1
|
Eremin DV, Kondaurova EM, Rodnyy AY, Molobekova CA, Kudlay DA, Naumenko VS. Serotonin Receptors as a Potential Target in the Treatment of Alzheimer's Disease. BIOCHEMISTRY. BIOKHIMIIA 2023; 88:2023-2042. [PMID: 38462447 DOI: 10.1134/s0006297923120064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 03/12/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia worldwide that has an increasing impact on aging societies. Besides its critical role in the control of various physiological functions and behavior, brain serotonin (5-HT) system is involved in the regulation of migration, proliferation, differentiation, maturation, and programmed death of neurons. At the same time, a growing body of evidence indicates the involvement of 5-HT neurotransmission in the formation of insoluble aggregates of β-amyloid and tau protein, the main histopathological signs of AD. The review describes the role of various 5-HT receptors and intracellular signaling cascades induced by them in the pathological processes leading to the development of AD, first of all, in protein aggregation. Changes in the functioning of certain types of 5-HT receptors or associated intracellular signaling mediators prevent accumulation of β-amyloid plaques and tau protein neurofibrillary tangles. Based on the experimental data, it can be suggested that the use of 5-HT receptors as new drug targets will not only improve cognitive performance in AD, but will be also important in treating the causes of AD-related dementia.
Collapse
Affiliation(s)
- Dmitrii V Eremin
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia.
| | - Elena M Kondaurova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Aleksander Ya Rodnyy
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Camilla A Molobekova
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| | - Dmitrii A Kudlay
- Sechenov First Moscow State Medical University of the Ministry of Health of the Russian Federation (Sechenov University), Moscow, 119991, Russia
| | - Vladimir S Naumenko
- Institute of Cytology and Genetics, Siberian Branch of the Russian Academy of Sciences, Novosibirsk, 630090, Russia
| |
Collapse
|
2
|
Krohn F, Lancini E, Ludwig M, Leiman M, Guruprasath G, Haag L, Panczyszyn J, Düzel E, Hämmerer D, Betts M. Noradrenergic neuromodulation in ageing and disease. Neurosci Biobehav Rev 2023; 152:105311. [PMID: 37437752 DOI: 10.1016/j.neubiorev.2023.105311] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/29/2023] [Accepted: 07/07/2023] [Indexed: 07/14/2023]
Abstract
The locus coeruleus (LC) is a small brainstem structure located in the lower pons and is the main source of noradrenaline (NA) in the brain. Via its phasic and tonic firing, it modulates cognition and autonomic functions and is involved in the brain's immune response. The extent of degeneration to the LC in healthy ageing remains unclear, however, noradrenergic dysfunction may contribute to the pathogenesis of Alzheimer's (AD) and Parkinson's disease (PD). Despite their differences in progression at later disease stages, the early involvement of the LC may lead to comparable behavioural symptoms such as preclinical sleep problems and neuropsychiatric symptoms as a result of AD and PD pathology. In this review, we draw attention to the mechanisms that underlie LC degeneration in ageing, AD and PD. We aim to motivate future research to investigate how early degeneration of the noradrenergic system may play a pivotal role in the pathogenesis of AD and PD which may also be relevant to other neurodegenerative diseases.
Collapse
Affiliation(s)
- F Krohn
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Lancini
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany.
| | - M Ludwig
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - M Leiman
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - G Guruprasath
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - L Haag
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - J Panczyszyn
- Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - E Düzel
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - D Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neuroscience, University College London, London UK-WC1E 6BT, UK; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany; Department of Psychology, University of Innsbruck, A-6020 Innsbruck, Austria
| | - M Betts
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany; CBBS Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
3
|
Orlando IF, Shine JM, Robbins TW, Rowe JB, O'Callaghan C. Noradrenergic and cholinergic systems take centre stage in neuropsychiatric diseases of ageing. Neurosci Biobehav Rev 2023; 149:105167. [PMID: 37054802 DOI: 10.1016/j.neubiorev.2023.105167] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/28/2023] [Accepted: 03/28/2023] [Indexed: 04/15/2023]
Abstract
Noradrenergic and cholinergic systems are among the most vulnerable brain systems in neuropsychiatric diseases of ageing, including Alzheimer's disease, Parkinson's disease, Lewy body dementia, and progressive supranuclear palsy. As these systems fail, they contribute directly to many of the characteristic cognitive and psychiatric symptoms. However, their contribution to symptoms is not sufficiently understood, and pharmacological interventions targeting noradrenergic and cholinergic systems have met with mixed success. Part of the challenge is the complex neurobiology of these systems, operating across multiple timescales, and with non-linear changes across the adult lifespan and disease course. We address these challenges in a detailed review of the noradrenergic and cholinergic systems, outlining their roles in cognition and behaviour, and how they influence neuropsychiatric symptoms in disease. By bridging across levels of analysis, we highlight opportunities for improving drug therapies and for pursuing personalised medicine strategies.
Collapse
Affiliation(s)
- Isabella F Orlando
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia
| | - Trevor W Robbins
- Behavioural and Clinical Neuroscience Institute and Department of Psychology, University of Cambridge, CB2 3EB, United Kingdom
| | - James B Rowe
- Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust, University of Cambridge, CB2 0SZ, United Kingdom
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Australia.
| |
Collapse
|
4
|
Kelberman MA, Rorabaugh JM, Anderson CR, Marriott A, DePuy SD, Rasmussen K, McCann KE, Weiss JM, Weinshenker D. Age-dependent dysregulation of locus coeruleus firing in a transgenic rat model of Alzheimer's disease. Neurobiol Aging 2023; 125:98-108. [PMID: 36889122 PMCID: PMC10038926 DOI: 10.1016/j.neurobiolaging.2023.01.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 01/22/2023] [Accepted: 01/25/2023] [Indexed: 02/04/2023]
Abstract
Hyperphosphorylated tau in the locus coeruleus (LC) is ubiquitous in prodromal Alzheimer's disease (AD), and LC neurons degenerate as AD progresses. Hyperphosphorylated tau alters firing rates in other brain regions, but its effects on LC neurons are unknown. We assessed single unit LC activity in anesthetized wild-type (WT) and TgF344-AD rats at 6 months, which represents a prodromal stage when LC neurons are the only cells containing hyperphosphorylated tau in TgF344-AD animals, and at 15 months when amyloid-β (Aβ) and tau pathology are both abundant in the forebrain. At baseline, LC neurons from TgF344-AD rats were hypoactive at both ages compared to WT littermates but showed elevated spontaneous bursting properties. Differences in footshock-evoked LC firing depended on age, with 6-month TgF344-AD rats demonstrating aspects of hyperactivity, and 15-month transgenic rats showing hypoactivity. Early LC hyperactivity is consistent with appearance of prodromal neuropsychiatric symptoms and is followed by LC hypoactivity which contributes to cognitive impairment. These results support further investigation into disease stage-dependent noradrenergic interventions for AD.
Collapse
Affiliation(s)
| | | | | | - Alexia Marriott
- Department of Human Genetics, Emory University, Atlanta, GA, USA
| | | | | | | | - Jay M Weiss
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | | |
Collapse
|
5
|
Lancini E, Haag L, Bartl F, Rühling M, Ashton NJ, Zetterberg H, Düzel E, Hämmerer D, Betts MJ. Cerebrospinal fluid and positron-emission tomography biomarkers for noradrenergic dysfunction in neurodegenerative diseases: a systematic review and meta-analysis. Brain Commun 2023; 5:fcad085. [PMID: 37151227 PMCID: PMC10154713 DOI: 10.1093/braincomms/fcad085] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 12/13/2022] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
The noradrenergic system shows pathological modifications in aging and neurodegenerative diseases and undergoes substantial neuronal loss in Alzheimer's disease and Parkinson's disease. While a coherent picture of structural decline in post-mortem and in vivo MRI measures seems to emerge, whether this translates into a consistent decline in available noradrenaline levels is unclear. We conducted a meta-analysis of noradrenergic differences in Alzheimer's disease dementia and Parkinson's disease using CSF and PET biomarkers. CSF noradrenaline and 3-methoxy-4-hydroxyphenylglycol levels as well as noradrenaline transporters availability, measured with PET, were summarized from 26 articles using a random-effects model meta-analysis. Compared to controls, individuals with Parkinson's disease showed significantly decreased levels of CSF noradrenaline and 3-methoxy-4-hydroxyphenylglycol, as well as noradrenaline transporters availability in the hypothalamus. In Alzheimer's disease dementia, 3-methoxy-4-hydroxyphenylglycol but not noradrenaline levels were increased compared to controls. Both CSF and PET biomarkers of noradrenergic dysfunction reveal significant alterations in Parkinson's disease and Alzheimer's disease dementia. However, further studies are required to understand how these biomarkers are associated to the clinical symptoms and pathology.
