1
|
Santos AA, Delgado TC, Marques V, Ramirez-Moncayo C, Alonso C, Vidal-Puig A, Hall Z, Martínez-Chantar ML, Rodrigues CM. Spatial metabolomics and its application in the liver. Hepatology 2024; 79:1158-1179. [PMID: 36811413 PMCID: PMC11020039 DOI: 10.1097/hep.0000000000000341] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/05/2023] [Indexed: 02/24/2023]
Abstract
Hepatocytes work in highly structured, repetitive hepatic lobules. Blood flow across the radial axis of the lobule generates oxygen, nutrient, and hormone gradients, which result in zoned spatial variability and functional diversity. This large heterogeneity suggests that hepatocytes in different lobule zones may have distinct gene expression profiles, metabolic features, regenerative capacity, and susceptibility to damage. Here, we describe the principles of liver zonation, introduce metabolomic approaches to study the spatial heterogeneity of the liver, and highlight the possibility of exploring the spatial metabolic profile, leading to a deeper understanding of the tissue metabolic organization. Spatial metabolomics can also reveal intercellular heterogeneity and its contribution to liver disease. These approaches facilitate the global characterization of liver metabolic function with high spatial resolution along physiological and pathological time scales. This review summarizes the state of the art for spatially resolved metabolomic analysis and the challenges that hinder the achievement of metabolome coverage at the single-cell level. We also discuss several major contributions to the understanding of liver spatial metabolism and conclude with our opinion on the future developments and applications of these exciting new technologies.
Collapse
Affiliation(s)
- André A. Santos
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Teresa C. Delgado
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Congenital Metabolic Disorders, Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Vanda Marques
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Carmen Ramirez-Moncayo
- Institute of Clinical Sciences, Imperial College London, London, UK
- MRC London Institute of Medical Sciences, London, UK
| | | | - Antonio Vidal-Puig
- MRC Metabolic Diseases Unit, Wellcome Trust-Medical Research Council Institute of Metabolic Science, University of Cambridge, Cambridge, UK
- Centro Investigation Principe Felipe, Valencia, Spain
| | - Zoe Hall
- Division of Systems Medicine, Imperial College London, London, UK
| | - María Luz Martínez-Chantar
- Liver Disease Lab, Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance, Derio, Bizkaia, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Health Institute, Madrid, Spain
| | - Cecilia M.P. Rodrigues
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
2
|
Yang X, Wang H, Ni HM, Xiong A, Wang Z, Sesaki H, Ding WX, Yang L. Inhibition of Drp1 protects against senecionine-induced mitochondria-mediated apoptosis in primary hepatocytes and in mice. Redox Biol 2017; 12:264-273. [PMID: 28282614 PMCID: PMC5344326 DOI: 10.1016/j.redox.2017.02.020] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 02/12/2017] [Accepted: 02/24/2017] [Indexed: 02/01/2023] Open
Abstract
Pyrrolizidine alkaloids (PAs) are a group of compounds found in various plants and some of them are widely consumed in the world as herbal medicines and food supplements. PAs are potent hepatotoxins that cause irreversible liver injury in animals and humans. However, the mechanisms by which PAs induce liver injury are not clear. In the present study, we determined the hepatotoxicity and molecular mechanisms of senecionine, one of the most common toxic PAs, in primary cultured mouse and human hepatocytes as well as in mice. We found that senecionine administration increased serum alanine aminotransferase levels in mice. H&E and TUNEL staining of liver tissues revealed increased hemorrhage and hepatocyte apoptosis in liver zone 2 areas. Mechanistically, senecionine induced loss of mitochondrial membrane potential, release of mitochondrial cytochrome c as well as mitochondrial JNK translocation and activation prior to the increased DNA fragmentation and caspase-3 activation in primary cultured mouse and human hepatocytes. SP600125, a specific JNK inhibitor, and ZVAD-fmk, a general caspase inhibitor, alleviated senecionine-induced apoptosis in primary hepatocytes. Interestingly, senecionine also caused marked mitochondria fragmentation in hepatocytes. Pharmacological inhibition of dynamin-related protein1 (Drp1), a protein that is critical to regulate mitochondrial fission, blocked senecionine-induced mitochondrial fragmentation and mitochondrial release of cytochrome c and apoptosis. More importantly, hepatocyte-specific Drp1 knockout mice were resistant to senecionine-induced liver injury due to decreased mitochondrial damage and apoptosis. In conclusion, our results uncovered a novel mechanism of Drp1-mediated mitochondrial fragmentation in senecionine-induced liver injury. Targeting Drp1-mediated mitochondrial fragmentation and apoptosis may be a potential avenue to prevent and treat hepatotoxicity induced by PAs. Senecionine induces apoptosis in primary mouse and human hepatocytes as well as in mouse livers. Senecionine induces mitochondrial Drp1 translocation, mitochondrial fragmentation, loss of mitochondrial membrane potential and release of mitochondrial cytochrome c in hepatocytes. Pharmacological inhibition or genetic deletion of Drp1 protects against senecionine-induced hepatotoxicity. Targeting Drp1-mediated mitochondrial fragmentation and apoptosis may be a potential avenue to prevent and treat hepatotoxicity induced by Pyrrolizidine alkaloids.
