reverse microdialysis. First, we found that IP administration caused excessive 5HT in all five sites investigated and induced hypothermia, suggesting the development of the serotonin syndrome. In contrast, ICV and reverse microdialysis caused excessive 5HT only in regions of delivery sites without changes in body-core temperature, suggesting the absence of the syndrome. Next, chemical dyes were used to trace differences in distribution and diffusion patterns between administration routes. After systemic administration, the dyes were found to be evenly distributed in the brain. However, the dyes administered through ICV or reverse microdialysis injection still remained in the delivery sites, poorly diffusing to the brain. In conclusion, intracranial MDMA administration in one area has no or little effect on other areas, which must be considered a plausible reason for the difference in MDMA-elicited serotonin syndrome between systemic and intracranial administrations.
Collapse
Affiliation(s)
- Ibrahim M Shokry
- Ross University School of Veterinary Medicine, St. Kitts, West Indies
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - John J Callanan
- Ross University School of Veterinary Medicine, St. Kitts, West Indies
| | - John Sousa
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States of America
| | - Rui Tao
- Charles E. Schmidt College of Medicine, Florida Atlantic University, Boca Raton, Florida, United States of America
| |
Collapse
|
14
|
Anizan S, Concheiro M, Lehner KR, Bukhari MO, Suzuki M, Rice KC, Baumann MH, Huestis MA. Linear pharmacokinetics of 3,4-methylenedioxypyrovalerone (MDPV) and its metabolites in the rat: relationship to pharmacodynamic effects. Addict Biol 2016; 21:339-47. [PMID: 25475011 DOI: 10.1111/adb.12201] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
3,4-Methylenedioxypyrovalerone (MDPV) is a commonly abused synthetic cathinone in the United States and is associated with dangerous side effects. MDPV is a dopamine transporter blocker that is 10-fold more potent than cocaine as a locomotor stimulant in rats. Previous in vitro and in vivo metabolism studies identified 3,4-dihydroxypyrovalerone (3,4-catechol-PV) and 4-hydroxy-3-methoxypyrovalerone (4-OH-3-MeO-PV) as the two primary MDPV metabolites. This study examined MDPV pharmacokinetics and metabolism, along with associated pharmacodynamic effects in rats receiving 0.5, 1.0 and 2.0 mg/kg subcutaneous (s.c.) MDPV. Blood was collected by an indwelling jugular catheter before dosing and at 10, 20, 30, 60, 120, 240 and 480 minutes thereafter. Plasma specimens were analyzed by liquid chromatography coupled to high-resolution tandem mass spectrometry. Maximum concentrations (Cmax ) and area-under-the-curve (AUC) for MDPV and two metabolites increased proportionally with administered dose, showing linear pharmacokinetics. MDPV exhibited the highest Cmax at all doses (74.2-271.3 μg/l) and 4-OH-3-MeOH-PV the highest AUC (11 366-47 724 minutes per μg/l), being the predominant metabolite. MDPV time to Cmax (Tmax ) was 12.9-18.6 minutes, while 3,4-catechol-PV and 4-OH-3-MeO-PV peaked later with Tmax 188.6-240 minutes after s.c. dosing. Horizontal locomotor activity (HLA) and stereotypy correlated positively with plasma MDPV concentrations, while HLA correlated negatively with MDPV metabolites. These results suggest that the parent compound mediates motor stimulation after systemic MDPV administration, but additionally, metabolites may be inhibitory, may not be active or may not pass the blood brain barrier.
Collapse
Affiliation(s)
- Sebastien Anizan
- Chemistry and Drug Metabolism; Intramural Research Program; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Marta Concheiro
- Chemistry and Drug Metabolism; Intramural Research Program; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Kurt R. Lehner
- Designer Drug Research Unit; Intramural Research Program; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Mohammad O. Bukhari
- Designer Drug Research Unit; Intramural Research Program; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Masaki Suzuki
- Drug Design and Synthesis Section; Intramural Research Program; National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism; National Institutes of Health; Baltimore MD USA
- On leave from the Medicinal Chemistry Group; Qs’ Research Institute; Otsuka Pharmaceutical Co., Ltd.; Tokushima Japan
| | - Kenner C. Rice
- Drug Design and Synthesis Section; Intramural Research Program; National Institute on Drug Abuse and National Institute on Alcohol Abuse and Alcoholism; National Institutes of Health; Baltimore MD USA
| | - Michael H. Baumann
- Designer Drug Research Unit; Intramural Research Program; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| | - Marilyn A. Huestis
- Chemistry and Drug Metabolism; Intramural Research Program; National Institute on Drug Abuse; National Institutes of Health; Baltimore MD USA
| |
Collapse
|
15
|
Collins SA, Huff C, Chiaia N, Gudelsky GA, Yamamoto BK. 3,4-methylenedioxymethamphetamine increases excitability in the dentate gyrus: role of 5HT2A receptor-induced PGE2 signaling. J Neurochem 2016; 136:1074-84. [PMID: 26670377 DOI: 10.1111/jnc.13493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 12/04/2015] [Accepted: 12/10/2015] [Indexed: 12/12/2022]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) is a widely abused psychostimulant, which causes release of serotonin in various forebrain regions. Recently, we reported that MDMA increases extracellular glutamate concentrations in the dentate gyrus, via activation of 5HT2A receptors. We examined the role of prostaglandin signaling in mediating the effects of 5HT2A receptor activation on the increases in extracellular glutamate and the subsequent long-term loss of parvalbumin interneurons in the dentate gyrus caused by MDMA. Administration of MDMA into the dentate gyrus of rats increased PGE2 concentrations which was prevented by coadministration of MDL100907, a 5HT2A receptor antagonist. MDMA-induced increases in extracellular glutamate were inhibited by local administration of SC-51089, an inhibitor of the EP1 prostaglandin receptor. Systemic administration of SC-51089 during injections of MDMA prevented the decreases in parvalbumin interneurons observed 10 days later. The loss of parvalbumin immunoreactivity after MDMA exposure coincided with a decrease in paired-pulse inhibition and afterdischarge threshold in the dentate gyrus. These changes were prevented by inhibition of EP1 and 5HT2A receptors during MDMA. Additional experiments revealed an increased susceptibility to kainic acid-induced seizures in MDMA-treated rats, which could be prevented with SC51089 treatments during MDMA exposure. Overall, these findings suggest that 5HT2A receptors mediate MDMA-induced PGE2 signaling and subsequent increases in glutamate. This signaling mediates parvalbumin cell losses as well as physiologic changes in the dentate gyrus, suggesting that the lack of the inhibition provided by these neurons increases the excitability within the dentate gyrus of MDMA-treated rats. We hypothesized that the widely abused psychostimulant MDMA causes a loss of parvalbumin (PV) cells and increases excitability in the dentate gyrus. MDMA increases serotonin (5HT) release and activates 5HT2A receptors. The increased activation of 5HT2A receptors promotes the production of prostaglandin E2 (PGE2) and subsequent activation of EP1 receptors in the dentate gyrus. EP1 receptor activation leads to eventual excitotoxicity and loss of PV interneurons resulting in reduced inhibition and lowered seizure threshold resulting in increased seizure susceptibility.
Collapse
Affiliation(s)
- Stuart A Collins
- Department of Neurosciences, The University of Toledo, Toledo, Ohio, USA
| | - Courtney Huff
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Nicolas Chiaia
- Department of Neurosciences, The University of Toledo, Toledo, Ohio, USA
| | - Gary A Gudelsky
- James Winkle College of Pharmacy, University of Cincinnati, Cincinnati, Ohio, USA
| | - Bryan K Yamamoto
- Department of Neurosciences, The University of Toledo, Toledo, Ohio, USA.,Department of Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, Indiana, USA
| |
Collapse
|
16
|
Shih JH, Ma KH, Chen CFF, Cheng CY, Pao LH, Weng SJ, Huang YS, Shiue CY, Yeh MK, Li IH. Evaluation of brain SERT occupancy by resveratrol against MDMA-induced neurobiological and behavioral changes in rats: A 4-[¹⁸F]-ADAM/small-animal PET study. Eur Neuropsychopharmacol 2016; 26:92-104. [PMID: 26612383 DOI: 10.1016/j.euroneuro.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2015] [Revised: 10/23/2015] [Accepted: 11/08/2015] [Indexed: 12/17/2022]
Abstract
The misuse of 3,4-methylenedioxymethamphetamine (MDMA) has drawn a growing concern worldwide for its psychophysiological impacts on humans. MDMA abusers are often accompanied by long-term serotonergic neurotoxicity, which is associated with reduced density of cerebral serotonin transporters (SERT) and depressive disorders. Resveratrol (RSV) is a natural polyphenolic phytoalexin that has been known for its antidepressant and neuroprotective effects. However, biological targets of RSV as well as its neuroprotective effects against MDMA remained largely unknown. In this study, we examined binding potency of RSV and MDMA to SERT using small-animal positron emission tomography (PET) with the SERT radioligand, N,N-dimethyl-2-(2-amino-4-[(18)F]fluorophenylthio)benzylamine (4-[(18)F]-ADAM) and investigated the protection of RSV against the acute and long-term adverse effects of MDMA. We found that RSV exhibit binding potentials to SERT in vivo in a dose-dependent manner with variation among brain regions. When the MDMA-treated rats (10mg/kg, s.c.) were co-injected with RSV (20mg/kg, i.p.) twice daily for 4 consecutive days, MDMA-induced acute elevation in plasma corticosterone was significantly reduced. Further, 4-[(18)F]-ADAM PET imaging revealed that RSV protected against the MDMA-induced decrease in SERT availability in the midbrain and the thalamus 2 weeks following the co-treatment. The PET data were comparable to the observation from the forced swim test that RSV sufficiently ameliorated the depressive-like behaviors of the MDMA-treated rats. Together, these findings suggest that RSV is a potential antidepressant and may confer protection against neurobiological and behavioral changes induced by MDMA.