Collapse
Affiliation(s)
- Elisa Lancini
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Lena Haag
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Franziska Bartl
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Maren Rühling
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Nicholas J Ashton
- Institute of Psychiatry, Department of Old Age Psychiatry, King’s College London, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Emrah Düzel
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| | - Dorothea Hämmerer
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Institute of Cognitive Neuroscience, University College London, London, UK
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
- Department of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Matthew J Betts
- German Center for Neurodegenerative Diseases (DZNE), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Faculty of Medicine, Institute of Cognitive Neurology and Dementia Research (IKND), Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Sciences, University of Magdeburg, Magdeburg, Germany
| |
Collapse
|
6
|
Iannitelli AF, Kelberman MA, Lustberg DJ, Korukonda A, McCann KE, Mulvey B, Segal A, Liles LC, Sloan SA, Dougherty JD, Weinshenker D. The Neurotoxin DSP-4 Dysregulates the Locus Coeruleus-Norepinephrine System and Recapitulates Molecular and Behavioral Aspects of Prodromal Neurodegenerative Disease. eNeuro 2023; 10:ENEURO.0483-22.2022. [PMID: 36635251 PMCID: PMC9829100 DOI: 10.1523/eneuro.0483-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 12/13/2022] Open
Abstract
The noradrenergic locus coeruleus (LC) is among the earliest sites of tau and α-synuclein pathology in Alzheimer's disease (AD) and Parkinson's disease (PD), respectively. The onset of these pathologies coincides with loss of noradrenergic fibers in LC target regions and the emergence of prodromal symptoms including sleep disturbances and anxiety. Paradoxically, these prodromal symptoms are indicative of a noradrenergic hyperactivity phenotype, rather than the predicted loss of norepinephrine (NE) transmission following LC damage, suggesting the engagement of complex compensatory mechanisms. Because current therapeutic efforts are targeting early disease, interest in the LC has grown, and it is critical to identify the links between pathology and dysfunction. We employed the LC-specific neurotoxin N-(2-chloroethyl)-N-ethyl-2-bromobenzylamine (DSP-4), which preferentially damages LC axons, to model early changes in the LC-NE system pertinent to AD and PD in male and female mice. DSP-4 (two doses of 50 mg/kg, one week apart) induced LC axon degeneration, triggered neuroinflammation and oxidative stress, and reduced tissue NE levels. There was no LC cell death or changes to LC firing, but transcriptomics revealed reduced expression of genes that define noradrenergic identity and other changes relevant to neurodegenerative disease. Despite the dramatic loss of LC fibers, NE turnover and signaling were elevated in terminal regions and were associated with anxiogenic phenotypes in multiple behavioral tests. These results represent a comprehensive analysis of how the LC-NE system responds to axon/terminal damage reminiscent of early AD and PD at the molecular, cellular, systems, and behavioral levels, and provides potential mechanisms underlying prodromal neuropsychiatric symptoms.
Collapse
Affiliation(s)
- Alexa F Iannitelli
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Michael A Kelberman
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Daniel J Lustberg
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Anu Korukonda
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Katharine E McCann
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Bernard Mulvey
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Arielle Segal
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - L Cameron Liles
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
7
|
Levey AI, Qiu D, Zhao L, Hu WT, Duong DM, Higginbotham L, Dammer EB, Seyfried NT, Wingo TS, Hales CM, Gámez Tansey M, Goldstein DS, Abrol A, Calhoun VD, Goldstein FC, Hajjar I, Fagan AM, Galasko D, Edland SD, Hanfelt J, Lah JJ, Weinshenker D. A phase II study repurposing atomoxetine for neuroprotection in mild cognitive impairment. Brain 2021; 145:1924-1938. [PMID: 34919634 DOI: 10.1093/brain/awab452] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 11/08/2021] [Accepted: 11/19/2021] [Indexed: 11/12/2022] Open
Abstract
The locus coeruleus (LC) is the initial site of Alzheimer's disease neuropathology, with hyperphosphorylated Tau appearing in early adulthood followed by neurodegeneration in dementia. LC dysfunction contributes to Alzheimer's pathobiology in experimental models, which can be rescued by increasing norepinephrine (NE) transmission. To test NE augmentation as a potential disease-modifying therapy, we performed a biomarker-driven phase II trial of atomoxetine, a clinically-approved NE transporter inhibitor, in subjects with mild cognitive impairment due to Alzheimer's disease. The design was a single-center, 12-month double-blind crossover trial. Thirty-nine participants with mild cognitive impairment (MCI) and biomarker evidence of Alzheimer's disease were randomized to atomoxetine or placebo treatment. Assessments were collected at baseline, 6- (crossover) and 12-months (completer). Target engagement was assessed by CSF and plasma measures of NE and metabolites. Prespecified primary outcomes were CSF levels of IL1α and Thymus-Expressed Chemokine. Secondary/exploratory outcomes included clinical measures, CSF analyses of Aβ42, Tau, and pTau181, mass spectrometry proteomics, and immune-based targeted inflammation-related cytokines, as well as brain imaging with MRI and FDG-PET. Baseline demographic and clinical measures were similar across trial arms. Dropout rates were 5.1% for atomoxetine and 2.7% for placebo, with no significant differences in adverse events. Atomoxetine robustly increased plasma and CSF NE levels. IL-1α and Thymus-Expressed Chemokine were not measurable in most samples. There were no significant treatment effects on cognition and clinical outcomes, as expected given the short trial duration. Atomoxetine was associated with a significant reduction in CSF Tau and pTau181 compared to placebo, but not associated with change in Aβ42. Atomoxetine treatment also significantly altered CSF abundances of protein panels linked to brain pathophysiologies, including synaptic, metabolism, and glial immunity, as well as inflammation-related CDCP1, CD244, TWEAK, and OPG proteins. Treatment was also associated with significantly increased BDNF and reduced triglycerides in plasma. Resting state fMRI showed significantly increased inter-network connectivity due to atomoxetine between the insula and the hippocampus. FDG-PET showed atomoxetine-associated increased uptake in hippocampus, parahippocampal gyrus, middle temporal pole, inferior temporal gyrus, and fusiform gyrus, with carry-over effects six months after treatment. In summary, atomoxetine treatment was safe, well tolerated, and achieved target engagement in prodromal Alzheimer's disease. Atomoxetine significantly reduced CSF Tau and pTau, normalized CSF protein biomarker panels linked to synaptic function, brain metabolism, and glial immunity, and increased brain activity and metabolism in key temporal lobe circuits. Further study of atomoxetine is warranted for repurposing the drug to slow Alzheimer's disease progression.
Collapse
Affiliation(s)
- Allan I Levey
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Deqiang Qiu
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Radiology and Imaging Sciences, Emory University, Atlanta, Georgia, 30322, USA
| | - Liping Zhao
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Biostatistics, Emory University, Atlanta, Georgia, 30322, USA
| | - William T Hu
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Duc M Duong
- Department of Biochemistry, Emory University, Atlanta, Georgia, 30322, USA
| | - Lenora Higginbotham
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA
| | - Eric B Dammer
- Department of Biochemistry, Emory University, Atlanta, Georgia, 30322, USA
| | - Nicholas T Seyfried
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Biochemistry, Emory University, Atlanta, Georgia, 30322, USA
| | - Thomas S Wingo
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA.,Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
| | - Chadwick M Hales
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Malú Gámez Tansey
- Department of Physiology, Emory University, Atlanta, Georgia, 30322, USA
| | | | - Anees Abrol
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, 30303, USA
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA, 30303, USA
| | - Felicia C Goldstein
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Ihab Hajjar
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - Anne M Fagan
- Department of Neurology and Knight ADRC, Washington University, St. Louis, MO, 630130, USA
| | - Doug Galasko
- Department of Neurosciences and ADRC, UCSD, San Diego, CA, 92093, USA
| | - Steven D Edland
- Department of Neurosciences and ADRC, UCSD, San Diego, CA, 92093, USA
| | - John Hanfelt
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Biostatistics, Emory University, Atlanta, Georgia, 30322, USA
| | - James J Lah
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Neurology, Emory University, Atlanta, Georgia, 30322, USA
| | - David Weinshenker
- Goizueta Alzheimer's Disease Research Center, Emory University, Atlanta, Georgia, 30322, USA.,Department of Human Genetics, Emory University, Atlanta, Georgia, 30322, USA
| |
Collapse
|
8
|
Geula C, Dunlop SR, Ayala I, Kawles AS, Flanagan ME, Gefen T, Mesulam MM. Basal forebrain cholinergic system in the dementias: Vulnerability, resilience, and resistance. J Neurochem 2021; 158:1394-1411. [PMID: 34272732 PMCID: PMC8458251 DOI: 10.1111/jnc.15471] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 01/15/2023]
Abstract
The basal forebrain cholinergic neurons (BFCN) provide the primary source of cholinergic innervation of the human cerebral cortex. They are involved in the cognitive processes of learning, memory, and attention. These neurons are differentially vulnerable in various neuropathologic entities that cause dementia. This review summarizes the relevance to BFCN of neuropathologic markers associated with dementias, including the plaques and tangles of Alzheimer's disease (AD), the Lewy bodies of diffuse Lewy body disease, the tauopathy of frontotemporal lobar degeneration (FTLD-TAU) and the TDP-43 proteinopathy of FTLD-TDP. Each of these proteinopathies has a different relationship to BFCN and their corticofugal axons. Available evidence points to early and substantial degeneration of the BFCN in AD and diffuse Lewy body disease. In AD, the major neurodegenerative correlate is accumulation of phosphotau in neurofibrillary tangles. However, these neurons are less vulnerable to the tauopathy of FTLD. An intriguing finding is that the intracellular tau of AD causes destruction of the BFCN, whereas that of FTLD does not. This observation has profound implications for exploring the impact of different species of tauopathy on neuronal survival. The proteinopathy of FTLD-TDP shows virtually no abnormal inclusions within the BFCN. Thus, the BFCN are highly vulnerable to the neurodegenerative effects of tauopathy in AD, resilient to the neurodegenerative effect of tauopathy in FTLD and apparently resistant to the emergence of proteinopathy in FTLD-TDP and perhaps also in Pick's disease. Investigations are beginning to shed light on the potential mechanisms of this differential vulnerability and their implications for therapeutic intervention.
