1
|
Jasper SC, Leenders MAAM, O'Shannassy T. Travel across time zones and the implications for human performance post pandemic: Insights from elite sport. Front Public Health 2022; 10:998484. [PMID: 36530733 PMCID: PMC9757163 DOI: 10.3389/fpubh.2022.998484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 11/15/2022] [Indexed: 12/03/2022] Open
Abstract
Notwithstanding technological innovation, the COVID-19 pandemic, and new communication tools, the need for travel is growing again and, in some travel segments, it is stronger than ever. Interestingly, the public health implications of traveling across time zones are still poorly understood and this is especially true for organizations that send their workers across the globe. Using data from 173 Olympic teams over 15 Olympic Games, we show that crossing multiple time zones has negative implications for human (sports) performance. More importantly, the results indicate that performance impairment is especially visible after flying east, with peak performance particularly impaired, leading to a "gold demotion effect" of gold medals to silver medals as a result. Given that Olympic sporting teams typically have dedicated medical staff and active mitigation strategies, these findings have important public health implications. For example, organizations are demanding their workers to be on "top of their game" while traveling, without providing them with the support and tools to do so. The implications for public health management and human resource management are discussed.
Collapse
|
2
|
Bae SH, Park JH, Kim SH, Yun SJ, Kim JG, Lee JB. Cutaneous Photorejuvenation of Light Emitting Diodes via the Melatonin Membrane Receptor Pathway. Ann Dermatol 2022; 34:401-411. [PMID: 36478422 PMCID: PMC9763911 DOI: 10.5021/ad.21.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 06/13/2022] [Accepted: 08/01/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Melatonin receptors are present in the human skin and retina. These receptors can be stimulated by light emitting diodes (LEDs) at specific wavelengths, thereby inducing cutaneous photorejuvenation. However, the underlying mechanism remains unclear. OBJECTIVE To evaluate the influence of LEDs at specific wavelengths on melatonin membrane receptor (MT1) and cutaneous photorejuvenation via the MT1 pathway in vitro. METHODS Normal human dermal fibroblasts (HDFs) were irradiated using LEDs at different wavelengths (410~940 nm) at a dose of 1 J/cm². MT1 activity was evaluated after melatonin stimulation and LED irradiation. Thereafter, the expressions of collagen (COL) and matrix metalloproteinases (MMPs), with and without luzindole (MT1/2 receptor antagonist), were investigated via semi-quantitative reverse transcription polymerase chain reaction (PCR), real-time PCR, western blotting, and enzyme-linked immunosorbent assay. RESULTS In HDFs, the MT1 mRNA and protein levels increased significantly in response to melatonin (dose, 50 nM) (p<0.01) and LED irradiation at 595, 630, 850, and 940 nm (p<0.01). LED irradiation up-regulated COL type I and down-regulated MMP-1. Compared to LED irradiation without luzindole, LED irradiation with luzindole produced no significant increase in COL type I mRNA and protein levels (p<0.01). CONCLUSION We found that LED irradiation induces collagen synthesis and MMP-1 inhibition in HDFs via MT1 activation. Additionally, multiple LED wavelengths (595, 630, 850, and 940 nm) stimulated MT1 in HDFs, unlike in the eyes, where only blue light induced plasma melatonin suppression. This suggests the possibility of the melatoninergic pathway in photorejuvenation.
Collapse
Affiliation(s)
- Soo Hyeon Bae
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Jun Hyeong Park
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Soo-Hyun Kim
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Sook Jung Yun
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| | - Jae Gwan Kim
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology, Gwangju, Korea
| | - Jee-Bum Lee
- Department of Dermatology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
3
|
Beh SF, Lee SKM, Bin YS, Cheung JMY. Travelers' perceptions of jetlag and travel fatigue: A scoping review. Chronobiol Int 2022; 39:1037-1057. [PMID: 35587565 DOI: 10.1080/07420528.2022.2072224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 04/05/2022] [Accepted: 04/26/2022] [Indexed: 11/03/2022]
Abstract
Effective management strategies for jetlag have largely been studied and evaluated through the lens of circadian science and biological rhythms. Jetlag is mostly self-managed by the individual. The most effective strategies require individuals to make behavioral changes to carefully alter sleep-wake schedules and time light exposure. However, travelers' perceptions, including their experiences, beliefs about jetlag/travel fatigue, and management expectations remain unclear. Therefore, the aim of this scoping review was to systematically synthesize the literature to understand what is currently known about travelers' perceptions of jetlag and travel fatigue. A literature search was conducted through EMBASE, PsycINFO, PubMed and Scopus generating 1164 results (2 articles known to authors), which were screened against our inclusion criteria. Twenty-two studies including data from 3952 participants were evaluated for its study design and traveler-centered outcome measures across the domains of: 1) Traveler Health Beliefs and Knowledge about Jetlag and Travel Fatigue; 2) Experience of Jetlag and Travel Fatigue 3) Traveler Priorities; 4) Self-reported Management Strategies for Jetlag and Travel Fatigue; and 5) User Experiences of Management Strategies. Synthesis of results suggests a potential mismatch between researchers' focus on circadian misalignment and travelers' focus on air travel comfort. A better understanding of the beliefs, attitudes, knowledge, satisfaction, experiences, and expectations about jetlag and travel fatigue will better enable the development of interventions that align with traveler priorities.
Collapse
Affiliation(s)
- Su Fern Beh
- Sydney Pharmacy School, Faculty of Medicine and Health, the University of Sydney, Sydney, Australia
| | - Samantha K M Lee
- Sydney Pharmacy School, Faculty of Medicine and Health, the University of Sydney, Sydney, Australia
| | - Yu Sun Bin
- Northern Clinical School, Faculty of Medicine and Health, the University of Sydney, Sydney, Australia
- Sleep Research Group, Charles Perkins Centre, the University of Sydney, Sydney, Australia
| | - Janet M Y Cheung
- Sydney Pharmacy School, Faculty of Medicine and Health, the University of Sydney, Sydney, Australia
- Sleep Research Group, Charles Perkins Centre, the University of Sydney, Sydney, Australia
| |
Collapse
|
4
|
Sumsuzzman DM, Choi J, Jin Y, Hong Y. Neurocognitive effects of melatonin treatment in healthy adults and individuals with Alzheimer's disease and insomnia: A systematic review and meta-analysis of randomized controlled trials. Neurosci Biobehav Rev 2021; 127:459-473. [PMID: 33957167 DOI: 10.1016/j.neubiorev.2021.04.034] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 04/01/2021] [Accepted: 04/30/2021] [Indexed: 02/06/2023]
Abstract
Endogenous melatonin levels are inversely associated with age and cognitive deficits. Although melatonin can improve psychopathological behavior disturbances in clinical trials, whether melatonin may also enhance cognitive function remains elusive. This study examined cognitive outcomes from randomized trials of melatonin treatment for Alzheimer's disease (AD), insomnia, and healthy-subjects. Twenty-two studies met the inclusion criteria (AD = 9, insomnia = 2, healthy-subjects = 11). AD patients receiving >12 weeks of melatonin treatment improved mini-mental state examination (MMSE) score [MD: 1.82 (1.01; 2.63) p < 0.0001]. Importantly, melatonin significantly improved MMSE score in mild stage of AD [MD: 1.89 (0.96; 2.82) p < 0.0001]. In healthy-subjects, although daytime melatonin treatment notably decreased in accuracy by correct responses [SMD: -0.74 (-1.03; -0.45) p < 0.00001], the reaction-time score on different stimuli (p = 0.37) did not increased. Additionally, by pooling of short-term, spatial, and visual memory scores, melatonin did not reduce memory function (p = 0.08). Meta-analysis of MMSE score suggested that melatonin is effective in treatment for mild stage of AD. Additionally, we propose that melatonin may be preferable to traditional hypnotics in management of insomnia.
Collapse
Affiliation(s)
- Dewan Md Sumsuzzman
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae, 50834, Republic of Korea; Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, 50834, Republic of Korea.
| | - Jeonghyun Choi
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae, 50834, Republic of Korea; Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, 50834, Republic of Korea.
| | - Yunho Jin
- Biohealth Products Research Center (BPRC), Inje University, Gimhae, 50834, Republic of Korea; Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, 50834, Republic of Korea.
| | - Yonggeun Hong
- Department of Rehabilitation Science, Graduate School of Inje University, Gimhae, 50834, Republic of Korea; Biohealth Products Research Center (BPRC), Inje University, Gimhae, 50834, Republic of Korea; Ubiquitous Healthcare & Anti-aging Research Center (u-HARC), Inje University, Gimhae, 50834, Republic of Korea; Department of Physical Therapy, College of Healthcare Medical Science & Engineering, Gimhae, 50834, Republic of Korea; Department of Medicine, Division of Hematology/Oncology, Harvard Medical School-Beth Israel Deaconess Medical Center, Boston, MA, 02215, USA.
| |
Collapse
|
5
|
Chan V, Wang L, Allman-Farinelli M. Efficacy of Functional Foods, Beverages, and Supplements Claiming to Alleviate Air Travel Symptoms: Systematic Review and Meta-Analysis. Nutrients 2021; 13:nu13030961. [PMID: 33809656 PMCID: PMC8002180 DOI: 10.3390/nu13030961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 11/16/2022] Open
Abstract
Airline passengers experience a range of symptoms when travelling on long flights. This review evaluated the efficacy of functional foods, beverages, and supplements claiming to address the effects of air travel for healthy adults. Products were identified in a scoping review of electronic databases, search engines, and grey literature (March to August 2019). A systematic review of the efficacy of product ingredients was conducted using five electronic databases from inception to February 2021. Articles were screened, data extracted, and assessed for risk of bias by two researchers independently. Meta-analysis was performed. Of the 3842 studies identified, 23 met selection criteria: melatonin (n = 10), Pycnogenol (n = 4), various macronutrients (n = 2), caffeine (n = 2), Centella asiatica (n = 1), elderberry (n = 1), Echinacea (n = 1), fluid (n = 1), and Pinokinase (n = 1). Meta-analysis (random effects model) indicated melatonin reduced self-reported jetlag following eastbound (n = 5) and westbound (n = 4) flights: standard mean difference −0.76 (95% CI = −1.06 to −0.45, I2 0%, p < 0.00001) and −0.66 (95% CI = −1.07 to −0.26, I2 45%, p = 0.001), respectively. Pycnogenol also reduced edema scores (n = 3), standard mean −4.09 (95% CI = −6.44 to −1.74), I2 98%, p = 0.0006). Overall, 12 of 183 ingredients contained in 199 products had evidence to support claims.