Collapse
Affiliation(s)
- Jui-Hu Shih
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | - Kuo-Hsing Ma
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chien-Fu F Chen
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan
| | - Cheng-Yi Cheng
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Li-Heng Pao
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan; Graduate Institute of Health-Industry Technology, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan
| | - Shao-Ju Weng
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Yuahn-Sieh Huang
- Department of Biology and Anatomy, National Defense Medical Center, Taipei, Taiwan
| | - Chyng-Yann Shiue
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ming-Kung Yeh
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan; Ministry of Health and Welfare, Taiwan
| | - I-Hsun Li
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan; Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
17
|
Barbosa DJ, Capela JP, Feio-Azevedo R, Teixeira-Gomes A, Bastos MDL, Carvalho F. Mitochondria: key players in the neurotoxic effects of amphetamines. Arch Toxicol 2015; 89:1695-1725. [PMID: 25743372 DOI: 10.1007/s00204-015-1478-9] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2015] [Accepted: 02/09/2015] [Indexed: 12/21/2022]
Abstract
Amphetamines are a class of psychotropic drugs with high abuse potential, as a result of their stimulant, euphoric, emphathogenic, entactogenic, and hallucinogenic properties. Although most amphetamines are synthetic drugs, of which methamphetamine, amphetamine, and 3,4-methylenedioxymethamphetamine ("ecstasy") represent well-recognized examples, the use of natural related compounds, namely cathinone and ephedrine, has been part of the history of humankind for thousands of years. Resulting from their amphiphilic nature, these drugs can easily cross the blood-brain barrier and elicit their well-known psychotropic effects. In the field of amphetamines' research, there is a general consensus that mitochondrial-dependent pathways can provide a major understanding concerning pathological processes underlying the neurotoxicity of these drugs. These events include alterations on tricarboxylic acid cycle's enzymes functioning, inhibition of mitochondrial electron transport chain's complexes, perturbations of mitochondrial clearance mechanisms, interference with mitochondrial dynamics, as well as oxidative modifications in mitochondrial macromolecules. Additionally, other studies indicate that amphetamines-induced neuronal toxicity is closely regulated by B cell lymphoma 2 superfamily of proteins with consequent activation of caspase-mediated downstream cell death pathway. Understanding the molecular mechanisms at mitochondrial level involved in amphetamines' neurotoxicity can help in defining target pathways or molecules mediating these effects, as well as in developing putative therapeutic approaches to prevent or treat the acute- or long-lasting neuropsychiatric complications seen in human abusers.
Collapse
Affiliation(s)
- Daniel José Barbosa
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua do Campo Alegre 823, 4150-180, Porto, Portugal.
| | - João Paulo Capela
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
- FP-ENAS (Unidade de Investigação UFP em energia, Ambiente e Saúde), CEBIMED (Centro de Estudos em Biomedicina), Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua 9 de Abril 349, 4249-004, Porto, Portugal
| | - Rita Feio-Azevedo
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Armanda Teixeira-Gomes
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Maria de Lourdes Bastos
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Félix Carvalho
- UCIBIO/REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal.
| |
Collapse
|
18
|
Nogueira TB, da Costa Araújo S, Carvalho F, Pereira FC, Fernandes E, Bastos ML, Costa VM, Capela JP. Modeling chronic brain exposure to amphetamines using primary rat neuronal cortical cultures. Neuroscience 2014; 277:417-434. [PMID: 25047998 DOI: 10.1016/j.neuroscience.2014.07.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/30/2014] [Accepted: 07/08/2014] [Indexed: 11/28/2022]
Abstract
Amphetamine-type psychostimulants (ATS) are used worldwide by millions of patients for several psychiatric disorders. Amphetamine (AMPH) and "ecstasy" (3,4-methylenedioxymethamphetamine or MDMA) are common drugs of abuse. The impact of chronic ATS exposure to neurons and brain aging is still undisclosed. Current neuronal culture paradigms are designed to access acute ATS toxicity. We report for the first time a model of chronic exposure to AMPH and MDMA using long-term rat cortical cultures. In two paradigms, ATS were applied to neurons at day 1 in vitro (DIV) (0, 1, 10 and 100 μM of each drug) up to 28 days (200 μM was applied to cultures up to 14 DIV). Our reincubation protocol assured no decrease in the neuronal media's drug concentration. Chronic exposure of neurons to concentrations equal to or above 100 μM of ATS up to 28 DIV promoted significant mitochondrial dysfunction and elicited neuronal death, which was not prevented by glutamate receptor antagonists at 14 DIV. ATS failed to promote accelerated senescence as no increase in β-galactosidase activity at 21 DIV was found. In younger cultures (4 or 8 DIV), AMPH promoted mitochondrial dysfunction and neuronal death earlier than MDMA. Overall, AMPH proved more toxic and was the only drug that decreased intraneuronal glutathione levels. Meanwhile, caspase 3 activity increased for either drug at 200 μM in younger cultures at 8 DIV, but not at 14 DIV. At 8 DIV, ATS promoted a significant change in the percentage of neurons and astroglia present in culture, promoting a global decrease in the number of both cells. Importantly, concentrations equal to or below 10 μM of either drug did not promote neuronal death or oxidative stress. Our paradigm of neuronal cultures long-term exposure to low micromolar concentrations of ATS closely reproduces the in vivo scenario, being valuable to study the chronic impact of ATS.
Collapse
Affiliation(s)
- T B Nogueira
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - S da Costa Araújo
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - F Carvalho
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - F C Pereira
- Farmacologia e Terapêutica Experimental, Instituto Biomédico de Investigação da Luz e Imagem (IBILI), Faculdade de Medicina, Universidade de Coimbra, 3000-548 Coimbra, Portugal
| | - E Fernandes
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Química Aplicada, Departamento de Ciências Químicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - M L Bastos
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - V M Costa
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal
| | - J P Capela
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; Faculdade de Ciências da Saúde, Universidade Fernando Pessoa, Rua Carlos da Maia, 296, 4200-150 Porto, Portugal.
| |
Collapse
|
19
|
Liebig L, von Ameln-Mayerhofer A, Hentschke H. MDMA modulates spontaneous firing of subthalamic nucleus neurons in vitro. Exp Brain Res 2014; 233:137-47. [PMID: 25234400 DOI: 10.1007/s00221-014-4095-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2014] [Accepted: 09/05/2014] [Indexed: 10/24/2022]
Abstract
3,4-Methylene-dioxy-N-methylamphetamine (MDMA, 'ecstasy') has a broad spectrum of molecular targets in the brain, among them receptors and transporters of the serotonergic (5-hydroxytryptamine, 5-HT) and noradrenergic systems. Its action on the serotonergic system modulates motor systems in rodents and humans. Although parts of the basal ganglia could be identified as mediators of the motor effects of MDMA, very little is known about the role of the subthalamic nucleus (STN). Therefore, this study investigated the modulation of spontaneous action potential activity of the STN by MDMA (2.5-20 µM) in vitro. MDMA had very heterogeneous effects, ranging from a complete but reversible inhibition to a more than twofold increase in firing at 5 µM. On average, MDMA excited STN neurons moderately, but lost its excitatory effect in the presence of the 5-HT(2A) antagonist MDL 11,939. 5-HT(1A) receptors did not appear to play a major role. Effects of MDMA on transporters for serotonin (SERT) and norepinephrine (NET) were investigated by coapplication of the reuptake inhibitors citalopram and desipramine, respectively. Similar to the effects of 5-HT(2A) receptor blockade, antagonism of SERT and NET bestowed an inhibitory effect on MDMA. From these results, we conclude that both the 5-HT and the noradrenergic system mediate MDMA-induced effects on STN neurons.
Collapse
Affiliation(s)
- Luise Liebig
- Experimental Anaesthesiology Section, University Hospital Tübingen, Waldhörnlestr. 22, 72072, Tübingen, Germany
| | | | | |
Collapse
|
20
|
Abstract
PURPOSE OF REVIEW New designer drugs are constantly emerging in the illicit drug market and represent a significant health problem. A very popular class comprises synthetic cathinones, β-keto amphetamine analogues, endowed with psychostimulant properties. The aim of this review is to discuss the recent progress in our understanding of how cathinones act and the health consequences of their use. RECENT FINDINGS Despite being banned, synthetic cathinones are still used, especially by certain sub-populations. The recently observed trend to supplement psychostimulatory drugs of abuse with mephedrone must be considered highly dangerous to the public health. At the molecular level, the drugs act as blockers or substrates for monoamine transporter proteins. In animal studies, cathinones were found to evoke abuse-related behaviors and to have a negative impact on cognitive processes. The increased popularity of mephedrone among men who have sex with men with alarming sexual health consequences warrants the implementation of new treatments and education/training programs. SUMMARY Synthetic cathinones exert similar, but not identical, effects to psychostimulatory drugs of abuse. The use of cathinones may lead to serious psychotic, neurological, cardiovascular, and sexual health consequences. Exposure to these drugs may result in multiorgan failure and death.
