1
|
Calvo-Enrique L, Lisa S, Vicente-García C, Deogracias R, Arévalo JC. Enhanced TrkA signaling impairs basal forebrain-dependent behavior. Front Mol Neurosci 2023; 16:1266983. [PMID: 37808473 PMCID: PMC10556247 DOI: 10.3389/fnmol.2023.1266983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/07/2023] [Indexed: 10/10/2023] Open
Abstract
Basal forebrain cholinergic neurons (BFCNs) modulate cognitive functions such as attention, learning and memory. The NGF/TrkA pathway plays an important role in the development and function of BFCNs, although two mouse models conditionally deleting TrkA expression in the central nervous system (CNS) have shown contradictory results. To shed light into this discrepancy, we used a mouse model with a gain-of-function in TrkA receptor signaling. Our results indicate that enhanced TrkA signaling did not alter hippocampal cholinergic innervation, general locomotion or anxiety-related behaviors, but it increases ChAT expression, the number of cholinergic neurons at early postnatal stages and, mutant mice showed impaired motor learning and memory functions. These data demonstrate that proper functioning of the cholinergic system in CNS requires a balanced NGF/TrkA signaling.
Collapse
Affiliation(s)
- Laura Calvo-Enrique
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Silvia Lisa
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Cristina Vicente-García
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Ruben Deogracias
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| | - Juan Carlos Arévalo
- Department of Cell Biology and Pathology, Instituto de Neurociencias de Castilla y León (INCyL), Universidad de Salamanca, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Salamanca, Spain
| |
Collapse
|
2
|
Alfonsetti M, d’Angelo M, Castelli V. Neurotrophic factor-based pharmacological approaches in neurological disorders. Neural Regen Res 2022; 18:1220-1228. [PMID: 36453397 PMCID: PMC9838155 DOI: 10.4103/1673-5374.358619] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Aging is a physiological event dependent on multiple pathways that are linked to lifespan and processes leading to cognitive decline. This process represents the major risk factor for aging-related diseases such as Alzheimer's disease, Parkinson's disease, and ischemic stroke. The incidence of all these pathologies increases exponentially with age. Research on aging biology has currently focused on elucidating molecular mechanisms leading to the development of those pathologies. Cognitive deficit and neurodegeneration, common features of aging-related pathologies, are related to the alteration of the activity and levels of neurotrophic factors, such as brain-derived neurotrophic factor, nerve growth factor, and glial cell-derived neurotrophic factor. For this reason, treatments that modulate neurotrophin levels have acquired a great deal of interest in preventing neurodegeneration and promoting neural regeneration in several neurological diseases. Those treatments include both the direct administration of neurotrophic factors and the induced expression with viral vectors, neurotrophins' binding with biomaterials or other molecules to increase their bioavailability but also cell-based therapies. Considering neurotrophins' crucial role in aging pathologies, here we discuss the involvement of several neurotrophic factors in the most common brain aging-related diseases and the most recent therapeutic approaches that provide direct and sustained neurotrophic support.
Collapse
Affiliation(s)
- Margherita Alfonsetti
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy
| | - Vanessa Castelli
- Department of Life, Health and Environmental Sciences, University of L’Aquila, L’Aquila, Italy,Correspondence to: Vanessa Castelli, .
| |
Collapse
|
3
|
Capsoni S, Arisi I, Malerba F, D’Onofrio M, Cattaneo A, Cherubini E. Targeting the Cation-Chloride Co-Transporter NKCC1 to Re-Establish GABAergic Inhibition and an Appropriate Excitatory/Inhibitory Balance in Selective Neuronal Circuits: A Novel Approach for the Treatment of Alzheimer's Disease. Brain Sci 2022; 12:783. [PMID: 35741668 PMCID: PMC9221351 DOI: 10.3390/brainsci12060783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 01/27/2023] Open
Abstract
GABA, the main inhibitory neurotransmitter in the adult brain, depolarizes and excites immature neurons because of an initially higher intracellular chloride concentration [Cl-]i due to the delayed expression of the chloride exporter KCC2 at birth. Depolarization-induced calcium rise via NMDA receptors and voltage-dependent calcium channels is instrumental in shaping neuronal circuits and in controlling the excitatory (E)/inhibitory (I) balance in selective brain areas. An E/I imbalance accounts for cognitive impairment observed in several neuropsychiatric disorders. The aim of this review is to summarize recent data on the mechanisms by which alterations of GABAergic signaling alter the E/I balance in cortical and hippocampal neurons in Alzheimer's disease (AD) and the role of cation-chloride co-transporters in this process. In particular, we discuss the NGF and AD relationship and how mice engineered to express recombinant neutralizing anti-NGF antibodies (AD11 mice), which develop a neurodegenerative pathology reminiscent of that observed in AD patients, exhibit a depolarizing action of GABA due to KCC2 impairment. Treating AD and other forms of dementia with bumetanide, a selective KCC2 antagonist, contributes to re-establishing a proper E/I balance in selective brain areas, leading to amelioration of AD symptoms and the slowing down of disease progression.
Collapse
Affiliation(s)
- Simona Capsoni
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy;
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, 44121 Ferrara, Italy
| | - Ivan Arisi
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (I.A.); (F.M.); (M.D.)
| | - Francesca Malerba
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (I.A.); (F.M.); (M.D.)
| | - Mara D’Onofrio
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (I.A.); (F.M.); (M.D.)
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, 56126 Pisa, Italy;
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (I.A.); (F.M.); (M.D.)
| | - Enrico Cherubini
- Fondazione European Brain Research Institute (EBRI) Rita Levi-Montalcini, 00161 Rome, Italy; (I.A.); (F.M.); (M.D.)
| |
Collapse
|
4
|
A Microglial Function for the Nerve Growth Factor: Predictions of the Unpredictable. Cells 2022; 11:cells11111835. [PMID: 35681529 PMCID: PMC9180430 DOI: 10.3390/cells11111835] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/29/2022] [Accepted: 06/02/2022] [Indexed: 12/10/2022] Open
Abstract
Microglia are the only immune cell population present in the brain parenchyma. Their vantage position in the central nervous system (CNS) enables these myeloid cells to perform the most disparate of tasks: from the classical immune functions of fighting infections and surveilling the extracellular space for pathogens and damage, to sculpting the neuronal circuitry by pruning unnecessary synapses and assisting neurons in spine formation, aiding in the maintenance of brain homeostasis. The neurotrophin field has always been dominated by the neurocentric view that the primary target of these molecules must be neurons: this holds true even for the Nerve Growth Factor (NGF), which owes its popularity in the neuroscience community to its trophic and tropic activity towards sensory and sympathetic neurons in the peripheral nervous system, and cholinergic neurons in the CNS. The increasing evidence that microglia are an integral part of neuronal computation calls for a closer look as to whether these glial cells are capable of responding directly to NGF. In this review, we will first outline evidence in support of a role for NGF as a molecule mediating neuroimmune communication. Then, we will illustrate some of those non-immune features that have made microglial cells one of the hottest topics of this last decade. In conclusion, we will discuss evidence in support of a microglial function for NGF.
Collapse
|
5
|
Abubakar MB, Sanusi KO, Ugusman A, Mohamed W, Kamal H, Ibrahim NH, Khoo CS, Kumar J. Alzheimer's Disease: An Update and Insights Into Pathophysiology. Front Aging Neurosci 2022; 14:742408. [PMID: 35431894 PMCID: PMC9006951 DOI: 10.3389/fnagi.2022.742408] [Citation(s) in RCA: 101] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/25/2022] [Indexed: 12/17/2022] Open
Abstract
Alzheimer's disease (AD) is an irreversible brain disorder associated with slow, progressive loss of brain functions mostly in older people. The disease processes start years before the symptoms are manifested at which point most therapies may not be as effective. In the hippocampus, the key proteins involved in the JAK2/STAT3 signaling pathway, such as p-JAK2-Tyr1007 and p-STAT3-Tyr705 were found to be elevated in various models of AD. In addition to neurons, glial cells such as astrocytes also play a crucial role in the progression of AD. Without having a significant effect on tau and amyloid pathologies, the JAK2/STAT3 pathway in reactive astrocytes exhibits a behavioral impact in the experimental models of AD. Cholinergic atrophy in AD has been traced to a trophic failure in the NGF metabolic pathway, which is essential for the survival and maintenance of basal forebrain cholinergic neurons (BFCN). In AD, there is an alteration in the conversion of the proNGF to mature NGF (mNGF), in addition to an increase in degradation of the biologically active mNGF. Thus, the application of exogenous mNGF in experimental studies was shown to improve the recovery of atrophic BFCN. Furthermore, it is now coming to light that the FGF7/FGFR2/PI3K/Akt signaling pathway mediated by microRNA-107 is also involved in AD pathogenesis. Vascular dysfunction has long been associated with cognitive decline and increased risk of AD. Vascular risk factors are associated with higher tau and cerebral beta-amyloid (Aβ) burden, while synergistically acting with Aβ to induce cognitive decline. The apolipoprotein E4 polymorphism is not just one of the vascular risk factors, but also the most prevalent genetic risk factor of AD. More recently, the research focus on AD shifted toward metabolisms of various neurotransmitters, major and minor nutrients, thus giving rise to metabolomics, the most important "omics" tool for the diagnosis and prognosis of neurodegenerative diseases based on an individual's metabolome. This review will therefore proffer a better understanding of novel signaling pathways associated with neural and glial mechanisms involved in AD, elaborate potential links between vascular dysfunction and AD, and recent developments in "omics"-based biomarkers in AD.
Collapse
Affiliation(s)
- Murtala Bello Abubakar
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kamaldeen Olalekan Sanusi
- Department of Physiology, Faculty of Basic Medical Sciences, College of Health Sciences, Usmanu Danfodiyo University, Sokoto, Nigeria
- Centre for Advanced Medical Research and Training, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Azizah Ugusman
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Wael Mohamed
- Department of Basic Medical Science, Kulliyyah of Medicine, International Islamic University Malaysia, Kuantan, Malaysia
- Department of Clinical Pharmacology, Faculty of Medicine, Menoufia University, Shebin El-Kom, Egypt
| | - Haziq Kamal
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Nurul Husna Ibrahim
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Ching Soong Khoo
- Neurology Unit, Department of Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| | - Jaya Kumar
- Department of Physiology, Faculty of Medicine, Universiti Kebangsaan Malaysia Medical Centre, Kuala Lumpur, Malaysia
| |
Collapse
|
6
|
Capsoni S, Cattaneo A. Getting Into the Brain: The Intranasal Approach to Enhance the Delivery of Nerve Growth Factor and Its Painless Derivative in Alzheimer’s Disease and Down Syndrome. Front Neurosci 2022; 16:773347. [PMID: 35360160 PMCID: PMC8961408 DOI: 10.3389/fnins.2022.773347] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/10/2022] [Indexed: 01/04/2023] Open
Abstract
The neurotrophin Nerve Growth Factor (NGF) holds a great potential as a therapeutic candidate for the treatment of neurological diseases. However, its safe and effective delivery to the brain is limited by the fact that NGF needs to be selectively targeted to the brain, to avoid severe side effects such as pain and to bypass the blood brain barrier. In this perspective, we will summarize the different approaches that have been used, or are currently applied, to deliver NGF to the brain, during preclinical and clinical trials to develop NGF as a therapeutic drug for Alzheimer’s disease. We will focus on the intranasal delivery of NGF, an approach that is used to deliver proteins to the brain in a non-invasive, safe, and effective manner minimizing systemic exposure. We will also describe the main experimental facts related to the effective intranasal delivery of a mutant form of NGF [painless NGF, human nerve growth factor painless (hNGFp)] in mouse models of Alzheimer’s disease and compare it to other ways to deliver NGF to the brain. We will also report new data on the application of intranasal delivery of hNGFp in Down Syndrome mouse model. These new data extend the therapeutic potential of hNGFp for the treatment of the dementia that is progressively associated to Down Syndrome. In conclusion, we will show how this approach can be a promising strategy and a potential solution for other unmet medical needs of safely and effectively delivering this neuroprotective neurotrophin to the brain.