Collapse
Affiliation(s)
- Changiz Geula
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Sara R Dunlop
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Ivan Ayala
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Allegra S Kawles
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Margaret E Flanagan
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Tamar Gefen
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| | - Marek-Marsel Mesulam
- Mesulam Center for Cognitive Neurology and Alzheimer's Disease, Feinberg School of Medicine Chicago, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
9
|
Gallo A, Pillet LE, Verpillot R. New frontiers in Alzheimer's disease diagnostic: Monoamines and their derivatives in biological fluids. Exp Gerontol 2021; 152:111452. [PMID: 34182050 DOI: 10.1016/j.exger.2021.111452] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/29/2021] [Accepted: 06/08/2021] [Indexed: 10/21/2022]
Abstract
Current diagnosis of Alzheimer's disease (AD) relies on a combination of neuropsychological evaluations, biomarker measurements and brain imaging. Nevertheless, these approaches are either expensive, invasive or lack sensitivity to early AD stages. The main challenge of ongoing research is therefore to identify early non-invasive biomarkers to diagnose AD at preclinical stage. Accumulating evidence support the hypothesis that initial degeneration of profound monoaminergic nuclei may trigger a transneuronal spread of AD pathology towards hippocampus and cortex. These studies aroused great interest on monoamines, i.e. noradrenaline (NA), dopamine (D) ad serotonin (5-HT), as early hallmarks of AD pathology. The present work reviews current literature on the potential role of monoamines and related metabolites as biomarkers of AD. First, morphological changes in the monoaminergic systems during AD are briefly described. Second, we focus on concentration changes of these molecules and their derivatives in biological fluids, including cerebrospinal fluid, obtained by lumbar puncture, and blood or urine, sampled via less invasive procedures. Starting from initial observations, we then discuss recent insights on metabolomics-based analysis, highlighting the promising clinical utility of monoamines for the identification of a molecular AD signature, aimed at improving early diagnosis and discrimination from other dementia.
Collapse
|
10
|
Beardmore R, Hou R, Darekar A, Holmes C, Boche D. The Locus Coeruleus in Aging and Alzheimer's Disease: A Postmortem and Brain Imaging Review. J Alzheimers Dis 2021; 83:5-22. [PMID: 34219717 PMCID: PMC8461706 DOI: 10.3233/jad-210191] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2021] [Indexed: 12/21/2022]
Abstract
The locus coeruleus (LC), a tiny nucleus in the brainstem and the principal site of noradrenaline synthesis, has a major role in regulating autonomic function, arousal, attention, and neuroinflammation. LC dysfunction has been linked to a range of disorders; however particular interest is given to the role it plays in Alzheimer's disease (AD). The LC undergoes significant neuronal loss in AD, thought to occur early in the disease process. While neuronal loss in the LC has also been suggested to occur in aging, this relationship is less clear as the findings have been contradictory. LC density has been suggested to be indicative of cognitive reserve and the evidence for these claims will be discussed. Recent imaging techniques allowing visualization of the LC in vivo using neuromelanin-sensitive MRI are developing our understanding of the role of LC in aging and AD. Tau pathology within the LC is evident at an early age in most individuals; however, the relationship between tau accumulation and neuronal loss and why some individuals then develop AD is not understood. Neuromelanin pigment accumulates within LC cells with age and is proposed to be toxic and inflammatory when released into the extracellular environment. This review will explore our current knowledge of the LC changes in both aging and AD from postmortem, imaging, and experimental studies. We will discuss the reasons behind the susceptibility of the LC to neuronal loss, with a focus on the role of extracellular neuromelanin and neuroinflammation caused by the dysfunction of the LC-noradrenaline pathway.
Collapse
Affiliation(s)
- Rebecca Beardmore
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Memory Assessment and Research Centre, Moorgreen Hospital, Southern Health Foundation Trust, Southampton, UK
| | - Ruihua Hou
- Clinical and Experimental Sciences, Department of Psychiatry, Faculty of Medicine, University of Southampton, Southampton, UK
| | - Angela Darekar
- Department of Medical Physics, University Hospital Southampton NHS Foundation Trust, Southampton, UK
| | - Clive Holmes
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
- Memory Assessment and Research Centre, Moorgreen Hospital, Southern Health Foundation Trust, Southampton, UK
| | - Delphine Boche
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, UK
| |
Collapse
|
11
|
Ghosh A, Torraville SE, Mukherjee B, Walling SG, Martin GM, Harley CW, Yuan Q. An experimental model of Braak's pretangle proposal for the origin of Alzheimer's disease: the role of locus coeruleus in early symptom development. ALZHEIMERS RESEARCH & THERAPY 2019; 11:59. [PMID: 31266535 PMCID: PMC6607586 DOI: 10.1186/s13195-019-0511-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 06/06/2019] [Indexed: 12/22/2022]
Abstract
Background The earliest brain pathology related to Alzheimer’s disease (AD) is hyperphosphorylated soluble tau in the noradrenergic locus coeruleus (LC) neurons. Braak characterizes five pretangle tau stages preceding AD tangles. Pretangles begin in young humans and persist in the LC while spreading from there to other neuromodulatory neurons and, later, to the cortex. While LC pretangles appear in all by age 40, they do not necessarily result in AD prior to death. However, with age and pretangle spread, more individuals progress to AD stages. LC neurons are lost late, at Braak stages III–IV, when memory deficits appear. It is not clear if LC hyperphosphorylated tau generates the pathology and cognitive changes associated with preclinical AD. We use a rat model expressing pseudohyperphosphorylated human tau in LC to investigate the hypothesis that LC pretangles generate preclinical Alzheimer pathology. Methods We infused an adeno-associated viral vector carrying a human tau gene pseudophosphorylated at 14 sites common in LC pretangles into 2–3- or 14–16-month TH-Cre rats. We used odor discrimination to probe LC dysfunction, and we evaluated LC cell and fiber loss. Results Abnormal human tau was expressed in LC and exhibited somatodendritic mislocalization. In rats infused at 2–3 months old, 4 months post-infusion abnormal LC tau had transferred to the serotonergic raphe neurons. After 7 months, difficult similar odor discrimination learning was impaired. Impairment was associated with reduced LC axonal density in the olfactory cortex and upregulated β1-adrenoceptors. LC infusions in 14–16-month-old rats resulted in more severe outcomes. By 5–6 months post-infusion, rats were impaired even in simple odor discrimination learning. LC neuron number was reduced. Human tau appeared in the microglia and cortical neurons. Conclusions Our animal model suggests, for the first time, that Braak’s hypothesis that human AD originates with pretangle stages is plausible. LC pretangle progression here generates both preclinical AD pathological changes and cognitive decline. The odor discrimination deficits are similar to human odor identification deficits seen with aging and preclinical AD. When initiated in aged rats, pretangle stages progress rapidly and cause LC cell loss. These age-related outcomes are associated with a severe learning impairment consistent with memory decline in Braak stages III–IV. Electronic supplementary material The online version of this article (10.1186/s13195-019-0511-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Abhinaba Ghosh
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Sarah E Torraville
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada.,Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Bandhan Mukherjee
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada
| | - Susan G Walling
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Gerard M Martin
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada
| | - Carolyn W Harley
- Department of Psychology, Faculty of Science, Memorial University of Newfoundland, St. John's, NL, A1B 3X9, Canada.
| | - Qi Yuan
- Division of Biomedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, NL, A1B 3V6, Canada.
| |
Collapse
|
12
|
Complex noradrenergic dysfunction in Alzheimer's disease: Low norepinephrine input is not always to blame. Brain Res 2019; 1702:12-16. [PMID: 29307592 PMCID: PMC6855395 DOI: 10.1016/j.brainres.2018.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 11/13/2017] [Accepted: 01/02/2018] [Indexed: 11/24/2022]
Abstract
The locus coeruleus-noradrenergic (LC-NA) system supplies the cerebral cortex with norepinephrine, a key modulator of cognition. Neurodegeneration of the LC is an early hallmark of Alzheimer's disease (AD). In this article, we analyze current literature to understand whether NA degeneration in AD simply leads to a loss of norepinephrine input to the cortex. With reported adaptive changes in the LC-NA system at the anatomical, cellular, and molecular levels in AD, existing evidence support a seemingly sustained level of extracellular NE in the cortex, at least at early stages of the long course of AD. We postulate that loss of the integrity of the NA system, rather than mere loss of NE input, is a key contributor to AD pathogenesis. A thorough understanding of NA dysfunction in AD has a large impact on both our comprehension and treatment of this devastating disease.