Collapse
Affiliation(s)
- Xiao Yang
- The Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 2001203, China; Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Hua Wang
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA
| | - Aizhen Xiong
- The Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 2001203, China
| | - Zhengtao Wang
- The Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 2001203, China
| | - Hiromi Sesaki
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, USA.
| | - Li Yang
- The Key Laboratory of Standardization of Chinese Medicines of Ministry of Education, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai 2001203, China; Center for Chinese Medical Therapy and Systems Biology, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
3
|
Ni HM, Williams JA, Jaeschke H, Ding WX. Zonated induction of autophagy and mitochondrial spheroids limits acetaminophen-induced necrosis in the liver. Redox Biol 2013; 1:427-32. [PMID: 24191236 PMCID: PMC3814950 DOI: 10.1016/j.redox.2013.08.005] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 08/16/2013] [Accepted: 08/16/2013] [Indexed: 01/14/2023] Open
Abstract
Acetaminophen (APAP) overdose is the most frequent cause of acute liver failure in the US and many western countries. It is well known that APAP induces mitochondrial damage to trigger centrilobular necrosis. Emerging evidence suggests that autophagic removal of damaged mitochondria may protect against APAP-induced liver injury. Electron and confocal microscopy analysis of liver tissues revealed that APAP overdose triggers unique biochemical and pathological zonated changes in the mouse liver, which includes necrosis (zone 1), mitochondrial spheroid formation (zone 2), autophagy (zone 3) and mitochondrial biogenesis (zone 4). In this graphic review, we discuss the role of autophagy/mitophagy in limiting the expansion of necrosis and promoting mitochondrial biogenesis and liver regeneration for the recovery of APAP-induced liver injury. We also discuss possible mechanisms that could be involved in regulating APAP-induced autophagy/mitophagy and the formation of mitochondrial spheroids.
Collapse
Affiliation(s)
- Hong-Min Ni
- Department of Pharmacology, Toxicology and Therapeutics, University of Kansas Medical Center, Kansas City, Kansas 66160, United States
| | | | | | | |
Collapse
|
4
|
Suzuki S, Takeshita K, Doi Y, Asamoto M, Takahashi S, Naiki-Ito A, Shirai T. 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx)-induced hepatocarcinogenesis is not enhanced by CYP1A inducers, alpha- and beta-naphthoflavone: relationship to intralobular distribution of CYP1A expression. Toxicol Pathol 2010; 38:583-91. [PMID: 20448087 DOI: 10.1177/0192623310367808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Interaction of more than two chemicals from foods is a very important factor for carcinogenic risk assessment and management. 2-Amino-3,8-dimethylimidazo[4,5-f]quinoxaline (MeIQx), one of the most abundant carcinogenic heterocyclic amines in cooked foods, is speculated to be a human liver carcinogen. MeIQx is metabolically activated by CYP1A2 and then N-acetyltransferase (NAT), findings that suggest that its carcinogenic potential might be enhanced by simultaneous exposure to chemical(s) inducing CYP1A2. Therefore, we here investigated the effects of alpha- and beta-naphthoflavone as CYP1A2 inducers on MeIQx-induced rat hepatocarcinogenesis in a medium-term rat liver bioassay. Unexpectedly, no modifying influence of naphthoflavones on MeIQx-induced hepatocarcinogenesis was demonstrated with reference to glutathione S-transferase placental form (GST-P) positive foci in the liver, although up-regulation of CYP1A2 was detected on Western blot analysis. Activity of NAT was not affected. In MeIQx-treated rats, CYP1A expression was mainly detected in zone 3 of the liver where GST-P positive foci were preferentially located, while naphthoflavones alone or combinations of naphthoflavones and MeIQx induced CYP1A expression in zone 1. This difference in intralobular distribution of CYP1A might be related to the fact that MeIQx hepatocarcinogenesis was not modified by the two CYP1A inducers.