Collapse
Affiliation(s)
- Simona Capsoni
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- Section of Physiology, Department of Neuroscience and Rehabilitation, University of Ferrara, Ferrara, Italy
- *Correspondence: Simona Capsoni,
| | - Antonino Cattaneo
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Pisa, Italy
- European Brain Research Institute–Fondazione Rita Levi-Montalcini, Rome, Italy
| |
Collapse
|
7
|
Som S, Antony J, Dhanabal SP, Ponnusankar S. Neuroprotective role of Diosgenin, a NGF stimulator, against Aβ (1-42) induced neurotoxicity in animal model of Alzheimer's disease. Metab Brain Dis 2022; 37:359-372. [PMID: 35023028 DOI: 10.1007/s11011-021-00880-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 12/05/2021] [Indexed: 01/24/2023]
Abstract
Diosgenin is a neurosteroid derived from the plants and has been previously reported for its numerous health beneficial properties, such as anti-arrhythmic, hypolipidemic, and antiproliferative effects. Although several studies conducted earlier suggested cognition enhancement actions of diosgenin against neurodegenerative disorders, but the molecular mechanisms underlying are not clearly understood. In the present study, we investigated the neuroprotective effect of diosgenin in the Wistar rats that received an intracerebroventricular injection of Amyloid-β (1-42) peptides, representing a rodent model of Alzheimer's disease (AD). Animals were treated with 100 and 200 mg/kg/p.o of diosgenin for 28 days, followed by Amyloid-β (1-42) peptides infusion. Animals were assessed for the spatial learning and memory by using radial arm maze and passive avoidance task. Subsequently, animals were euthanized and brains were collected for biochemical estimations and histopathological studies. Our results revealed that, diosgenin administration dose dependently improved the spatial learning and memory and protected the animals from Amyloid-β (1-42) peptides induced disrupted cognitive functions. Further, biochemical analysis showed that diosgenin successfully attenuated Amyloid-β (1-42) mediated plaque load, oxidative stress, neuroinflammation and elevated acetylcholinesterase activity. In addition, histopathological evaluation also supported neuroprotective effects of diosgenin in hippocampus of rat brain when assessed using hematoxylin-eosin and Cresyl Violet staining. Thus, the aforementioned effects suggested protective action of diosgenin against Aβ (1-42) induced neuronal damage and thereby can serve as a potential therapeutic candidate for AD.
Collapse
Affiliation(s)
- Swati Som
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India
| | - Justin Antony
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India
| | - SPalanisamy Dhanabal
- Department of Pharmacognosy and Phytochemistry, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India
| | - Sivasankaran Ponnusankar
- Department of Pharmacy Practice, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty-643001, Tamilnadu, India.
| |
Collapse
|
8
|
Shekari A, Fahnestock M. Retrograde Axonal Transport of Neurotrophins in Basal Forebrain Cholinergic Neurons. Methods Mol Biol 2022; 2431:249-270. [PMID: 35412281 DOI: 10.1007/978-1-0716-1990-2_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Axonal transport is key for the survival and function of all neurons. This process is especially important in basal forebrain cholinergic neurons due to their extremely long and diffuse axonal projections. These neurons are critical for learning and memory and degenerate rapidly in age-related neurodegenerative disorders like Alzheimer's and Parkinson's disease. The vulnerability of these neurons to age-related neurodegeneration may be partially attributed to their reliance on retrograde axonal transport for neurotrophic support. Unfortunately, little is known about the molecular biology underlying the retrograde transport dynamics of these neurons due to the difficulty associated with their maintenance in vitro. Here, we outline a protocol for culturing primary rodent basal forebrain cholinergic neurons in microfluidic chambers, devices designed specifically for the study of axonal transport in vitro. We outline protocols for labeling neurotrophins and tracking neurotrophin transport in these neurons. Our protocols can also be used to study axonal transport in other types of primary neurons such as cortical and hippocampal neurons.
Collapse
Affiliation(s)
- Arman Shekari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
9
|
Manni L, Conti G, Chiaretti A, Soligo M. Intranasal Delivery of Nerve Growth Factor in Neurodegenerative Diseases and Neurotrauma. Front Pharmacol 2021; 12:754502. [PMID: 34867367 PMCID: PMC8635100 DOI: 10.3389/fphar.2021.754502] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/01/2021] [Indexed: 01/01/2023] Open
Abstract
Since the 1980s, the development of a pharmacology based on nerve growth factor (NGF) has been postulated for the therapy of Alzheimer’s disease (AD). This hypothesis was based on the rescuing effect of the neurotrophin on the cholinergic phenotype of the basal forebrain neurons, primarily compromised during the development of AD. Subsequently, the use of NGF was put forward to treat a broader spectrum of neurological conditions affecting the central nervous system, such as Parkinson’s disease, degenerative retinopathies, severe brain traumas and neurodevelopmental dysfunctions. While supported by solid rational assumptions, the progress of a pharmacology founded on these hypotheses has been hampered by the difficulty of conveying NGF towards the brain parenchyma without resorting to invasive and risky delivery methods. At the end of the last century, it was shown that NGF administered intranasally to the olfactory epithelium was able to spread into the brain parenchyma. Notably, after such delivery, pharmacologically relevant concentration of exogenous NGF was found in brain areas located at considerable distances from the injection site along the rostral-caudal axis. These observations paved the way for preclinical characterization and clinical trials on the efficacy of intranasal NGF for the treatment of neurodegenerative diseases and of the consequences of brain trauma. In this review, a summary of the preclinical and clinical studies published to date will be attempted, as well as a discussion about the mechanisms underlying the efficacy and the possible development of the pharmacology based on intranasal conveyance of NGF to the brain.
Collapse
Affiliation(s)
- Luigi Manni
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| | - Giorgio Conti
- Department of Emergency, Intensive Pediatric Therapy and Pediatric Trauma Center, Anesthesiological and Reanimation Sciences, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Antonio Chiaretti
- Department of Woman and Child Health, Institute of Pediatrics, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Marzia Soligo
- Institute of Translational Pharmacology, National Research Council of Italy (CNR), Rome, Italy
| |
Collapse
|
10
|
Dobryakova YV, Zaichenko MI, Spivak YS, Stepanichev MY, Markevich VA, Bolshakov AP. Overexpression of Nerve Growth Factor in the Hippocampus Induces Behavioral Changes in Rats with 192IgG-Saporin-Induced Cholinergic Deficit. NEUROCHEM J+ 2021. [DOI: 10.1134/s1819712421030028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Cuello AC. Rita Levi-Montalcini, NGF Metabolism in Health and in the Alzheimer's Pathology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1331:119-144. [PMID: 34453296 DOI: 10.1007/978-3-030-74046-7_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This chapter relates biographic personal and scientific interactions with Rita Levi-Montalcini. It highlights research from our laboratory inspired by Rita's fundamental discovery. This work from studies on potentially neuro-reparative gangliosides, their interactions with NGF, the role of exogenous NGF in the recovery of degenerating cholinergic neurons of the basal forebrain to the evidence that endogenous NGF maintains the "day-to-day" cortical synaptic phenotype and the discovery of a novel CNS "NGF metabolic pathway." This brain pathway's conceptual platform allowed the investigation of its status during the Alzheimer's disease (AD) pathology. This revealed a major compromise of the conversion of the NGF precursor molecule (proNGF) into the most biologically active molecule, mature NGF (mNGF). Furthermore, in this pathology, we found enhanced protein levels and enzymatic activity of the proteases responsible for the proteolytic degradation of mNGF. A biochemical prospect explaining the tropic factor vulnerability of the NGF-dependent basal forebrain cholinergic neurons and of their synaptic terminals. The NGF deregulation of this metabolic pathway is evident at preclinical stages and reflected in body fluid particularly in the cerebrospinal fluid (CSF). The findings of a deregulation of the NGF metabolic pathway and its reflection in plasma and CSF are opening doors for the development of novel biomarkers for preclinical detection of AD pathology both in Alzheimer's and in Down syndrome (DS) with "silent" AD pathology.
Collapse
Affiliation(s)
- A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
12
|
Kropf E, Fahnestock M. Effects of Reactive Oxygen and Nitrogen Species on TrkA Expression and Signalling: Implications for proNGF in Aging and Alzheimer's Disease. Cells 2021; 10:cells10081983. [PMID: 34440751 PMCID: PMC8392605 DOI: 10.3390/cells10081983] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 11/18/2022] Open
Abstract
Nerve growth factor (NGF) and its precursor form, proNGF, are critical for neuronal survival and cognitive function. In the brain, proNGF is the only detectable form of NGF. Dysregulation of proNGF in the brain is implicated in age-related memory loss and Alzheimer’s disease (AD). AD is characterized by early and progressive degeneration of the basal forebrain, an area critical for learning, memory, and attention. Learning and memory deficits in AD are associated with loss of proNGF survival signalling and impaired retrograde transport of proNGF to the basal forebrain. ProNGF transport and signalling may be impaired by the increased reactive oxygen and nitrogen species (ROS/RNS) observed in the aged and AD brain. The current literature suggests that ROS/RNS nitrate proNGF and reduce the expression of the proNGF receptor tropomyosin-related kinase A (TrkA), disrupting its downstream survival signalling. ROS/RNS-induced reductions in TrkA expression reduce cell viability, as proNGF loses its neurotrophic function in the absence of TrkA and instead generates apoptotic signalling via the pan-neurotrophin receptor p75NTR. ROS/RNS also interfere with kinesin and dynein motor functions, causing transport deficits. ROS/RNS-induced deficits in microtubule motor function and TrkA expression and signalling may contribute to the vulnerability of the basal forebrain in AD. Antioxidant treatments may be beneficial in restoring proNGF signalling and axonal transport and reducing basal forebrain neurodegeneration and related deficits in cognitive function.