Collapse
|
13
|
Vicente MC, Almeida MC, Bícego KC, Carrettiero DC, Gargaglioni LH. Hypercapnic and Hypoxic Respiratory Response During Wakefulness and Sleep in a Streptozotocin Model of Alzheimer's Disease in Rats. J Alzheimers Dis 2018; 65:1159-1174. [PMID: 30124447 DOI: 10.3233/jad-180397] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Besides the typical cognitive decline, patients with Alzheimer's disease (AD) develop disorders of the respiratory system, such as sleep apnea, shortness of breath, and arrhythmias. These symptoms are aggravated with the progression of the disease. However, the cause and nature of these disturbances are not well understood. Here, we treated animals with intracerebroventricular streptozotocin (STZ, 2 mg/kg), a drug that has been described to cause Alzheimer-like behavioral and histopathological impairments. We measured ventilation (V̇E), electroencephalography, and electromyography during normocapnia, hypercapnia, and hypoxia in Wistar rats. In addition, we performed western blot analyses for phosphorylated tau, total tau, and amyloid-β (Aβ) peptide in the locus coeruleus (LC), retrotrapezoid nucleus, medullary raphe, pre-Bötzinger/Bötzinger complex, and hippocampus, and evaluated memory and learning acquisition using the Barnes maze. STZ treatment promoted memory and learning deficits and increased the percentage of total wakefulness during normocapnia and hypercapnia due to a reduction in the length of episodes of wakefulness. CO2-drive to breathe during wakefulness was increased by 26% in STZ-treated rats due to an enhanced tidal volume, but no changes in V̇E were observed in room air or hypoxic conditions. The STZ group also showed a 70% increase of Aβ in the LC and no change in tau protein phosphorylation. In addition, no alteration in body temperature was observed. Our findings suggest that AD animals present an increased sensitivity to CO2 during wakefulness, enhanced Aβ in the LC, and sleep disruption.
Collapse
Affiliation(s)
- Mariane C Vicente
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Maria C Almeida
- Center for Natural and Human Sciences; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| | - Daniel C Carrettiero
- Center for Natural and Human Sciences; Universidade Federal do ABC (UFABC); São Bernardo do Campo, SP, Brazil
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, Sao Paulo State University-UNESP/FCAV at Jaboticabal, SP, Brazil
| |
Collapse
|
14
|
Weinshenker D. Long Road to Ruin: Noradrenergic Dysfunction in Neurodegenerative Disease. Trends Neurosci 2018; 41:211-223. [PMID: 29475564 PMCID: PMC5878728 DOI: 10.1016/j.tins.2018.01.010] [Citation(s) in RCA: 200] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 01/09/2023]
Abstract
It has been known for decades that degeneration of the locus coeruleus (LC), the major noradrenergic nucleus in the brain, occurs in both Alzheimer's disease (AD) and Parkinson's disease (PD), but it was given scant attention. It is now recognized that hyperphosphorylated tau in the LC is the first detectable AD-like neuropathology in the human brain, α-synuclein inclusions in the LC represent an early step in PD, and experimental LC lesions exacerbate neuropathology and cognitive/behavioral deficits in animal models. The purpose of this review is to consider the causes and consequences of LC pathology, dysfunction, and degeneration, as well as their implications for early detection and treatment.
Collapse
Affiliation(s)
- David Weinshenker
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
15
|
Emborg ME. Nonhuman Primate Models of Neurodegenerative Disorders. ILAR J 2017; 58:190-201. [PMID: 28985333 PMCID: PMC5886328 DOI: 10.1093/ilar/ilx021] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 05/18/2017] [Indexed: 12/15/2022] Open
Abstract
Alzheimer's (AD), Huntington's (HD), and Parkinson's (PD) disease are age-related neurodegenerative disorders characterized by progressive neuronal cell death. Although each disease has particular pathologies and symptoms, accumulated evidence points to similar mechanisms of neurodegeneration, including inflammation, oxidative stress, and protein aggregation. A significant body of research is ongoing to understand how these pathways affect each other and what ultimately triggers the onset of the disease. Experiments in nonhuman primates (NHPs) account for only 5% of all research in animals. Yet the impact of NHP studies for clinical translation is much greater, especially for neurodegenerative disorders, as NHPs have a complex cognitive and motor functions and highly developed neuroanatomy. New NHP models are emerging to better understand pathology and improve the platform in which to test novel therapies. The goal of this report is to review NHP models of AD, HD, and PD in the context of the current understanding of these diseases and their contribution to the development of novel therapies.
Collapse
Affiliation(s)
- Marina E Emborg
- Marina E. Emborg, MD, PhD, is the director of the Preclinical Parkinson’s Research Program at the Wisconsin National Primate Research Center and an associate professor in the department of Medical Physics at the University of Wisconsin in Madison, Wisconsin.
| |
Collapse
|
16
|
Compton DM, Dietrich KL, Smith JS. Enhancement of spatial navigation ability in older rats following chronic administration of the alpha2 noradrenergic antagonist piperoxane. PSYCHOLOGICAL RECORD 2017. [DOI: 10.1007/bf03395228] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
17
|
Iatrou A, Kenis G, Rutten BPF, Lunnon K, van den Hove DLA. Epigenetic dysregulation of brainstem nuclei in the pathogenesis of Alzheimer's disease: looking in the correct place at the right time? Cell Mol Life Sci 2017; 74:509-523. [PMID: 27628303 PMCID: PMC5241349 DOI: 10.1007/s00018-016-2361-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 08/15/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
Abstract
Even though the etiology of Alzheimer's disease (AD) remains unknown, it is suggested that an interplay among genetic, epigenetic and environmental factors is involved. An increasing body of evidence pinpoints that dysregulation in the epigenetic machinery plays a role in AD. Recent developments in genomic technologies have allowed for high throughput interrogation of the epigenome, and epigenome-wide association studies have already identified unique epigenetic signatures for AD in the cortex. Considerable evidence suggests that early dysregulation in the brainstem, more specifically in the raphe nuclei and the locus coeruleus, accounts for the most incipient, non-cognitive symptomatology, indicating a potential causal relationship with the pathogenesis of AD. Here we review the advancements in epigenomic technologies and their application to the AD research field, particularly with relevance to the brainstem. In this respect, we propose the assessment of epigenetic signatures in the brainstem as the cornerstone of interrogating causality in AD. Understanding how epigenetic dysregulation in the brainstem contributes to AD susceptibility could be of pivotal importance for understanding the etiology of the disease and for the development of novel diagnostic and therapeutic strategies.
Collapse
Affiliation(s)
- A Iatrou
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - G Kenis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - B P F Rutten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands
| | - K Lunnon
- University of Exeter Medical School, RILD, University of Exeter, Barrack Road, Devon, UK
| | - D L A van den Hove
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Maastricht University, Universiteitssingel 50, 6200 MD, Maastricht, The Netherlands.
- Laboratory of Translational Neuroscience, Department of Psychiatry, Psychosomatics and Psychotherapy, University of Wuerzburg, Fuechsleinstrasse 15, 97080, Würzburg, Germany.
| |
Collapse
|
18
|
Daulatzai MA. Dysfunctional Sensory Modalities, Locus Coeruleus, and Basal Forebrain: Early Determinants that Promote Neuropathogenesis of Cognitive and Memory Decline and Alzheimer’s Disease. Neurotox Res 2016; 30:295-337. [DOI: 10.1007/s12640-016-9643-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 06/08/2016] [Accepted: 06/10/2016] [Indexed: 12/22/2022]
|
19
|
Gannon M, Che P, Chen Y, Jiao K, Roberson ED, Wang Q. Noradrenergic dysfunction in Alzheimer's disease. Front Neurosci 2015; 9:220. [PMID: 26136654 PMCID: PMC4469831 DOI: 10.3389/fnins.2015.00220] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 06/02/2015] [Indexed: 12/27/2022] Open
Abstract
The brain noradrenergic system supplies the neurotransmitter norepinephrine throughout the brain via widespread efferent projections, and plays a pivotal role in modulating cognitive activities in the cortex. Profound noradrenergic degeneration in Alzheimer's disease (AD) patients has been observed for decades, with recent research suggesting that the locus coeruleus (where noradrenergic neurons are mainly located) is a predominant site where AD-related pathology begins. Mounting evidence indicates that the loss of noradrenergic innervation greatly exacerbates AD pathogenesis and progression, although the precise roles of noradrenergic components in AD pathogenesis remain unclear. The aim of this review is to summarize current findings on noradrenergic dysfunction in AD, as well as to point out deficiencies in our knowledge where more research is needed.
Collapse
Affiliation(s)
- Mary Gannon
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Pulin Che
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Yunjia Chen
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Kai Jiao
- Department of Genetics, University of Alabama at Birmingham Birmingham, AL, USA
| | - Erik D Roberson
- Department of Neurology, University of Alabama at Birmingham Birmingham, AL, USA
| | - Qin Wang
- Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham Birmingham, AL, USA
| |
Collapse
|
20
|
Wrona MZ, And FZ, Dryhurst G. Electrochemical Oxidations of Central Nervous System Indoleamines, Catecholamines and Alkaloids: Potential Significance into Neurodegenerative Diseases. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.199400035] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
21
|
Reduced tissue levels of noradrenaline are associated with behavioral phenotypes of the TgCRND8 mouse model of Alzheimer's disease. Neuropsychopharmacology 2012; 37:1934-44. [PMID: 22491352 PMCID: PMC3376325 DOI: 10.1038/npp.2012.40] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Noradrenergic cell loss is well documented in Alzheimer's disease (AD). We have measured the tissue levels of catecholamines in an amyloid precursor protein-transgenic 'TgCRND8' mouse model of AD and found reductions in noradrenaline (NA) within hippocampus, temporoparietal and frontal cortices, and cerebellum. An age-related increase in cortical NA levels was observed in non-Tg controls, but not in TgCRND8 mice. In contrast, NA levels declined with aging in the TgCRND8 hippocampus. Dopamine levels were unaffected. Reductions in the tissue content of NA were found to coincide with altered expression of brain-derived neurotrophic factor (BDNF) mRNA and to precede the onset of object memory impairment and behavioral despair. To test whether these phenotypes might be associated with diminished NA, we treated mice with dexefaroxan, an antagonist of presynaptic inhibitory α(2)-adrenoceptors on noradrenergic and cholinergic terminals. Mice 12 weeks of age were infused systemically for 28 days with dexefaroxan or rivastigmine, a cholinesterase inhibitor. Both dexefaroxan and rivastigmine improved TgCRND8 behavioral phenotypes and increased BDNF mRNA expression without affecting amyloid-β peptide levels. Our results highlight the importance of noradrenergic depletion in AD-like phenotypes of TgCRND8 mice.