Collapse
|
6
|
Melatonin (MEL) and its use in circadian rhythm sleep-wake disorders: Recommendations of the French Medical and Research Sleep Society (SFRMS). Rev Neurol (Paris) 2021; 177:235-244. [PMID: 33446328 DOI: 10.1016/j.neurol.2020.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/24/2020] [Accepted: 07/07/2020] [Indexed: 11/20/2022]
Abstract
The French society of medical research on sleep (SFRMS) appointed a group of experts to conduct a consensus conference in order to study the indications and prescription status of exogenous melatonin (MEL). Eleven sleep physicians/researchers investigated in subgroups the use of MEL in different domains of healthcare in line with their subspecialties (circadian sleep/wake rhythm disorders, psychiatric disorders, neurological disorders, pediatric and neurodevelopmental disorders). In this article we present a summary of the main conclusions of the expert group on MEL therapy in circadian sleep/wake rhythm disorders such us delayed sleep-wake disorder, non-24-hour sleep wake rhythm disorder and jet lag.
Collapse
|
7
|
Lok R, van Koningsveld MJ, Gordijn MCM, Beersma DGM, Hut RA. Daytime melatonin and light independently affect human alertness and body temperature. J Pineal Res 2019; 67:e12583. [PMID: 31033013 PMCID: PMC6767594 DOI: 10.1111/jpi.12583] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/17/2019] [Accepted: 04/19/2019] [Indexed: 12/01/2022]
Abstract
Light significantly improves alertness during the night (Cajochen, Sleep Med Rev, 11, 2007 and 453; Ruger et al., AJP Regul Integr Comp Physiol, 290, 2005 and R1413), but results are less conclusive at daytime (Lok et al., J Biol Rhythms, 33, 2018 and 589). Melatonin and core body temperature levels at those times of day may contribute to differences in alerting effects of light. In this experiment, the combined effect of daytime exogenous melatonin administration and light intensity on alertness, body temperature, and skin temperature was studied. The goal was to assess whether (a) alerting effects of light are melatonin dependent, (b) soporific effects of melatonin are mediated via the thermoregulatory system, and (c) light can improve alertness after melatonin-induced sleepiness during daytime. 10 subjects (5 females, 5 males) received melatonin (5 mg) in dim (10 lux) and, on a separate occasion, in bright polychromatic white light (2000 lux). In addition, they received placebo both under dim and bright light conditions. Subjects participated in all four conditions in a balanced order, yielding a balanced within-subject design, lasting from noon to 04:00 pm. Alertness and performance were assessed half hourly, while body temperature and skin temperature were measured continuously. Saliva samples to detect melatonin concentrations were collected half hourly. Melatonin administration increased melatonin concentrations in all subjects. Subjective sleepiness and distal skin temperature increased after melatonin ingestion. Bright light exposure after melatonin administration did not change subjective alertness scores, but body temperature and proximal skin temperature increased, while distal skin temperature decreased. Light exposure did not significantly affect these parameters in the placebo condition. These results indicate that (a) exogenous melatonin administration during daytime increases subjective sleepiness, confirming a role for melatonin in sleepiness regulation, (b) bright light exposure after melatonin ingestion significantly affected thermoregulatory parameters without altering subjective sleepiness, therefore temperature changes seem nonessential for melatonin-induced sleepiness, (c) subjective sleepiness was increased by melatonin ingestion, but bright light administration was not able to improve melatonin-induced sleepiness feelings nor performance. Other (physiological) factors may therefore contribute to differences in alerting effects of light during daytime and nighttime.
Collapse
Affiliation(s)
- Renske Lok
- Chronobiology Unit, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Minke J. van Koningsveld
- Chronobiology Unit, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Marijke C. M. Gordijn
- Chronobiology Unit, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
- Chrono@WorkGroningenThe Netherlands
| | - Domien G. M. Beersma
- Chronobiology Unit, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| | - Roelof A. Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life SciencesUniversity of GroningenGroningenThe Netherlands
| |
Collapse
|
8
|
Ambesh P, Shetty V, Ambesh S, Gupta SS, Kamholz S, Wolf L. Jet lag: Heuristics and therapeutics. J Family Med Prim Care 2018; 7:507-510. [PMID: 30112298 PMCID: PMC6069654 DOI: 10.4103/jfmpc.jfmpc_220_17] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Jet lag is one of those common medical problems, to which most people don’t give a serious thought. However, it is intricately intertwined with our normal circadian rhythm. It is classified as a sleep disorder. There is also a dearth of good scientific literature, not to mention clinical trials on the subject. Slowly but steadily, the scientific community is realizing the various deleterious health effects of jet lag and is devising innovative methods to counter them. This narrative review touches upon the etiopathogenesis, clinical manifestations and therapeutic strategies effective against the nagging problem of jet lag.
Collapse
Affiliation(s)
- Paurush Ambesh
- Department of Internal Medicine, Maimonides Medical Center, New York City, NY, USA
| | - Vijay Shetty
- Department of Internal Medicine, Maimonides Medical Center, New York City, NY, USA
| | - Sahitya Ambesh
- Department of Dental Sciences, King George Medical University, Lucknow, Uttar Pradesh, India
| | | | - Stephan Kamholz
- Department of Internal Medicine, Maimonides Medical Center, New York City, NY, USA
| | - Lawrence Wolf
- Department of Internal Medicine, Maimonides Medical Center, New York City, NY, USA
| |
Collapse
|
9
|
Bonmati-Carrion MA, Arguelles-Prieto R, Martinez-Madrid MJ, Reiter R, Hardeland R, Rol MA, Madrid JA. Protecting the melatonin rhythm through circadian healthy light exposure. Int J Mol Sci 2014; 15:23448-500. [PMID: 25526564 PMCID: PMC4284776 DOI: 10.3390/ijms151223448] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 11/02/2014] [Accepted: 11/09/2014] [Indexed: 12/14/2022] Open
Abstract
Currently, in developed countries, nights are excessively illuminated (light at night), whereas daytime is mainly spent indoors, and thus people are exposed to much lower light intensities than under natural conditions. In spite of the positive impact of artificial light, we pay a price for the easy access to light during the night: disorganization of our circadian system or chronodisruption (CD), including perturbations in melatonin rhythm. Epidemiological studies show that CD is associated with an increased incidence of diabetes, obesity, heart disease, cognitive and affective impairment, premature aging and some types of cancer. Knowledge of retinal photoreceptors and the discovery of melanopsin in some ganglion cells demonstrate that light intensity, timing and spectrum must be considered to keep the biological clock properly entrained. Importantly, not all wavelengths of light are equally chronodisrupting. Blue light, which is particularly beneficial during the daytime, seems to be more disruptive at night, and induces the strongest melatonin inhibition. Nocturnal blue light exposure is currently increasing, due to the proliferation of energy-efficient lighting (LEDs) and electronic devices. Thus, the development of lighting systems that preserve the melatonin rhythm could reduce the health risks induced by chronodisruption. This review addresses the state of the art regarding the crosstalk between light and the circadian system.