Collapse
Affiliation(s)
- Shugo Suzuki
- Department of Experimental Pathology and Tumor Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan.
| | | | | | | | | | | | | |
Collapse
|
5
|
Okada T, Uetsuka K, Yamauchi H, Tani Y, Endo K, Nakayama H, Doi K. Effects of Exogenous Growth Hormone(GH)-Treatment on Carbon Tetrachloride(CCl4)-Induced Acute Liver Injury in GH-Deficient Mini Rats. J Toxicol Pathol 2003. [DOI: 10.1293/tox.16.49] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Taro Okada
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Koji Uetsuka
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Hirofumi Yamauchi
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Yoshiro Tani
- Medicinal Safety Research Laboratories, Sankyo Co., Ltd
| | - Kazuo Endo
- Medicinal Safety Research Laboratories, Sankyo Co., Ltd
| | - Hiroyuki Nakayama
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Kunio Doi
- Department of Veterinary Pathology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| |
Collapse
|
6
|
Vanhaecke T, Lindros KO, Oinonen T, Vercruysse A, Rogiers V. Triiodothyronine downregulates the periportal expression of alpha class glutathione S-transferase in rat liver. FEBS Lett 2001; 487:356-60. [PMID: 11163358 DOI: 10.1016/s0014-5793(00)02353-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Most drug-metabolizing phase I and phase II enzymes, including the glutathione S-transferases (GST), exhibit a zonated expression in the liver, with lower expression in the upstream, periportal region. To elucidate the involvement of pituitary-dependent hormones in this zonation, the effect of hypophysectomy and 3,3',5-triiodo-L-thyronine (T3) on the distribution of GST was studied in rats. Hypophysectomy increased total GST activity both in the periportal and perivenous liver region. Subsequent T3 treatment counteracted this effect in the perivenous zone. However, analysis for either mu class M1/M2-specific (1,2-dichloro-4-nitrobenzene) or alpha class A1/A2-specific (7-chloro-4-nitrobenzo-2-oxa-1,3-diazole) GST activity revealed that T3 treatment did not significantly affect the perivenous activity of these GST classes. In contrast, T3 was found to significantly counteract the increase of alpha class GST activity caused by hypophysectomy in the periportal zone. To establish whether this effect was T3-specific, hepatocytes were isolated from either the periportal and perivenous zone by digitonin/collagenase perfusion and cultured either as pyruvate-supplemented monolayer or as co-culture with rat liver epithelial cells. Only in the latter it was found that T3 suppressed the A1/A2-specific GST activity and alpha class proteins predominantly in periportal cells. The data demonstrate that T3 is an important factor responsible for the low expression of alpha GST in the periportal region. T3 may be involved in the periportal downregulation of other phase I and II enzymes as well.