Collapse
Affiliation(s)
- Erika Kropf
- Graduate Program in Neuroscience, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada;
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, Faculty of Health Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
- Correspondence:
| |
Collapse
|
13
|
Shekari A, Fahnestock M. Cholinergic neurodegeneration in Alzheimer disease mouse models. HANDBOOK OF CLINICAL NEUROLOGY 2021; 182:191-209. [PMID: 34266592 DOI: 10.1016/b978-0-12-819973-2.00013-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Cholinergic signaling is critical for cognitive function. The basal forebrain is the major cholinergic output of the central nervous system. Degeneration of basal forebrain cholinergic neurons is a hallmark of Alzheimer's disease (AD). Mouse models are invaluable tools in disease research and have been used to study AD for over 25 years. However, animal models of AD vary greatly with respect to the degree of cholinergic degeneration observed. The following review will outline the most influential animal models of AD with an emphasis on the basal forebrain cholinergic system.
Collapse
Affiliation(s)
- Arman Shekari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada.
| |
Collapse
|
14
|
Petrella C, Ciotti MT, Nisticò R, Piccinin S, Calissano P, Capsoni S, Mercanti D, Cavallaro S, Possenti R, Severini C. Involvement of Bradykinin Receptor 2 in Nerve Growth Factor Neuroprotective Activity. Cells 2020; 9:cells9122651. [PMID: 33321704 PMCID: PMC7763563 DOI: 10.3390/cells9122651] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/03/2020] [Accepted: 12/07/2020] [Indexed: 11/17/2022] Open
Abstract
Neurotrophin nerve growth factor (NGF) has been demonstrated to upregulate the gene expression of bradykinin receptor 2 (B2R) on sensory neurons, thus facilitating nociceptive signals. The aim of the present study is to investigate the involvement of B2R in the NGF mechanism of action in nonsensory neurons in vitro by using rat mixed cortical primary cultures (CNs) and mouse hippocampal slices, and in vivo in Alzheimer’s disease (AD) transgenic mice (5xFAD) chronically treated with NGF. A significant NGF-mediated upregulation of B2R was demonstrated by microarray, Western blot, and immunofluorescence analysis in CNs, indicating microglial cells as the target of this modulation. The B2R involvement in the NGF mechanism of action was also demonstrated by using a selective B2R antagonist which was able to reverse the neuroprotective effect of NGF in CNs, as revealed by viability assay, and the NGF-induced long-term potentiation (LTP) in hippocampal slices. To confirm in vitro observations, B2R upregulation was observed in 5xFAD mouse brain following chronic intranasal NGF treatment. This study demonstrates for the first time that B2R is a key element in the neuroprotective activity and synaptic plasticity mediated by NGF in brain cells.
Collapse
Affiliation(s)
- Carla Petrella
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.P.); (M.T.C.); (D.M.)
| | - Maria Teresa Ciotti
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.P.); (M.T.C.); (D.M.)
| | - Robert Nisticò
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (R.N.); (S.P.)
- Rita Levi-Montalcini European Brain Research Institute (EBRI), Viale Regina Elena, 295, 00161 Rome, Italy;
| | - Sonia Piccinin
- Department of Biology, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy; (R.N.); (S.P.)
| | - Pietro Calissano
- Rita Levi-Montalcini European Brain Research Institute (EBRI), Viale Regina Elena, 295, 00161 Rome, Italy;
| | - Simona Capsoni
- Section of Physiology, Department of Biomedical and Specialty Surgical Sciences, University of Ferrara, Via Luigi Borsari 46, 44121 Ferrara, Italy;
- Bio@SNS Laboratory of Biology, Scuola Normale Superiore, Piazza dei Cavalieri, 7, 56126 Pisa, Italy
| | - Delio Mercanti
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.P.); (M.T.C.); (D.M.)
| | - Sebastiano Cavallaro
- Institute for Biomedical Research and Innovation, National Research Council, Via Paolo Gaifami 18, 95126 Catania, Italy;
| | - Roberta Possenti
- Department Medicine of Systems, University of Rome “Tor Vergata”, Via della Ricerca Scientifica 1, 00133 Rome, Italy;
| | - Cinzia Severini
- Institute of Biochemistry and Cell Biology, National Research Council, Sapienza University of Rome, Viale del Policlinico, 155-00161 Rome, Italy; (C.P.); (M.T.C.); (D.M.)
- Correspondence:
| |
Collapse
|
15
|
Shekari A, Fahnestock M. Retrograde axonal transport of BDNF and proNGF diminishes with age in basal forebrain cholinergic neurons. Neurobiol Aging 2019; 84:131-140. [PMID: 31574357 DOI: 10.1016/j.neurobiolaging.2019.07.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 07/22/2019] [Accepted: 07/31/2019] [Indexed: 01/22/2023]
Abstract
Basal forebrain cholinergic neurons (BFCNs) are critical for learning and memory and degenerate early in Alzheimer's disease (AD). BFCNs depend for their survival and function on nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF), which are retrogradely transported from BFCN targets. Age is the greatest risk factor for developing AD, yet the influence of age on BFCN axonal transport is poorly understood. To model aging, embryonic rat basal forebrain or cortical neurons were cultured in microfluidic chambers. Senescence-associated beta-galactosidase staining indicated an aging phenotype only in BFCNs cultured for 18+ days in vitro. BDNF axonal transport impairments were observed exclusivley in aged BFCNs. BFCNs displayed robust proNGF transport, which also diminished with in vitro age. The expression of NGF receptor tropomyosin-related kinase-A and BDNF receptor tropomyosin-related kinase-B also decreased significantly with in vitro age in BFCNs only. These results suggest a unique vulnerability of BFCNs to age-induced transport deficits. These deficits, coupled with the reliance of BFCNs on neurotrophin transport, may explain their vulnerability to age-related neurodegenerative disorders like AD.
Collapse
Affiliation(s)
- Arman Shekari
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada.
| |
Collapse
|
16
|
Chen XQ, Mobley WC. Exploring the Pathogenesis of Alzheimer Disease in Basal Forebrain Cholinergic Neurons: Converging Insights From Alternative Hypotheses. Front Neurosci 2019; 13:446. [PMID: 31133787 PMCID: PMC6514132 DOI: 10.3389/fnins.2019.00446] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Alzheimer disease (AD) represents an oncoming epidemic that without an effective treatment promises to exact extraordinary financial and emotional burdens (Apostolova, 2016). Studies of pathogenesis are essential for defining critical molecular and cellular events and for discovering therapies to prevent or mitigate their effects. Through studies of neuropathology, genetic and cellular, and molecular biology recent decades have provided many important insights. Several hypotheses have been suggested. Documentation in the 1980s of selective loss of cholinergic neurons of the basal forebrain, followed by clinical improvement in those treated with inhibitors of acetylycholinesterase, supported the "cholinergic hypothesis of age-related cognitive dysfunction" (Bartus et al., 1982). A second hypothesis, prompted by the selective loss of cholinergic neurons and the discovery of central nervous system (CNS) neurotrophic factors, including nerve growth factor (NGF), prompted the "deficient neurotrophic hypothesis" (Chen et al., 2018). The most persuasive hypothesis, the amyloid cascade hypothesis first proposed more than 25 years ago (Selkoe and Hardy, 2016), is supported by a wealth of observations. Genetic studies were exceptionally important, pointing to increased dose of the gene for the amyloid precursor protein (APP) in Down syndrome (DS) and a familial AD (FAD) due to duplication of APP and to mutations in APP and in the genes for Presenilin 1 and 2 (PSEN1, 2), which encode the γ-secretase enzyme that processes APP (Dorszewska et al., 2016). The "tau hypothesis" noted the prominence of tau-related pathology and its correlation with dementia (Kametani and Hasegawa, 2018). Recent interest in induction of microglial activation in the AD brain, as well as other manifestations of inflammation, supports the "inflammatory hypothesis" (Mcgeer et al., 2016). We place these findings in the context of the selective, but by no means unique, involvement of BFCNs and their trophic dependence on NGF signaling and speculate as to how pathogenesis in these neurons is initiated, amplified and ultimately results in their dysfunction and death. In so doing we attempt to show how the different hypotheses for AD may interact and reinforce one another. Finally, we address current attempts to prevent and/or treat AD in light of advances in understanding pathogenetic mechanisms and suggest that studies in the DS population may provide unique insights into AD pathogenesis and treatment.
Collapse
Affiliation(s)
- Xu-Qiao Chen
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - William C. Mobley
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
17
|
Fahnestock M, Shekari A. ProNGF and Neurodegeneration in Alzheimer's Disease. Front Neurosci 2019; 13:129. [PMID: 30853882 PMCID: PMC6395390 DOI: 10.3389/fnins.2019.00129] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 02/05/2019] [Indexed: 11/13/2022] Open
Abstract
Profound and early basal forebrain cholinergic neuron (BFCN) degeneration is a hallmark of Alzheimer's disease (AD). Loss of synapses between basal forebrain and hippocampal and cortical target tissue correlates highly with the degree of dementia and is thought to be a major contributor to memory loss. BFCNs depend for their survival, connectivity and function on the neurotrophin nerve growth factor (NGF) which is retrogradely transported from its sites of synthesis in the cortex and hippocampus. The form of NGF found in human brain is proNGF. ProNGF binds to the NGF receptors TrkA and p75NTR, but it binds more strongly to p75NTR and more weakly to TrkA than does mature NGF. This renders proNGF more sensitive to receptor balance than mature NGF. In the healthy brain, where BFCNs express both TrkA and p75NTR, proNGF is neurotrophic, activating TrkA-dependent signaling pathways such as MAPK and Akt-mTOR and eliciting cell survival and neurite outgrowth. However, if TrkA is lost or if p75NTR is increased, proNGF activates p75NTR-dependent apoptotic pathways such as JNK. This receptor sensitivity serves as a neurotrophic/apoptotic switch that eliminates BFCNs that cannot maintain TrkA/p75NTR balance and therefore synaptic connections with their targets. TrkA is increasingly lost in mild cognitive impairment (MCI) and AD. In addition, proNGF accumulates at BFCN terminals in cortex and hippocampus, reducing the amount of trophic factor that reaches BFCN cell bodies. The loss of TrkA and accumulation of proNGF occur early in MCI and correlate with cognitive impairment. Increased levels of proNGF and reduced levels of TrkA lead to BFCN neurodegeneration and eventual p75NTR-dependent apoptosis. In addition, in AD BFCNs suffer from reduced TrkA-dependent retrograde transport which reduces neurotrophic support. Thus, BFCNs are particularly vulnerable to AD due to their dependence upon retrograde trophic support from proNGF signaling and transport.