Collapse
|
21
|
Barbosa DJ, Serrat R, Mirra S, Quevedo M, de Barreda EG, Àvila J, Ferreira LM, Branco PS, Fernandes E, Lourdes Bastos MD, Capela JP, Soriano E, Carvalho F. The mixture of "ecstasy" and its metabolites impairs mitochondrial fusion/fission equilibrium and trafficking in hippocampal neurons, at in vivo relevant concentrations. Toxicol Sci 2014; 139:407-420. [PMID: 24595818 DOI: 10.1093/toxsci/kfu042] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a potentially neurotoxic recreational drug of abuse. Though the mechanisms involved are still not completely understood, formation of reactive metabolites and mitochondrial dysfunction contribute to MDMA-related neurotoxicity. Neuronal mitochondrial trafficking, and their targeting to synapses, is essential for proper neuronal function and survival, rendering neurons particularly vulnerable to mitochondrial dysfunction. Indeed, MDMA-associated disruption of Ca(2+) homeostasis and ATP depletion have been described in neurons, thus suggesting possible MDMA interference on mitochondrial dynamics. In this study, we performed real-time functional experiments of mitochondrial trafficking to explore the role of in situ mitochondrial dysfunction in MDMA's neurotoxic actions. We show that the mixture of MDMA and six of its major in vivo metabolites, each compound at 10μM, impaired mitochondrial trafficking and increased the fragmentation of axonal mitochondria in cultured hippocampal neurons. Furthermore, the overexpression of mitofusin 2 (Mfn2) or dynamin-related protein 1 (Drp1) K38A constructs almost completely rescued the trafficking deficits caused by this mixture. Finally, in hippocampal neurons overexpressing a Mfn2 mutant, Mfn2 R94Q, with impaired fusion and transport properties, it was confirmed that a dysregulation of mitochondrial fission/fusion events greatly contributed to the reported trafficking phenotype. In conclusion, our study demonstrated, for the first time, that the mixture of MDMA and its metabolites, at concentrations relevant to the in vivo scenario, impaired mitochondrial trafficking and increased mitochondrial fragmentation in hippocampal neurons, thus providing a new insight in the context of "ecstasy"-induced neuronal injury.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia), Toxicology Laboratory, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Ramaley C, Leonard SC, Miller JD, Wilson DTM, Chang SY, Chen Q, Li F, Du C. In vitro metabolism of 3,4-methylenedioxymethamphetamine in human hepatocytes. J Anal Toxicol 2014; 38:249-55. [PMID: 24682111 DOI: 10.1093/jat/bku023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Users of the illicit drug, 3,4-methylenedioxymethamphetamine (MDMA), show signs of neurotoxicity. However, the precise mechanism of neurotoxicity caused by use of MDMA has not yet been elucidated. Synthetic glutathione (GSH) conjugates of MDMA are transported into the brain by the GSH transporter and subsequently produce neurotoxicity. The objective of this research is to show direct evidence of the formation of GSH adducts of MDMA in human hepatocytes. High-performance liquid chromatography coupled with tandem mass spectrometry was utilized to examine in vitro incubations of MDMA with cryopreserved human hepatocytes. The use of hydrophilic liquid chromatography in combination with linear ion trap mass spectrometry permitted the identification of two possible GSH metabolites. Enhanced product ion scans of m/z = 499 and 487 amu of extracts from hepatocytes treated with 1.0 mM MDMA show a distinct fragmentation pattern (m/z 194.2, 163, 135, 105), suggesting the formation of MDMA-GSH conjugate, MDMA-SG and 3,4-dihydroxymethamphetamine-SG. The formation of an MDMA-GSH conjugate was further supported by the apparent lack of the same fragmentation pattern from hepatocyte samples without MDMA treatment. The results generated from this study yield valuable qualitative and quantitative information about the neurotoxic thioether metabolites formed from MDMA in humans.
Collapse
Affiliation(s)
- Corinne Ramaley
- 1Department of Pharmaceutical Sciences, School of Pharmacy, Hampton University, Kittrell Hall, Hampton, VA 23668, USA
| | | | | | | | | | | | | | | |
Collapse
|
23
|
Downey C, Daly F, O’Boyle K. An in vitro approach to assessing a potential drug interaction between MDMA (ecstasy) and caffeine. Toxicol In Vitro 2014; 28:231-9. [DOI: 10.1016/j.tiv.2013.10.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/27/2022]
|
24
|
Barbosa DJ, Capela JP, Silva R, Vilas-Boas V, Ferreira LM, Branco PS, Fernandes E, Bastos MDL, Carvalho F. The mixture of "ecstasy" and its metabolites is toxic to human SH-SY5Y differentiated cells at in vivo relevant concentrations. Arch Toxicol 2014; 88:455-473. [PMID: 24101030 DOI: 10.1007/s00204-013-1120-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 08/22/2013] [Indexed: 12/21/2022]
Abstract
The neurotoxicity of "ecstasy" (3,4-methylenedioxymethamphetamine, MDMA) is thought to involve hepatic metabolism, though its real contribution is not completely understood. Most in vitro neurotoxicity studies concern isolated exposures of MDMA or its metabolites, at high concentrations, not considering their mixture, as expected in vivo. Therefore, our postulate is that combined deleterious effects of MDMA and its metabolites, at low micromolar concentrations that may be attained into the brain, may elicit neurotoxicity. Using human SH-SY5Y differentiated cells as dopaminergic neuronal model, we studied the neurotoxicity of MDMA and its MDMA metabolites α-methyldopamine and N-methyl-α-methyldopamine and their correspondent glutathione and N-acetylcysteine monoconjugates, under isolated exposure and as a mixture, at normothermic or hyperthermic conditions. The results showed that the mixture of MDMA and its metabolites was toxic to SH-SY5Y differentiated cells, an effect potentiated by hyperthermia and prevented by N-acetylcysteine. As a mixture, MDMA and its metabolites presented a different toxicity profile, compared to each compound alone, even at equimolar concentrations. Caspase 3 activation, increased reactive oxygen species production, and intracellular Ca(2+) raises were implicated in the toxic effect. The mixture increased intracellular glutathione levels by increasing its de novo synthesis. In conclusion, this study demonstrated, for the first time, that the mixture of MDMA and its metabolites, at low micromolar concentrations, which represents a more realistic approach of the in vivo scenario, elicited toxicity to human SH-SY5Y differentiated cells, thus constituting a new insight into the context of MDMA-related neurotoxicity.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia), Toxicology Laboratory, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal,
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Barbosa DJ, Capela JP, Silva R, Ferreira LM, Branco PS, Fernandes E, Bastos ML, Carvalho F. "Ecstasy"-induced toxicity in SH-SY5Y differentiated cells: role of hyperthermia and metabolites. Arch Toxicol 2014; 88:515-531. [PMID: 24177245 DOI: 10.1007/s00204-013-1147-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/07/2013] [Indexed: 01/10/2023]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA; "ecstasy") is a recreational hallucinogenic drug of abuse known to elicit neurotoxic properties. Hepatic formation of neurotoxic metabolites is thought to play a major role in MDMA-related neurotoxicity, though the mechanisms involved are still unclear. Here, we studied the neurotoxicity mechanisms and stability of MDMA and 6 of its major human metabolites, namely α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) and their correspondent glutathione (GSH) and N-acetyl-cysteine (NAC) conjugates, under normothermic (37 °C) or hyperthermic conditions (40 °C), using cultured SH-SY5Y differentiated cells. We showed that MDMA metabolites exhibited toxicity to SH-SY5Y differentiated cells, being the GSH and NAC conjugates more toxic than their catecholic precursors and MDMA. Furthermore, whereas the toxicity of the catechol metabolites was potentiated by hyperthermia, NAC-conjugated metabolites revealed higher toxicity under normothermia and GSH-conjugated metabolites-induced toxicity was temperature-independent. Moreover, a time-dependent decrease in extracellular concentration of MDMA metabolites was observed, which was potentiated by hyperthermia. The antioxidant NAC significantly protected against the neurotoxic effects of MDMA metabolites. MDMA metabolites increased intracellular glutathione levels, though depletion in thiol content was observed in MDMA-exposed cells. Finally, the neurotoxic effects induced by the MDMA metabolite N-Me-α-MeDA involved caspase 3 activation. In conclusion, this study evaluated the stability of MDMA metabolites in vitro, and demonstrated that the catechol MDMA metabolites and their GSH and NAC conjugates, rather than MDMA itself, exhibited neurotoxic actions in SH-SY5Y differentiated cells, which were differently affected by hyperthermia, thus highlighting a major role for reactive metabolites and hyperthermia in MDMA's neurotoxicity.
