1
|
Beauséjour PA, Veilleux JC, Condamine S, Zielinski BS, Dubuc R. Olfactory Projections to Locomotor Control Centers in the Sea Lamprey. Int J Mol Sci 2024; 25:9370. [PMID: 39273317 PMCID: PMC11395479 DOI: 10.3390/ijms25179370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Although olfaction is well known to guide animal behavior, the neural circuits underlying the motor responses elicited by olfactory inputs are poorly understood. In the sea lamprey, anatomical evidence shows that olfactory inputs project to the posterior tuberculum (PT), a structure containing dopaminergic (DA) neurons homologous to the mammalian ventral tegmental area and the substantia nigra pars compacta. Olfactory inputs travel directly from the medial olfactory bulb (medOB) or indirectly through the main olfactory bulb and the lateral pallium (LPal). Here, we characterized the transmission of olfactory inputs to the PT in the sea lamprey, Petromyzon marinus. Abundant projections from the medOB were observed close to DA neurons of the PT. Moreover, electrophysiological experiments revealed that PT neurons are activated by both the medOB and LPal, and calcium imaging indicated that the olfactory signal is then relayed to the mesencephalic locomotor region to initiate locomotion. In semi-intact preparations, stimulation of the medOB and LPal induced locomotion that was tightly associated with neural activity in the PT. Moreover, PT neurons were active throughout spontaneously occurring locomotor bouts. Altogether, our observations suggest that the medOB and LPal convey olfactory inputs to DA neurons of the PT, which in turn activate the brainstem motor command system to elicit locomotion.
Collapse
Affiliation(s)
| | - Jean-Christophe Veilleux
- Research Group in Adapted Physical Activity, Department of Exercise Sciences, Faculty of Sciences, University of Quebec in Montreal, Montreal, QC H2X 1Y4, Canada
| | - Steven Condamine
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
| | - Barbara S Zielinski
- Department of Integrative Biology, Faculty of Science, University of Windsor, Windsor, ON N9B 3P4, Canada
| | - Réjean Dubuc
- Department of Neurosciences, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada
- Research Group in Adapted Physical Activity, Department of Exercise Sciences, Faculty of Sciences, University of Quebec in Montreal, Montreal, QC H2X 1Y4, Canada
| |
Collapse
|
2
|
Dubuc R, Cabelguen JM, Ryczko D. Locomotor pattern generation and descending control: a historical perspective. J Neurophysiol 2023; 130:401-416. [PMID: 37465884 DOI: 10.1152/jn.00204.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/20/2023] Open
Abstract
The ability to generate and control locomotor movements depends on complex interactions between many areas of the nervous system, the musculoskeletal system, and the environment. How the nervous system manages to accomplish this task has been the subject of investigation for more than a century. In vertebrates, locomotion is generated by neural networks located in the spinal cord referred to as central pattern generators. Descending inputs from the brain stem initiate, maintain, and stop locomotion as well as control speed and direction. Sensory inputs adapt locomotor programs to the environmental conditions. This review presents a comparative and historical overview of some of the neural mechanisms underlying the control of locomotion in vertebrates. We have put an emphasis on spinal mechanisms and descending control.
Collapse
Affiliation(s)
- Réjean Dubuc
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'Activité Physique, Université du Québec à Montréal, Montreal, Quebec, Canada
- Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Marie Cabelguen
- Institut National de la Santé et de la Recherche Médicale (INSERM) U 1215-Neurocentre Magendie, Université de Bordeaux, Bordeaux Cedex, France
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Université de Sherbrooke, Sherbrooke, Quebec, Canada
- Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
- Neurosciences Sherbrooke, Sherbrooke, Quebec, Canada
- Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
3
|
Lacroix-Ouellette P, Dubuc R. Brainstem neural mechanisms controlling locomotion with special reference to basal vertebrates. Front Neural Circuits 2023; 17:910207. [PMID: 37063386 PMCID: PMC10098025 DOI: 10.3389/fncir.2023.910207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Over the last 60 years, the basic neural circuitry responsible for the supraspinal control of locomotion has progressively been uncovered. Initially, significant progress was made in identifying the different supraspinal structures controlling locomotion in mammals as well as some of the underlying mechanisms. It became clear, however, that the complexity of the mammalian central nervous system (CNS) prevented researchers from characterizing the detailed cellular mechanisms involved and that animal models with a simpler nervous system were needed. Basal vertebrate species such as lampreys, xenopus embryos, and zebrafish became models of choice. More recently, optogenetic approaches have considerably revived interest in mammalian models. The mesencephalic locomotor region (MLR) is an important brainstem region known to control locomotion in all vertebrate species examined to date. It controls locomotion through intermediary cells in the hindbrain, the reticulospinal neurons (RSNs). The MLR comprises populations of cholinergic and glutamatergic neurons and their specific contribution to the control of locomotion is not fully resolved yet. Moreover, the downward projections from the MLR to RSNs is still not fully understood. Reporting on discoveries made in different animal models, this review article focuses on the MLR, its projections to RSNs, and the contribution of these neural elements to the control of locomotion. Excellent and detailed reviews on the brainstem control of locomotion have been recently published with emphasis on mammalian species. The present review article focuses on findings made in basal vertebrates such as the lamprey, to help direct new research in mammals, including humans.