Collapse
|
22
|
Palmer AM, Sims NR, Francis PT. David Bowen, 1940-2011. J Neurochem 2011. [DOI: 10.1111/j.1471-4159.2011.07264.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Szot P, Van Dam D, White SS, Franklin A, Staufenbiel M, De Deyn PP. Age-dependent changes in noradrenergic locus coeruleus system in wild-type and APP23 transgenic mice. Neurosci Lett 2009; 463:93-7. [DOI: 10.1016/j.neulet.2009.07.055] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2009] [Revised: 07/17/2009] [Accepted: 07/17/2009] [Indexed: 11/28/2022]
|
24
|
López OL, Dekosky ST. Clinical symptoms in Alzheimer's disease. HANDBOOK OF CLINICAL NEUROLOGY 2008; 89:207-16. [PMID: 18631745 DOI: 10.1016/s0072-9752(07)01219-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Oscar L López
- Department of Neurology, Alzheimer's Disease Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | | |
Collapse
|
25
|
Schmitt HP. Neuro-modulation, aminergic neuro-disinhibition and neuro-degeneration. Draft of a comprehensive theory for Alzheimer disease. Med Hypotheses 2005; 65:1106-19. [PMID: 16125326 DOI: 10.1016/j.mehy.2005.06.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2005] [Revised: 06/22/2005] [Accepted: 06/23/2005] [Indexed: 12/18/2022]
Abstract
A comprehensive theory for Alzheimer disease (AD) which can provide a clue to the neuronal selective vulnerability (pathoklisis) is still missing. Based upon evidence from the current literature, the present work is aimed at proposing such a theory, namely the 'aminergic disinhibition theory' of AD. It includes data-based hypotheses as to the pathoklisis, mechanisms of neuro-degeneration and dementia as well as the aetiology of the disease. Alzheimer disease is regarded as a disorder of neural input modulation caused by the degeneration of four modulatory amine transmitter (MAT) systems, namely the serotoninergic, the noradrenergic, the histaminergic, and the cholinergic systems with ascending projections. MATs modulate cognitive processing including arousal, attention, and synaptic plasticity in learning and memory, not only through direct, mostly inhibitory impact on principal neurones but also partially through interaction with local networks of GABA-ergic inter-neurones. The distribution and magnitude of the pathology in AD roughly correlate with the distribution and magnitude of MAT modulation: Regions more densely innervated by ascending MAT projections are, as a rule, more severely affected than areas receiving less MAT innervation. Because the global effect of MATs in the forebrain is inhibition, the degeneration of four MAT systems, some related peptidergic systems and a secondary alleviation of the GABA-ergic transmission means a fundamental loss of inhibitory impact in the neuronal circuitry resulting in neuronal (aminergic) disinhibition. Clearly, the basic mechanism promoting neuronal death in AD is thought to be a chronic disturbance of the inhibition-excitation balance to the advantage of excitation. Chronic over-excitation is conceived to result in Ca2+ dependent cellular excito-toxicity leading to neuro-degeneration including amyloid-beta production and NFT formation. Disinhibited neurons will degenerate while less excited (relatively over-inhibited) neurones will survive. Because the decline of aminergic transmission in AD is likely to start at the receptor level, it is hypothesized that early impairment by a molecular 'hit' to an MAT receptor (or a group of receptors) initiates a pathogenetic cascade that develops in an avalanche-like manner. Based on experimental evidence from the literature, the 'hit' might be the attachment of a targeted pathogen like a small roaming amino acid sequence to the receptor(s), e.g., the serotoninergic 5-HT2A-R. Referential sequence analysis could be a means to identify such a small pathogen hidden in a large receptor molecule.
Collapse
Affiliation(s)
- H Peter Schmitt
- Institute of Pathology, Department for Neuropathology, University of Heidelberg, Im Neuernheimer Feld 220-221, 69120 Heidelberg, Germany.
| |
Collapse
|
26
|
Van Dam D, Marescau B, Engelborghs S, Cremers T, Mulder J, Staufenbiel M, De Deyn PP. Analysis of cholinergic markers, biogenic amines, and amino acids in the CNS of two APP overexpression mouse models. Neurochem Int 2005; 46:409-22. [PMID: 15737439 DOI: 10.1016/j.neuint.2004.11.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2004] [Revised: 11/17/2004] [Accepted: 11/18/2004] [Indexed: 10/25/2022]
Abstract
Two transgenic mouse models expressing mutated human amyloid precursor protein and previously found to display cognitive and behavioural alterations, reminiscent of Alzheimer patients' symptomatology, were scrutinised for putative brain region-specific changes in neurochemical parameters. Brains of NSE-hAPP751m-57, APP23 and wild-type mice were microdissected to perform brain region-specific neurochemical analyses. Impairment of cholinergic transmission, the prominent neurochemical deficit in Alzheimer brain, was examined; acetylcholinesterase and choline acetyltransferase activity levels were determined as markers of the cholinergic system. Since Alzheimer neurodegeneration is not restricted to the cholinergic system, brain levels of biogenic amines and metabolites, and amino acidergic neurotransmitters and systemic amino acids were analysed as well. Cholinergic dysfunction, reflected in reduced enzymatic activity in the basal forebrain nuclei, was restricted to the APP23 model, which also exhibited more outspoken and more widespread changes in other neurotransmitter systems. Significant changes in compounds of the noradrenergic and serotonergic system were observed, as well as alterations in levels of the inhibitory neurotransmitter glycine and systemic amino acids. These observations were clearly in occurrence with the more pronounced histopathological and behavioural phenotype of the APP23 model. As transgenic models often do not represent an end-stage of the disease, some discrepancies with results from post-mortem human Alzheimer brain analyses were apparent; in particular, no significant alterations in excitatory amino acid levels were detected. Our findings of brain region-specific alterations in compound levels indicate disturbed neurotransmission pathways, and greatly add to the validity of APP23 mice as a model for Alzheimer's disease. Transgenic mouse models may be employed as a tool to study early-stage neurochemical changes, which are often not accessible in Alzheimer brain.
Collapse
Affiliation(s)
- Debby Van Dam
- Laboratory of Neurochemistry and Behaviour, Born-Bunge Institute, Department of Biomedical Sciences, University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | | | | | | | | | | | | |
Collapse
|
27
|
Herrmann N, Lanctôt KL, Eryavec G, Van Reekum R, Khan LR. Growth hormone response to clonidine predicts aggression in Alzheimer's disease. Psychoneuroendocrinology 2004; 29:1192-7. [PMID: 15219643 DOI: 10.1016/j.psyneuen.2004.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2003] [Revised: 08/12/2003] [Accepted: 02/10/2004] [Indexed: 11/20/2022]
Abstract
OBJECTIVE The neurobiology of aggression in Alzheimer's Disease (AD) remains unknown. The objective of this study was to determine if altered central noradrenergic (NE) responsiveness is related to aggression in AD. METHODS Fifteen institutionalized, non-depressed elderly (11 males, four females, mean age 81.5 +/- 5.5) with probable AD, severe cognitive impairment (MMSE mean 3.3 +/- 4.6) and significant behavioral disturbances (Neuropsychiatric Inventory (NPI) score > or = 8) were studied. Growth Hormone (GH) response to clonidine challenge (5 microg/kg) was used as an index of central alpha(2)-adrenergic function. RESULTS When patients were divided into those with preserved GH response (GH maximum change from baseline > 0, n = 6) and those with blunted GH response (GH maximum change from baseline < or = 0, n = 9) there were significant differences in levels of aggression as measured by the Cohen-Mansfield Agitation Inventory (CAMI) physical aggression subscale (p = .026). Patients with blunted GH response also had significantly higher levels of aggression against others on the retrospective Overt Aggression Scale (p = 0.027). CONCLUSIONS Certain types of physically aggressive behaviors are associated with a blunted GH response to clonidine challenge. This finding is consistent with compensatory down-regulation of post-synaptic alpha(2)-adrenergic receptors in response to enhanced NE outflow in aggressive AD patients.