Collapse
Affiliation(s)
- Daniel José Barbosa
- REQUIMTE (Rede de Química e Tecnologia), Toxicology Laboratory, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal,
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Barbosa DJ, Serrat R, Ferreira LM, Branco PS, Bastos MDL, Capela JP, Soriano E, Carvalho F. Neuronal Mitochondrial Trafficking Impairment: The Cause or a Consequence of Neuronal Dysfunction Caused by Amphetamine-Like Drugs. ACTA ACUST UNITED AC 2014. [DOI: 10.4303/jdar/235868] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
27
|
Concheiro M, Baumann MH, Scheidweiler KB, Rothman RB, Marrone GF, Huestis MA. Nonlinear pharmacokinetics of (+/-)3,4-methylenedioxymethamphetamine (MDMA) and its pharmacodynamic consequences in the rat. Drug Metab Dispos 2014; 42:119-25. [PMID: 24141857 PMCID: PMC3876787 DOI: 10.1124/dmd.113.053678] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/18/2013] [Indexed: 02/03/2023] Open
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) is a widely abused illicit drug that can cause severe and even fatal adverse effects. However, interest remains for its possible clinical applications in posttraumatic stress disorder and anxiety treatment. Preclinical studies to determine MDMA's safety are needed. We evaluated MDMA's pharmacokinetics and metabolism in male rats receiving 2.5, 5, and 10 mg/kg s.c. MDMA, and the associated pharmacodynamic consequences. Blood was collected via jugular catheter at 0, 0.5, 1, 2, 4, 6, 8, 16, and 24 hours, with simultaneous serotonin (5-HT) behavioral syndrome and core temperature monitoring. Plasma specimens were analyzed for MDMA and the metabolites (±)-3,4-dihydroxymethamphetamine (HHMA), (±)-4-hydroxy-3-methoxymethamphetamine (HMMA), and (±)-3,4-methylenedioxyamphetamine (MDA) by liquid chromatography-tandem mass spectrometry. After 2.5 mg/kg MDMA, mean MDMA Cmax was 164 ± 47.1 ng/ml, HHMA and HMMA were major metabolites, and <20% of MDMA was metabolized to MDA. After 5- and 10-mg/kg doses, MDMA areas under the curve (AUCs) were 3- and 10-fold greater than those after 2.5 mg/kg; HHMA and HMMA AUC values were relatively constant across doses; and MDA AUC values were greater than dose-proportional. Our data provide decisive in vivo evidence that MDMA and MDA display nonlinear accumulation via metabolic autoinhibition in the rat. Importantly, 5-HT syndrome severity correlated with MDMA concentrations (r = 0.8083; P < 0.0001) and core temperature correlated with MDA concentrations (r = 0.7595; P < 0.0001), suggesting that MDMA's behavioral and hyperthermic effects may involve distinct mechanisms. Given key similarities between MDMA pharmacokinetics in rats and humans, data from rats can be useful when provided at clinically relevant doses.
Collapse
Affiliation(s)
- Marta Concheiro
- Chemistry and Drug Metabolism Section (M.C., K.B.S., M.A.H.), and Designer Drug Research Unit (M.H.B., R.B.R.), Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Baltimore, Maryland; and Department of Neuroscience, Weill Cornell Medical College, New York, New York (G.F.M.)
| | | | | | | | | | | |
Collapse
|
28
|
Martínez-Clemente J, López-Arnau R, Carbó M, Pubill D, Camarasa J, Escubedo E. Mephedrone pharmacokinetics after intravenous and oral administration in rats: relation to pharmacodynamics. Psychopharmacology (Berl) 2013; 229:295-306. [PMID: 23649883 DOI: 10.1007/s00213-013-3108-7] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/04/2013] [Indexed: 01/23/2023]
Abstract
RATIONALE Mephedrone (4-methylmethcathinone) is a still poorly known drug of abuse, alternative to ecstasy or cocaine. OBJECTIVE The major aims were to investigate the pharmacokinetics and locomotor activity of mephedrone in rats and provide a pharmacokinetic/pharmacodynamic model. METHODS Mephedrone was administered to male Sprague-Dawley rats intravenously (10 mg/kg) and orally (30 and 60 mg/kg). Plasma concentrations and metabolites were characterized using LC/MS and LC-MS/MS fragmentation patterns. Locomotor activity was monitored for 180-240 min. RESULTS Mephedrone plasma concentrations after i.v. administration fit a two-compartment model (α = 10.23 h(-1), β = 1.86 h(-1)). After oral administration, peak mephedrone concentrations were achieved between 0.5 and 1 h and declined to undetectable levels at 9 h. The absolute bioavailability of mephedrone was about 10% and the percentage of mephedrone protein binding was 21.59 ± 3.67%. We have identified five phase I metabolites in rat blood after oral administration. The relationship between brain levels and free plasma concentration was 1.85 ± 0.08. Mephedrone induced a dose-dependent increase in locomotor activity, which lasted up to 2 h. The pharmacokinetic-pharmacodynamic model successfully describes the relationship between mephedrone plasma concentrations and its psychostimulant effect. CONCLUSIONS We suggest a very important first-pass effect for mephedrone after oral administration and an easy access to the central nervous system. The model described might be useful in the estimation and prediction of the onset, magnitude, and time course of mephedrone pharmacodynamics as well as to design new animal models of mephedrone addiction and toxicity.
Collapse
Affiliation(s)
- J Martínez-Clemente
- Department of Pharmacology and Therapeutic Chemistry (Pharmacology Section) and Institute of Biomedicine (IBUB), Faculty of Pharmacy, University of Barcelona, Av. Joan XXIII s/n, 08028, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
29
|
Single oral doses of (±) 3,4-methylenedioxymethamphetamine ('Ecstasy') produce lasting serotonergic deficits in non-human primates: relationship to plasma drug and metabolite concentrations. Int J Neuropsychopharmacol 2013; 16:791-801. [PMID: 22824226 DOI: 10.1017/s1461145712000582] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Repeated doses of the popular recreational drug methylenedioxymethamphetamine (MDMA, 'Ecstasy') are known to produce neurotoxic effects on brain serotonin (5-HT) neurons but it is widely believed that typical single oral doses of MDMA are free of neurotoxic risk. Experimental and therapeutic trials with MDMA in humans are underway. The mechanisms by which MDMA produces neurotoxic effects are not understood but drug metabolites have been implicated. The aim of the present study was to assess the neurotoxic potential of a range of clinically relevant single oral doses of MDMA in a non-human primate species that metabolizes MDMA in a manner similar to humans, the squirrel monkey. A secondary objective was to explore the relationship between plasma MDMA and metabolite concentrations and lasting serotonergic deficits. Single oral doses of MDMA produced lasting dose-related serotonergic neurochemical deficits in the brains of squirrel monkeys. Notably, even the lowest dose of MDMA tested (5.7 mg/kg, estimated to be equivalent to 1.6 mg/kg in humans) produced significant effects in some brain regions. Plasma levels of MDMA engendered by neurotoxic doses of MDMA were on the order of those found in humans. Serotonergic neurochemical markers were inversely correlated with plasma concentrations of MDMA, but not with those of its major metabolites, 3,4-dihydroxymethamphetamine and 4-hydroxy-3-methoxymethamphetamine. These results suggest that single oral doses of MDMA in the range of those used by humans pose a neurotoxic risk and implicate the parent compound (MDMA), rather than one of its metabolites, in MDMA-induced 5-HT neural injury.
Collapse
|
30
|
Fantegrossi WE, Gannon BM, Zimmerman SM, Rice KC. In vivo effects of abused 'bath salt' constituent 3,4-methylenedioxypyrovalerone (MDPV) in mice: drug discrimination, thermoregulation, and locomotor activity. Neuropsychopharmacology 2013; 38:563-73. [PMID: 23212455 PMCID: PMC3572465 DOI: 10.1038/npp.2012.233] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In recent years, synthetic analogues of naturally occurring cathinone have emerged as psychostimulant-like drugs of abuse in commercial 'bath salt' preparations. 3,4-Methylenedioxypyrovalerone (MDPV) is a common constituent of these illicit products, and its structural similarities to the more well-known drugs of abuse 3,4-methylenedioxymethamphetamine (MDMA), and methamphetamine (METH) suggest that it may have similar in vivo effects to these substances. In these studies, adult male NIH Swiss mice were trained to discriminate 0.3 mg/kg MDPV from saline, and the interoceptive effects of a range of substitution doses of MDPV, MDMA, and METH were then assessed. In separate groups of mice, surgically implanted radiotelemetry probes simultaneously monitored thermoregulatory and locomotor responses to various doses of MDPV and MDMA, as a function of ambient temperature. We found that mice reliably discriminated the MDPV training dose from saline and that cumulative doses of MDPV, MDMA, and METH fully substituted for the MDPV training stimulus. All three drugs had similar ED(50) values in this procedure. Stimulation of motor activity was observed following administration of a wide range of MDPV doses (1-30 mg/kg), and the warm ambient temperature potentiated motor activity and elicited profound stereotypy and self-injurious behavior at 30 mg/kg. In contrast, MDPV-induced hyperthermic effects were observed in only the warm ambient environment. This pattern of effects is in sharp contrast to MDMA, where ambient temperature interacts with thermoregulation, but not locomotor activity. These studies suggest that although the interoceptive effects of MDPV are similar to those of MDMA and METH, direct effects on thermoregulatory processes and locomotor activity are likely mediated by different mechanisms than those of MDMA.