Collapse
Affiliation(s)
| | | | | | - Russel Reiter
- Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, TX 78229, USA.
| | - Ruediger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen 37073, Germany.
| | - Maria Angeles Rol
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| | - Juan Antonio Madrid
- Department of Physiology, Faculty of Biology, University of Murcia, Murcia 30100, Spain.
| |
Collapse
|
10
|
Costello RB, Lentino CV, Boyd CC, O'Connell ML, Crawford CC, Sprengel ML, Deuster PA. The effectiveness of melatonin for promoting healthy sleep: a rapid evidence assessment of the literature. Nutr J 2014; 13:106. [PMID: 25380732 PMCID: PMC4273450 DOI: 10.1186/1475-2891-13-106] [Citation(s) in RCA: 71] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 08/28/2014] [Indexed: 11/19/2022] Open
Abstract
A systematic review was conducted using Samueli Institute’s Rapid Evidence Assessment of the Literature (REAL©) process to determine the evidence base for melatonin as an agent to optimize sleep or improve sleep quality, and generalize the results to a military, civilian, or other healthy, active, adult population. Multiple databases were searched yielding 35 randomized controlled trials (RCTs) meeting the review’s inclusion criteria, which were assessed for methodological quality as well as for melatonin effectiveness. The majority of included studies were high quality (83.0%). Overall, according to Grading Recommendations, Assessment Development and Evaluation (GRADE) methodology, weak recommendations were made for preventing phase shifts from jet lag, for improving insomnia in both healthy volunteers and individuals with a history of insomnia, and for initiating sleep and/or improving sleep efficacy. Based on the literature to date, no recommendations for use in shift workers or to improve hormonal phase shift changes in healthy people can be made at this time. Larger and longer-duration RCTs utilizing well characterized products are needed to warrant melatonin recommendations in young, healthy adults.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Patricia A Deuster
- Uniformed Services University of the Health Sciences, Department of Military and Emergency Medicine, 4301 Jones Bridge Road, Bethesda, MD 20814-4799, USA.
| |
Collapse
|
11
|
From animal cage to aircraft cabin: an overview of evidence translation in jet lag research. Eur J Appl Physiol 2014; 114:2459-68. [PMID: 25342081 DOI: 10.1007/s00421-014-3026-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/13/2014] [Indexed: 12/23/2022]
Abstract
Recent laboratory experiments on rodents have increased our understanding of circadian rhythm mechanisms. Typically, circadian biologists attempt to translate their laboratory-based findings to treatment of jet lag symptoms in humans. We aimed to scrutinise the strength of the various links in the translational pathway from animal model to human traveller. First, we argue that the translation of findings from pre-clinical studies to effective jet lag treatments and knowledge regarding longer-term population health is not robust, e.g. the association between circadian disruption and cancer found in animal models does not translate well to cabin crew and pilots, who have a lower risk of most cancers. Jet lag symptoms are heterogeneous, making the true prevalence and the effects of any intervention difficult to quantify precisely. The mechanistic chain between in vitro and in vivo treatment effects has weak links, especially between circadian rhythm disruption in animals and the improvement of jet lag symptoms in humans. While the number of animal studies has increased exponentially between 1990 and 2014, only 1-2 randomised controlled trials on jet lag treatments are published every year. There is one relevant Cochrane review, in which only 2-4 studies on melatonin, without baseline measures, were meta-analysed. Study effect sizes reduced substantially between 1987, when the first paper on melatonin was published, and 2000. We suggest that knowledge derived from a greater number of human randomised controlled trials would provide a firmer platform for circadian biologists to cite jet lag treatment as an important application of their findings.
Collapse
|
12
|
Siah KTH, Wong RKM, Ho KY. Melatonin for the treatment of irritable bowel syndrome. World J Gastroenterol 2014; 20:2492-2498. [PMID: 24627586 PMCID: PMC3949259 DOI: 10.3748/wjg.v20.i10.2492] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2013] [Accepted: 01/20/2014] [Indexed: 02/07/2023] Open
Abstract
Irritable bowel syndrome (IBS) is a common disorder characterized by recurrent abdominal pain or discomfort, in combination with disturbed bowel habits in the absence of identifiable organic cause. Melatonin (N-acetyl-5-methoxytryptamine) is a hormone produced by the pineal gland and also large number by enterochromaffin cells of the digestive mucosa. Melatonin plays an important part in gastrointestinal physiology which includes regulation of gastrointestinal motility, local anti-inflammatory reaction as well as moderation of visceral sensation. Melatonin is commonly given orally. It is categorized by the United States Food and Drug Administration as a dietary supplement. Melatonin treatment has an extremely wide margin of safety though it may cause minor adverse effects, such as headache, rash and nightmares. Melatonin was touted as a potential effective candidate for IBS treatment. Putative role of melatonin in IBS treatment include analgesic effects, regulator of gastrointestinal motility and sensation to sleep promoter. Placebo-controlled studies in melatonin suffered from heterogeneity in methodology. Most studies utilized 3 mg at bedtime as the standard dose of trial. However, all studies had consistently showed improvement in abdominal pain, some showed improvement in quality of life of IBS patients. Melatonin is a relatively safe drug that possesses potential in treating IBS. Future studies should focus on melatonin effect on gut mobility as well as its central nervous system effect to elucidate its role in IBS patients.
Collapse
|
13
|
Choi D. Potency of melatonin in living beings. Dev Reprod 2013; 17:149-77. [PMID: 25949131 PMCID: PMC4282293 DOI: 10.12717/dr.2013.17.3.149] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Revised: 08/01/2013] [Accepted: 08/03/2013] [Indexed: 01/20/2023]
Abstract
Living beings are surrounded by various changes exhibiting periodical rhythms in environment. The environmental changes are imprinted in organisms in various pattern. The phenomena are believed to match the external signal with organisms in order to increase their survival rate. The signals are categorized into circadian, seasonal, and annual cycles. Among the cycles, the circadian rhythm is regarded as the most important factor because its periodicity is in harmony with the levels of melatonin secreted from pineal gland. Melatonin is produced by the absence of light and its presence displays darkness. Melatonin plays various roles in creatures. Therefore, this review is to introduce the diverse potential ability of melatonin in manifold aspects in living organism.
Collapse
Affiliation(s)
- Donchan Choi
- Department of Life Science, College of Environmental Sciences, Yong-In University, Yongin 449-714, Republic of Korea
| |
Collapse
|
14
|
[Physical exposure by travelling]. Z Rheumatol 2011; 70:299-304. [PMID: 21533614 DOI: 10.1007/s00393-010-0724-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Approximately 40 million Germans travel abroad every year. Air travel is the most frequently used mean of transportation followed by the automobile. During airplane flights rheumatic patients are subjected to numerous physical, biological and climatic factors which can cause stress and adverse effects on general health. Therefore, preventive strategies are helpful to protect against health damage, provided that there is general fitness for air travel. The present article focuses on physical and biological stress as well as psychological aspects during air travel and reviews prophylactic measures.
Collapse
|
15
|
Srinivasan V, Singh J, Pandi-Perumal SR, Brown GM, Spence DW, Cardinali DP. Jet lag, circadian rhythm sleep disturbances, and depression: the role of melatonin and its analogs. Adv Ther 2010; 27:796-813. [PMID: 20827520 DOI: 10.1007/s12325-010-0065-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2010] [Indexed: 12/12/2022]
Abstract
Traveling through several time zones results in a constellation of symptoms known as jet lag. These include reduced alertness, daytime fatigue, loss of appetite, reduced cognitive skills, and disruption of the sleep/wake cycle. In susceptible air travel passengers, jet lag may exacerbate affective illness and result in psychiatric morbidity. Dysregulation of circadian rhythms and melatonin secretion represent the common underlying factor in jet lag and other circadian disorders. Recent studies have established the effectiveness of strategically timed administration of melatonin and appropriate timed exposure to environmental schedules including light in counteracting the dysregulation (chronobiologic actions). With the introduction of melatonergic agonists such as ramelteon and tasimelteon, which have both a stronger affinity for MT₁ and MT₂ melatonin receptors and a longer half-life, new therapeutic options now exist for treating the sleep disturbances associated with jet lag. The melatonin analogs are unique inasmuch as they can also enhance daytime alertness. The recently introduced melatonergic antidepressant agomelatine, which has established its supremacy over other antidepressants in having a significant chronobiologic activity, represents a good choice for treating depressive symptoms that are associated with jet lag.
Collapse
|
16
|
Nahleh Z, Pruemer J, Lafollette J, Sweany S. Melatonin, a promising role in taxane-related neuropathy. CLINICAL MEDICINE INSIGHTS-ONCOLOGY 2010; 4:35-41. [PMID: 20567633 PMCID: PMC2883241 DOI: 10.4137/cmo.s4132] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Purpose: Melatonin has neuroprotective effects in animal studies and has been suggested to decrease adverse reactions of chemotherapy including neuropathy. This pilot trial aimed at assessing whether melatonin, given during taxane chemotherapy for breast cancer, will decrease the incidence and/or severity of neuropathy. Methods: Twenty two consecutive patients beginning chemotherapy for breast cancer with paclitaxel, or docetaxel were enrolled. Patients received melatonin 21 mg daily at bedtime. Incidence and severity of neuropathy were assessed using neurological examinations, toxicity assessment per NCI-CTC 3.0 scale and FACT-Taxane quality of life questionnaire. Results: Neuropathy was seen in 45% (n = 10) of patients, 23% (n = 6) grade 1 and 22% (n = 5) Grade 2 neuropathy. No grade 3 neuropathies were reported. The majority (55%) of all patients reported no neuropathy. Compliance with melatonin (>60% of dose) was seen in most patients (86%) No patient reported daytime sedation. The median FACT-Taxane quality of life end of study score was 137, with only a 0.5 median decline from baseline. Conclusion: Patients receiving melatonin during taxane chemotherapy had a reduced incidence of neuropathy. Melatonin may be useful in the prevention or reduction of taxane-induced neuropathy and in maintaining quality of life. Larger trials are warranted to further explore the role of melatonin in neuropathy treatment and prevention.