Collapse
Affiliation(s)
- T Vanhaecke
- Department of Toxicology, Vrije Universiteit Brussel, Belgium.
| | | | | | | | | |
Collapse
|
7
|
Blume N, Leonard J, Xu ZJ, Watanabe O, Remotti H, Fishman J. Characterization of Cyp2d22, a novel cytochrome P450 expressed in mouse mammary cells. Arch Biochem Biophys 2000; 381:191-204. [PMID: 11032406 DOI: 10.1006/abbi.2000.1978] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Endogenous steroids and numerous environmental agents have potent effects on mammary development and carcinogenesis. Locally produced cytochrome P450 enzymes that modify such molecules are therefore likely to be important regulators of these processes. Here we describe the characterization of a novel mouse gene, termed Cyp2d22, that is highly expressed in the mammary tumor derived cell line RIII/Prl. Cyp2d22 is expressed at intermediate levels in the weakly tumorigenic cell line RIII/MG, whereas expression is low or absent in all normal mouse mammary epithelial cell lines tested and three C3H mammary tumor derived cell lines. Immunoblot analysis of mouse tissues with highly specific antisera indicates that 2D22 protein levels are most abundant in liver, while intermediate levels of expression are seen in adrenal, ovary, and mammary gland. Immunohistochemical staining of liver sections with these antisera demonstrates that 2D22 is most abundant in the first layer or two of parenchymal cells surrounding the central vein, with virtually no expression detected in periportal cells. Interestingly, sequence similarity and functional data suggest that Cyp2d22 may be the mouse ortholog of human CYP2D6. These observations support the hypothesis that 2D22 mediates a distinct, biologically significant activity in relation to other mouse 2D family members.
Collapse
Affiliation(s)
- N Blume
- Strang Cancer Research Laboratory, New York, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
8
|
Watanabe J, Mondo H, Takamori Y, Takeda K, Kanamura S. Effect of phenobarbital on intralobular expression of CYP2B1/2 in livers of rats: difference in the expression between single and repetitive administrations. Biochem Pharmacol 2000; 60:285-91. [PMID: 10825474 DOI: 10.1016/s0006-2952(00)00320-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Phenobarbital (PB) was shown to induce the major PB-inducible cytochrome P450 (CYP) isoforms, CYP2B1/2, in perivenular hepatocytes by a single injection, and in midzonal and periportal hepatocytes in addition to perivenular hepatocytes by injections of the same dosage once a day for 3 days in rat livers. The present study was undertaken to determine whether the spread of enzyme induction to midzonal and periportal hepatocytes is caused by the increase in total dose of the drug by repetitive injections or by the repetitive injections of the drug themselves. Male adult rats were administered PB by a single injection (80 mg/kg) or repetitive injections (20 mg/kg once a day for 4 days; a total dose of 80 mg/kg), and the molar content of CYP2B1/2 was measured by quantitative immunohistochemistry in the cytoplasm of perivenular, midzonal, and periportal hepatocytes. In addition, the molar content of total CYP in the cytoplasm was measured by microphotometry, and the expression of CYP2B2 mRNA was examined by in situ hybridization. When animals received the single injection, the isoforms and CYP2B2 mRNA increased markedly in perivenular hepatocytes, increased somewhat in midzonal hepatocytes, and remained unchanged in periportal hepatocytes. If animals received the repetitive injections, however, although the isoforms and the mRNA increased markedly in perivenular hepatocytes, they also increased markedly in midzonal hepatocytes and somewhat in periportal hepatocytes. These findings demonstrated that the enlargement of the sublobular area in which induction of the isoforms occurred was caused by the repetitive injections of PB themselves.
Collapse
Affiliation(s)
- J Watanabe
- Department of Anatomy, Kansai Medical University, Moriguchi, 570-8506, Osaka, Japan.
| | | | | | | | | |
Collapse
|
9
|
Oinonen T, Ronis M, Wigell T, Tohmo K, Badger T, Lindros KO. Growth hormone-regulated periportal expression of CYP2C7 in rat liver. Biochem Pharmacol 2000; 59:583-9. [PMID: 10660124 DOI: 10.1016/s0006-2952(99)00344-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Most drug- and steroid-metabolizing cytochrome P450 (CYP) enzymes are expressed in the mammalian liver in a characteristic zonated pattern, with high expression in the downstream perivenous (centrilobular) region. Here, we report that CYP2C7, a member of the rat CYP2 family, is expressed preferentially in the opposite, periportal region. CYP2C7 mRNA, as detected by reverse transcription-polymerase chain reaction, was detected almost exclusively in cell lysates obtained from the periportal region, indicating a very steep acinar gradient. The amount of immunoreactive CYP2C7 protein in periportal cell lysates was also higher than in samples from the perivenous region. This gradient was reversed by hypophysectomy, which markedly and selectively reduced the periportal CYP2C7 protein content. Subsequent growth hormone infusion by osmotic minipumps restored the zonation by selectively increasing the amount of periportal CYP2C7 protein. Although hypophysectomy suppressed CYP2C7 mRNA and growth hormone counteracted it, regulation at this level did not appear to occur in a zone-specific fashion. This indicates that growth hormone-mediated zonal regulation of CYP2C7 protein has additional translational or posttranslational components. Ethanol treatment, which has been shown to affect growth hormone levels, significantly induced CYP2C7 mRNA, but not zone specifically. Our results demonstrate that growth hormone up-regulates the CYP2C7 gene by enhancing the expression of the protein specifically in the periportal liver region. Growth hormone may up-regulate other periportally expressed liver genes in a similar fashion.