Collapse
Affiliation(s)
| | - Réjean Dubuc
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
- Department of Physical Activity Sciences, Université du Québec à Montréal, Montréal, QC, Canada
- Research Group for Adapted Physical Activity, Université du Québec à Montréal, Montréal, QC, Canada
- *Correspondence: Réjean Dubuc,
| |
Collapse
|
4
|
Flaive A, Ryczko D. From retina to motoneurons: A substrate for visuomotor transformation in salamanders. J Comp Neurol 2022; 530:2518-2536. [PMID: 35662021 PMCID: PMC9545292 DOI: 10.1002/cne.25348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 11/18/2022]
Abstract
The transformation of visual input into motor output is essential to approach a target or avoid a predator. In salamanders, visually guided orientation behaviors have been extensively studied during prey capture. However, the neural circuitry involved is not resolved. Using salamander brain preparations, calcium imaging and tracing experiments, we describe a neural substrate through which retinal input is transformed into spinal motor output. We found that retina stimulation evoked responses in reticulospinal neurons of the middle reticular nucleus, known to control steering movements in salamanders. Microinjection of glutamatergic antagonists in the optic tectum (superior colliculus in mammals) decreased the reticulospinal responses. Using tracing, we found that retina projected to the dorsal layers of the contralateral tectum, where the dendrites of neurons projecting to the middle reticular nucleus were located. In slices, stimulation of the tectal dorsal layers evoked glutamatergic responses in deep tectal neurons retrogradely labeled from the middle reticular nucleus. We then examined how tectum activation translated into spinal motor output. Tectum stimulation evoked motoneuronal responses, which were decreased by microinjections of glutamatergic antagonists in the contralateral middle reticular nucleus. Reticulospinal fibers anterogradely labeled from tracer injection in the middle reticular nucleus were preferentially distributed in proximity with the dendrites of ipsilateral motoneurons. Our work establishes a neural substrate linking visual and motor centers in salamanders. This retino‐tecto‐reticulo‐spinal circuitry is well positioned to control orienting behaviors. Our study bridges the gap between the behavioral studies and the neural mechanisms involved in the transformation of visual input into motor output in salamanders.
Collapse
Affiliation(s)
- Aurélie Flaive
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Dimitri Ryczko
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre de recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada.,Centre d'excellence en neurosciences de l'Université de Sherbrooke, Sherbrooke, Quebec, Canada.,Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
5
|
Wen Q, Gao S, Zhen M. Caenorhabditis elegans excitatory ventral cord motor neurons derive rhythm for body undulation. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0370. [PMID: 30201835 DOI: 10.1098/rstb.2017.0370] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2018] [Indexed: 12/25/2022] Open
Abstract
The intrinsic oscillatory activity of central pattern generators underlies motor rhythm. We review and discuss recent findings that address the origin of Caenorhabditis elegans motor rhythm. These studies propose that the A- and mid-body B-class excitatory motor neurons at the ventral cord function as non-bursting intrinsic oscillators to underlie body undulation during reversal and forward movements, respectively. Proprioception entrains their intrinsic activities, allows phase-coupling between members of the same class motor neurons, and thereby facilitates directional propagation of undulations. Distinct pools of premotor interneurons project along the ventral nerve cord to innervate all members of the A- and B-class motor neurons, modulating their oscillations, as well as promoting their bi-directional coupling. The two motor sub-circuits, which consist of oscillators and descending inputs with distinct properties, form the structural base of dynamic rhythmicity and flexible partition of the forward and backward motor states. These results contribute to a continuous effort to establish a mechanistic and dynamic model of the C. elegans sensorimotor system. C. elegans exhibits rich sensorimotor functions despite a small neuron number. These findings implicate a circuit-level functional compression. By integrating the role of rhythm generation and proprioception into motor neurons, and the role of descending regulation of oscillators into premotor interneurons, this numerically simple nervous system can achieve a circuit infrastructure analogous to that of anatomically complex systems. C. elegans has manifested itself as a compact model to search for general principles of sensorimotor behaviours.This article is part of a discussion meeting issue 'Connectome to behaviour: modelling C. elegans at cellular resolution'.