Collapse
Affiliation(s)
- Nathan Herrmann
- Department of Psychiatry, Sunnybrook and Women's College Health Sciences Centre, Room FG05, 2075 Bayview Avenue, Toronto, Ontario, Canada M4N 3M5.
| | | | | | | | | |
Collapse
|
28
|
Howes MJR, Houghton PJ. Plants used in Chinese and Indian traditional medicine for improvement of memory and cognitive function. Pharmacol Biochem Behav 2003; 75:513-27. [PMID: 12895669 DOI: 10.1016/s0091-3057(03)00128-x] [Citation(s) in RCA: 284] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
In traditional practices of Ayurvedic and Chinese medicine, numerous plants have been used to treat cognitive disorders, including neurodegenerative diseases such as Alzheimer's disease (AD). An ethnopharmacological approach has provided leads to identifying potential new drugs from plant sources, including those for cognitive disorders. Many drugs currently available in Western medicine were originally isolated from plants, or are derived from templates of compounds isolated from plants. Some anticholinesterase (anti-ChE) alkaloids isolated from plants have been investigated for their potential in the treatment of AD, and are now in clinical use. Galantamine, isolated from several plants including Lycoris radiata Herb., which was used in traditional Chinese medicine (TCM), is licensed in the United Kingdom for the treatment of mild to moderate AD. Various other plant species have shown pharmacological activities relevant to the treatment of cognitive disorders, indicating potential for therapeutic use in disorders such as AD. This article reviews some of the plants and their active constituents that have been used in traditional Ayurvedic medicine and TCM for their reputed cognitive-enhancing or antiageing effects. Plants and their constituents with pharmacological activities that may be relevant for the treatment of cognitive disorders, including enhancement of cholinergic function in the central nervous system (CNS), anti-inflammatory and antioxidant activities, are discussed.
Collapse
|
29
|
Sarter M, Turchi J. Age- and dementia-associated impairments in divided attention: psychological constructs, animal models, and underlying neuronal mechanisms. Dement Geriatr Cogn Disord 2002; 13:46-58. [PMID: 11731715 DOI: 10.1159/000048633] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Following a brief description of the psychological construct 'divided attention', impairments in divided attention and related executive functions are discussed as the major variable in the development and manifestation of age- and dementia-associated cognitive impairments. Neuropsychological and functional imaging studies in humans have indicated that dorsolateral and ventrolateral prefrontal, cingulate, parietal and premotor cortical areas are involved in the mediation of dual task performance. Furthermore, reduced activity in these areas has been suggested to mediate age- and dementia-associated impairments in divided attention. Experimental studies in animals have provided strong support for the hypothesis that cholinergic projections terminating in all cortical areas and layers crucially mediate the performance in tasks that tax processing capacity and/or the allocation of processing resources to competing demands. This specification of the 'cholinergic hypothesis' is evaluated in light of recent critical accounts of the role of this system in the development of age- and dementia- related cognitive disorders. The converging animal experimental and human neuropathological, as well as neuropsychological, evidence indicates that decreases in the integrity of cortical cholinergic inputs represent a necessary, possibly even sufficient, neuronal process mediating the impairments in divided attention and the resulting, broad decline in cognitive functions.
Collapse
Affiliation(s)
- M Sarter
- Department of Psychology, Ohio State University, Columbus, Ohio 43210, USA.
| | | |
Collapse
|
30
|
Menschik ED, Finkel LH. Cholinergic neuromodulation and Alzheimer's disease: from single cells to network simulations. PROGRESS IN BRAIN RESEARCH 1999; 121:19-45. [PMID: 10551018 DOI: 10.1016/s0079-6123(08)63065-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- E D Menschik
- Institute of Neurological Sciences, University of Pennsylvania, Philadelphia 19104, USA.
| | | |
Collapse
|
31
|
Friedman JI, Adler DN, Davis KL. The role of norepinephrine in the pathophysiology of cognitive disorders: potential applications to the treatment of cognitive dysfunction in schizophrenia and Alzheimer's disease. Biol Psychiatry 1999; 46:1243-52. [PMID: 10560029 DOI: 10.1016/s0006-3223(99)00232-2] [Citation(s) in RCA: 117] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The role of noradrenergic neurotransmission in normal cognitive functions has been extensively investigated, however, the involvement of noradrenergic functions in the cognitive impairment associated with schizophrenia and Alzheimer's disease has not been as intensively considered. The limited ability of atypical antipsychotics to treat the cognitive impairment of schizophrenia, and cholinomimetics to treat the cognitive impairment of Alzheimer's disease, may be related to the influence of a multiplicity of neurotransmitter abnormalities including noradrenergic dysfunction, which these treatments do not address. The evidence of noradrenergic dysfunction occurring concomitantly with dopamine dysfunction in schizophrenia and acetylcholine dysfunction in Alzheimer's disease supports therapeutic approaches using noradrenergic drugs in combination with neuroleptics and cholinesterase inhibitors, respectively, to enhance the treatment of cognitive impairment. Given the results of animal and human studies, it appears that alpha-2A agonists may be the optimal choice for this purpose.
Collapse
Affiliation(s)
- J I Friedman
- Department of Psychiatry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
32
|
Fadel J, Sarter M, Bruno JP. Age-related attenuation of stimulated cortical acetylcholine release in basal forebrain-lesioned rats. Neuroscience 1999; 90:793-802. [PMID: 10218780 DOI: 10.1016/s0306-4522(98)00515-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In vivo microdialysis was used to measure the effects of partial deafferentation of cortical cholinergic inputs on acetylcholine efflux in young (four to seven months) and aged (24-28 months) male F344/BNNIA rats. Partial deafferentation was produced by bilateral infusions of the immunotoxin 192 immunoglobulin G-saporin (0.56 microg/1.0 microl) or its vehicle solution into the ventral pallidum/substantia innominata region of the basal forebrain. The lesion produced comparable (65%) decreases in basal cortical acetylcholine efflux in young and aged rats. Presentation of a complex environmental stimulus (exposure to darkness/palatable food), in conjunction with the systemic administration of the benzodiazepine receptor weak inverse agonist ZK 93 426, increased cortical acetylcholine efflux in young shams, aged shams and young lesioned rats, but not in aged lesioned rats. Administration of the benzodiazepine receptor partial inverse agonist FG 7142, in the absence of the environmental stimulus, comparably stimulated cortical acetylcholine efflux in young and aged sham rats. FG 7142-induced increases in acetylcholine efflux were attenuated by approximately 50% following partial deafferentation in both young and aged rats. These results suggests that, under certain conditions, ageing potently interacts with the integrity of the cortical cholinergic afferent system. The effects of ageing on cortical cholinergic function may be most potently revealed by experiments assessing age-related limitations in the responsiveness of a partially deafferented cholinergic system to certain behavioral and/or pharmacological stimuli.
Collapse
Affiliation(s)
- J Fadel
- Department of Psychology, The Ohio State University, Columbus 43210, USA
| | | | | |
Collapse
|
33
|
Hoogendijk WJ, Feenstra MG, Botterblom MH, Gilhuis J, Sommer IE, Kamphorst W, Eikelenboom P, Swaab DF. Increased activity of surviving locus ceruleus neurons in Alzheimer's disease. Ann Neurol 1999; 45:82-91. [PMID: 9894881 DOI: 10.1002/1531-8249(199901)45:1<82::aid-art14>3.0.co;2-t] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
In Alzheimer's disease (AD) there is neuronal loss in the locus ceruleus (LC), and the noradrenergic system may be even more affected in depressed AD patients. However, this neuronal loss may go together with an increase in activity of the remaining noradrenergic neurons. We prospectively evaluated 16 AD patients (6 depressed, 5 transiently depressed, and 5 nondepressed) and 10 controls. We determined norepinephrine and its metabolite 3-methoxy-4-hydroxyphenylglycol (MHPG) in various brain areas, and compared these data with previously established neuron numbers in the LC in the same patients. We could not confirm earlier studies reporting lower norepinephrine concentrations in depressed than in nondepressed dementia patients. The mean norepinephrine concentrations in AD patients were significantly lower than those in control patients, whereas the mean concentrations of MHPG were not different. Moreover, we found significant inverse relationships between the number of remaining pigmented LC neurons and the MHPG/norepinephrine ratio in the frontal cortex and LC. These data are the first to provide direct evidence for the hypothesis that remaining LC neurons are activated to compensate for decreased cerebral norepinephrine levels in AD, by demonstrating that the MHPG/norepinephrine ratio is significantly higher in AD, indicating increased metabolism.
Collapse
Affiliation(s)
- W J Hoogendijk
- Netherlands Institute for Brain Research, and Department of Psychiatry, Valerius Clinic, Amsterdam
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Lawrence AD, Sahakian BJ. The cognitive psychopharmacology of Alzheimer's disease: focus on cholinergic systems. Neurochem Res 1998; 23:787-94. [PMID: 9566619 DOI: 10.1023/a:1022419712453] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The primary pathology in Alzheimer's disease (DAT) occurs in the basal forebrain cholinergic system (BFCS), which provides the major cholinergic innervation to the neocortex, hippocampus and amygdala. Consistent with the 'cholinergic hypothesis' of dementia in DAT, the most effective treatments so far developed for DAT are drugs which act to boost the functions of the BFCS. These include the centrally acting cholinesterase inhibitor tacrine, and the cholinergic agonist nicotine, acute administration of which leads to an improvement in attentional functions, in line with recent animal studies of the role of the BFCS in cognition. We conclude that future research should include the development of more potent, longer-lasting, less toxic cholinergic agents, which appear to be the best candidates for alleviating the cognitive symptomatology of DAT. Such drugs may also be useful in the treatment of a number of other cognitive disorders, including Lewy body dementia, attention deficit/hyperactivity disorder, and schizophrenia.