Collapse
Affiliation(s)
- T Oinonen
- Alcohol Research Center, National Public Health Institute, Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
10
|
Kietzmann T, Hirsch-Ernst KI, Kahl GF, Jungermann K. Mimicry in primary rat hepatocyte cultures of the in vivo perivenous induction by phenobarbital of cytochrome P-450 2B1 mRNA: role of epidermal growth factor and perivenous oxygen tension. Mol Pharmacol 1999; 56:46-53. [PMID: 10385683 DOI: 10.1124/mol.56.1.46] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Treatment of male rats with phenobarbital (PB) results in a perivenous and mid-zonal pattern of cytochrome P-450 (CYP)2B1 mRNA expression within the liver acinus. The mechanism of this zonated induction is still poorly understood. In this study sinusoidal gradients of oxygen and epidermal growth factor (EGF) besides those of the pituitary-dependent hormones growth hormone (GH), thyroxine (T4), and triiodothyronine (T3) were considered to be possible determinants for the zonated induction of the CYP2B1 gene in liver. Moreover, heme proteins seem to play a key role in oxygen sensing. Therefore, the influence of arterial (16% O2) and venous (8% O2) oxygen tension (pO2), and of the heme synthesis inhibitors CoCl2 and desferrioxamine (DSF) on PB-dependent CYP2B1 mRNA induction as well as the repression by EGF and, for comparison, by GH, T4, and T3, of the induction under arterial and venous pO2 were investigated in primary rat hepatocytes. Within 3 days, phenobarbital induced CYP2B1 mRNA to maximal levels under arterial pO2 and to about 40% of maximal levels under venous pO2. CoCl2 annihilated induction by PB under both oxygen tensions, whereas desferrioxamine and heme abolished the positive modulation by O2, suggesting that heme is a necessary component for O2 sensing. EGF suppressed CYP2B1 mRNA induction by PB only under arterial but not under venous pO2, whereas GH, T4, and T3 inhibited induction under both arterial and venous pO2. Thus, in hepatocyte cultures, an O2 gradient in conjunction with EGF mimicked the perivenous induction by PB of the CYP2B1 gene observed in the liver in vivo.
Collapse
Affiliation(s)
- T Kietzmann
- Institut für Biochemie und Molekulare Zellbiologie, Göttingen, Germany.