Collapse
Affiliation(s)
- Z Nahleh
- Karmanos Cancer Institute, Division of Hematology-Oncology, Wayne State University 4100 John R, 4HWCRC, Detroit, MI 48201, USA
| | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Robert L Sack
- Department of Psychiatry, Sleep Disorders Medicine Program, Oregon Health and Science University, Portland, OR 97201-3098, USA.
| |
Collapse
|
18
|
Jet lag and other sleep disorders relevant to the traveler. Travel Med Infect Dis 2009; 7:60-8. [DOI: 10.1016/j.tmaid.2008.08.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2008] [Accepted: 08/15/2008] [Indexed: 11/19/2022]
|
19
|
|
20
|
Brown GM, Pandi-Perumal SR, Trakht I, Cardinali DP. Melatonin and its relevance to jet lag. Travel Med Infect Dis 2008; 7:69-81. [PMID: 19237140 DOI: 10.1016/j.tmaid.2008.09.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 09/15/2008] [Indexed: 12/11/2022]
Abstract
Jet lag is a disorder in which body rhythms are out of phase with the environment because of rapid travel across time zones. Although it often produces minor symptoms it can cause serious problems in those who need to make rapid critical decisions including airline pilots and business travelers. In this article the authors review basic knowledge underlying the body clock, the suprachiasmatic nucleus (SCN) of the hypothalamus, and the manner in which it regulates the sleep/wake cycle. The regulation of melatonin by the SCN is described together with the role of the melatonin receptors which are integral to its function as the major hormonal output of the body clock. Several factors are known that help prevent and treat jet lag, including ensuring adequate sleep, appropriate timing of exposure to bright light and treatment with melatonin. Because travel can cross a variable number of time zones and in two different directions, recommendations for treatment are given that correspond with these different types of travel. In addition to use of bright light and melatonin, other factors including timed exercise, timed and selective diets and social stimuli deserve study as potential treatments. Moreover, new melatonin agonists are currently under investigation for treatment of jet lag.
Collapse
Affiliation(s)
- Gregory M Brown
- Department of Psychiatry, University of Toronto, 100 Bronte Road, Unit 422, Oakville, ON L6L 6L5, Canada.
| | | | | | | |
Collapse
|
21
|
Sack RL, Auckley D, Auger RR, Carskadon MA, Wright KP, Vitiello MV, Zhdanova IV. Circadian rhythm sleep disorders: part I, basic principles, shift work and jet lag disorders. An American Academy of Sleep Medicine review. Sleep 2008; 30:1460-83. [PMID: 18041480 DOI: 10.1093/sleep/30.11.1460] [Citation(s) in RCA: 327] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE This the first of two articles reviewing the scientific literature on the evaluation and treatment of circadian rhythm sleep disorders (CRSDs), employing the methodology of evidence-based medicine. In this first part of this paper, the general principles of circadian biology that underlie clinical evaluation and treatment are reviewed. We then report on the accumulated evidence regarding the evaluation and treatment of shift work disorder (SWD) and jet lag disorder (JLD). METHODS A set of specific questions relevant to clinical practice were formulated, a systematic literature search was performed, and relevant articles were abstracted and graded. RESULTS A substantial body of literature has accumulated that provides a rational basis the evaluation and treatment of SWD and JLD. Physiological assessment has involved determination of circadian phase using core body temperature and the timing of melatonin secretion. Behavioral assessment has involved sleep logs, actigraphy and the Morningness-Eveningness Questionnaire (MEQ). Treatment interventions fall into three broad categories: 1) prescribed sleep scheduling, 2) circadian phase shifting ("resetting the clock"), and 3) symptomatic treatment using hypnotic and stimulant medications. CONCLUSION Circadian rhythm science has also pointed the way to rational interventions for the SWD and JLD, and these treatments have been introduced into the practice of sleep medicine with varying degrees of success. More translational research is needed using subjects who meet current diagnostic criteria.
Collapse
Affiliation(s)
- Robert L Sack
- Department of Psychiatry, Oregon Health Sciences University, Portland, OR, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Morgenthaler TI, Lee-Chiong T, Alessi C, Friedman L, Aurora RN, Boehlecke B, Brown T, Chesson AL, Kapur V, Maganti R, Owens J, Pancer J, Swick TJ, Zak R. Practice parameters for the clinical evaluation and treatment of circadian rhythm sleep disorders. An American Academy of Sleep Medicine report. Sleep 2008; 30:1445-59. [PMID: 18041479 DOI: 10.1093/sleep/30.11.1445] [Citation(s) in RCA: 344] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The expanding science of circadian rhythm biology and a growing literature in human clinical research on circadian rhythm sleep disorders (CRSDs) prompted the American Academy of Sleep Medicine (AASM) to convene a task force of experts to write a review of this important topic. Due to the extensive nature of the disorders covered, the review was written in two sections. The first review paper, in addition to providing a general introduction to circadian biology, addresses "exogenous" circadian rhythm sleep disorders, including shift work disorder (SWD) and jet lag disorder (JLD). The second review paper addresses the "endogenous" circadian rhythm sleep disorders, including advanced sleep phase disorder (ASPD), delayed sleep phase disorder (DSPD), irregular sleep-wake rhythm (ISWR), and the non-24-hour sleep-wake syndrome (nonentrained type) or free-running disorder (FRD). These practice parameters were developed by the Standards of Practice Committee and reviewed and approved by the Board of Directors of the AASM to present recommendations for the assessment and treatment of CRSDs based on the two accompanying comprehensive reviews. The main diagnostic tools considered include sleep logs, actigraphy, the Morningness-Eveningness Questionnaire (MEQ), circadian phase markers, and polysomnography. Use of a sleep log or diary is indicated in the assessment of patients with a suspected circadian rhythm sleep disorder (Guideline). Actigraphy is indicated to assist in evaluation of patients suspected of circadian rhythm disorders (strength of recommendation varies from "Option" to "Guideline," depending on the suspected CRSD). Polysomnography is not routinely indicated for the diagnosis of CRSDs, but may be indicated to rule out another primary sleep disorder (Standard). There is insufficient evidence to justify the use of MEQ for the routine clinical evaluation of CRSDs (Option). Circadian phase markers are useful to determine circadian phase and confirm the diagnosis of FRD in sighted and unsighted patients but there is insufficient evidence to recommend their routine use in the diagnosis of SWD, JLD, ASPD, DSPD, or ISWR (Option). Additionally, actigraphy is useful as an outcome measure in evaluating the response to treatment for CRSDs (Guideline). A range of therapeutic interventions were considered including planned sleep schedules, timed light exposure, timed melatonin doses, hypnotics, stimulants, and alerting agents. Planned or prescribed sleep schedules are indicated in SWD (Standard) and in JLD, DSPD, ASPD, ISWR (excluding elderly-demented/nursing home residents), and FRD (Option). Specifically dosed and timed light exposure is indicated for each of the circadian disorders with variable success (Option). Timed melatonin administration is indicated for JLD (Standard); SWD, DSPD, and FRD in unsighted persons (Guideline); and for ASPD, FRD in sighted individuals, and for ISWR in children with moderate to severe psychomotor retardation (Option). Hypnotic medications may be indicated to promote or improve daytime sleep among night shift workers (Guideline) and to treat jet lag-induced insomnia (Option). Stimulants may be indicated to improve alertness in JLD and SWD (Option) but may have risks that must be weighed prior to use. Modafinil may be indicated to improve alertness during the night shift for patients with SWD (Guideline).
Collapse
|
23
|
Jet lag: therapeutic use of melatonin and possible application of melatonin analogs. Travel Med Infect Dis 2008; 6:17-28. [PMID: 18342269 DOI: 10.1016/j.tmaid.2007.12.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2007] [Revised: 12/04/2007] [Accepted: 12/13/2007] [Indexed: 01/28/2023]
Abstract
Each year millions of travelers undertake long distance flights over one or more continents. These multiple time zone flights produce a constellation of symptoms known as jet lag. Familiar to almost every intercontinental traveler is the experience of fatigue upon arrival in a new time zone, but almost as problematic are a number of other jet lag symptoms. These include reduced alertness, nighttime insomnia, loss of appetite, depressed mood, poor psychomotor coordination and reduced cognitive skills, all symptoms which are closely affected by both the length and direction of travel. The most important jet lag symptoms are due to disruptions to the body's sleep/wake cycle. Clinical and pathophysiological studies also indicate that jet lag can exacerbate existing affective disorders. It has been suggested that dysregulation of melatonin secretion and occurrence of circadian rhythm disturbances may be the common links which underlie jet lag and affective disorders. Largely because of its regulatory effects on the circadian system, melatonin has proven to be highly effective for treating the range of symptoms that accompany transmeridian air travel. Additionally, it has been found to be of value in treating mood disorders like seasonal affective disorder. Melatonin acts on MT(1) and MT(2) melatonin receptors located in the hypothalamic suprachiasmatic nuclei, the site of the body's master circadian clock. Melatonin resets disturbed circadian rhythms and promotes sleep in jet lag and other circadian rhythm sleep disorders, including delayed sleep phase syndrome and shift-work disorder. Although post-flight melatonin administration works efficiently in transmeridian flights across less than 7-8 times zones, in the case longer distances, melatonin should be given by 2-3 days in advance to the flight. To deal with the unwanted side effects which usually accompany this pre-departure treatment (acute soporific and sedative effects in times that may not be wanted), the suppression of circadian rhythmicity by covering symmetrically the phase delay and the phase advance portions of the phase response curve for light, together with the administration of melatonin at local bedtime to resynchronize the circadian oscillator, have been proposed. The current view that sleep loss is a major cause of jet lag has focused interest on two recently developed pharmacological agents. Ramelteon and agomelatine are melatonin receptor agonists which, compared to melatonin itself, have a longer half-life and greater affinity for melatonin receptors and consequently are thought to hold promise for treating a variety of circadian disruptions.