Collapse
Affiliation(s)
- Margaret Fahnestock
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| | - Arman Shekari
- Neuroscience Graduate Program, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
18
|
Cuello AC, Pentz R, Hall H. The Brain NGF Metabolic Pathway in Health and in Alzheimer's Pathology. Front Neurosci 2019; 13:62. [PMID: 30809111 PMCID: PMC6379336 DOI: 10.3389/fnins.2019.00062] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Accepted: 01/21/2019] [Indexed: 12/11/2022] Open
Abstract
Emerging research has re-emphasized the role of the cortical cholinergic system in the symptomology and progression of Alzheimer's disease (AD). Basal forebrain (BF) cholinergic nuclei depend on target-derived NGF for survival during development and for the maintenance of a classical cholinergic phenotype during adulthood. In AD, BF cholinergic neurons lose their cholinergic phenotype and function, suggesting an impairment in NGF-mediated trophic support. We propose that alterations to the enzymatic pathway that controls the maturation of proNGF to mature NGF and the latter's ulterior degradation underlie this pathological process. Indeed, the NGF metabolic pathway has been demonstrated to be impaired in AD and other amyloid pathologies, and pharmacological manipulation of NGF metabolism has consequences in vivo for both levels of proNGF/NGF and the phenotype of BF cholinergic neurons. The NGF pathway may also have potential as a biomarker of cognitive decline in AD, as its changes can predict future cognitive decline in patients with Down syndrome as they develop preclinical Alzheimer's pathology. New evidence suggests that the cholinergic system, and by extension NGF, may have a greater role in the progression of AD than previously realized, as changes to the BF precede and predict changes to the entorhinal cortex, as anticholinergic drugs increase odds of developing AD, and as the use of donepezil can reduce rates of hippocampal and cortical thinning. These findings suggest that new, more sophisticated cholinergic therapies should be capable of preserving the basal forebrain thus having profound positive effects as treatments for AD.
Collapse
Affiliation(s)
- A. Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
| | - Rowan Pentz
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, Canada
| | - Hélène Hall
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Rocco ML, Soligo M, Manni L, Aloe L. Nerve Growth Factor: Early Studies and Recent Clinical Trials. Curr Neuropharmacol 2018; 16:1455-1465. [PMID: 29651949 PMCID: PMC6295934 DOI: 10.2174/1570159x16666180412092859] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 03/23/2018] [Accepted: 04/04/2018] [Indexed: 12/02/2022] Open
Abstract
Since its discovery, nerve growth factor (NGF) has long occupied a critical role in developmental and adult neurobiology for its many important regulatory functions on the survival, growth and differentiation of nerve cells in the peripheral and central nervous system. NGF is the first discovered member of a family of neurotrophic factors, collectively indicated as neurotrophins, (which include brain-derived neurotrophic factor, neurotrophin-3 and neurotrophin 4/5). NGF was discovered for its action on the survival and differentiation of selected populations of peripheral neurons. Since then, an enormous number of basic and human studies were undertaken to explore the role of purified NGF to prevent the death of NGF-receptive cells. These studies revealed that NGF possesses important therapeutic properties, after topical administration, on human cutaneous pressure ulcer, corneal ulcers, glaucoma, retinal maculopathy, Retinitis Pigmentosa and in pediatric optic gliomas and brain traumas. The aim of this review is to present our previous, recent and ongoing clinical studies on the therapeutic properties of NGF.
Collapse
Affiliation(s)
| | | | | | - Luigi Aloe
- Address correspondence to this author at the Fondazione IRET ONLUS, Via Tolara di Sopra 41/E, 40064 Ozzano Emilia (BO), Italy; Tel: +39-051-798776; Fax: +39-051-799673; E-mail:
| |
Collapse
|
20
|
Tyler CM, Federoff HJ. CNS Gene Therapy and a Nexus of Complexity: Systems and Biology at a Crossroads. Cell Transplant 2017; 15:267-73. [PMID: 16719061 DOI: 10.3727/000000006783982007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Gene therapy is a potentially promising new treatment for neurodegenerative disorders such as Alzheimer's disease (AD), which has been difficult to treat with conventional therapeutics. Viral vector-mediated somatic gene therapy is a rapidly developing methodology for providing never before achieved capability to deliver specific genes to the CNS in a highly localized and controlled manner. With the advent and refinements of this technology one focus is directed to which genes are the most appropriate to select for specific disease indications. Nerve growth factor (NGF), a potent survival factor for critical cell populations that degenerate in AD, has been chosen already for clinical gene therapy trials in human AD patients. Much knowledge about the pathophysiological underpinnings of AD is still lacking to make clear which patients may benefit from a gene therapy approach. Moreover, a detailed understanding of sustained NGF action in the normal and diseased CNS needs to be resolved before conclusions can be drawn regarding the utility of NGF gene therapy. Systematic efforts to acquire this new knowledge should compel clinically and biologically sophisticated efforts to advance gene therapy for neurodegenerative diseases.
Collapse
Affiliation(s)
- Carolyn M Tyler
- Center for Aging and Developmental Biology, Aab Institute of Biomedical Sciences, Department of Neurology, University of Rochester School of Medicine and Dentistry, Rochester NY 14642, USA
| | | |
Collapse
|
21
|
Isaev NK, Stelmashook EV, Genrikhs EE. Role of Nerve Growth Factor in Plasticity of Forebrain Cholinergic Neurons. BIOCHEMISTRY (MOSCOW) 2017; 82:291-300. [PMID: 28320270 DOI: 10.1134/s0006297917030075] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Neuronal plastic rearrangements during the development and functioning of neurons are largely regulated by trophic factors, including nerve growth factor (NGF). NGF is also involved in the pathogenesis of Alzheimer's disease. In the brain, NGF is produced in structures innervated by basal forebrain cholinergic neurons and retrogradely transported along the axons to the bodies of cholinergic neurons. NGF is essential for normal development and functioning of the basal forebrain; it affects formation of the dendritic tree and modulates the activities of choline acetyltransferase and acetylcholinesterase in basal forebrain neurons. The trophic effect of NGF is mediated through its interactions with TrkA and p75 receptors. Experimental and clinical studies have shown that brain levels of NGF are altered in various pathologies. However, the therapeutic use of NGF is limited by its poor ability to penetrate the blood-brain barrier, adverse side effects that are due to the pleiotropic action of this factor, and the possibility of immune response to NGF. For this reason, the development of gene therapy methods for treating NGF deficit-associated pathologies is of particular interest. Another approach is creation of low molecular weight NGF mimetics that would interact with the corresponding receptors and display high biological activity but be free of the unfavorable effects of NGF.
Collapse
Affiliation(s)
- N K Isaev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, 119991, Russia.
| | | | | |
Collapse
|
22
|
Pramanik S, Sulistio YA, Heese K. Neurotrophin Signaling and Stem Cells-Implications for Neurodegenerative Diseases and Stem Cell Therapy. Mol Neurobiol 2016; 54:7401-7459. [PMID: 27815842 DOI: 10.1007/s12035-016-0214-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 10/11/2016] [Indexed: 02/07/2023]
Abstract
Neurotrophins (NTs) are members of a neuronal growth factor protein family whose action is mediated by the tropomyosin receptor kinase (TRK) receptor family receptors and the p75 NT receptor (p75NTR), a member of the tumor necrosis factor (TNF) receptor family. Although NTs were first discovered in neurons, recent studies have suggested that NTs and their receptors are expressed in various types of stem cells mediating pivotal signaling events in stem cell biology. The concept of stem cell therapy has already attracted much attention as a potential strategy for the treatment of neurodegenerative diseases (NDs). Strikingly, NTs, proNTs, and their receptors are gaining interest as key regulators of stem cells differentiation, survival, self-renewal, plasticity, and migration. In this review, we elaborate the recent progress in understanding of NTs and their action on various stem cells. First, we provide current knowledge of NTs, proNTs, and their receptor isoforms and signaling pathways. Subsequently, we describe recent advances in the understanding of NT activities in various stem cells and their role in NDs, particularly Alzheimer's disease (AD) and Parkinson's disease (PD). Finally, we compile the implications of NTs and stem cells from a clinical perspective and discuss the challenges with regard to transplantation therapy for treatment of AD and PD.
Collapse
Affiliation(s)
- Subrata Pramanik
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Yanuar Alan Sulistio
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea
| | - Klaus Heese
- Graduate School of Biomedical Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 133-791, Republic of Korea.
| |
Collapse
|
23
|
Choonara YE, Kumar P, Modi G, Pillay V. Improving drug delivery technology for treating neurodegenerative diseases. Expert Opin Drug Deliv 2016; 13:1029-43. [PMID: 26967508 DOI: 10.1517/17425247.2016.1162152] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Neurodegenerative diseases (NDs) represent intricate challenges for efficient uptake and transport of drugs to the brain mainly due to the restrictive blood-brain barrier (BBB). NDs are characterized by the loss of neuronal subtypes as sporadic and/or familial and several mechanisms of neurodegeneration have been identified. AREAS COVERED This review attempts to recap, organize and concisely evaluate the advanced drug delivery systems designed for treating common NDs. It highlights key research gaps and opinionates on new neurotherapies to overcome the BBB as an addition to the current treatments of countering oxidative stress, inflammation and apoptotic mechanisms. EXPERT OPINION Current treatments do not fully address the biological, drug and therapeutic factors faced. This has led to the development of vogue treatments such as nose-to-brain technologies, bio-engineered systems, fusion protein chaperones, stem cells, gene therapy, use of natural compounds, neuroprotectants and even vaccines. However, failure of these treatments is mainly due to the BBB and non-specific delivery in the brain. In order to increase neuroavailability various advanced drug delivery systems provide promising alternatives that are able to augment the treatment of Alzheimer's disease and Parkinson's disease. However, much work is still required in this field beyond the preclinical testing phase.
Collapse
Affiliation(s)
- Yahya E Choonara
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences , University of the Witwatersrand, Johannesburg , South Africa
| | - Pradeep Kumar
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences , University of the Witwatersrand, Johannesburg , South Africa
| | - Girish Modi
- b Division of Neurosciences, Department of Neurology, Faculty of Health Sciences , University of the Witwatersrand, Johannesburg , South Africa
| | - Viness Pillay
- a Wits Advanced Drug Delivery Platform Research Unit, Department of Pharmacy and Pharmacology, School of Therapeutic Science, Faculty of Health Sciences , University of the Witwatersrand, Johannesburg , South Africa
| |
Collapse
|
24
|
Hall JM, Savage LM. Exercise leads to the re-emergence of the cholinergic/nestin neuronal phenotype within the medial septum/diagonal band and subsequent rescue of both hippocampal ACh efflux and spatial behavior. Exp Neurol 2016; 278:62-75. [PMID: 26836322 DOI: 10.1016/j.expneurol.2016.01.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/04/2015] [Accepted: 01/22/2016] [Indexed: 12/15/2022]
Abstract
Exercise has been shown to improve cognitive functioning in a range of species, presumably through an increase in neurotrophins throughout the brain, but in particular the hippocampus. The current study assessed the ability of exercise to restore septohippocampal cholinergic functioning in the pyrithiamine-induced thiamine deficiency (PTD) rat model of the amnestic disorder Korsakoff Syndrome. After voluntary wheel running or sedentary control conditions (stationary wheel attached to the home cage), PTD and control rats were behaviorally tested with concurrent in vivo microdialysis, at one of two time points: 24-h or 2-weeks post-exercise. It was found that only after the 2-week adaption period did exercise lead to an interrelated sequence of events in PTD rats that included: (1) restored spatial working memory; (2) rescued behaviorally-stimulated hippocampal acetylcholine efflux; and (3) within the medial septum/diagonal band, the re-emergence of the cholinergic (choline acetyltransferase [ChAT+]) phenotype, with the greatest change occurring in the ChAT+/nestin+ neurons. Furthermore, in control rats, exercise followed by a 2-week adaption period improved hippocampal acetylcholine efflux and increased the number of neurons co-expressing the ChAT and nestin phenotype. These findings demonstrate a novel mechanism by which exercise can modulate the mature cholinergic/nestin neuronal phenotype leading to improved neurotransmitter function as well as enhanced learning and memory.