Collapse
Affiliation(s)
- Quan Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, Hefei 230027, People's Republic of China .,Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, People's Republic of China
| | - Shangbang Gao
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, People's Republic of China
| | - Mei Zhen
- The Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital; Department of Molecular Genetics, Department of Physiology, University of Toronto, Toronto, Ontario M5G 1XS, Canada
| |
Collapse
|
6
|
Xu T, Huo J, Shao S, Po M, Kawano T, Lu Y, Wu M, Zhen M, Wen Q. Descending pathway facilitates undulatory wave propagation in Caenorhabditis elegans through gap junctions. Proc Natl Acad Sci U S A 2018; 115:E4493-E4502. [PMID: 29686107 PMCID: PMC5948959 DOI: 10.1073/pnas.1717022115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Descending signals from the brain play critical roles in controlling and modulating locomotion kinematics. In the Caenorhabditis elegans nervous system, descending AVB premotor interneurons exclusively form gap junctions with the B-type motor neurons that execute forward locomotion. We combined genetic analysis, optogenetic manipulation, calcium imaging, and computational modeling to elucidate the function of AVB-B gap junctions during forward locomotion. First, we found that some B-type motor neurons generate rhythmic activity, constituting distributed oscillators. Second, AVB premotor interneurons use their electric inputs to drive bifurcation of B-type motor neuron dynamics, triggering their transition from stationary to oscillatory activity. Third, proprioceptive couplings between neighboring B-type motor neurons entrain the frequency of body oscillators, forcing coherent bending wave propagation. Despite substantial anatomical differences between the motor circuits of C. elegans and higher model organisms, converging principles govern coordinated locomotion.
Collapse
Affiliation(s)
- Tianqi Xu
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
| | - Jing Huo
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
| | - Shuai Shao
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
| | - Michelle Po
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Taizo Kawano
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Yangning Lu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Min Wu
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Mei Zhen
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5G 1X5, Canada
- Department of Physiology, University of Toronto, Toronto, ON M5G 1X5, Canada
| | - Quan Wen
- Hefei National Laboratory for Physical Sciences at the Microscale, School of Life Sciences, University of Science and Technology of China, 230027 Hefei, China;
- Chinese Academy of Sciences Key Laboratory of Brain Function and Disease, 230027 Hefei, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
7
|
Noga BR, Turkson RP, Xie S, Taberner A, Pinzon A, Hentall ID. Monoamine Release in the Cat Lumbar Spinal Cord during Fictive Locomotion Evoked by the Mesencephalic Locomotor Region. Front Neural Circuits 2017; 11:59. [PMID: 28912689 PMCID: PMC5582069 DOI: 10.3389/fncir.2017.00059] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 08/09/2017] [Indexed: 01/28/2023] Open
Abstract
Spinal cord neurons active during locomotion are innervated by descending axons that release the monoamines serotonin (5-HT) and norepinephrine (NE) and these neurons express monoaminergic receptor subtypes implicated in the control of locomotion. The timing, level and spinal locations of release of these two substances during centrally-generated locomotor activity should therefore be critical to this control. These variables were measured in real time by fast-cyclic voltammetry in the decerebrate cat's lumbar spinal cord during fictive locomotion, which was evoked by electrical stimulation of the mesencephalic locomotor region (MLR) and registered as integrated activity in bilateral peripheral nerves to hindlimb muscles. Monoamine release was observed in dorsal horn (DH), intermediate zone/ventral horn (IZ/VH) and adjacent white matter (WM) during evoked locomotion. Extracellular peak levels (all sites) increased above baseline by 138 ± 232.5 nM and 35.6 ± 94.4 nM (mean ± SD) for NE and 5-HT, respectively. For both substances, release usually began prior to the onset of locomotion typically earliest in the IZ/VH and peaks were positively correlated with net activity in peripheral nerves. Monoamine levels gradually returned to baseline levels or below at the end of stimulation in most trials. Monoamine oxidase and uptake inhibitors increased the release magnitude, time-to-peak (TTP) and decline-to-baseline. These results demonstrate that spinal monoamine release is modulated on a timescale of seconds, in tandem with centrally-generated locomotion and indicate that MLR-evoked locomotor activity involves concurrent activation of descending monoaminergic and reticulospinal pathways. These gradual changes in space and time of monoamine concentrations high enough to strongly activate various receptors subtypes on locomotor activated neurons further suggest that during MLR-evoked locomotion, monoamine action is, in part, mediated by extrasynaptic neurotransmission in the spinal cord.