| | | | | | | |
Collapse
|
11
|
Lieber CS. Microsomal Ethanol-Oxidizing System (MEOS): The First 30 Years (1968-1998)-A Review. Alcohol Clin Exp Res 1999. [DOI: 10.1111/j.1530-0277.1999.tb04217.x] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
12
|
Gupta S, Rajvanshi P, Sokhi RP, Vaidya S, Irani AN, Gorla GR. Position-specific gene expression in the liver lobule is directed by the microenvironment and not by the previous cell differentiation state. J Biol Chem 1999; 274:2157-65. [PMID: 9890978 DOI: 10.1074/jbc.274.4.2157] [Citation(s) in RCA: 49] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mechanisms directing position-specific liver gene regulation are incompletely understood. To establish whether this aspect of hepatic gene expression is an inveterate phenomenon, we used transplanted hepatocytes as reporters in dipeptidyl peptidase IV-deficient F344 rats. After integration in liver parenchyma, the position of transplanted cells was shifted from periportal to perivenous areas by targeted hepatic ablations with carbon tetrachloride. In controls, transplanted cells showed greater glucose-6-phosphatase and lesser glycogen content in periportal areas. This pattern was reversed when transplanted cells shifted from periportal to perivenous areas. Transplanted hepatocytes in perivenous areas exhibited inducible cytochrome P450 activity, which was deficient in periportal hepatocytes. Moreover, cytochrome P450 activity was rapidly extinguished in activated hepatocytes when these cells were transplanted into the nonpermissive liver of suckling rat pups. In cells isolated from the normal F344 rat liver, cytochrome P450 inducibility was originally greater in perivenous hepatocytes; however, periportal cells rapidly acquired this facility in culture conditions. These findings indicate that the liver microenvironment exerts supremacy over prior differentiation state of cells in directing position-specific gene expression. Therefore, persistence of specialized hepatocellular function will require interactions with regulatory signals and substrate availability, which bears upon further analysis of liver gene regulation, including in progenitor and/or stem cells.
Collapse
Affiliation(s)
- S Gupta
- Marion Bessin Liver Research Center, Albert Einstein College of Medicine, Bronx, New York 10461, USA
| | | | | | | | | | | |
Collapse
|
13
|
Costet P, Legendre C, Moré J, Edgar A, Galtier P, Pineau T. Peroxisome proliferator-activated receptor alpha-isoform deficiency leads to progressive dyslipidemia with sexually dimorphic obesity and steatosis. J Biol Chem 1998; 273:29577-85. [PMID: 9792666 DOI: 10.1074/jbc.273.45.29577] [Citation(s) in RCA: 332] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The alpha-isoform of the peroxisome proliferator-activated receptor (PPARalpha) is a nuclear transcription factor activated by structurally diverse chemicals referred to as peroxisome proliferators. Activators can be endogenous molecules (fatty acids/steroids) or xenobiotics (fibrate lipid-lowering drugs). Upon pharmacological activation, PPARalpha modulates target genes encoding lipid metabolism enzymes, lipid transporters, or apolipoproteins, suggesting a role in lipid homeostasis. Transgenic mice deficient in PPARalpha were shown to lack hepatic peroxisomal proliferation and have an impaired expression and induction of several hepatic target genes. Young adult males show hypercholesterolemia but normal triglycerides. Using a long term experimental set up, we identified these mice as a model of monogenic, spontaneous, late onset obesity with stable caloric intake and a marked sexual dimorphism. Serum triglycerides, elevated in aged animals, are higher in females that develop a more pronounced obesity than males. The latter show a marked and original centrilobular-restricted steatosis and a delayed occurrence of obesity. Fat cells from their liver express substantial levels of PPARgamma2 transcripts when compared with lean cells. These studies demonstrate, in rodents, the involvement of PPARalpha nuclear receptor in lipid homeostasis, with a sexually dimorphic control of circulating lipids, fat storage, and obesity. Characterization of this pathological link may help to delineate new molecular targets for therapeutic intervention and could lead to new insights into the etiology and heritability of mammalian obesity.
Collapse
Affiliation(s)
- P Costet
- Laboratoire de Pharmacologie et Toxicologie, INRA, BP 3, 31931 Toulouse, Cedex 09 France
| | | | | | | | | | | |
Collapse
|
14
|
Abstract
The CYP genes encode enzymes of the cytochrome P-450 superfamily. Cytochrome P-450 (CYP) enzymes are expressed mainly in the liver and are active in mono-oxygenation and hydroxylation of various xenobiotics, including drugs and alcohols, as well as that of endogenous compounds such as steroids, bile acids, prostaglandins, leukotrienes and biogenic amines. In the liver the CYP enzymes are constitutively expressed and commonly also induced by chemicals in a characteristic zonated pattern with high expression prevailing in the downstream perivenous region. In the present review we summarize recent studies, mainly based on rat liver, on the factors regulating this position-dependent expression and induction. Pituitary-dependent signals mediated by growth hormone and thyroid hormone seem to selectively down-regulate the upstream periportal expression of certain CYP forms. It is at present unknown to what extent other hormones that also affect total hepatic CYP activities, i.e. insulin, glucagon, glucocorticoids and gonadal hormones, act zone-specifically. The expression and induction of CYP enzymes in the perivenous region probably have important toxicological implications, since many CYP-activated chemicals cause cell injury primarily in this region of the liver.