Collapse
Affiliation(s)
- A D Lawrence
- Department of Psychiatry, University of Cambridge, UK
| | | |
Collapse
|
35
|
Abe K, Takeyama C, Yoshimura K. Effects of S-8510, a novel benzodiazepine receptor partial inverse agonist, on basal forebrain lesioning-induced dysfunction in rats. Eur J Pharmacol 1998; 347:145-52. [PMID: 9653874 DOI: 10.1016/s0014-2999(98)00099-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We investigated the effects of a novel benzodiazepine partial inverse agonist, S-8510 (2-(3-isoxazolyl)-3,6,7,9-tetrahydroimidazo [4,5-d] pyrano [4,3-b] pyridine monophosphate monohydrate), on the impairment of spatial memory, decreased high-affinity choline uptake and acetylcholine release in basal forebrain-lesioned rats. S-8510 (3 and 5 mg/kg, p.o. 30 min before each training session) significantly ameliorated the basal forebrain-lesion-induced impairment of spatial memory in water maze task. In vivo brain microdialysis studies showed that systemic administration of S-8510 at 3 and 10 mg/kg significantly increased the release of acetylcholine in the front-parietal cortex in basal forebrain-lesioned rats. Further, repeated administration of S-8510 (3 and 10 mg kg(-1) day(-1) for 5 days) reversed the decrease in cortical high-affinity choline uptake induced by basal forebrain lesion. Thus, S-8510 improved the spatial memory impairment induced by lesion of the basal forebrain in rats. In addition, it increased acetylcholine release and high-affinity choline uptake from the cortex, a region closely associated with memory, in basal forebrain-lesioned rats. These results indicate that S-8510 has cognition enhancing and cholinergic-activating effects in the basal forebrain-lesioned rats, suggesting that this agent may be useful for the treatment of mild to moderate senile dementia including Alzheimer's disease.
Collapse
Affiliation(s)
- K Abe
- Department of Pharmacology, Development Research Laboratories, Shionogi, Toyonaka, Osaka, Japan.
| | | | | |
Collapse
|
36
|
Francis PT, Bowen DM. Neuronal pathology in relation to molecular biology and treatment of Alzheimer's disease. MOLECULAR AND CELL BIOLOGY OF HUMAN DISEASES SERIES 1998; 4:25-54. [PMID: 9439743 DOI: 10.1007/978-94-011-0709-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- P T Francis
- Miriam Marks Department of Neurochemistry, Institute of Neurology, London, UK
| | | |
Collapse
|
37
|
Oke AF, Carver LA, Gouvion CM, Adams RN. Three-dimensional mapping of norepinephrine and serotonin in human thalamus. Brain Res 1997; 763:69-78. [PMID: 9272830 DOI: 10.1016/s0006-8993(97)00404-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Detailed quantitative information on catecholamines and 5-hydroxytryptamine (serotonin) in the human thalamus is much needed because of increasing interest in norepinephrine and serotonin as modulators of thalamic behavioral state control and overall information processing. This study provides three-dimensional distribution patterns of these monoamines in postmortem thalami from 13 normal subjects (no known neurological or psychiatric histories). The patterns come from a relatively fine-grained grid mapping procedure on successive coronal sections. Samples were analyzed by high performance liquid chromatography with electrochemical detection. The highest endogenous concentrations of norepinephrine are found in a ventromedial core that includes a number of the medial and intralaminar sub-nuclei but extends only slightly into the sensory regions of the lateral tier. The posterior portion of the thalamus, the pulvinar, contains low levels of norepinephrine. The distribution of 5-hydroxytryptamine is quite similar to that of norepinephrine in the rostral two-thirds of thalamus; however, in the pulvinar region, levels of serotonin are considerably increased and differ markedly between individual thalami. The study provides the first definitive mapping of serotonin levels in human thalamus. Consistent with many animal studies, there is no evidence for major dopaminergic innervation of human thalamus. By emphasizing the pattern distribution of the monoamines rather than the absolute values, it can be shown that the ambiguities of postmortem degradation frequently associated with biochemical assays are largely avoided. The terminal field distribution of norepinephrine is an essentially constant neurochemical signature in all thalami examined. The utility of the biochemical grid mapping procedure may be especially significant in terms of matching with data from functional neuroimaging techniques.
Collapse
Affiliation(s)
- A F Oke
- Department of Chemistry and Center for Neurobiology and Immunology Research, University of Kansas, Lawrence 66045, USA
| | | | | | | |
Collapse
|
38
|
Further Insights into the Oxidation Chemistry of Norepinephrine and Epinephrine in the Presence of Cysteine. Bioorg Chem 1997. [DOI: 10.1006/bioo.1997.1061] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Givens B, Sarter M. Modulation of cognitive processes by transsynaptic activation of the basal forebrain. Behav Brain Res 1997; 84:1-22. [PMID: 9079768 DOI: 10.1016/s0166-4328(96)00146-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Each of the neurotransmitter-specific afferents to the basal forebrain (BF) carry different types of information which converge to regulate the activity of cholinergic projections to telencephalic areas. Brainstem monoaminergic and cholinergic inputs are critical for context-dependent arousal. GABAergic afferents are gated by a variety of ascending and descending systems, and in addition provide an intrinsic control of BF output excitability. Corticofugal glutamatergic inputs represent reciprocal connections from sites to which BF afferents project, and carry information about the current level of cortical processing intensity and capacity. Peptidergic inputs arise from hypothalamic sources and locally modulate BF output as a function of motivational and homeostatic processes. The significance of these afferent systems can be studied by examining the behavioral consequences of infusion into the BF of drugs that act on the specific receptor systems. Although traditional analyses suggest that the BF has many behavioral functions that can be subdivided regionally, an analysis of studies employing transsynaptic approaches lead to the conceptualization of the BF as having a uniform function, that of maximizing cortical processing efficiency. The BF is conditionally active during specific episodes of acquisition and processing of behaviorally significant, externally-derived information, and drives cortical targets into a state of readiness by reducing interference and amplifying the processing of relevant stimuli and associations, thus allowing for more efficient processing. This paper describes the transsynaptic approach to studying BF function, reviews the neurobiological and behavioral consequences of altering neurotransmitter-specific inputs to the BF, and explores the functional significance of the BF.
Collapse
Affiliation(s)
- B Givens
- The Ohio State University, Department of Psychology, Columbus 43210, USA
| | | |
Collapse
|
40
|
Sarter M, Bruno JP. Trans-synaptic stimulation of cortical acetylcholine and enhancement of attentional functions: a rational approach for the development of cognition enhancers. Behav Brain Res 1997; 83:7-14. [PMID: 9062654 DOI: 10.1016/s0166-4328(97)86039-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Activation and restoration of cholinergic function remain major foci in the development of pharmacological approaches toward the treatment of cognitive dysfunctions associated with aging and dementia. Our research has been guided by the hypothesis that (re)activation of cortical cholinergic inputs is achieved as a result of trans-synaptic disinhibition of basal forebrain cholinergic neurons. This approach depends on the ability of benzodiazepine receptor (BZR) inverse agonists to reduce the potency of GABA to block neuronal excitation. BZR inverse agonists were found to augment cortical ACh efflux through interaction with cognition-associated activation of this system. Cortical cholinergic inputs have been implicated in the processing of behaviorally significant stimuli, i.e., attentional functions. Using a recently developed and validated task for the measurement of sustained attention, or vigilance, administration of BZR inverse agonists were found to selectively increase the number of false alarms in intact animals. However, in animals with a 50-70%, but not > 90%, loss of the cortical cholinergic inputs, treatment with BZR inverse agonists alleviated the lesion-induced impairment in sustained attention and enhanced activated cortical ACh efflux. A rational development of cognitive enhancers will benefit from experiments in which cognitive and neuropharmacological variables are assessed simultaneously, thus allowing the analysis of interactions between cognition-associated neuronal activity and the neuronal and cognitive effects of putative cognition enhancers.
Collapse
Affiliation(s)
- M Sarter
- Department of Psychology, Ohio State University, Columbus 43210, USA.
| | | |
Collapse
|
41
|
Ohara T, Tanaka K, Fukaya H, Demura N, Iimura A, Seno N. SDZ ENA 713 facilitates central cholinergic function and ameliorates spatial memory impairment in rats. Behav Brain Res 1997; 83:229-33. [PMID: 9062691 DOI: 10.1016/s0166-4328(97)86076-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have clarified the effects of SDZ ENA 713 (ENA), a new phenyl-carbamate derivative, on the spatial learning impairment and neurochemical indices of central cholinergic neurons in rats. Basal forebrain (BF) lesioning with ibotenic acid markedly impaired acquisition ability in the water maze task without changing swimming rates and decreased choline acetyltransferase (ChAT) activity in the frontal cortex of rats. ENA (0.1, 0.2 mg/kg, p.o.) significantly ameliorated the impairment in acquisition ability in a dose-dependent manner. At 0.2 mg/kg, ENA prevented the reduction in ChAT activity. In normal rats, ENA (1 mg/kg, p.o.) increased extracellular ACh concentration of the prefrontal cortex. On the other hand, tissue concentrations of norepinephrine, serotonin, dopamine and their metabolites were not changed in the frontal cortex, hippocampus and striatum of normal rats. These results suggest that ENA ameliorates spatial learning disability by not only facilitating the cholinergic transmission, but normalizing impaired ChAT activity in the learning-impaired rat model.