Collapse
Affiliation(s)
- Joseph M Hall
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, United States
| | - Lisa M Savage
- Department of Psychology, Behavioral Neuroscience Program, Binghamton University, State University of New York, United States.
| |
Collapse
|
25
|
Mufson EJ, Mahady L, Waters D, Counts SE, Perez SE, DeKosky ST, Ginsberg SD, Ikonomovic MD, Scheff SW, Binder LI. Hippocampal plasticity during the progression of Alzheimer's disease. Neuroscience 2015; 309:51-67. [PMID: 25772787 PMCID: PMC4567973 DOI: 10.1016/j.neuroscience.2015.03.006] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 02/05/2015] [Accepted: 03/04/2015] [Indexed: 11/27/2022]
Abstract
Neuroplasticity involves molecular and structural changes in central nervous system (CNS) throughout life. The concept of neural organization allows for remodeling as a compensatory mechanism to the early pathobiology of Alzheimer's disease (AD) in an attempt to maintain brain function and cognition during the onset of dementia. The hippocampus, a crucial component of the medial temporal lobe memory circuit, is affected early in AD and displays synaptic and intraneuronal molecular remodeling against a pathological background of extracellular amyloid-beta (Aβ) deposition and intracellular neurofibrillary tangle (NFT) formation in the early stages of AD. Here we discuss human clinical pathological findings supporting the concept that the hippocampus is capable of neural plasticity during mild cognitive impairment (MCI), a prodromal stage of AD and early stage AD.
Collapse
Affiliation(s)
- E J Mufson
- Barrow Neurological Institute, St. Joseph's Medical Center, Department of Neurobiology, Phoenix, AZ 85013, United States.
| | - L Mahady
- Barrow Neurological Institute, St. Joseph's Medical Center, Department of Neurobiology, Phoenix, AZ 85013, United States
| | - D Waters
- Barrow Neurological Institute, St. Joseph's Medical Center, Department of Neurobiology, Phoenix, AZ 85013, United States
| | - S E Counts
- Department of Translational Science & Molecular Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| | - S E Perez
- Division of Neurological Sciences, Rush University Medical Center, Chicago, IL, United States
| | - S T DeKosky
- Department of Radiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - S D Ginsberg
- Center for Dementia Research, Nathan Kline Institute, Departments of Psychiatry and Physiology & Neuroscience, New York University Langone Medical Center, Orangeburg, NY, United States
| | - M D Ikonomovic
- Departments of Neurology and Psychiatry, University of Pittsburgh, Geriatric Research Education and Clinical Center, VA Pittsburgh Healthcare System, Pittsburgh, PA, United States
| | - S W Scheff
- Sanders Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - L I Binder
- Department of Translational Science & Molecular Medicine, Michigan State University College of Human Medicine, Grand Rapids, MI, United States
| |
Collapse
|
26
|
Soligo M, Protto V, Florenzano F, Bracci-Laudiero L, De Benedetti F, Chiaretti A, Manni L. The mature/pro nerve growth factor ratio is decreased in the brain of diabetic rats: Analysis by ELISA methods. Brain Res 2015; 1624:455-468. [PMID: 26282349 DOI: 10.1016/j.brainres.2015.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/21/2015] [Accepted: 08/08/2015] [Indexed: 01/08/2023]
Abstract
Nerve growth factor (NGF) is essential for the survival and functional maintenance of forebrain cholinergic neurons projecting mainly to the cortex and hippocampus. NGF is produced in these brain areas but while mature NGF (mNGF) has a survival/differentiative effect its precursor proNGF elicits apoptosis in cholinergic neurons. Impaired neurotransmission, loss of cholinergic phenotype and abnormal NGF content characterize the cholinergic circuitries in animal models of diabetic encephalopathy (DE). It is not known whether defective production or maturation of NGF could play a key role in cholinergic neurodegeneration in DE. Quantification of the mNGF/proNGF ratio is therefore needed to characterize the development and progression of NGF-related neuronal diseases. In our work, we aimed at developing ELISA methods to measure either mNGF or proNGF tissue concentration; and to define the mNGF/proNGF ratio in the rat cortex and hippocampus during the early stage of streptozotocin-induced type 1 diabetes. Using commercially available NGF ELISA kits and antibodies, we set up ELISAs for human and rat mNGF and proNGF. We then analyzed the mNGF/proNGF ratio in the cortex and hippocampus of DE rats and found that it decreased in both tissues starting from the fourth week after diabetes induction. In diabetic brain the increase in proNGF involves accumulation of the isoforms with molecular weights of 50 and 34 kDa. Our study for the first time specifically quantifies the absolute content of mature and proNGF and the mNGF/proNGF ratio in brain tissues, suggesting that early progression of experimental DE is characterized by defective maturation of NGF.
Collapse
Affiliation(s)
- Marzia Soligo
- Institute of Translational Pharmacology-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Virginia Protto
- Institute of Translational Pharmacology-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy
| | - Fulvio Florenzano
- Confocal Microscopy Unit, European Brain Research Institute (EBRI), Via del Fosso di Fiorano 64-65, 00143 Rome, Italy
| | - Luisa Bracci-Laudiero
- Institute of Translational Pharmacology-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy; Bambino Gesu' Children's Hospital-IRCSS, Division of Rheumatology, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Fabrizio De Benedetti
- Bambino Gesu' Children's Hospital-IRCSS, Division of Rheumatology, Piazza S. Onofrio 4, 00165 Rome, Italy
| | - Antonio Chiaretti
- Department of Pediatrics, Catholic University of Rome, Largo A Gemelli 8, 00168 Rome, Italy
| | - Luigi Manni
- Institute of Translational Pharmacology-CNR, via del Fosso del Cavaliere 100, 00133 Rome, Italy.
| |
Collapse
|
27
|
Chang PT, Talekar RS, Kung FL, Chern TR, Huang CW, Ye QQ, Yang MY, Yu CW, Lai SY, Deore RR, Lin JH, Chen CS, Chen GS, Chern JW. A newly designed molecule J2326 for Alzheimer's disease disaggregates amyloid fibrils and induces neurite outgrowth. Neuropharmacology 2015; 92:146-57. [DOI: 10.1016/j.neuropharm.2015.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Revised: 12/25/2014] [Accepted: 01/07/2015] [Indexed: 01/23/2023]
|
28
|
Karami A, Eyjolfsdottir H, Vijayaraghavan S, Lind G, Almqvist P, Kadir A, Linderoth B, Andreasen N, Blennow K, Wall A, Westman E, Ferreira D, Kristoffersen Wiberg M, Wahlund LO, Seiger Å, Nordberg A, Wahlberg L, Darreh-Shori T, Eriksdotter M. Changes in CSF cholinergic biomarkers in response to cell therapy with NGF in patients with Alzheimer's disease. Alzheimers Dement 2015; 11:1316-28. [PMID: 25676388 DOI: 10.1016/j.jalz.2014.11.008] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Revised: 09/26/2014] [Accepted: 11/20/2014] [Indexed: 12/31/2022]
Abstract
INTRODUCTION The extensive loss of central cholinergic functions in Alzheimer's disease (AD) brain is linked to impaired nerve growth factor (NGF) signaling. The cardinal cholinergic biomarker is the acetylcholine synthesizing enzyme, choline acetyltransferase (ChAT), which has recently been found in cerebrospinal fluid (CSF). The purpose of this study was to see if EC-NGF therapy will alter CSF levels of cholinergic biomarkers, ChAT, and acetylcholinesterase. METHOD Encapsulated cell implants releasing NGF (EC-NGF) were surgically implanted bilaterally in the basal forebrain of six AD patients for 12 months and cholinergic markers in CSF were analyzed. RESULTS Activities of both enzymes were altered after 12 months. In particular, the activity of soluble ChAT showed high correlation with cognition, CSF tau and amyloid-β, in vivo cerebral glucose utilization and nicotinic binding sites, and morphometric and volumetric magnetic resonance imaging measures. DISCUSSION A clear pattern of association is demonstrated showing a proof-of-principle effect on CSF cholinergic markers, suggestive of a beneficial EC-NGF implant therapy.
Collapse
Affiliation(s)
- Azadeh Karami
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Helga Eyjolfsdottir
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Swetha Vijayaraghavan
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Göran Lind
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Per Almqvist
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Ahmadul Kadir
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Bengt Linderoth
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Neurosurgery, Karolinska University Hospital, Stockholm, Sweden
| | - Niels Andreasen
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Kaj Blennow
- Department of Clinical Neuroscience, Clinical Neurochemistry Laboratory, University of Göteborg, Göteborg, Sweden
| | - Anders Wall
- Nuclear medicine and PET, Department of Surgical Sciences, Uppsala University, Sweden
| | - Eric Westman
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | - Daniel Ferreira
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Maria Kristoffersen Wiberg
- Department of Clinical Sciences, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden; Department of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | - Lars-Olof Wahlund
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Agneta Nordberg
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden
| | | | - Taher Darreh-Shori
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden.
| | - Maria Eriksdotter
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Geriatrics, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
29
|
Iulita MF, Cuello AC. Nerve growth factor metabolic dysfunction in Alzheimer's disease and Down syndrome. Trends Pharmacol Sci 2014; 35:338-48. [PMID: 24962069 DOI: 10.1016/j.tips.2014.04.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/16/2014] [Accepted: 04/30/2014] [Indexed: 12/11/2022]
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative condition and the most common type of amnestic dementia in the elderly. Individuals with Down syndrome (DS) are at increased risk of developing AD in adulthood as a result of chromosome 21 trisomy and triplication of the amyloid precursor protein (APP) gene. In both conditions, the central nervous system (CNS) basal forebrain cholinergic system progressively degenerates, and such changes contribute to the manifestation of cognitive decline and dementia. Given the strong dependency of these neurons on nerve growth factor (NGF), it was hypothesized that their atrophy was caused by NGF deficits. However, in AD, the synthesis of NGF is not affected at the transcript level and there is a marked increase in its precursor, proNGF. This apparent paradox remained elusive for many years. In this review, we discuss the recent evidence supporting a CNS deficit in the extracellular metabolism of NGF, both in AD and in DS brains. We describe the nature of this trophic disconnection and its implication for the atrophy of basal forebrain cholinergic neurons. We further discuss the potential of NGF pathway markers as diagnostic indicators of a CNS trophic disconnection.