Collapse
Affiliation(s)
- William E Fantegrossi
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | - Brenda M Gannon
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Sarah M Zimmerman
- Department of Pharmacology and Toxicology, College of Medicine, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Kenner C Rice
- Drug Design and Synthesis Section, Chemical Biology Research Branch, NIDA and NIAAA, Bethesda, MD, USA
| |
Collapse
|
31
|
Yuki F, Rie I, Miki K, Mitsuhiro W, Naotaka K, Kenichiro N. Warning against co-administration of 3,4-methylenedioxymethamphetamine (MDMA) with methamphetamine from the perspective of pharmacokinetic and pharmacodynamic evaluations in rat brain. Eur J Pharm Sci 2013; 49:57-64. [PMID: 23395913 DOI: 10.1016/j.ejps.2013.01.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Revised: 01/18/2013] [Accepted: 01/30/2013] [Indexed: 11/26/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA) and methamphetamine often cause serious adverse effects (e.g., rhabdomyolysis, and cardiac disease) following hyperthermia triggered by release of brain monoamines such as dopamine and serotonin. Therefore, evaluation of brain monoamine concentrations is useful to predict these drugs' risks in human. This study aimed to evaluate risks of co-administration of MDMA and methamphetamine, both of which are abused frequently in Japan, based on drug distribution and monoamine level in the rat brain. Rats were allocated to three groups: (1) sole MDMA administration (12 or 25 mg/kg, intraperitoneally), (2) sole methamphetamine administration (10 mg/kg, intraperitoneally) and (3) co-administration of MDMA (12 mg/kg, intraperitoneally) and methamphetamine (10 mg/kg, intraperitoneally). We monitored pharmacokinetic and pharmacodynamic variables for drugs and monoamines in the rat brain. Area under the curve for concentration vs. time until 600 min from drug administration (AUC₀₋₆₀₀) increased from 348.0 to 689.8 μgmin/L for MDMA and from 29.9 to 243.4 μMmin for dopamine in response to co-administration of methamphetamine and MDMA compared to sole MDMA (12 mg/kg) administration. After sole methamphetamine or that with MDMA administration, AUC₀₋₆₀₀ of methamphetamine were 401.8 and 671.1 μgmin/L, and AUC₀₋₆₀₀ of dopamine were 159.9 and 243.4 μMmin. In conclusion, the brain had greater exposure to MDMA, methamphetamine and dopamine after co-administration of MDMA and methamphetamine than when these two drugs were given alone. This suggests co-administration of MDMA with methamphetamine confers greater risk than sole administration, and that adverse events of MDMA ingestion may increase when methamphetamine is co-administered.
Collapse
Affiliation(s)
- Fuchigami Yuki
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8131, Japan.
| | - Ikeda Rie
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8131, Japan.
| | - Kuzushima Miki
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8131, Japan
| | - Wada Mitsuhiro
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8131, Japan.
| | - Kuroda Naotaka
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8131, Japan
| | - Nakashima Kenichiro
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8131, Japan; Faculty of Pharmaceutical Sciences, Nagasaki International University, 2825-7 Huis Ten Bosch Sasebo, Nagasaki 859-3298, Japan
| |
Collapse
|
32
|
Ferreira PS, Nogueira TB, Costa VM, Branco PS, Ferreira LM, Fernandes E, Bastos ML, Meisel A, Carvalho F, Capela JP. Neurotoxicity of "ecstasy" and its metabolites in human dopaminergic differentiated SH-SY5Y cells. Toxicol Lett 2013; 216:159-170. [PMID: 23194825 DOI: 10.1016/j.toxlet.2012.11.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2012] [Revised: 11/17/2012] [Accepted: 11/19/2012] [Indexed: 11/16/2022]
Abstract
"Ecstasy" (3,4-methylenedioxymethamphetamine or MDMA) is a widely abused recreational drug, reported to produce neurotoxic effects, both in laboratory animals and in humans. MDMA metabolites can be major contributors for MDMA neurotoxicity. This work studied the neurotoxicity of MDMA and its catechol metabolites, α-methyldopamine (α-MeDA) and N-methyl-α-methyldopamine (N-Me-α-MeDA) in human dopaminergic SH-SY5Y cells differentiated with retinoic acid and 12-O-tetradecanoyl-phorbol-13-acetate. Differentiation led to SH-SY5Y neurons with higher ability to accumulate dopamine and higher resistance towards dopamine neurotoxicity. MDMA catechol metabolites were neurotoxic to SH-SY5Y neurons, leading to caspase 3-independent cell death in a concentration- and time-dependent manner. MDMA did not show a concentration- and time-dependent death. Pre-treatment with the antioxidant and glutathione precursor, N-acetylcysteine (NAC), resulted in strong protection against the MDMA metabolites' neurotoxicity. Neither the superoxide radical scavenger, tiron, nor the inhibitor of the dopamine (DA) transporter, GBR 12909, prevented the metabolites' toxicity. Cells exposed to α-MeDA showed an increase in intracellular glutathione (GSH) levels, which, at the 48 h time-point, was not dependent in the activity increase of γ-glutamylcysteine synthetase (γ-GCS), revealing a possible transient effect. Importantly, pre-treatment with buthionine sulfoximine (BSO), an inhibitor of γ-GCS, prevented α-MeDA induced increase in GSH levels, but did not augment this metabolite cytotoxicity. Even so, BSO pre-treatment abolished NAC protective effects against α-MeDA neurotoxicity, which were, at least partially, due to GSH de novo synthesis. Inversely, pre-treatment of cells with BSO augmented N-Me-α-MeDA-induced neurotoxicity, but only slightly affected NAC neuroprotection. In conclusion, MDMA catechol metabolites promote differential toxic effects to differentiated dopaminergic human SH-SY5Y cells.
Collapse
Affiliation(s)
- Patrícia Silva Ferreira
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Mueller M, Maldonado-Adrian C, Yuan J, McCann UD, Ricaurte GA. Studies of (±)-3,4-methylenedioxymethamphetamine (MDMA) metabolism and disposition in rats and mice: relationship to neuroprotection and neurotoxicity profile. J Pharmacol Exp Ther 2013; 344:479-88. [PMID: 23209329 PMCID: PMC3558829 DOI: 10.1124/jpet.112.201699] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 11/29/2012] [Indexed: 11/22/2022] Open
Abstract
The neurotoxicity of (±)-3,4-methylenedioxymethamphetamine (MDMA; "Ecstasy") is influenced by temperature and varies according to species. The mechanisms underlying these two features of MDMA neurotoxicity are unknown, but differences in MDMA metabolism have recently been implicated in both. The present study was designed to 1) assess the effect of hypothermia on MDMA metabolism, 2) determine whether the neuroprotective effect of hypothermia is related to inhibition of MDMA metabolism, and 3) determine if different neurotoxicity profiles in mice and rats are related to differences in MDMA metabolism and/or disposition in the two species. Rats and mice received single neurotoxic oral doses of MDMA at 25°C and 4°C, and body temperature, pharmacokinetic parameters, and serotonergic and dopaminergic neuronal markers were measured. Hypothermia did not alter MDMA metabolism in rats and only modestly inhibited MDMA metabolism in mice; however, it afforded complete neuroprotection in both species. Rats and mice metabolized MDMA in a similar pattern, with 3,4-methylenedioxyamphetamine being the major metabolite, followed by 4-hydroxy-3-methoxymethamphetamine and 3,4-dihydroxymethamphetamine, respectively. Differences between MDMA pharmacokinetics in rats and mice, including faster elimination in mice, did not account for the different profile of MDMA neurotoxicity in the two species. Taken together, the results of these studies indicate that inhibition of MDMA metabolism is not responsible for the neuroprotective effect of hypothermia in rodents, and that different neurotoxicity profiles in rats and mice are not readily explained by differences in MDMA metabolism or disposition.
Collapse
Affiliation(s)
- Melanie Mueller
- Department of Neurology, Johns Hopkins University, 5501 Hopkins Bayview Circle, Baltimore, MD 21224, USA
| | | | | | | | | |
Collapse
|
34
|
Capela JP, da Costa Araújo S, Costa VM, Ruscher K, Fernandes E, Bastos MDL, Dirnagl U, Meisel A, Carvalho F. The neurotoxicity of hallucinogenic amphetamines in primary cultures of hippocampal neurons. Neurotoxicology 2013; 34:254-263. [PMID: 22983118 DOI: 10.1016/j.neuro.2012.09.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 09/06/2012] [Accepted: 09/06/2012] [Indexed: 11/19/2022]
Abstract
3,4-Methylenedioxymethamphetamine (MDMA or "Ecstasy") and 2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) are hallucinogenic amphetamines with addictive properties. The hippocampus is involved in learning and memory and seems particularly vulnerable to amphetamine's neurotoxicity. We evaluated the neurotoxicity of DOI and MDMA in primary neuronal cultures of hippocampus obtained from Wistar rat embryos (E-17 to E-19). Mature neurons after 10 days in culture were exposed for 24 or 48 h either to MDMA (100-800 μM) or DOI (10-100 μM). Both the lactate dehydrogenase (LDH) release and the tetrazolium-based (MTT) assays revealed a concentration- and time-dependent neuronal death and mitochondrial dysfunction after exposure to both drugs. Both drugs promoted a significant increase in caspase-8 and caspase-3 activities. At concentrations that produced similar levels of neuronal death, DOI promoted a higher increase in the activity of both caspases than MDMA. In the mitochondrial fraction of neurons exposed 24h to DOI or MDMA, we found a significant increase in the 67 kDa band of apoptosis inducing factor (AIF) by Western blot. Moreover, 24h exposure to DOI promoted an increase in cytochrome c in the cytoplasmatic fraction of neurons. Pre-treatment with an antibody raised against the 5-HT(2A)-receptor (an irreversible antagonist) greatly attenuated neuronal death promoted by 48 h exposure to DOI or MDMA. In conclusion, hallucinogenic amphetamines promoted programmed neuronal death involving both the mitochondria machinery and the extrinsic cell death key regulators. Death was dependent, at least in part, on the stimulation of the 5-HT(2A)-receptors.