Collapse
|
24
|
Influence of dietary melatonin on photoreceptor survival in the rat retina: an ocular toxicity study. Exp Eye Res 2007; 86:241-50. [PMID: 18078931 DOI: 10.1016/j.exer.2007.10.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 10/23/2007] [Accepted: 10/24/2007] [Indexed: 11/24/2022]
Abstract
Previous studies have shown that melatonin treatment increases the susceptibility of retinal photoreceptors to light-induced cell death. The purpose of this study was to evaluate under various conditions the potential toxicity of dietary melatonin on retinal photoreceptors. Male and female Fischer 344 (non-pigmented) and Long-Evans (pigmented) rats were treated with daily single doses of melatonin by gavage for a period of 14 days early in the light period or early in the dark period. In another group, rats were treated 3 times per week with melatonin early in the light period, and then exposed to high intensity illumination (1000-1500 lx; HII) for 2h, and then returned to the normal cyclic lighting regime. At the end of the treatment periods, morphometric measurements of outer nuclear layer thickness (ONL; the layer containing the photoreceptor cell nuclei) were made at specific loci throughout the retinas. In male and female non-pigmented Fischer rats, melatonin administration increased the degree of photoreceptor cell death when administered during the nighttime and during the day when followed by exposure to HII. There were some modest effects of melatonin on photoreceptor cell death when administered to Fischer rats during the day or night without exposure to HII. Melatonin treatment caused increases in the degree of photoreceptor cell death when administered in the night to male pigmented Long-Evans rats, but melatonin administration during the day, either with or without exposure to HII, had little if any effect on photoreceptor cell survival. In pigmented female Long-Evans rats, melatonin administration did not appear to have significant effects on photoreceptor cell death in any treatment group. The results of this study confirm and extend previous reports that melatonin increases the susceptibility of photoreceptors to light-induced cell death in non-pigmented rats. It further suggests that during the dark period, melatonin administration alone (i.e., no HII exposure) to pigmented male rats may have a toxic effect on retinal cells. These results suggest that dietary melatonin, in combination with a brief exposure to high intensity illumination, induces cellular disruption in a small number of photoreceptors. Chronic exposure to natural or artificial light and simultaneous intake of melatonin may potentially contribute to a significant loss of photoreceptor cells in the aging retina.
Collapse
|
25
|
Jenkins JL, Fredericksen K, Stone R, Tang N. Strategies to improve sleep during extended search and rescue operations. PREHOSP EMERG CARE 2007; 11:230-3. [PMID: 17454814 DOI: 10.1080/10903120701205182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
OBJECTIVE This study investigated strategies to improve sleeping conditions during search and rescue operations during disaster response. METHODS Forty members of the Montgomery County (Maryland) Urban Search and Rescue Team were surveyed for individual sleep habits and sleeping aids used during extended deployments. Team members were also asked to suggest methods to improve sleep on future deployments. RESULTS The average amount of sleep during field operations was 5.4 hours with a range of 4-8 hours. Eight percent surveyed would prefer another schedule besides the 12-hour work day, all of whom proposed three 8-hour shifts. Fifteen percent of participants were interested in a pharmacological sleeping aid. Fifty percent of search and rescue members interviewed would consider using nonpharmacological sleeping aids. Furthermore, 40% of participants stated they had successfully devised self-employed methods of sleep aids for previous deployments, such as ear plugs, massage, mental imagery, personal routines, music and headphones, reading, and blindfolds. CONCLUSIONS This study suggests that availability of both pharmacological and nonpharmacological sleeping aids to search and rescue workers via the team cache could impact the quantity of sleep. Further investigation into methods of optimizing sleep during field missions could theoretically show enhanced performance through various aspects of missions including mitigation of errors, improved productivity, and improved overall physiological and emotional well-being of search and rescue personnel.
Collapse
Affiliation(s)
- Jennifer Lee Jenkins
- Office of Critical Event Preparedness and Response, The Johns Hopkins University, Baltimore, MD 21209, USA.
| | | | | | | |
Collapse
|
26
|
|
27
|
Ali I, Aboul‐Enein HY, Gupta VK. Analysis of Melatonin in Dosage Formulation by Capillary Electrophoresis. J LIQ CHROMATOGR R T 2007. [DOI: 10.1080/10826070601093861] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Imran Ali
- a National Institute of Hydrology , Roorkee, India
| | | | - V. K. Gupta
- c Department of Chemistry , Indian Institute of Technology , Roorkee, India
| |
Collapse
|
28
|
Affiliation(s)
- P Pévet
- Institut des Neurosciences Cellulaires et Intégratives, Département de Neurobiologie des Rythmes (UMR 7168/LC2 CNRS et Université Louis Pasteur), IFR des Neurosciences de Strasbourg, 5, rue Blaise-Pascal, 67080 Strasbourg, France
| |
Collapse
|
29
|
Buscemi N, Vandermeer B, Hooton N, Pandya R, Tjosvold L, Hartling L, Vohra S, Klassen TP, Baker G. Efficacy and safety of exogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: meta-analysis. BMJ 2006; 332:385-93. [PMID: 16473858 PMCID: PMC1370968 DOI: 10.1136/bmj.38731.532766.f6] [Citation(s) in RCA: 279] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/18/2005] [Indexed: 12/24/2022]
Abstract
OBJECTIVE To conduct a systematic review of the efficacy and safety of exogenous melatonin in managing secondary sleep disorders and sleep disorders accompanying sleep restriction, such as jet lag and shiftwork disorder. DATA SOURCES 13 electronic databases and reference lists of relevant reviews and included studies; Associated Professional Sleep Society abstracts (1999 to 2003). STUDY SELECTION The efficacy review included randomised controlled trials; the safety review included randomised and non-randomised controlled trials. QUALITY ASSESSMENT Randomised controlled trials were assessed by using the Jadad Scale and criteria by Schulz et al, and non-randomised controlled trials by the Downs and Black checklist. DATA EXTRACTION AND SYNTHESIS One reviewer extracted data and another reviewer verified the data extracted. The inverse variance method was used to weight studies and the random effects model was used to analyse data. MAIN RESULTS Six randomised controlled trials with 97 participants showed no evidence that melatonin had an effect on sleep onset latency in people with secondary sleep disorders (weighted mean difference -13.2 (95% confidence interval -27.3 to 0.9) min). Nine randomised controlled trials with 427 participants showed no evidence that melatonin had an effect on sleep onset latency in people who had sleep disorders accompanying sleep restriction (-1.0 (-2.3 to 0.3) min). 17 randomised controlled trials with 651 participants showed no evidence of adverse effects of melatonin with short term use (three months or less). CONCLUSIONS There is no evidence that melatonin is effective in treating secondary sleep disorders or sleep disorders accompanying sleep restriction, such as jet lag and shiftwork disorder. There is evidence that melatonin is safe with short term use.
Collapse
Affiliation(s)
- Nina Buscemi
- University of Alberta/Capital Health Evidence-based Practice Centre, Department of Pediatrics, University of Alberta, Edmonton, AB, Canada T6G 2J3.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Bourne RS, Mills GH. Melatonin: possible implications for the postoperative and critically ill patient. Intensive Care Med 2006; 32:371-9. [PMID: 16477412 DOI: 10.1007/s00134-005-0061-x] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2005] [Accepted: 12/26/2005] [Indexed: 11/30/2022]
Abstract
There is increasing interest in the hormone melatonin in postoperative and critically ill patients. The roles of melatonin in the regulation of the sleep-wake cycle, resetting of circadian rhythm disturbances and its extensive antioxidant activity have potential applications in these patient groups. The interaction between melatonin and the stresses of surgery and critical illness are explored in the context of circadian rhythms, sleep disorders and delirium. The antioxidant activity is discussed in terms of the reduction of ischaemic reperfusion injury, prevention of multi-organ failure and treatment of sepsis. Unfortunately, there is currently insufficient evidence that exogenous melatonin is effective in preventing or treating postoperative delirium. Similarly, in the critically ill patient, sleep disorders are associated with disrupted melatonin circadian secretion, but there is a paucity of data to support routine exogenous melatonin supplementation. More clinical evidence to confirm the potential benefits of melatonin therapy is required before it can be routinely used in the postoperative or critically ill patient.