Collapse
Affiliation(s)
- T Oinonen
- National Public Health Institute, Alcohol Research Center, PB 719, 00101 Helsinki, Finland
| | | |
Collapse
|
15
|
Hedli CC, Hoffmann MJ, Ji S, Thomas PE, Snyder R. Benzene metabolism in the isolated perfused mouse liver. Toxicol Appl Pharmacol 1997; 146:60-8. [PMID: 9299597 DOI: 10.1006/taap.1997.8209] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The hematotoxicity of benzene (BZ) requires its hepatic metabolism, the release of metabolites into the circulation, and the access of metabolites to the bone marrow. Although a range of potentially toxic metabolites produced by the liver was identified using subcellular systems and isolated hepatocytes, these models do not allow identification of the metabolites released from the liver with respect to time and flow through the liver. We developed an isolated perfused mouse liver model to evaluate metabolites released following a single-pass of radiolabeled BZ and after recirculation of single-pass metabolites back through the liver. Reversing the path of flow through the liver changes the orientation of hepatic oxidizing and conjugating enzymes with respect to perfusate flow. Comparison of metabolite production following normal (orthograde, portal vein to hepatic vein) perfusion with reversed (retrograde) perfusion permitted an evaluation of the impact of zonal distributions of these enzymes on BZ metabolism. The major metabolites detected by HPLC, irrespective of the direction of perfusion, were free phenol (P), phenylsulfate (PS), and phenylglucuronide (PG), plus lesser amounts of hydroquinone (HQ) and hydroquinone glucuronide (HQG). Recirculation of the products of single pass orthograde perfusion through the liver yielded P conjugates as well as low levels of free and conjugated HQ. No free P was detected after recirculation. Although no qualitative differences between orthograde and retrograde perfusion were observed, the percentage of free P and P conjugates (PS + PG) found as free P was twice as great following orthograde perfusion as compared to retrograde perfusion. These results suggest that regional differences in the zonation of enzymes involved in oxidation and conjugation may play a critical role in hepatic BZ metabolism.
Collapse
Affiliation(s)
- C C Hedli
- Toxicology Division, Environmental and Occupational Health Sciences Institute Rutgers University/ UMDNJ RWJ Medical School, Piscataway, New Jersey 08855, USA
| | | | | | | | | |
Collapse
|
16
|
Lindros KO. Zonation of cytochrome P450 expression, drug metabolism and toxicity in liver. GENERAL PHARMACOLOGY 1997; 28:191-6. [PMID: 9013193 DOI: 10.1016/s0306-3623(96)00183-8] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
1. In this brief review, current concepts on the zonated expression of liver genes involved in phase I and phase II drug metabolism will be presented. 2. It is now clear that the P450 isoforms involved in drug activation and steroid metabolism exhibit a particularly prominent zonation, with high expression and preferential induction in hepatocytes of the perivenous region. 3. In comparison, among the phase II enzymes, the perivenous dominance of glutathione transferases and UDP-glucuronyltransferases is less prominent, and glutathione peroxidase displays an opposite, periportally dominated pattern. 4. The factors regulating the zonated expression of these and other liver genes are poorly known. We have observed that pituitary-dependent hormones, particularly growth hormone, extinguish the periportal (upstream) expression of several CYP forms (CYP2B1/2 and CYP3A1/2). However, the zonation of other CYP forms (CYP2A, CYP2E1, CYP 2C11 and CYP 2C12) is less affected, suggesting that hormonal factors are important, but that the zonation of each P450 form is orchestrated by a different set of factors. 5. Because many hepatotoxins cause zone-specific damage, further unravelling the factors governing zonal expression of phase I and phase II enzymes will be necessary to clarify how drug-specific patterns of liver damage arise.
Collapse
Affiliation(s)
- K O Lindros
- National Public Health Institute, Department of Alcohol Research, Helsinki, Finland.
| |
Collapse
|