Collapse
Affiliation(s)
- T Ohara
- Sandoz Tsukuba Research Institute, Department of Pharmacology, Japan
| | | | | | | | | | | |
Collapse
|
42
|
Chapter VIII Primate cingulate cortex chemoarchitecture and its disruption in Alzheimer's disease. ACTA ACUST UNITED AC 1997. [DOI: 10.1016/s0924-8196(97)80010-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
43
|
Trans-synaptic stimulation of cortical acetylcholine release after partial 192 IgG-saporin-induced loss of cortical cholinergic afferents. J Neurosci 1996. [PMID: 8815935 DOI: 10.1523/jneurosci.16-20-06592.1996] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Environmental and pharmacological stimulation of cortical acetylcholine (ACh) efflux was determined in rats sustaining partial deafferentation of cortical cholinergic inputs. Rats were bilaterally infused with the selective cholinotoxin 192 IgG-saporin (0.005 microgram/0.5 microliter/site) into the frontoparietal cortex. In the first experiment, animals were pretrained to associate the onset of darkness with presentation of a palatable fruit cereal reward. The ability of this stimulus to enhance frontoparietal ACh efflux alone, and with the benzodiazepine receptor (BZR) weak inverse agonist ZK 93,426 (1.0 or 5.0 mg/kg, i.p.), was determined in lesioned and sham-lesioned rats. Intracortical infusions of 192 IgG-saporin reduced basal cortical ACh efflux by 47% of sham-lesioned values, consistent with reductions in the density of AChE-positive fibers. In spite of this deafferentation, ZK 93,426 produced a transient potentiation of the cortical ACh efflux induced by the darkness/cereal stimulus similar to that observed in control animals. In the second experiment, the ability of the more efficacious BZR partial inverse agonist FG 7142 (8.0 mg/kg, i.p.) to enhance basal cortical ACh efflux was compared in lesioned and sham-lesioned rats. Again, lesioned rats exhibited an increase comparable to control animals after FG 7142. This drug-induced stimulation of cortical ACh efflux was comparably and completely blocked in both groups by co-perfusion with tetrodotoxin (1.0 microM). These results suggest similarities in the modulation of cortical ACh efflux in intact and partially deafferented rats and indicate the potential of BZR inverse agonists for restoring transmission in animals with partial loss of cortical cholinergic inputs.
Collapse
|
44
|
Zaborszky L, Cullinan WE. Direct catecholaminergic-cholinergic interactions in the basal forebrain. I. Dopamine-beta-hydroxylase- and tyrosine hydroxylase input to cholinergic neurons. J Comp Neurol 1996; 374:535-54. [PMID: 8910734 DOI: 10.1002/(sici)1096-9861(19961028)374:4<535::aid-cne5>3.0.co;2-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Immunocytochemical double-labeling techniques were used at the light and electron microscopic levels to investigate whether dopamine-beta-hydroxylase and tyrosine hydroxylase-containing axons contact basal forebrain cholinergic neurons. Dopamine-beta-hydroxylase- and tyrosine hydroxylase-positive fibers and terminals were found in close proximity to cholinergic neurons throughout extensive basal forebrain areas, including the vertical and horizontal limb of the diagonal band nuclei, the sublenticular substantia innominata, bed nucleus of the stria terminalis, ventral pallidum, and ventrolateral globus pallidus. Cholinergic cells in some aspects of the globus pallidus appeared to be contacted by tyrosine hydroxylase-positive but not dopamine-beta-hydroxylase-positive fibers, suggesting dopaminergic input to cholinergic neurons in these regions. Direct evidence for the termination of dopamine-beta-hydroxylase and tyrosine hydroxylase-positive fibers on cholinergic neurons was obtained in electron microscopic double-immunolabeling studies. Using high magnification light microscopic screening, both qualitative and quantitative differences were noted in the catecholaminergic innervation of forebrain cholinergic neurons. For example, while many cholinergic neurons were in close proximity to single dopamine-beta-hydroxylase-positive varicosities, others, particularly those located in the substantia innominatabed nucleus of the stria terminalis continuum, were apparently contacted by labeled fibers in repetitive fashion. The findings of the present study, together with our preliminary biochemical experiments (Zaborszky et al. [1993] Prog. Brain Res. 98:31-49) suggest that catecholaminergic afferents can differentially modulate forebrain cholinergic neurons. Such interactions may be important in learning and memory processes, and their perturbations may contribute to the cognitive decline seen in aging and in disorders such as Alzheimer's and Parkinson's diseases.
Collapse
Affiliation(s)
- L Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, Newark, New Jersey 07102, USA
| | | |
Collapse
|
45
|
|
46
|
Abstract
Psychotic symptoms are prominent in schizophrenia and a frequent neuropsychiatric manifestation of Alzheimer's disease (AD), occurring in approximately 50% of patients affected. The shared psychiatric symptoms suggest common cerebral pathophysiologies. Radiologic and pathologic findings indicate a predilection toward limbic involvement, with structural and atrophic changes of the medical temporal region predominating in both disorders. Neurochemical alterations affecting the dopaminergic/cholinergic axis appear to be central to both schizophrenia and AD. The basic pathologies of the two disorders are different, but they have similarities in the pattern of regional brain dysfunction, biochemical dysfunction, and symptomatology. We represent a selective review of these similarities. Insights drawn from these observations enrich the understanding of each disorder.
Collapse
Affiliation(s)
- K E White
- Behavioral Neuroscience Section, West Los Angeles Veterans Affairs Medical Center, CA 90073, USA
| | | |
Collapse
|
47
|
Camacho F, Smith CP, Vargas HM, Winslow JT. Alpha 2-adrenoceptor antagonists potentiate acetylcholinesterase inhibitor effects on passive avoidance learning in the rat. Psychopharmacology (Berl) 1996; 124:347-54. [PMID: 8739550 DOI: 10.1007/bf02247440] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The cholinergic hypothesis of Alzheimer's disease (AD) has strongly influenced research on learning and memory over the last decade. However, there has been limited success treating AD dementia with cholinomimetics. Furthermore, there are indications that other neurotransmitter systems affected by this disease may be involved in cognitive processes. Animal studies have suggested that norepinephrine and acetylcholine may interact in learning and memory. The current experiments investigate this interaction in a step-down passive avoidance paradigm after coadministration of acetylcholinesterase inhibitors and alpha 2-adrenoceptor antagonists. Administration of acetylcholinesterase inhibitors heptylphysostigmine (0.625-5.0 mg/kg, IP), tacrine (2.5-10.0 mg/kg, PO), velnacrine (0.312-2.5 mg/kg, SC), and galanthamine (0.312-2.5 mg/kg IP) each enhanced retention of a passive avoidance response at selected moderate doses administered 30-60 min prior to training. The alpha 2-adrenoceptor antagonists idazoxan (0.312-2.5 mg/kg, IP), yohimbine (0.078-0.312 mg/kg, IP) and P86 7480 (0.156-0.625 mg/kg, IP) alone failed to enhance learning in this paradigm. Coadministration of a subthreshold dose of heptylphysostigmine (0.625 mg/kg, IP) with doses of idazoxan, yohimbine or P86 7480 enhanced passive avoidance learning. This synergistic interaction may represent effects of antagonism of presynaptic alpha 2-adrenoceptor since coadministration of heptylphysostigmine and the selective postsynaptic alpha 2-adrenoceptor antagonist SKF 104856 did not result in enhanced learning. Taken together these data suggest noradrenergic activation through pre-synaptic alpha 2-adrenoceptor blockade may potentiate cholinergic activity in the formation of a long-term memory trace. These observations may have implications for the treatment of AD with cholinergic and adrenergic agents.
Collapse
Affiliation(s)
- F Camacho
- Neuroscience Therapeutic Domain, Somerville, NJ 08876-1258, USA
| | | | | | | |
Collapse
|
48
|
Oxygen Radical-Mediated Oxidation of Serotonin: Potential Relationship to Neurodegenerative Diseases. NEURODEGENER DIS 1996. [DOI: 10.1007/978-1-4899-0209-2_35] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
49
|
Raskind M. A research agenda for disruptive behaviors in Alzheimer's disease: a combined biomedical and behavioral approach. Int Psychogeriatr 1996; 8 Suppl 1:53-8. [PMID: 8934266 DOI: 10.1017/s1041610296003080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- M Raskind
- Veterans Affairs Puget Sound Health Care System, Seattle, Washington, USA
| |
Collapse
|
50
|
Li M, Smith CP. Beta-amyloid1-40 inhibits electrically stimulated release of [3H]norepinephrine and enhances the internal calcium response to low potassium in rat cortex: prevention with a free radical scavenger. Brain Res Bull 1996; 39:299-303. [PMID: 8705317 DOI: 10.1016/0361-9230(96)00031-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
We examined the effects of beta-amyloid1-40 (A beta 1-40) on the electrically stimulated release of [3H]norepinephrine (NE) and the potassium chloride (KCl)-evoked increases in intrasynaptosomal calcium ([Ca2+]i) from rat brain cortical slices and synaptosomes, respectively. The results show that 3nM A beta 1-40 decreased electrically stimulated [3H]NE release approximately 50%, and the same concentration of A beta 1-40 increased [Ca2+]i by 78% above control during low level (10 mM) KCl depolarization. Complete prevention of both effects was observed when the free radical scavenger 1mM N-tert-butyl-alpha-phenylnitrone (PBN) was present. Also, when PBN was exposed to the slice first and then followed by A beta 1-40, the inhibition of [3H]NE was blocked. Alone, PBN had no effect in either paradigm. Our experiments show that 3 nM A beta 1-40 allows a PBN-sensitive free radical to deleteriously effect both evoked [3H]NE release and [Ca2-]i regulation in rat cortical slices and synaptosomes.
Collapse
Affiliation(s)
- M Li
- Hoechst Marion Roussel Inc., Somerville, NJ 08876, USA
| | | |
Collapse
|