Collapse
Affiliation(s)
- M Florencia Iulita
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G1Y6, Canada
| | - A Claudio Cuello
- Department of Pharmacology and Therapeutics, McGill University, Montreal, H3G1Y6, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, H3G1Y6, Canada; Department of Neurology and Neurosurgery, McGill University, Montreal, H3G1Y6, Canada.
| |
Collapse
|
30
|
Kniewallner KM, Grimm N, Humpel C. Platelet-derived nerve growth factor supports the survival of cholinergic neurons in organotypic rat brain slices. Neurosci Lett 2014; 574:64-9. [PMID: 24861506 DOI: 10.1016/j.neulet.2014.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 04/07/2014] [Accepted: 05/14/2014] [Indexed: 12/12/2022]
Abstract
Platelets play a role in repair of vessels and contain different growth factors, including nerve growth factor (NGF). Since NGF is the most potent growth factor to support survival of cholinergic neurons, we aimed to study the effects of platelet-derived NGF on cholinergic neurons in organotypic brain slices. Brain slices of the nucleus basalis of Meynert (nBM) were cultured with or without NGF (10ng/ml) or platelet extracts (100μg/ml) or fresh platelets (10(8) platelets/ml). In order to enhance NGF in platelets recombinant NGF (100ng) was loaded into platelets using ultrasound (3h). Our data show that recombinant NGF markedly supports survival of cholinergic neurons. The addition of fresh platelets showed a tendency for enhancing cholinergic neuron numbers, while platelet extracts had no effects. Ultrasound was highly effective to load recombinant NGF into platelets. The addition of NGF-loaded platelets markedly enhanced cholinergic neuron numbers. In conclusion, our data provide evidence that NGF-derived platelets may counteract cell death of cholinergic neurons.
Collapse
Affiliation(s)
- Kathrin M Kniewallner
- Laboratory of Psychiatry and Exp. Alzheimer Resaerch, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Natalia Grimm
- Laboratory of Psychiatry and Exp. Alzheimer Resaerch, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Anichstr. 35, A-6020 Innsbruck, Austria
| | - Christian Humpel
- Laboratory of Psychiatry and Exp. Alzheimer Resaerch, Department of Psychiatry and Psychotherapy, Innsbruck Medical University, Anichstr. 35, A-6020 Innsbruck, Austria.
| |
Collapse
|
31
|
Wetmore C, Olson L. Expression and regulation of neurotrophins and their receptors in hippocampal systems. Hippocampus 2013. [DOI: 10.1002/hipo.1993.4500030721] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Cynthia Wetmore
- Department of Cell Biology and Neuroanatomy, University of Minnesota, Minneapolis, Minnesota, U.S.A
| | - Lars Olson
- Department of Histology and Neurobiology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
32
|
Manni L, Rocco ML, Bianchi P, Soligo M, Guaragna M, Barbaro SP, Aloe L. Nerve growth factor: basic studies and possible therapeutic applications. Growth Factors 2013; 31:115-22. [PMID: 23777359 DOI: 10.3109/08977194.2013.804073] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The nerve growth factor (NGF) belongs to a family of neurotrophic factors called neurotrophins. It was discovered as a molecule that stimulates the survival and maturation of developing neurons in the peripheral nervous system and has later been shown to protect adult neurons in the degenerating mammalian brain. Basic and clinical studies have been undertaken to use NGF as a therapeutic agent aimed at restoring and maintaining neuronal function in the central nervous system and to determine the mechanisms to safely deliver the molecule into the brain. Recent studies have also recognized that the role of NGF extends far beyond the horizon of nerve cells and even beyond the peripheral and central nervous system. Studies published from our laboratory have shown that topical application of NGF possesses a protective action on human pressure ulcer, corneal ulcer and glaucoma. Here, we will review these studies, supporting the therapeutic potential of NGF.
Collapse
Affiliation(s)
- Luigi Manni
- Institute of Translational Pharmacology, National Research Council, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
33
|
Keimpema E, Zheng K, Barde SS, Berghuis P, Dobszay MB, Schnell R, Mulder J, Luiten PGM, Xu ZD, Runesson J, Langel Ü, Lu B, Hökfelt T, Harkany T. GABAergic terminals are a source of galanin to modulate cholinergic neuron development in the neonatal forebrain. ACTA ACUST UNITED AC 2013; 24:3277-88. [PMID: 23897649 DOI: 10.1093/cercor/bht192] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The distribution and (patho-)physiological role of neuropeptides in the adult and aging brain have been extensively studied. Galanin is an inhibitory neuropeptide that can coexist with γ-aminobutyric acid (GABA) in the adult forebrain. However, galanin's expression sites, mode of signaling, impact on neuronal morphology, and colocalization with amino acid neurotransmitters during brain development are less well understood. Here, we show that galaninergic innervation of cholinergic projection neurons, which preferentially express galanin receptor 2 (GalR2) in the neonatal mouse basal forebrain, develops by birth. Nerve growth factor (NGF), known to modulate cholinergic morphogenesis, increases GalR2 expression. GalR2 antagonism (M871) in neonates reduces the in vivo expression and axonal targeting of the vesicular acetylcholine transporter (VAChT), indispensable for cholinergic neurotransmission. During cholinergic neuritogenesis in vitro, GalR2 can recruit Rho-family GTPases to induce the extension of a VAChT-containing primary neurite, the prospective axon. In doing so, GalR2 signaling dose-dependently modulates directional filopodial growth and antagonizes NGF-induced growth cone differentiation. Galanin accumulates in GABA-containing nerve terminals in the neonatal basal forebrain, suggesting its contribution to activity-driven cholinergic development during the perinatal period. Overall, our data define the cellular specificity and molecular complexity of galanin action in the developing basal forebrain.
Collapse
Affiliation(s)
- Erik Keimpema
- Department of Neuroscience, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | | | | | - Paul Berghuis
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Márton B Dobszay
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Robert Schnell
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| | - Jan Mulder
- Department of Neuroscience, Science for Life Laboratory, Royal Institute of Technology, Stockholm SE-17121, Sweden
| | - Paul G M Luiten
- Department of Molecular Neurobiology, University of Groningen, Groningen NL-9747 AG, The Netherlands
| | - Zhiqing David Xu
- Department of Neuroscience, Beijing Institute for Neuroscience, Beijing Center for Neural Regeneration and Repairing, Department of Neurobiology, Capital Medical University, Beijing 100069, China
| | - Johan Runesson
- Department of Neurochemistry, Stockholm University, Stockholm SE-10691, Sweden and
| | - Ülo Langel
- Department of Neurochemistry, Stockholm University, Stockholm SE-10691, Sweden and
| | - Bai Lu
- R&D China, GlaxoSmithKline, Pudong, Shanghai 201203, China
| | | | - Tibor Harkany
- Department of Neuroscience, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm SE-17177, Sweden
| |
Collapse
|
34
|
Ferreira GK, Jeremias IC, Scaini G, Carvalho-Silva M, Gomes LM, Furlanetto CB, Morais MO, Schuck PF, Ferreira GC, Streck EL. Effect of acute and chronic administration of L-tyrosine on nerve growth factor levels in rat brain. Neurochem Res 2013; 38:1742-6. [PMID: 23690230 DOI: 10.1007/s11064-013-1078-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/10/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
Abstract
Most inborn errors of tyrosine catabolism produce hypertyrosinemia. Neurological manifestations are variable and some patients are developmentally normal, while others show different degrees of developmental retardation. Considering that current data do not eliminate the possibility that elevated levels of tyrosine and/or its derivatives may have noxious effects on central nervous system development in some patients, the present study evaluated nerve growth factor (NGF) levels in hippocampus, striatum and posterior cortex of young rats. In our acute protocol, Wistar rats (10 and 30 days old) were killed 1 h after a single intraperitoneal administration of L-tyrosine (500 mg/kg) or saline. Chronic administration consisted of L-tyrosine (500 mg/kg) or saline injections 12 h apart for 24 days in Wistar rats (7 days old); the rats were killed 12 h after the last injection. NGF levels were then evaluated. Our findings showed that acute administration of L-tyrosine decreased NGF levels in striatum of 10-day-old rats. In the 30-day-old rats, NGF levels were decreased in hippocampus and posterior cortex. On the other hand, chronic administration of L-tyrosine increased NGF levels in posterior cortex. Decreased NGF may impair growth, differentiation, survival and maintenance of neurons.
Collapse
Affiliation(s)
- Gabriela K Ferreira
- Laboratório de Bioenergética, Programa de, Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, Criciúma, SC, 88806-000, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Pieretti S, Mastriota M, Tucci P, Battaglia G, Trabace L, Nicoletti F, Scaccianoce S. Brain nerve growth factor unbalance induced by anabolic androgenic steroids in rats. Med Sci Sports Exerc 2013; 45:29-35. [PMID: 22895368 DOI: 10.1249/mss.0b013e31826c60ea] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
PURPOSE Anabolic androgenic steroids (AAS) are synthetic androgen-like compounds that are abused in sport communities despite their adverse effects. Nerve growth factor (NGF) influences neuronal differentiation and survival, and it also mediates higher brain functions such as learning and memory. Changes in NGF expression have been implicated in neurodegenerative disorders, including Alzheimer disease. Hence, we decided to study the effect of chronic AAS exposure on brain NGF profile, NGF-dependent cholinergic function, and related behavioral performance. METHODS Male Wistar rats were injected for 4 wk with either nandrolone or stanozolol at daily doses (5.0 mg·kg(-1), s.c.) that are considered equivalent to those abused by humans. NGF levels and NGF receptor (TrkA and p75NTR) expression were measured in the hippocampus and in the basal forebrain. Choline acetyltransferase expression was evaluated in basal forebrain. Spatial learning and memory were assessed using the Morris water maze. RESULTS AAS treatment caused region-specific changes in the expression of NGF and its receptors. Both nandrolone and stanozolol increased NGF levels in the hippocampus and reduced NGF levels in the basal forebrain, reduced p75NTR expression in the hippocampus, and failed to affect TrkA expression in the basal forebrain. Finally, AAS treatment reduced the expression of choline acetyltransferase in the basal forebrain and impaired the behavioral performance in the Morris water maze. CONCLUSION The evidence that supraphysiological doses of AAS cause neurotrophic unbalance and related behavioral disturbances raises the concern that AAS abuse in humans may affect mechanisms that lie at the core of neuronal plasticity.