Collapse
Affiliation(s)
- João Paulo Capela
- REQUIMTE (Rede de Química e Tecnologia), Laboratório de Toxicologia, Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal.
| | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Rietjens SJ, Hondebrink L, Westerink RHS, Meulenbelt J. Pharmacokinetics and pharmacodynamics of 3,4-methylenedioxymethamphetamine (MDMA): interindividual differences due to polymorphisms and drug-drug interactions. Crit Rev Toxicol 2012; 42:854-76. [PMID: 23030234 DOI: 10.3109/10408444.2012.725029] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Clinical outcome following 3,4-methylenedioxymethamphetamine (MDMA) intake ranges from mild entactogenic effects to a life-threatening intoxication. Despite ongoing research, the clinically most relevant mechanisms causing acute MDMA-induced adverse effects remain largely unclear. This complicates the triage and treatment of MDMA users needing medical care. The user's genetic profile and interactions resulting from polydrug use are key factors that modulate the individual response to MDMA and influence MDMA pharmacokinetics and dynamics, and thus clinical outcome. Polymorphisms in CYP2D6, resulting in poor metabolism status, as well as co-exposure of MDMA with specific substances (e.g. selective serotonin reuptake inhibitors (SSRIs)) can increase MDMA plasma levels, but can also decrease the formation of toxic metabolites and subsequent cellular damage. While pre-exposure to e.g. SSRIs can increase MDMA plasma levels, clinical effects (e.g. blood pressure, heart rate, body temperature) can be reduced, possibly due to a pharmacodynamic interaction at the serotonin reuptake transporter (SERT). Pretreatment with inhibitors of the dopamine or norepinephrine reuptake transporter (DAT or NET), 5-HT(2A) or α-β adrenergic receptor antagonists or antipsychotics prior to MDMA exposure can also decrease one or more MDMA-induced physiological and/or subjective effects. Carvedilol, ketanserin and haloperidol can reduce multiple MDMA-induced clinical and neurotoxic effects. Thus besides supportive care, i.e. sedation using benzodiazepines, intravenous hydration, aggressive cooling and correction of electrolytes, it is worthwhile to investigate the usefulness of carvedilol, ketanserin and haloperidol in the treatment of MDMA-intoxicated patients.
Collapse
Affiliation(s)
- Saskia J Rietjens
- University Medical Center Utrecht, Division of Anesthesiology, Intensive Care and Emergency Medicine, National Poisons Information Center (NVIC), P.O. box 85500, 3508 GA, Utrecht, The Netherlands.
| | | | | | | |
Collapse
|
36
|
Hondebrink L, Meulenbelt J, Rietjens SJ, Meijer M, Westerink RH. Methamphetamine, amphetamine, MDMA (‘ecstasy’), MDA and mCPP modulate electrical and cholinergic input in PC12 cells. Neurotoxicology 2012; 33:255-60. [DOI: 10.1016/j.neuro.2011.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2011] [Accepted: 09/11/2011] [Indexed: 12/24/2022]
|
37
|
Scheidweiler KB, Ladenheim B, Barnes AJ, Cadet JL, Huestis MA. (±)-3,4-methylenedioxymethamphetamine and metabolite disposition in plasma and striatum of wild-type and multidrug resistance protein 1a knock-out mice. J Anal Toxicol 2012; 35:470-80. [PMID: 21871156 DOI: 10.1093/anatox/35.7.470] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Mice lacking multidrug resistance protein 1a (mdr1a) are protected from methylenedioxymethamphetamine (MDMA)-induced neurotoxicity, suggesting mdr1a might play an important role in this phenomenon. We characterized MDMA pharmacokinetics in murine plasma and brain to determine if mdr1a alters MDMA distribution. Wild-type (mdr1a⁺/⁺) and mdr1a knock-out (mdr1a⁻/⁻) mice received i.p. 10, 20 or 40 mg/kg MDMA. Plasma and brain specimens were collected 0.3-4 h after MDMA, and striatum were dissected. MDMA and metabolites were quantified in plasma and striatum by gas chromatography-mass spectrometry. MDMA maximum plasma concentrations (C(max)) for both strains were 916- 1363, 1833-3546, and 5979-7948 μg/L, whereas brain C(max) were 6673-14,869, 23,428-29,433, and 52,735-66,525 μg/kg after 10, 20, or 40 mg/kg MDMA, respectively. MDMA and metabolite striatum/plasma AUC ratios were similar in both strains, inconsistent with observed MDMA neuroprotective effects in mdr1a⁻/⁻ mice. Ratios of methylenedioxyamphetamine (MDA) and 4-hydroxy-3-methoxymethamphetamine (HMMA) AUCs exceeded 18% of MDMA's in plasma, suggesting substantial MDMA hepatic metabolism in mice. MDMA, MDA, HMMA, and 4-hydroxy-3-methoxyamphetamine maximum concentrations and AUCs exhibited nonlinear relationships during dose-escalation studies, consistent with impaired enzymatic demethylenation. Nonlinear increases in MDMA plasma and brain concentrations with increased MDMA dose may potentiate MDMA effects and toxicity.
Collapse
Affiliation(s)
- Karl B Scheidweiler
- Chemistry and Drug Metabolism Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
38
|
Mueller M, Goodwin AK, Ator NA, McCann UD, Ricaurte GA. Metabolism and disposition of 3,4-methylenedioxymethamphetamine ("ecstasy") in baboons after oral administration: comparison with humans reveals marked differences. J Pharmacol Exp Ther 2011; 338:310-7. [PMID: 21493752 PMCID: PMC3126644 DOI: 10.1124/jpet.111.180612] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 04/04/2011] [Indexed: 11/22/2022] Open
Abstract
The baboon is potentially an attractive animal for modeling 3,4-methylenedioxymethamphetamine (MDMA) effects in humans. Baboons self-administer MDMA, are susceptible to MDMA neurotoxicity, and are suitable for positron emission tomography, the method most often used to probe for MDMA neurotoxicity in humans. Because pharmacokinetic equivalence is a key feature of a good predictive animal model, we compared the pharmacokinetics of MDMA in baboons and humans. Baboons were trained to orally consume MDMA. Then, pharmacokinetic profiles of MDMA and its major metabolites were determined after various oral MDMA doses using the same analytical method recently used to perform similar studies in humans. Results indicate that MDMA pharmacokinetics after oral ingestion differ markedly between baboons and humans. Baboons had little or no MDMA in their plasma but had high plasma concentrations of 3,4-dihydroxymethamphetamine (HHMA), pointing to much more extensive first-pass metabolism of MDMA in baboons than in humans. Other less prominent differences included less O-methylation of HHMA to 4-hydroxy-3-methoxymethamphetamine, greater N-demethylation of MDMA to 3,4-methylenedioxyamphetamine, and a shorter half-life of HHMA in the baboon. To our knowledge, this is the first study to characterize MDMA metabolism and disposition in the baboon. Differences in MDMA pharmacokinetics between baboons and humans suggest that the baboon may not be ideal for modeling human MDMA exposure. However, the unusually rapid conversion of MDMA to HHMA in the baboon may render this animal uniquely useful for clarifying the relative role of the parent compound (MDMA) versus metabolites (particularly HHMA) in the biological actions of MDMA.
Collapse
Affiliation(s)
- Melanie Mueller
- Departments of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224, USA
| | | | | | | | | |
Collapse
|
39
|
High concentrations of MDMA (‘ecstasy’) and its metabolite MDA inhibit calcium influx and depolarization-evoked vesicular dopamine release in PC12 cells. Neuropharmacology 2011; 61:202-8. [DOI: 10.1016/j.neuropharm.2011.03.028] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2010] [Revised: 01/28/2011] [Accepted: 03/25/2011] [Indexed: 11/18/2022]
|
40
|
Gender differences in hyperthermia and regional 5-HT and 5-HIAA depletion in the brain following MDMA administration in rats. Brain Res 2011; 1398:13-20. [DOI: 10.1016/j.brainres.2011.04.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/21/2011] [Accepted: 04/20/2011] [Indexed: 11/24/2022]
|
41
|
Ikeda R, Igari Y, Fuchigami Y, Wada M, Kuroda N, Nakashima K. Pharmacodynamic interactions between MDMA and concomitants in MDMA tablets on extracellular dopamine and serotonin in the rat brain. Eur J Pharmacol 2011; 660:318-25. [PMID: 21497593 DOI: 10.1016/j.ejphar.2011.03.050] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2010] [Revised: 03/07/2011] [Accepted: 03/28/2011] [Indexed: 01/26/2023]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) is a psychoactive stimulant abused by young people as the recreational drug ecstasy. Other compounds, either deliberately added or present as byproducts, are often found in MDMA tablets and can unexpectedly interact with each other. The aim of this study was to evaluate the pharmacodynamic effects of interactions caused by concomitants in MDMA tablets on extracellular dopamine and serotonin (5-HT) by microdialysis in the striatum of ethylcarbamate-anesthetized rats. Baseline levels of dopamine and 5-HT in the striatum were 16.5±7.7 and 3.5±1.7 nM (mean±standard deviation), respectively. After a single administration of MDMA (10 mg/kg, i.p.), a dramatic increase in extracellular dopamine (Cmax: 36.1-fold vs. baseline) and 5-HT levels (Cmax: 9.3-fold vs. baseline) was observed. When rats were co-administered with methamphetamine (1, 5 or 10 mg/kg) with MDMA, the dopamine levels induced by MDMA increased in a methamphetamine-dose-dependent manner (Cmax: 2.5-, 3.5-, and 3.8-fold vs. MDMA). A similar trend was observed in 5-HT levels (Cmax: 1.1-, 1.3-, and 1.8-fold vs. MDMA). In contrast, ketamine and caffeine showed synergistic effects on the monoamine levels induced by MDMA, whereas the individual administration of either of these compounds did not affect monoamine levels. Ketamine (1, 5 mg/kg) decreased the dopamine levels induced by MDMA (Cmax: 0.9- and 0.7-fold vs. MDMA) and increased the 5-HT levels induced by MDMA (Cmax: 1.4- and 1.6-fold vs. MDMA), and co-administration of caffeine (20 mg/kg) with MDMA increased dopamine levels (Cmax: 1.7-fold vs. MDMA). These results suggest that exposure to multiple drugs in addition to MDMA can have neurotoxic effects.