Collapse
Affiliation(s)
- Richard S Bourne
- Royal Hallamshire Hospital, Intensive Care Unit, R Floor, Glossop Road, S10 2JF, Sheffield, UK.
| | | |
Collapse
|
31
|
|
32
|
Reiter RJ, Tan DX, Herman TS, Thomas CR. Melatonin as a radioprotective agent: a review. Int J Radiat Oncol Biol Phys 2004; 59:639-53. [PMID: 15183467 DOI: 10.1016/j.ijrobp.2004.02.006] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 01/14/2004] [Accepted: 02/06/2004] [Indexed: 11/23/2022]
Abstract
Melatonin (N-acetyl-5-methoxytryptamine), the chief secretory product of the pineal gland in the brain, is well known for its functional versatility. In hundreds of investigations, melatonin has been documented as a direct free radical scavenger and an indirect antioxidant, as well as an important immunomodulatory agent. The radical scavenging ability of melatonin is believed to work via electron donation to detoxify a variety of reactive oxygen and nitrogen species, including the highly toxic hydroxyl radical. It has long been recognized that the damaging effects of ionizing radiation are brought about by both direct and indirect mechanisms. The direct action produces disruption of sensitive molecules in the cells, whereas the indirect effects ( approximately 70%) result from its interaction with water molecules, which results in the production of highly reactive free radicals such as *OH, *H, and e(aq)- and their subsequent action on subcellular structures. The hydroxyl radical scavenging ability of melatonin was used as a rationale to determine its radioprotective efficiency. Indeed, the results from many in vitro and in vivo investigations have confirmed that melatonin protects mammalian cells from the toxic effects of ionizing radiation. Furthermore, several clinical reports indicate that melatonin administration, either alone or in combination with traditional radiotherapy, results in a favorable efficacy:toxicity ratio during the treatment of human cancers. This article reviews the literature from laboratory investigations that document the ability of melatonin to scavenge a variety of free radicals (including the hydroxyl radical induced by ionizing radiation) and summarizes the evidence that should be used to design larger translational research-based clinical trials using melatonin as a radioprotector and also in cancer radiotherapy. The potential use of melatonin for protecting individuals from radiation terrorism is also considered.
Collapse
|
33
|
Noguchi H, Kitazumi K, Mori M, Shiobara Y, Shiba T. Effect of zaleplon, a non-benzodiazepine hypnotic, on melatonin secretion in rabbits. J Pharmacol Sci 2004; 93:204-9. [PMID: 14578589 DOI: 10.1254/jphs.93.204] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Melatonin, a major hormone secreted by the pineal gland, is known to play an important role in regulation of the circadian rhythm. (N-[3-(3-cyanopyrazolo[1,5-a]pyrimidin-7-yl)phenyl]-N-ethylacetamide (zaleplon) is a non-benzodiazepine hypnotic that acts via the benzodiazepine site of the GABA(A) receptor. In the present study, we investigated the effect of zaleplon on melatonin secretion in rabbits using RIA and compared the effect to triazolam and zopiclone. Zaleplon increased a dose-dependent concentration of melatonin in rabbit plasma collected at 30 min after intravenous administration at doses of 1 and 2 mg/kg. The zaleplon-induced increase in plasma melatonin level was not blocked by flumazenil, a benzodiazepine-receptor antagonist. In contrast, triazolam and zopiclone failed to affect the plasma melatonin level. We also investigated the effect of zaleplon on intracellular cAMP in rat pinealocytes. Consequently, zaleplon had no effect on the intracellular cAMP levels in rat pinealocytes. These results of the present studies suggest that zaleplon may promote melatonin secretion and the elevation of plasma levels of melatonin may suggest an influence of zaleplon on chronobiology.
Collapse
Affiliation(s)
- Hideaki Noguchi
- Medical Research Laboratories, Wyeth Lederle (Japan), Ltd., shiki-shi, Saitama, Japan.
| | | | | | | | | |
Collapse
|
34
|
Abstract
The pineal hormone, melatonin, has widespread effects on the body. The aim of this review is to consider the specific interactions between melatonin and human physiological functions associated with sport and exercise medicine. Separate researchers have reported that melatonin concentrations increase, decrease and remain unaffected by bouts of exercise. Such conflicting findings may be explained by inter-study differences in lighting conditions and the time of day the study participants have exercised. Age and fitness status have also been identified as intervening factors in exercise-mediated changes in melatonin concentration. The administration of exogenous melatonin leads to hypnotic and hypothermic responses in humans, which can be linked to immediate reductions in short-term mental and physical performance. Depending on the dose of melatonin, these effects may still be apparent 3-5 hours after administration for some types of cognitive performance, but effects on physical performance seem more short-lived. The hypothesis that the hypothermic effects of melatonin lead to improved endurance performance in hot environments is not supported by evidence from studies involving military recruits who exercised at relatively low intensities. Nevertheless, no research group has examined such a hypothesis with athletes as study participants and with the associated more intense levels of exercise. The fact that melatonin has also been found to preserve muscle and liver glycogen in exercised rats adds weight to the notion that melatonin might affect endurance exercise in humans. Melatonin has been successfully used to alleviate jet lag symptoms of travellers and there is also a smaller amount of evidence that the hormone helps shiftworkers adjust to nocturnal regimens. Nevertheless, the symptoms of jet lag and shiftwork problems have primarily included sleep characteristics rather than performance variables. The few studies that have involved athletes and performance-related symptoms have produced equivocal results. Melatonin has also been found to be useful for treating some sleeping disorders, but interactions between sleep, melatonin and exercise have not been studied extensively with trained study participants. It is unknown whether melatonin plays a role in some exercise training-related problems such as amenorrhoea and over-training syndrome.
Collapse
Affiliation(s)
- Greg Atkinson
- School of Sport and Exercise Sciences, Loughborough University, Loughborough, Leicestershire, UK.
| | | | | | | |
Collapse
|
35
|
Abstract
The four steps for giving travellers the foundation for healthy journeys are to assess their health, analyse their itineraries, select vaccines, and provide education about prevention and self-treatment of travel-related diseases. This process takes time. Since there is a risk of information overload, travellers should leave the clinic with some written advice for reinforcement. The order of these steps can be tailored to what best suits the travel clinic, but vaccinating early in the process allows monitoring for adverse reactions. Face-to-face discussion is vital for explaining the use and side-effects of medications. Those who provide a travel medicine service should be seeing many travellers and should seek specialist training. In 2003, the International Society of Travel Medicine introduced a certificate of knowledge examination in travel medicine. We cannot make travellers bullet-proof but it is possible to make them bullet-resistant. The pre-travel visit should minimise health risks specific to the journey, give travellers the capability to handle most minor medical problems, and allow them to identify when to seek local care during the trip or on return.
Collapse
|
36
|
Abstract
What is the effect of melatonin on jet lag syndrome? Jet lag desynchronizes the internal sleep-wakefulness cycle with the environmental light/dark cycle. Advance (but not delay) of light onset is known to abolish pineal N-acetyltransferase activity and urine excretion of 6-sulphatoxymelatonin. Measurements of pineal serotonin, the substrate of melatonin biosynthesis; N-acetylserotonin (NAS), the immediate melatonin precursor; and melatonin (high-performance liquid chromatography-fluorimetric method) in the animal (rat) model of jet lag revealed that prolonged delay of dark-phase onset disrupted the rhytms in comparable ways as the advance of light-phase onset. Advance of dark phase onset resulted in less severe disturbances of rhythms as compared with the advance of light phase onset. Melatonin, but not NAS, injections at the beginning of a new dark period accelerated recovery of NAS and melatonin, but not serotonin, rhythms. Spontaneously hypertensive rats were more sensitive to advance of light onset and less responsive to melatonin injections than normotensive rats. NAS and methylene blue, an inhibitor of monoamine oxidase A, attenuated light-induced disruption of NAS but not melatonin rhythms. We draw the following conclusions from our data: the beginning of the dark period may be preferable to the beginning of light period as the arrival time on eastward flights; the efficacy of melatonin in alleviating jet lag may be enhanced by administering it before, during and after rapid transition through time zones; and hypertension may exaggerate jet lag syndrome.
Collapse
Affiliation(s)
- Gregory F Oxenkrug
- Department of Psychiatry, Tufts University School of Medicine, Boston, MA 02135, USA.
| | | |
Collapse
|
37
|
Time zone change (jet lag) syndrome. Sleep 2003. [DOI: 10.1007/978-1-4615-0217-3_39] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
38
|
Claustrat B. Melatonin and sleep-wake rhythm. Sleep 2003. [DOI: 10.1007/978-1-4615-0217-3_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
39
|
Serfaty M, Kennell-Webb S, Warner J, Blizard R, Raven P. Double blind randomised placebo controlled trial of low dose melatonin for sleep disorders in dementia. Int J Geriatr Psychiatry 2002; 17:1120-7. [PMID: 12461760 DOI: 10.1002/gps.760] [Citation(s) in RCA: 114] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
BACKGROUND Disturbance of sleep is common in individuals with dementia where there may be reversal of the sleep-wake cycle. People with dementia of the Alzheimer's type have melatonin secretion rhythm disorders. There is some evidence that treatment with exogenous melatonin is an effective treatment for sleep disturbance associated with dementia. A randomised double blind placebo controlled cross over trial was undertaken to test the hypothesis that slow release exogenous melatonin 6 mg improves sleep for people with dementia. METHODS Forty-four participants with DSM-IV diagnoses of dementia with sleep disturbance were selected for a seven week randomised double blind cross over trial of slow release melatonin 6 mg versus placebo. Sleep parameters were objectively measured using wrist actigraphy. RESULTS Twenty-five out of 44 completed the trial. Sleep was significantly disturbed in the sample population. Melatonin had no effect on median total time asleep (n=25, z=1.35, p=0.18), number of awakenings (n=25, z=0.32, p=0.75) or sleep efficiency (n=25, z=0.17, p=0.24). Nor were there any carry over effects from melatonin. CONCLUSIONS Contrary to previous findings, we found no evidence that two weeks of exogenous melatonin is effective in improving sleep in people with dementia, although possible benefits of melatonin following longer periods of administration cannot be discounted.