Collapse
Affiliation(s)
- Stefano Pieretti
- Department of Therapeutic Research and Medicine Evaluation, Istituto Superiore di Sanità, Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
36
|
Soligo M, Nori SL, Protto V, Florenzano F, Manni L. Acupuncture and Neurotrophin Modulation. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2013; 111:91-124. [DOI: 10.1016/b978-0-12-411545-3.00005-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
37
|
Nerve growth factor in the hippocamposeptal system: evidence for activity-dependent anterograde delivery and modulation of synaptic activity. J Neurosci 2012; 32:7701-10. [PMID: 22649248 DOI: 10.1523/jneurosci.0028-12.2012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Neurotrophins have been implicated in regulating neuronal differentiation, promoting neuronal survival, and modulating synaptic efficacy and plasticity. The prevailing view is that, depending on the target and mode of action, most neurotrophins can be trafficked and released either anterogradely or retrogradely in an activity-dependent manner. However, the prototypic neurotrophin, nerve growth factor (NGF), is not thought to be anterogradely delivered. Here we provide the neuroanatomical substrate for an anterograde hippocamposeptal transport of NGF by demonstrating its presence in mouse hippocampal GABAergic neurons and in their hippocamposeptal axons that ramify densely and abut neurons in the medial septum/diagonal band of Broca (MS/DB). We also demonstrate an activity-dependent increase in septal NGF levels that is dependent on the pattern of intrahippocampal stimulation. In addition, we show that acute exposure to NGF, via activation of TrkA, attenuates GABA(A) receptor-mediated inhibitory synaptic currents and reduces sensitivity to exogenously applied GABA. These acute actions of NGF display cell type and functional selectivity insofar as (1) they were found in cholinergic, but not GABAergic, MS/DB neurons, and (2) glutamate-mediated excitatory synaptic activity as well as AMPA-activated current responses were unaffected. Our results advocate a novel anterograde, TrkA-mediated NGF signaling in the CNS.
Collapse
|
38
|
Eriksdotter-Jönhagen M, Linderoth B, Lind G, Aladellie L, Almkvist O, Andreasen N, Blennow K, Bogdanovic N, Jelic V, Kadir A, Nordberg A, Sundström E, Wahlund LO, Wall A, Wiberg M, Winblad B, Seiger A, Almqvist P, Wahlberg L. Encapsulated cell biodelivery of nerve growth factor to the Basal forebrain in patients with Alzheimer's disease. Dement Geriatr Cogn Disord 2012; 33:18-28. [PMID: 22377499 DOI: 10.1159/000336051] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/21/2011] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND/AIMS Degeneration of cholinergic neurons in the basal forebrain correlates with cognitive decline in patients with Alzheimer's disease (AD). Targeted delivery of exogenous nerve growth factor (NGF) has emerged as a potential AD therapy due to its regenerative effects on the basal forebrain cholinergic neurons in AD animal models. Here we report the results of a first-in-man study of encapsulated cell (EC) biodelivery of NGF to the basal forebrain of AD patients with the primary objective to explore safety and tolerability. METHODS This was an open-label, 12-month study in 6 AD patients. Patients were implanted stereotactically with EC-NGF biodelivery devices targeting the basal forebrain. Patients were monitored with respect to safety, tolerability, disease progression and implant functionality. RESULTS All patients were implanted successfully with bilateral single or double implants without complications or signs of toxicity. No adverse events were related to NGF or the device. All patients completed the study, including removal of implants at 12 months. Positive findings in cognition, EEG and nicotinic receptor binding in 2 of 6 patients were detected. CONCLUSIONS This study demonstrates that surgical implantation and removal of EC-NGF biodelivery to the basal forebrain in AD patients is safe, well tolerated and feasible.
Collapse
Affiliation(s)
- Maria Eriksdotter-Jönhagen
- Departments of Neurobiology, Caring Sciences and Society, Karolinska Institutet, Stockholm, Sweden. maria.eriksdotter.jonhagen @ ki.se
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Su T, Scardigli R, Fasulo L, Paradiso B, Barbieri M, Binaschi A, Bovolenta R, Zucchini S, Cossu G, Cattaneo A, Simonato M. Bystander effect on brain tissue of mesoangioblasts producing neurotrophins. Cell Transplant 2012; 21:1613-27. [PMID: 22525962 DOI: 10.3727/096368912x640475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Neurotrophic factors (NTFs) are involved in the regulation of neuronal survival and function and, thus, may be used to treat neurological diseases associated with neuronal death. A major hurdle for their clinical application is the delivery mode. We describe here a new strategy based on the use of progenitor cells called mesoangioblasts (MABs). MABs can be isolated from postnatal mesoderm tissues and, because of a high adhesin-dependent migratory capacity, can reach perivascular targets especially in damaged areas. We generated genetically modified MABs producing nerve growth factor (MABs-NGF) or brain-derived neurotrophic factor (MABs-BDNF) and assessed their bystander effects in vitro using PC12 cells, primary cultures, and organotypic cultures of adult hippocampal slices. MABs-NGF-conditioned medium induced differentiation of PC12 cells, while MABs-BDNF-conditioned medium increased viability of cultured neurons and slices. Slices cultured with MABs-BDNF medium also better retained their morphology and functional connections, and all these effects were abolished by the TrkB kinase blocker K252a or the BDNF scavenger TrkB-IgG. Interestingly, the amount of BDNF released by MABs-BDNF produced greater effects than an identical amount of recombinant BDNF, suggesting that other NTFs produced by MABs synergize with BDNF. Thus, MABs can be an effective vehicle for NTF delivery, promoting differentiation, survival, and functionality of neurons. In summary, MABs hold distinct advantages over other currently evaluated approaches for NTF delivery in the CNS, including synergy of MAB-produced NTF with the neurotrophins. Since MABs may be capable of homing into damaged brain areas, they represent a conceptually novel, promising therapeutic approach to treat neurodegenerative diseases.
Collapse
Affiliation(s)
- Tao Su
- Department of Clinical and Experimental Medicine, Section of Pharmacology, Neuroscience Center, University of Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Allen SJ, Watson JJ, Dawbarn D. The neurotrophins and their role in Alzheimer's disease. Curr Neuropharmacol 2011; 9:559-73. [PMID: 22654716 PMCID: PMC3263452 DOI: 10.2174/157015911798376190] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Revised: 08/19/2010] [Accepted: 08/19/2010] [Indexed: 12/15/2022] Open
Abstract
Besides being essential for correct development of the vertebrate nervous system the neurotrophins also play a vital role in adult neuron survival, maintenance and regeneration. In addition they are implicated in the pathogenesis of certain neurodegenerative diseases, and may even provide a therapeutic solution for some. In particular there have been a number of studies on the involvement of nerve growth factor (NGF) and brain derived neurotrophic factor (BDNF) in the development of Alzheimer's disease. This disease is of growing concern as longevity increases worldwide, with little treatment available at the moment to alleviate the condition. Memory loss is one of the earliest symptoms associated with Alzheimer's disease. The brain regions first affected by pathology include the hippocampus, and also the entorhinal cortex and basal cholinergic nuclei which project to the hippocampus; importantly, all these areas are required for memory formation. Both NGF and BDNF are affected early in the disease and this is thought to initiate a cascade of events which exacerbates pathology and leads to the symptoms of dementia. This review briefly describes the pathology, symptoms and molecular processes associated with Alzheimer's disease; it discusses the involvement of the neurotrophins, particularly NGF and BDNF, and their receptors, with changes in BDNF considered particularly in the light of its importance in synaptic plasticity. In addition, the possibilities of neurotrophin-based therapeutics are evaluated.
Collapse
Affiliation(s)
- Shelley J Allen
- Dorothy Hodgkin Building, School of Clinical Sciences, University of Bristol, Bristol BS1 3NY, UK
| | | | | |
Collapse
|
41
|
Kawaja MD, Smithson LJ, Elliott J, Trinh G, Crotty AM, Michalski B, Fahnestock M. Nerve growth factor promoter activity revealed in mice expressing enhanced green fluorescent protein. J Comp Neurol 2011; 519:2522-45. [PMID: 21456011 DOI: 10.1002/cne.22629] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nerve growth factor (NGF) and its precursor proNGF are perhaps the best described growth factors of the mammalian nervous system. There remains, however, a paucity of information regarding the precise cellular sites of proNGF/NGF synthesis. Here we report the generation of transgenic mice in which the NGF promoter controls the ectopic synthesis of enhanced green fluorescent protein (EGFP). These transgenic mice provide an unprecedented resolution of both neural cells (e.g., neocortical and hippocampal neurons) and non-neural cells (e.g., renal interstitial cells and thymic reticular cells) that display NGF promoter activity from postnatal development to adulthood. Moreover, the transgene is inducible by injury. At 2 days after sciatic nerve ligation, a robust population of EGFP-positive cells is seen in the proximal nerve stump. These transgenic mice offer novel insights into the cellular sites of NGF promoter activity and can be used as models for investigating the regulation of proNGF/NGF expression after injury.
Collapse
Affiliation(s)
- Michael D Kawaja
- Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada K7L 3N6.
| | | | | | | | | | | | | |
Collapse
|
42
|
Autio H, Mätlik K, Rantamäki T, Lindemann L, Hoener MC, Chao M, Arumäe U, Castrén E. Acetylcholinesterase inhibitors rapidly activate Trk neurotrophin receptors in the mouse hippocampus. Neuropharmacology 2011; 61:1291-6. [PMID: 21820453 DOI: 10.1016/j.neuropharm.2011.07.033] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Revised: 06/23/2011] [Accepted: 07/21/2011] [Indexed: 01/28/2023]
Abstract
Acetylcholinesterase inhibitors are first-line therapies for Alzheimer's disease. These drugs increase cholinergic tone in the target areas of the cholinergic neurons of the basal forebrain. Basal forebrain cholinergic neurons are dependent upon trophic support by nerve growth factor (NGF) through its neurotrophin receptor, TrkA. In the present study, we investigated whether the acetylcholinesterase inhibitors donepezil and galantamine could influence neurotrophin receptor signaling in the brain. Acute administration of donepezil (3 mg/kg, i.p.) led to the rapid autophosphorylation of TrkA and TrkB neurotrophin receptors in the adult mouse hippocampus. Similarly, galantamine dose-dependently (3, 9 mg/kg, i.p.) increased TrkA and TrkB phosphorylation in the mouse hippocampus. Both treatments also increased the phosphorylation of transcription factor CREB and tended to increase the phosphorylation of AKT kinase but did not alter the activity of MAPK42/44. Chronic treatment with galantamine (3 mg/kg, i.p., 14 days), did not induce changes in hippocampal NGF and BDNF synthesis or protein levels. Our findings show that acetylcholinesterase inhibitors are capable of rapidly activating hippocampal neurotrophin signaling and thus suggest that therapies targeting Trk signaling may already be in clinical use in the treatment of AD.
Collapse
Affiliation(s)
- Henri Autio
- Neuroscience Center, University of Helsinki, P.O. Box 56, 00790 Helsinki, Finland
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Expressions of Axl and Tyro-3 receptors are under regulation of nerve growth factor and are involved in differentiation of PC12 cells. Neurosci Bull 2011; 27:15-22. [PMID: 21270900 DOI: 10.1007/s12264-011-1042-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE Tyro-3 and Axl receptors are expressed in brain in a region-specific manner and their bioactivities in the central nervous system remain still elusive. The aim of the present study was to investigate their functions in neuronal differentiation. METHODS PC12 cells overexpressing Tyro-3 or Axl were established by transfection with full-length CMV-Tyro-3-eCFP or CMV-Axl-eGFP plasmid, respectively. CMV-eGFP plasmid served as a control vector. After that, the fluorescence intensity and distributions of green fluorescent protein (GFP) and cyan fluorescent protein (CFP) in the cells with or without nerve growth factor (NGF) treatment were real-time monitored. RESULTS Expressions of Tyro-3 and Axl receptors were under the regulation of NGF and associated with neuronal differentiation. This was not observed in CMV-eGFP-transfected PC12 cells. Besides, confocal microscopy revealed that NGF affected intracellular localization of full-length Axl-eGFP and Tyro-3-eCFP in PC12 cells. Moreover, the development of outgrowth of differentiated PC12 cells under stimulation of NGF was promoted by overexpression of Tyro-3 or Axl. CONCLUSION Expressions of Tyro-3 and Axl receptors are under the regulation of NGF and are involved in NGF-induced neuronal differentiation of PC12 cells.