Collapse
Affiliation(s)
- Brian R Noga
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Riza P Turkson
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Songtao Xie
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Annette Taberner
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Alberto Pinzon
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| | - Ian D Hentall
- The Miami Project to Cure Paralysis, Department of Neurological Surgery, University of Miami Miller School of MedicineMiami, FL, United States
| |
Collapse
|
8
|
Hsu LJ, Zelenin PV, Orlovsky GN, Deliagina TG. Supraspinal control of spinal reflex responses to body bending during different behaviours in lampreys. J Physiol 2016; 595:883-900. [PMID: 27589479 DOI: 10.1113/jp272714] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/22/2016] [Indexed: 11/08/2022] Open
Abstract
KEY POINTS Spinal reflexes are substantial components of the motor control system in all vertebrates and centrally driven reflex modifications are essential to many behaviours, but little is known about the neuronal mechanisms underlying these modifications. To study this issue, we took advantage of an in vitro brainstem-spinal cord preparation of the lamprey (a lower vertebrate), in which spinal reflex responses to spinal cord bending (caused by signals from spinal stretch receptor neurons) can be evoked during different types of fictive behaviour. Our results demonstrate that reflexes observed during fast forward swimming are reversed during escape behaviours, with the reflex reversal presumably caused by supraspinal commands transmitted by a population of reticulospinal neurons. NMDA receptors are involved in the formation of these commands, which are addressed primarily to the ipsilateral spinal networks. In the present study the neuronal mechanisms underlying reflex reversal have been characterized for the first time. ABSTRACT Spinal reflexes can be modified during different motor behaviours. However, our knowledge about the neuronal mechanisms underlying these modifications in vertebrates is scarce. In the lamprey, a lower vertebrate, body bending causes activation of intraspinal stretch receptor neurons (SRNs) resulting in spinal reflexes: activation of motoneurons (MNs) with bending towards either the contralateral or ipsilateral side (a convex or concave response, respectively). The present study had two main aims: (i) to investigate how these spinal reflexes are modified during different motor behaviours, and (ii) to reveal reticulospinal neurons (RSNs) transmitting commands for the reflex modification. For this purpose in in vitro brainstem-spinal cord preparation, RSNs and reflex responses to bending were recorded during different fictive behaviours evoked by supraspinal commands. We found that during fast forward swimming MNs exhibited convex responses. By contrast, during escape behaviours, MNs exhibited concave responses. We found RSNs that were activated during both stimulation causing reflex reversal without initiation of any specific behaviour, and stimulation causing reflex reversal during escape behaviour. We suggest that these RSNs transmit commands for the reflex modification. Application of the NMDA antagonist (AP-5) to the brainstem significantly decreased the reversed reflex, suggesting involvement of NMDA receptors in the formation of these commands. Longitudinal split of the spinal cord did not abolish the reflex reversal caused by supraspinal commands, suggesting an important role for ipsilateral networks in determining this type of motor response. This is the first study to reveal the neuronal mechanisms underlying supraspinal control of reflex reversal.