Collapse
Affiliation(s)
- Marc Serfaty
- Royal Free and University College Medical School, London, UK.
| | | | | | | | | |
Collapse
|
40
|
Nickelsen T, Samel A, Vejvoda M, Wenzel J, Smith B, Gerzer R. Chronobiotic effects of the melatonin agonist LY 156735 following a simulated 9h time shift: results of a placebo-controlled trial. Chronobiol Int 2002; 19:915-36. [PMID: 12405554 DOI: 10.1081/cbi-120014108] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION The melatonin agonist LY 156735 (LY) is a new investigational drug under development to treat circadian rhythm disorders. The present study assessed the efficacy of LY to alleviate the symptoms of shift lag and to enhance readaptation of desynchronized circadian rhythms to a new time zone. SUBJECTS AND METHODS Eight healthy male volunteers of age 25-35 yr participated in three identical trials of 13d duration in a temporal isolation unit separated by washout intervals. A high dose (HD) of 5 mg and a low dose (LD) of 0.5 mg of LY and placebo (PL) were administered double-blinded in a three-period cross-over design. Each trial consisted of an adaptation period, a pre-shift period for baseline measurements, a simulated 9h phase-advance shift, and a post-shift period for follow-up. The time shift was performed at 23:00h of day 6 by advancing the laboratory time to 08:00h of day 7. Double-blind study medication was administered at 14:30h on day 6, and at 22:30h on days 7-10. Subjective ratings of jet lag, alertness, tenseness, and daytime fatigue were assessed using visual analog scales (VAS) and standardized questionnaires. The objective markers of readaptation included core body temperature, wrist actigraphy, cortisol and electrolyte excretion, and a battery of computerized performance tests. RESULTS HD but not LD enhanced the readaptation speed of all physiological rhythms investigated, as demonstrated by a significantly faster movement of acrophases towards the post-shift target time. HD (p = 0.05) significantly blunted the post-shift deterioration of performance in those tests that were sensitive to shift lag. Parameters of subjective well-being were not significantly affected by either dose. CONCLUSION This pilot study demonstrates the chronobiotic efficacy of LY when taken at a dose of 5 mg/d.
Collapse
|
41
|
Sharkey KM, Eastman CI. Melatonin phase shifts human circadian rhythms in a placebo-controlled simulated night-work study. Am J Physiol Regul Integr Comp Physiol 2002; 282:R454-63. [PMID: 11792655 PMCID: PMC3696986 DOI: 10.1152/ajpregu.00135.2001] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There has been scant evidence for a phase-shifting effect of melatonin in shift-work or jet-lag protocols. This study tested whether melatonin can facilitate phase shifts in a simulated night-work protocol. Subjects (n = 32) slept in the afternoons/evenings before night work (a 7-h advance of the sleep schedule). They took melatonin (0.5 mg or 3.0 mg) or placebo before the first four of eight afternoon/evening sleep episodes at a time when melatonin has been shown to phase advance the circadian clock. Melatonin produced larger phase advances than placebo in the circadian rhythms of melatonin and temperature. Average phase advances (+/-SD) of the dim light melatonin onset were 1.7 +/- 1.2 h (placebo), 3.0 +/- 1.1 h (0.5 mg), and 3.9 +/- 0.5 h (3.0 mg). A measure of circadian adaptation, shifting the temperature minimum enough to occur within afternoon/evening sleep, showed that only subjects given melatonin achieved this goal (73% with 3.0 mg, 56% with 0.5 mg, and 0% with placebo). Melatonin could be used to promote adaptation to night work and jet travel.
Collapse
Affiliation(s)
- Katherine M Sharkey
- Biological Rhythms Research Laboratory, Rush-Presbyterian-St. Luke's Medical Center, Chicago, Illinois 60612, USA
| | | |
Collapse
|
42
|
Cardinali DP, Bortman GP, Liotta G, Pérez Lloret S, Albornoz LE, Cutrera RA, Batista J, Ortega Gallo P. A multifactorial approach employing melatonin to accelerate resynchronization of sleep-wake cycle after a 12 time-zone westerly transmeridian flight in elite soccer athletes. J Pineal Res 2002; 32:41-6. [PMID: 11841599 DOI: 10.1034/j.1600-079x.2002.10820.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rapid transmeridian translocation through multiple time zones has a negative impact on athletic performance. The aim of the present study was to test the timely use of three factors (melatonin treatment, exposure to light, physical exercise) to hasten the resynchronization of a group of elite sports competitors and their coaches to a westerly transmeridian flight comprising of 12 time-zones. Twenty-two male subjects were included in the study. They were professional soccer players and their coaches who travelled to Tokyo to play the final game of the Intercontinental Coup. The day prior to departure, urine was collected from each subject from 18:00 to 06:00 hrs to measure the melatonin metabolite 6-sulphatoxymelatonin. Participants were asked to complete sleep log diaries from day 0 (preflight) to the day before returning to Buenos Aires (day 8). All subjects received 3 mg of melatonin p.o. daily at expected bedtime at Tokyo immediately after leaving Buenos Aires. Upon arrival at Tokyo the subjects performed a daily physical exercise routine outdoors at two restricted times of the day (from 08:00 to 11:00 hrs in the morning and from 13:00 to 16:00 hrs in the afternoon). Exposure to sunlight or physical exercise at other times of the day was avoided. Except for the number of awakenings (which increased on days 1 and 3) and sleep latency (which decreased on days 2, 6 and 8), there was an absence of significant changes in subjective sleep parameters as compared with preflight assessment. Sleep quality and morning alertness at Tokyo correlated significantly with preflight 6-sulphatoxymelatonin excretion. Mean resynchronization rate of sleep-wake cycle to the 12 hr-time shift was 2.13 +/- 0.88 days, significantly different from the minimal resynchronization rate of 6 days expected after a 12-time-zones flight. The results indicate that the combination of melatonin treatment, an appropriate environmental light schedule and timely applied physical exercise can be useful to help elite athletes to overcome the consequences of jet lag.
Collapse
Affiliation(s)
- Daniel P Cardinali
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Cauter E, Turek FW. Roles of Sleep‐Wake and Dark‐Light Cycles in the Control of Endocrine, Metabolic, Cardiovascular, and Cognitive Function. Compr Physiol 2001. [DOI: 10.1002/cphy.cp070415] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
44
|
Abstract
An intrinsic body clock residing in the suprachiasmatic nucleus (SCN) within the brain regulates a complex series of rhythms in humans, including sleep/wakefulness. The individual period of the endogenous clock is usually >24 hours and is normally entrained to match the environmental rhythm. Misalignment of the circadian clock with the environmental cycle may result in sleep disorders. Among these are chronic insomnias associated with an endogenous clock which runs slower or faster than the norm [delayed (DSPS) or advanced (ASPS) sleep phase syndrome, or irregular sleep-wake cycle], periodic insomnias due to disturbances in light perception (non-24-hour sleep-wake syndrome and sleep disturbances in blind individuals) and temporary insomnias due to social circumstances (jet lag and shift-work sleep disorder). Synthesis of melatonin (N-acetyl-5-methoxytryptamine) within the pineal gland is induced at night, directly regulated by the SCN. Melatonin can relay time-of-day information (signal of darkness) to various organs, including the SCN itself. The phase-shifting effects of melatonin are essentially opposite to those of light. In addition, melatonin facilitates sleep in humans. In the absence of a light-dark cycle, the timing of the circadian clock, including the timing of melatonin production in the pineal gland, may to some extent be adjusted with properly timed physical exercise. Bright light exposure has been demonstrated as an effective treatment for circadian rhythm sleep disorders. Under conditions of entrainment to the 24-hour cycle, bright light in the early morning and avoidance of light in the evening should produce a phase advance (for treatment of DSPS), whereas bright light in the evening may be effective in delaying the clock (ASPS). Melatonin, given several hours before its endogenous peak at night, effectively advances sleep time in DSPS and adjusts the sleep-wake cycle to 24 hours in blind individuals. In some blind individuals, melatonin appears to fully entrain the clock. Melatonin and light, when properly timed, may also alleviate jet lag. Because of its sleep-promoting effect, melatonin may improve sleep in night-shift workers trying to sleep during the daytime. Melatonin replacement therapy may also provide a rational approach to the treatment of age-related insomnia in the elderly. However, there is currently no melatonin formulation approved for clinical use, neither are there consensus protocols for light or melatonin therapies. The use of bright light or melatonin for circadian rhythm sleep disorders is thus considered exploratory at this stage.