Collapse
|
44
|
ProNGF induces PTEN via p75NTR to suppress Trk-mediated survival signaling in brain neurons. J Neurosci 2010; 30:15608-15. [PMID: 21084616 DOI: 10.1523/jneurosci.2581-10.2010] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Proneurotrophins and mature neurotrophins activate different signaling pathways with distinct effects on their target cells: proneurotrophins can induce apoptotic signaling via p75(NTR), whereas mature neurotrophins activate Trk receptors to influence survival and differentiation. Here, we demonstrate that the PTEN (phosphatase and tensin homolog deleted on chromosome 10) phosphatase represents a novel switch between the survival and apoptotic signaling pathways in rat CNS neurons. Simultaneous activation of p75(NTR) by proNGF and TrkB signaling by BDNF elicited apoptosis despite TrkB phosphorylation. Apoptosis induced by p75(NTR) required suppression of TrkB-induced phosphoinositide-3 kinase signaling, mediated by induction of PTEN, for apoptosis to proceed. Inhibition of PTEN restored the ability of BDNF to phosphorylate Akt and protect cultured basal forebrain neurons from proNGF-induced death. In vivo, inhibition or knockdown of PTEN after pilocarpine-induced seizures protected CNS neurons from p75(NTR)-mediated death, demonstrating that PTEN is a crucial factor mediating the balance between p75(NTR)-induced apoptotic signaling and Trk-mediated survival signaling in brain neurons.
Collapse
|
45
|
Allard S, Gosein V, Cuello AC, Ribeiro-da-Silva A. Changes with aging in the dopaminergic and noradrenergic innervation of rat neocortex. Neurobiol Aging 2010; 32:2244-53. [PMID: 20096955 DOI: 10.1016/j.neurobiolaging.2009.12.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2009] [Revised: 12/09/2009] [Accepted: 12/23/2009] [Indexed: 10/19/2022]
Abstract
In normal aging, the mammalian cortex undergoes significant remodeling. Although neuromodulation by dopamine and noradrenaline in the cortex is known to be important for proper cognitive function, little is known on how cortical noradrenergic and dopaminergic presynaptic boutons are affected in normal aging. Using rats we investigated whether these two neurotransmitter systems undergo structural reorganization in aging, and if these changes correlated with cognitive loss. Young and aged rats were tested for cognitive performance using the Morris water maze. Following the behavioral characterization, the animals were sacrificed and the cortical tissue was processed for immunofluorescence using antibodies directed against tyrosine hydroxylase (TH) and dopamine beta-hydroxylase (DBH) to detect and discriminate noradrenergic and dopaminergic varicosities. We observed a significant increase in dopaminergic varicosities in lamina V of the anterior cingulate cortex (ACC) of aged cognitively unimpaired rats when compared to young and aged-impaired animals. In laminae II and III of the ACC, we observed a significant decrease of dopaminergic varicosities in aged-impaired animals when compared to young or aged cognitively unimpaired animals. Changes in noradrenergic varicosities never reached statistical significance in any group or brain region. The data suggests that the remodeling of mesocortical dopaminergic fibers may participate in age-associated cognitive decline.
Collapse
Affiliation(s)
- Simon Allard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
46
|
Thoenen H, Korsching S, Heumann R, Acheson A. Nerve growth factor. CIBA FOUNDATION SYMPOSIUM 2008; 116:113-28. [PMID: 3000703 DOI: 10.1002/9780470720974.ch8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
In contrast to all other molecules which are labelled 'growth factor', NGF is not a mitogen. It is a neurotrophic molecule essential for the development and maintenance of function of specific populations of peripheral and possibly also central neurons. The availability of NGF in large quantities from exocrine glands (e.g. male mouse submandibular gland), where NGF does not play a neurotrophic role, has allowed the purification of NGF, the production of specific antibodies, the determination of its amino acid sequence and finally the molecular cloning of NGF leading to the elucidation of its precursor structure and its genomic organization. Comparison of the biological activities and the immunological properties of NGF isolated from different sources demonstrated that the active centre of the molecule has been highly conserved during evolution, whereas other parts of the molecule determining immunological properties have undergone considerable changes. After a survey of the essential biological actions of NGF, this paper concentrates on two actual questions of NGF research, namely the regulation of NGF synthesis in the target tissues of NGF-responsive neurons, and the molecular mechanism(s) of action of NGF on these neurons.
Collapse
|
47
|
Tujioka K, Shi X, Ohsumi M, Tuchiya T, Hayase K, Uchida T, Ikeda S, Morishita A, Yokogoshi H. Effect of quantity and quality of dietary protein on choline acetyltransferase and nerve growth factor, and their mRNAs in the cerebral cortex and hippocampus of rats. Amino Acids 2008; 36:13-9. [DOI: 10.1007/s00726-007-0019-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2007] [Accepted: 12/11/2007] [Indexed: 11/29/2022]
|
48
|
Iliev AI, Wouters FS. Application of simple photobleaching microscopy techniques for the determination of the balance between anterograde and retrograde axonal transport. J Neurosci Methods 2007; 161:39-46. [PMID: 17123628 DOI: 10.1016/j.jneumeth.2006.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2006] [Revised: 10/03/2006] [Accepted: 10/04/2006] [Indexed: 01/27/2023]
Abstract
The directionality of axonal transport represents an important question in neurophysiological and neuropathological research. Various approaches such as videomicroscopy, radioisotopic and fluorescence-based techniques are used. Recently, a novel FRAP-based (fluorescent recovery after photobleaching) technique using synaptophysin-EGFP expression in primary neurons was applied, allowing reliable and sensitive evaluation of gross axonal transport changes using confocal live-imaging microscopy. Here, we describe a novel FLIP-based (fluorescence loss in photobleaching) approach using a synaptophysin-EGFP probe that allows the differential evaluation of the ante- and retrograde transport parameters. Furthermore, we improved the sensitivity of the probe by substituting EGFP with an ECFP/VenusYFP fusion FRET (fluorescence resonance energy transfer) pair. The use of this FRET couple improves the precision of axonal transport measurements by combining FLIP and FLAP (fluorescence localization after photobleaching) techniques and eliminating the need for pre-bleaching images and thus pixel shifts between various exposures, and by reducing the deleterious effect of photobleaching.
Collapse
Affiliation(s)
- Asparouh I Iliev
- Cell Biophysics Group, European Neuroscience Institute-Goettingen, Medical Faculty, Georg August University-Goettingen, Waldweg 33, 37073 Goettingen, Germany.
| | | |
Collapse
|
49
|
Zhang HT, Li LY, Zou XL, Song XB, Hu YL, Feng ZT, Wang TTH. Immunohistochemical distribution of NGF, BDNF, NT-3, and NT-4 in adult rhesus monkey brains. J Histochem Cytochem 2006; 55:1-19. [PMID: 16899765 DOI: 10.1369/jhc.6a6952.2006] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Immunohistochemical distribution and cellular localization of neurotrophins was investigated in adult monkey brains using antisera against nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT-3), and neurotrophin-4 (NT-4). Western blot analysis showed that each antibody specifically recognized appropriate bands of approximately 14.7 kDa, 14.2 kDa, 13.6 kDa, and 14.5 kDa, for NGF, BDNF, NT-3, and NT-4, respectively. These positions coincided with the molecular masses of the neurotrophins studied. Furthermore, sections exposed to primary antiserum preadsorbed with full-length NGF, BDNF, NT-3, and NT-4 exhibited no detectable immunoreactivity, demonstrating specificities of the antibodies against the tissues prepared from rhesus monkeys. The study provided a systematic report on the distribution of NGF, BDNF, NT-3, and NT-4 in the monkey brain. Varying intensity of immunostaining was observed in the somata and processes of a wide variety of neurons and glial cells in the cerebrum, cerebellum, hippocampus, and other regions of the brain. Neurons in some regions such as the cerebral cortex and the hippocampus, which stained for neurotrophins, also expressed neurotrophic factor mRNA. In some other brain regions, there was discrepancy of protein distribution and mRNA expression reported previously, indicating a retrograde or anterograde action mode of neurotrophins. Results of this study provide a morphological basis for the elucidation of the roles of NGF, BDNF, NT-3, and NT-4 in adult primate brains.
Collapse
Affiliation(s)
- Hong-Tian Zhang
- Institute for Research on Neuroscience, Kunming Medical College, Kunming, China
| | | | | | | | | | | | | |
Collapse
|
50
|
McCauslin CS, Heath V, Colangelo AM, Malik R, Lee S, Mallei A, Mocchetti I, Johnson PF. CAAT/enhancer-binding protein delta and cAMP-response element-binding protein mediate inducible expression of the nerve growth factor gene in the central nervous system. J Biol Chem 2006; 281:17681-8. [PMID: 16632469 DOI: 10.1074/jbc.m600207200] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nerve growth factor (NGF) synthesis in the rat cerebral cortex is induced by the beta2-adrenergic receptor agonist clenbuterol (CLE). Because NGF is a crucial neurotrophic factor for basal forebrain cholinergic neurons, defining the mechanisms that regulate its transcription is important for developing therapeutic strategies to treat pathologies of these neurons. We previously showed that the transcription factor CCAAT/enhancer-binding protein delta (C/EBPdelta) contributes to NGF gene regulation. Here we have further defined the function of C/EBPdelta and identified a role for cAMP response element-binding protein (CREB) in NGF transcription. Inhibition of protein kinase A in C6-2B glioma cells suppressed CLE induction of an NGF promoter-reporter construct, whereas overexpression of protein kinase A increased NGF promoter activity, particularly in combination with C/EBPdelta. A CRE-like site that binds CREB was identified in the proximal NGF promoter, and C/EBPdelta and CREB were found to associate with the NGF promoter in vivo. Deletion of the CRE and/or C/EBP sites reduced CLE responsiveness of the promoter. In addition, ectopic expression of C/EBPdelta in combination with CLE treatment increased endogenous NGF mRNA levels in C6-2B cells. C/EBPdelta null mice showed complete loss of NGF induction in the cerebral cortex following CLE treatment, demonstrating a critical role for C/EBPdelta in regulating beta2-adrenergic receptor-mediated NGF expression in vivo. Thus, our findings demonstrate a critical role for C/EBPdelta in regional expression of NGF in the brain and implicate CREB in CLE-induced NGF gene transcription.
Collapse
Affiliation(s)
- Christine Seitz McCauslin
- Laboratory of Protein Dynamics and Signaling, National Cancer Institute, National Institutes of Health, Frederick, MD 21702-1201, USA
| | | | | | | | | | | | | | | |
Collapse
|