Collapse
Affiliation(s)
- Rie Ikeda
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Ruscher K, Fernandes E, Capela JP, Bastos MDL, Wieloch T, Dirnagl U, Meisel A, Carvalho F. Effect of 3,4-methylenedioxyamphetamine on dendritic spine dynamics in rat neocortical neurons--involvement of heat shock protein 27. Brain Res 2011; 1370:43-52. [PMID: 21075084 DOI: 10.1016/j.brainres.2010.11.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2010] [Revised: 11/01/2010] [Accepted: 11/05/2010] [Indexed: 11/19/2022]
Abstract
Along with chronic neurotoxic effects, the long-term consumption of amphetamines has been associated to psychiatric symptoms and memory disturbances. Dendritic spine dynamics have been discussed as a possible morphological correlate. However, the underlying mechanisms are still elusive. 3,4-Methylenedioxyamphetamine (MDA), a major drug of abuse and a main metabolite after 3,4-methylenedioxymethamphetamine (MDMA) intake, provokes a loss of dendritic spine-like protrusions in primary cultures of rat cortical neurons. 3,4-Methylenedioxyamphetamine also induced a rapid activation of the p38 mitogen activated protein kinase (p38 MAPK) pathway and phosphorylation of heat shock protein 27 (hsp27) indicative for its decreased chaperone activity. Concurrent pharmacological inhibition of the p38 MAPK by SB203580 abolished hsp27 phosphorylation and diminished the loss of dendritic spine-like protrusions. Moreover, upon MDA treatment dendritic spine-like protrusions were stabilized in neurons constitutively expressing hsp27. In parallel experiments we observed a robust activation of the heat shock transcription factor 1 (HSF-1) and a subsequent increase of hsp27 and hsp70. The regulation of small heat shock proteins corroborates the existence of a neuronal stress response after MDA treatment. Pharmacological targeting of small heat shock protein phosphorylation may provide a new strategy to preserve spine integrity after amphetamine exposure.
Collapse
Affiliation(s)
- Karsten Ruscher
- Laboratory for Experimental Brain Research, Wallenberg Neuroscience Center, Lund University, BMC A13, S-22184 Lund, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kivell B, Day D, Bosch P, Schenk S, Miller J. MDMA causes a redistribution of serotonin transporter from the cell surface to the intracellular compartment by a mechanism independent of phospho-p38-mitogen activated protein kinase activation. Neuroscience 2010; 168:82-95. [PMID: 20298763 DOI: 10.1016/j.neuroscience.2010.03.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 03/08/2010] [Accepted: 03/09/2010] [Indexed: 11/16/2022]
Abstract
3,4-methylenedioxymethamphetamine (MDMA) causes long-term serotonin depletion and reduced serotonin transporter (SERT) function in humans and in animal models. Using quantitative Western blotting and real-time PCR, we have shown that total SERT protein in the striatum and nucleus accumbens and mRNA levels in the dorsal raphe nucleus were not significantly changed following MDMA exposure in rats (4 x 2 h i.p. injections, 10 mg/kg each). In mouse neuroblastoma (N(2)A) cells transiently expressing green fluorescent protein-tagged human SERT (GFP-hSERT), we have shown redistribution of SERT from the cell surface to intracellular vesicles on exposure to MDMA using cell surface biotinylation, total internal reflection fluorescence microscopy (TIRFM) and live-cell confocal microscopy. To investigate the mechanism responsible for SERT redistribution, we used specific antibodies to phospho-p38-mitogen activated protein kinase (p38 MAPK), a known signalling pathway involved in SERT membrane expression. We found that p38 MAPK activation was not involved in the MDMA-induced redistribution of SERT from the cell-surface to the cell interior. A loss of SERT from the cell surface on acute exposure to MDMA may contribute to the decreased SERT function seen in rats exposed to MDMA.
Collapse
Affiliation(s)
- B Kivell
- School of Biological Sciences, Victoria University of Wellington, Kelburn Parade, Wellington, New Zealand.
| | | | | | | | | |
Collapse
|
44
|
Kindlundh-Högberg AMS, Pickering C, Wicher G, Hobér D, Schiöth HB, Fex Svenningsen A. MDMA (Ecstasy) decreases the number of neurons and stem cells in embryonic cortical cultures. Cell Mol Neurobiol 2010; 30:13-21. [PMID: 19543826 PMCID: PMC11498611 DOI: 10.1007/s10571-009-9426-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2008] [Accepted: 06/04/2009] [Indexed: 11/26/2022]
Abstract
Ecstasy, 3,4-methylenedioxymetamphetamine (MDMA), is a recreational drug used among adolescents, including young pregnant women. MDMA passes the placental barrier and may therefore influence fetal development. The aim was to investigate the direct effect of MDMA on cortical cells using dissociated CNS cortex of rat embryos, E17. The primary culture was exposed to a single dose of MDMA and collected 5 days later. MDMA caused a dramatic, dose-dependent (100 and 400 microM) decrease in nestin-positive stem cell density, as well as a significant reduction (400 microM) in NeuN-positive cells. By qPCR, MDMA (200 microM) caused a significant decrease in mRNA expression of the 5HT3 receptor, dopamine D(1) receptor, and glutamate transporter EAAT2-1, as well as an increase in mRNA levels of the NMDA NR1 receptor subunit and the 5HT(1A) receptor. In conclusion, MDMA caused a marked reduction in stem cells and neurons in embryonic cortical primary cell cultures, which was accompanied by changes in mRNA expression of specific receptors and transporters for glutamatergic and monoaminergic neurotransmitters.
Collapse
|
45
|
Hirt D, Fonsart J, Menet MC, Debray M, Noble F, Declèves X, Scherrmann JM. Population pharmacokinetics of 3,4-methylenedioxymethamphetamine and main metabolites in rats. Toxicol Sci 2009; 114:38-47. [PMID: 20008456 DOI: 10.1093/toxsci/kfp300] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The pharmacokinetics of the recreational drug 3,4-methylenedioxymethamphetamine (MDMA) and its mains metabolites have never been modeled together. We therefore designed a model with which to analyze the pharmacokinetics of MDMA, 3,4-methylenedioxyamphetamine (MDA), 4-hydroxy-3-methoxymethamphetamine (HMMA), and 4-hydroxy-3-methoxyamphetamine (HMA) and to test the effect of covariates like gender and body weight on the pharmacokinetics. Rats (18 males and 18 females) were given 1 mg/kg MDMA iv, and the concentrations of MDMA, MDA, and HMMA were measured by high-performance liquid chromatography-mass spectrometry. Another 30 rats (15 males) were given 1 mg/kg MDA, and MDA and HMA were measured. A population pharmacokinetic model was developed to describe the changes in MDMA, HMMA, MDA, and HMA concentrations over time and to estimate interanimal variability. The influence of gender was tested using a likelihood ratio test. Estimated exposures of males and females to MDMA and its metabolites were compared using the Wilcoxon nonparametric test. An integrated six-compartment model adequately described the data. MDMA (two compartments) was transformed irreversible to HMMA (one compartment) and MDA (two compartments), which then produced HMA (one compartment). All rate constants were first order. Females given MDMA had significantly smaller MDMA distribution volumes than males, and they converted less MDMA to MDA than did males. Our MDMA, MDA, HMA, and HMMA model is suitable for examining the relationship between drug concentrations and its pharmacological/toxicological effects. Male rats were exposed to significantly more MDA and HMA than were females, which could explain why males are more sensitive to MDMA toxic effects than females.
Collapse
Affiliation(s)
- Déborah Hirt
- Faculté de Pharmacie, Université Paris Descartes, Paris F-75006, France.
| | | | | | | | | | | | | |
Collapse
|
46
|
Baumann MH, Zolkowska D, Kim I, Scheidweiler KB, Rothman RB, Huestis MA. Effects of dose and route of administration on pharmacokinetics of (+ or -)-3,4-methylenedioxymethamphetamine in the rat. Drug Metab Dispos 2009; 37:2163-70. [PMID: 19679675 PMCID: PMC2774984 DOI: 10.1124/dmd.109.028506] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Accepted: 08/12/2009] [Indexed: 11/22/2022] Open
Abstract
Based on animal data, there is speculation that (+ or -)-3,4-methylenedioxymethamphetamine (MDMA) is neurotoxic to humans. Extrapolation of MDMA findings from animals to humans requires assessment of pharmacokinetics in various species, and low-dose administration data from rats are lacking. In this study, we examine MDMA pharmacokinetics in rats given low (2 mg/kg) and high (10 mg/kg) doses of racemic MDMA via intraperitoneal, subcutaneous, and oral routes. Repeated blood specimens were collected from venous catheters, and plasma was assayed for MDMA and its metabolites, 4-hydroxy-3-methoxymethamphetamine (HMMA) and 3,4-methylenedioxyamphetamine (MDA), by gas chromatography-mass spectrometry. After 2 mg/kg, maximum MDMA concentrations (C(max)) were approximately 200 ng/ml for intraperitoneal and subcutaneous routes, but less for the oral route. MDMA plasma half-lives were <1 h for low-dose groups, whereas HMMA and MDA half-lives were >2 h. After 10 mg/kg, MDMA areas under the curve (AUCs) were 21-fold (intraperitoneal), 10-fold (subcutaneous), and 36-fold (oral) greater than those at 2 mg/kg. In contrast, HMMA AUC values in high-dose groups were <3-fold above those at 2 mg/kg. Several new findings emerge from this report of low-dose MDMA pharmacokinetics in rats. First, 2 mg/kg MDMA in rats can produce MDMA C(max) values similar to those in humans, perhaps explaining why both species discriminate 1.5 mg/kg MDMA in laboratory paradigms. Second, our data provide additional support for nonlinear kinetics of MDMA in rats, and, analogous to humans, this phenomenon appears to involve impaired drug metabolism. Finally, given key similarities between MDMA pharmacokinetics in rats and humans, data from rats may be clinically relevant when appropriate dosing conditions are used.