Collapse
Affiliation(s)
- N Zisapel
- Department of Neurobiochemistry, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Israel.
| |
Collapse
|
45
|
Abstract
OBJECTIVE To determine the degree to which zolpidem 10 mg would reduce the sleep disruption associated with rapid, eastward transatlantic travel. BACKGROUND Subsequent to rapid transmeridian travel, individuals often complain of jet lag which includes transient disturbances in sleep patterns, alertness, appetite and mood. Disturbed sleep and impaired alertness appear to be the most debilitating symptoms of jet lag. METHODS This multi-center, double-blind randomized, placebo-controlled, parallel-groups study involved 138 adult (mean age 44.9 years) experienced travelers while on their regular eastward transatlantic assignments originating in the US and crossing 5-9 time zones. Subjects were normal sleepers when not traveling and had to have traveled overseas at least twice during the last 24 months. Subjects were randomized to zolpidem 10 mg or placebo for three (optionally four) consecutive nights starting with the first nighttime sleep after travel. Sleep was assessed with daily questionnaires. RESULTS A total of 130 subjects completed the study. Compared to placebo, zolpidem was associated with significantly improved sleep (statistically significant differences at nights indicated) longer total sleep time (night 1), reduced number of awakenings (nights 1 and 2), and improved sleep quality (nights 1, 2 and 3). Zolpidem was not associated with improvement in sleep latency. No unexpected or serious adverse events were reported and the most common adverse event was headache in both groups (9.2 and 17.6% for placebo and zolpidem, respectively). CONCLUSION In seasoned travelers, zolpidem 10 mg produced significant improvement in sleep following rapid transmeridian travel.
Collapse
Affiliation(s)
- A O Jamieson
- Sleep Medicine Associates of Texas, P.A. 8140 Walnut Hill Lane, Suite 100, Dallas, TX, USA.
| | | | | | | | | |
Collapse
|
46
|
Abstract
Human beings, like other living organisms, have physiologic systems that are cyclic in nature. Many of these systems have a circadian length. This provides for internal stability while at the same time enabling the organism to interact with the external environment and respond to changes in that environment. These physiologic systems, including those with a circadian length, can change timing as a result of environmental cues, such as the light-dark cycle or seasonal variations, but this takes time. When people engage in rotating or night shift work, the circadian rhythms are unable to quickly adapt to a rapidly changing activity schedule. This results in desynchronosis of many physiologic systems, including those with circadian timing. Because many emergency physicians engage in shift work, they are subject to the effects of circadian rhythm disruption. Research on the effect of desynchronosis on emergency physicians is sparse but has demonstrated negative effects. This article reviews the effect of desynchronosis on the health and productivity of physicians engaged in shift work.
Collapse
Affiliation(s)
- G Kuhn
- Department of Emergency Medicine, Virginia Commonwealth University, Medical College of Virginia, Richmond, VA 23298-0401, USA.
| |
Collapse
|
47
|
Katz G, Durst R, Zislin Y, Barel Y, Knobler HY. Psychiatric aspects of jet lag: review and hypothesis. Med Hypotheses 2001; 56:20-3. [PMID: 11133250 DOI: 10.1054/mehy.2000.1094] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Jet lag is a travel-induced circadian rhythm phenomenon that afflicts healthy individuals following long- distance flights through several time zones. The typical jet-lag manifestations - insomnia during local sleep time, day fatigue, reduced concentration, irritability, and exhaustion with mild depression - are attributed to transient desynchronization in the circadian rhythm until the internal biological clock is rephased to the new environmental conditions. There is strong evidence relating affective disorders with circadian rhythm abnormalities. Less convincing suggestions relate jet lag to psychosis. It can be hypothesized that in predisposed individuals jet lag may play a role in triggering exacerbation or even de novo affective disorders. Furthermore, we propose the possibility that psychosis and even schizophrenia can be elicited by jet lag. This outlook gains its support from case studies and some common underlying phase-advanced biological denominators involved in both jet lag sufferers and psychotic patients.
Collapse
Affiliation(s)
- G Katz
- Kfar Shaul Mental Health Center affiliated with the Hebrew University, Hadassah Medical School, Jerusalem, Israel.
| | | | | | | | | |
Collapse
|
48
|
Abstract
BACKGROUND Jet-lag commonly affects air travellers who cross several time zones. It results from the body's internal rhythms being out of step with the day-night cycle at the destination. Melatonin is a pineal hormone that plays a central part in regulating bodily rhythms and has been used as a drug to re-align them with the outside world. OBJECTIVES To assess the effectiveness of oral melatonin taken in different dosage regimens for alleviating jet-lag after air travel across several time zones. SEARCH STRATEGY We searched the Cochrane Controlled Trials Register, MEDLINE, EMBASE, PsychLit and Science Citation Index electronically, and the journals 'Aviation, Space and Environmental Medicine' and 'Sleep' by hand. We searched citation lists of relevant studies for other relevant trials. We asked principal authors of relevant studies to tell us about unpublished trials. Reports of adverse events linked to melatonin use outside randomised trials were searched for systematically in 'Side Effects of Drugs' (SED) and SED Annuals, 'Reactions Weekly', MEDLINE, and the adverse drug reactions databases of the WHO Uppsala Monitoring Centre (UMC) and the US Food & Drug Administration. SELECTION CRITERIA Randomised trials in airline passengers, airline staff or military personnel given oral melatonin, compared with placebo or other medication. Outcome measures should consist of subjective rating of jet-lag or related components, such as subjective wellbeing, daytime tiredness, onset and quality of sleep, psychological functioning, duration of return to normal, or indicators of circadian rhythms. DATA COLLECTION AND ANALYSIS : Ten trials met the inclusion criteria. All compared melatonin with placebo; one in addition compared it with a hypnotic, zolpidem. Nine of the trials were of adequate quality to contribute to the assessment, one had a design fault and could not be used in the assessment. Reports of adverse events outside trials were found through MEDLINE, 'Reactions Weekly', and in the WHO UMC database. MAIN RESULTS : Nine of the ten trials found that melatonin, taken close to the target bedtime at the destination (10pm to midnight), decreased jet-lag from flights crossing five or more time zones. Daily doses of melatonin between 0.5 and 5mg are similarly effective, except that people fall asleep faster and sleep better after 5mg than 0.5mg. Doses above 5mg appear to be no more effective. The relative ineffectiveness of 2mg slow-release melatonin suggests that a short-lived higher peak concentration of melatonin works better. Based on the review, the number needed to treat (NNT) is 2. The benefit is likely to be greater the more time zones are crossed, and less for westward flights. The timing of the melatonin dose is important: if it is taken at the wrong time, early in the day, it is liable to cause sleepiness and delay adaptation to local time. The incidence of other side effects is low. Case reports suggest that people with epilepsy, and patients taking warfarin may come to harm from melatonin. REVIEWER'S CONCLUSIONS Melatonin is remarkably effective in preventing or reducing jet-lag, and occasional short-term use appears to be safe. It should be recommended to adult travellers flying across five or more time zones, particularly in an easterly direction, and especially if they have experienced jet-lag on previous journeys. Travellers crossing 2-4 time zones can also use it if need be. The pharmacology and toxicology of melatonin needs systematic study, and routine pharmaceutical quality control of melatonin products must be established. The effects of melatonin in people with epilepsy, and a possible interaction with warfarin, need investigation.
Collapse
Affiliation(s)
- A Herxheimer
- UK Cochrane Centre, 9 Park Crescent, London N3 2NL, UK. andrew
| | | |
Collapse
|
49
|
Defrance R, Quera-Salva MA. Therapeutic applications of melatonin and related compounds. HORMONE RESEARCH 2000; 49:142-6. [PMID: 9550115 DOI: 10.1159/000023161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Increasing knowledge of the pharmacological effects of melatonin has suggested various possible therapeutic applications for the hormone. Because, as a natural substance, melatonin cannot be patented, melatonin-related compounds have been synthesized by industrial groups. The scope of such compounds is also to specifically target the recently discovered melatonin receptor subtypes. The sleep-inducing properties of melatonin are disputed, but are distinct from those of benzodiazepines. The observed effects on sleep latency or sleep efficiency, which remain to be confirmed, could be accounted for by the effects of melatonin on core body temperature and on circadian rhythms. There is also an urgent need for safety data, both in animals and in humans, particularly when long-term use is envisaged.
Collapse
Affiliation(s)
- R Defrance
- Hôpital Raymond Poincaré, Garches, France
| | | |
Collapse
|
50
|
Geoffriau M, Brun J, Chazot G, Claustrat B. The physiology and pharmacology of melatonin in humans. HORMONE RESEARCH 2000; 49:136-41. [PMID: 9550114 DOI: 10.1159/000023160] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Melatonin (MLT) is a methoxyindole secreted principally by the pineal gland. It is synthesized at night under normal environmental conditions. The endogenous rhythm of secretion is generated by the suprachiasmatic nuclei and entrained by the light/dark cycle. Light is able to both suppress or entrain MLT production on light schedule. The nyctohemeral rhythm of this hormone can be determined by repeated measurement of plasma or saliva MLT or urine sulfatoxy-MLT, the main hepatic metabolite. MLT can be considered as the output (the hand) of the endogenous clock. Since the regulating system follows a central and sympathetic nervous pathway, an abnormality at any level could unspecifically modify the MLT secretion, especially in patients with sympathalgia or dysautonomia. MLT plays the role of an endogenous zeitgeber on core temperature or sleep-wake cycle. Exogenous MLT is able to influence the endogenous secretion of the hormone according to a phase-response curve. There are practical implications for this property in situations when biological rhythms are disturbed (jet-lag syndrome, delayed sleep phase syndrome, insomnia in blind people, shift-work, insomnia in elderly people). Improvement of pharmaceutical forms (controlled release preparations) or development of MLT analogs could lead to decisive progress.
Collapse
Affiliation(s)
- M Geoffriau
- Service de Radiopharmacie et Radioanalyse, Hôpital Neuro-Cardiologique, Lyon, France
| | | | | | | |
Collapse
|