Collapse
Affiliation(s)
- Michael H Baumann
- Clinical Psychopharmacology Section, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, 333 Cassell Dr., Suite 4500, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
47
|
Scheidweiler KB, Ladenheim B, Cadet JL, Huestis MA. Mice lacking multidrug resistance protein 1a show altered dopaminergic responses to methylenedioxymethamphetamine (MDMA) in striatum. Neurotox Res 2009; 18:200-9. [PMID: 19851718 DOI: 10.1007/s12640-009-9124-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2009] [Revised: 08/04/2009] [Accepted: 10/07/2009] [Indexed: 01/16/2023]
Abstract
Multidrug resistance protein 1a (MDR1a) potentiated methylenedioxymethamphetamine (MDMA)-induced decreases of dopamine (DA) and dopamine transport protein in mouse brain one week after MDMA administration. In the present study, we examined if mdr1a wild-type (mdr1a +/+) and knock-out (mdr1a -/-) mice differentially handle the acute effects of MDMA on the nigrostriatal DA system 0-24 h following a single drug injection. 3-way ANOVA revealed significant 2-way interactions of strain x time (F (5,152) = 32.4, P < 0.001) and strain x dose (F (3,152) = 25.8, P < 0.001) on 3,4-dihydroxyphenylacetic acid (DOPAC)/DA ratios in mdr1a +/+ and -/- mice. 0.3-3 h after 10 mg/kg MDMA, DOPAC/DA ratios were increased in mdr1a +/+ mice, but decreased 0.3-1 h after MDMA in mdr1a -/- mice. Twenty-four hours after 10 mg/kg MDMA, DOPAC/DA ratios were increased 600% in mdr1a +/+ mice compared to saline-treated control mice, while in mdr1a -/- mice DOPAC/DA ratios were unchanged. Striatal MDMA and its metabolite, methylenedioxyamphetamine, concentrations by gas chromatography-mass spectrometry were similar in both strains 0.3-4 h after MDMA, discounting the role of MDR1a-facilitated MDMA transport in observed inter-strain differences. Increased DOPAC/DA turnover in mdr1a +/+ mice following MDMA is consistent with the previous report that MDMA neurotoxicity is increased in mdr1a +/+ mice. Increased DA turnover via monoamine oxidase in mdr1a +/+ vs -/- mice might increase exposure to neurotoxic reactive oxygen species.
Collapse
Affiliation(s)
- Karl B Scheidweiler
- Chemistry and Drug Metabolism, Intramural Research Program, National Institutes of Health, Biomedical Research Center, 251 Bayview Boulevard Suite 200, Room 05A-721, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
48
|
Mueller M, Yuan J, Felim A, Neudörffer A, Peters FT, Maurer HH, McCann UD, Largeron M, Ricaurte GA. Further studies on the role of metabolites in (+/-)-3,4-methylenedioxymethamphetamine-induced serotonergic neurotoxicity. Drug Metab Dispos 2009; 37:2079-86. [PMID: 19628751 PMCID: PMC2769035 DOI: 10.1124/dmd.109.028340] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2009] [Accepted: 07/21/2009] [Indexed: 11/22/2022] Open
Abstract
The mechanism by which the recreational drug (+/-)-3,4-methylenedioxymethamphetamine (MDMA) destroys brain serotonin (5-HT) axon terminals is not understood. Recent studies have implicated MDMA metabolites, but their precise role remains unclear. To further evaluate the relative importance of metabolites versus the parent compound in neurotoxicity, we explored the relationship between pharmacokinetic parameters of MDMA, 3,4-methylenedioxyamphetamine (MDA), 3,4-dihydroxymethamphetamine (HHMA), and 4-hydroxy-3-methoxymethamphetamine (HMMA) and indexes of serotonergic neurotoxicity in the same animals. We also further evaluated the neurotoxic potential of 5-(N-acetylcystein-S-yl)-HHMA (5-NAC-HHMA), an MDMA metabolite recently implicated in 5-HT neurotoxicity. Lasting serotonergic deficits correlated strongly with pharmacokinetic parameters of MDMA (C(max) and area under the concentration-time curve), more weakly with those of MDA, and not at all with those of HHMA or HMMA (total amounts of the free analytes obtained after conjugate cleavage). HHMA and HMMA could not be detected in the brains of animals with high brain MDMA concentrations and high plasma HHMA and HMMA concentrations, suggesting that HHMA and HMMA do not readily penetrate the blood-brain barrier (either in their free form or as sulfate or glucuronic conjugates) and that little or no MDMA is metabolized to HHMA or HMMA in the brain. Repeated intraparenchymal administration of 5-NAC-HHMA did not produce significant lasting serotonergic deficits in the rat brain. Taken together, these results indicate that MDMA and, possibly, MDA are more important determinants of brain 5-HT neurotoxicity in the rat than HHMA and HMMA and bring into question the role of metabolites (including 5-NAC-HHMA) in MDMA neurotoxicity.
Collapse
Affiliation(s)
- Melanie Mueller
- Department of Neurology, Johns Hopkins Medical Institutions, Baltimore, MD 21224, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Direct comparison of (+/-) 3,4-methylenedioxymethamphetamine ("ecstasy") disposition and metabolism in squirrel monkeys and humans. Ther Drug Monit 2009; 31:367-73. [PMID: 19417716 DOI: 10.1097/ftd.0b013e3181a4f6c2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The present study compared the disposition and metabolism of the recreational drug (+/-) 3,4-methylenedioxymethamphetamine (MDMA, "ecstasy") in squirrel monkeys and humans because the squirrel monkey has been extensively studied for MDMA neurotoxicity. A newly developed liquid chromatography-mass spectrometric procedure for simultaneous measurement of MDMA, 3,4-dihydroxymethamphetamine, 4-hydroxy-3-methoxymethamphetamine, and 3,4-methylenedioxyamphetamine was employed. In both humans and squirrel monkeys, a within-subject design permitted testing of different doses in the same subjects. Humans and squirrel monkeys were found to metabolize MDMA in similar, but not identical, pathways and proportions. In particular, amounts of 3,4-dihydroxymethamphetamine (after conjugate cleavage) and 3,4-methylenedioxyamphetamine were similar in the 2 species, but formation of 4-hydroxy-3-methoxymethamphetamine was greater in squirrel monkeys than in humans. Both species demonstrated nonlinear MDMA pharmacokinetics at comparable plasma MDMA concentrations (125-150 ng/mL and above). The elimination half-life of MDMA was considerably shorter in squirrel monkeys than in humans (2-3 versus 6-9 hours). In both species, there was substantial individual variability. These results suggest that the squirrel monkey may be a useful model for predicting outcomes of MDMA exposure in humans, although this will also depend on the degree to which MDMA pharmacodynamics in the squirrel monkey parallels that in humans.
Collapse
|
50
|
Sakai N, Sakamoto KQ, Fujita S, Ishizuka M. The importance of heterogeneous nuclear ribonucleoprotein K on cytochrome P450 2D2 gene regulation: its binding is reduced in Dark Agouti rats. Drug Metab Dispos 2009; 37:1703-10. [PMID: 19420131 DOI: 10.1124/dmd.109.027284] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Cytochrome P450 (P450) 2D2 (CYP2D2) enzyme is known to metabolize the majority of typical substrates of the human CYP2D6 enzyme, which is the most extensively characterized polymorphic drug-metabolizing enzyme. Despite its impact on drug metabolism in rats, the transcriptional regulation of CYP2D2 remains to be elucidated. We clarified the molecular mechanism of CYP2D2 gene expression. The CYP2D2 gene was positively regulated by the poly(C)-binding protein heterogeneous nuclear ribonucleoprotein K (hnRNP K) through a transcriptional regulatory element located in the 5'-flanking region from -94 to -113. To date, nothing is known about the potential role of hnRNP K in P450 gene regulation. Thus, this is the first report that hnRNP K protein is involved in CYP2D2 gene regulation. Furthermore, we elucidated the genetic basis of the extremely low expression of CYP2D2 mRNA in Dark Agouti (DA) rats. Because of its relatively low abundance, DA rats have been frequently used for the study of CYP2D substrate metabolism as the animal model of the poor metabolizer phenotype for CYP2D6 compared with Sprague-Dawley rats as an extensive metabolizer phenotype. We found a single substitution within the transcriptional regulatory element of the CYP2D2 gene in DA rats. The mutation was detected in the polypyrimidine sequence that is the preferred binding site for hnRNP K protein. The mutation within the transcriptional regulatory element attenuated the binding of hnRNP K protein. In conclusion, decreased recruitment of hnRNP K protein to the mutated sequence causes the low expression of CYP2D2 mRNA in DA rats.
Collapse
Affiliation(s)
- Noriaki Sakai
- Laboratory of Toxicology, Department of Environmental Veterinary Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | | | | | | |
Collapse
|