Collapse
Affiliation(s)
- Li-Ju Hsu
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - Pavel V Zelenin
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - Grigori N Orlovsky
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| | - Tatiana G Deliagina
- Department of Neuroscience, Karolinska Institute, SE-17177, Stockholm, Sweden
| |
Collapse
|
9
|
Capantini L, von Twickel A, Robertson B, Grillner S. The pretectal connectome in lamprey. J Comp Neurol 2016; 525:753-772. [DOI: 10.1002/cne.24102] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/19/2016] [Accepted: 08/22/2016] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Brita Robertson
- Department of Neuroscience; Karolinska Institutet; Stockholm Sweden
| | - Sten Grillner
- Department of Neuroscience; Karolinska Institutet; Stockholm Sweden
| |
Collapse
|
10
|
Daghfous G, Green WW, Alford ST, Zielinski BS, Dubuc R. Sensory Activation of Command Cells for Locomotion and Modulatory Mechanisms: Lessons from Lampreys. Front Neural Circuits 2016; 10:18. [PMID: 27047342 PMCID: PMC4801879 DOI: 10.3389/fncir.2016.00018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 03/07/2016] [Indexed: 11/13/2022] Open
Abstract
Sensorimotor transformation is one of the most fundamental and ubiquitous functions of the central nervous system (CNS). Although the general organization of the locomotor neural circuitry is relatively well understood, less is known about its activation by sensory inputs and its modulation. Utilizing the lamprey model, a detailed understanding of sensorimotor integration in vertebrates is emerging. In this article, we explore how the vertebrate CNS integrates sensory signals to generate motor behavior by examining the pathways and neural mechanisms involved in the transformation of cutaneous and olfactory inputs into motor output in the lamprey. We then review how 5-hydroxytryptamine (5-HT) acts on these systems by modulating both sensory inputs and motor output. A comprehensive review of this fundamental topic should provide a useful framework in the fields of motor control, sensorimotor integration and neuromodulation.
Collapse
Affiliation(s)
- Gheylen Daghfous
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'Activité Physique, Université du Québec à MontréalMontréal, QC, Canada; Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de MontréalMontréal, QC, Canada
| | - Warren W Green
- Department of Biological Sciences and Great Lakes Institute for Environmental Research, University of Windsor Windsor, ON, Canada
| | - Simon T Alford
- Laboratory of Integrative Neuroscience, Department of Biological Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Barbara S Zielinski
- Department of Biological Sciences and Great Lakes Institute for Environmental Research, University of Windsor Windsor, ON, Canada
| | - Réjean Dubuc
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'Activité Physique, Université du Québec à MontréalMontréal, QC, Canada; Groupe de Recherche sur le Système Nerveux Central, Département de Neurosciences, Université de MontréalMontréal, QC, Canada
| |
Collapse
|
11
|
Jia Y, Parker D. Short-Term Synaptic Plasticity at Interneuronal Synapses Could Sculpt Rhythmic Motor Patterns. Front Neural Circuits 2016; 10:4. [PMID: 26869889 PMCID: PMC4738240 DOI: 10.3389/fncir.2016.00004] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 01/15/2016] [Indexed: 01/19/2023] Open
Abstract
The output of a neuronal network depends on the organization and functional properties of its component cells and synapses. While the characterization of synaptic properties has lagged cellular analyses, a potentially important aspect in rhythmically active networks is how network synapses affect, and are in turn affected by, network activity. This could lead to a potential circular interaction where short-term activity-dependent synaptic plasticity is both influenced by and influences the network output. The analysis of synaptic plasticity in the lamprey locomotor network was extended here to characterize the short-term plasticity of connections between network interneurons and to try and address its potential network role. Paired recordings from identified interneurons in quiescent networks showed synapse-specific synaptic properties and plasticity that supported the presence of two hemisegmental groups that could influence bursting: depression in an excitatory interneuron group, and facilitation in an inhibitory feedback circuit. The influence of activity-dependent synaptic plasticity on network activity was investigated experimentally by changing Ringer Ca(2+) levels, and in a simple computer model. A potential caveat of the experimental analyses was that changes in Ringer Ca(2+) (and compensatory adjustments in Mg(2+) in some cases) could alter several other cellular and synaptic properties. Several of these properties were tested, and while there was some variability, these were not usually significantly affected by the Ringer changes. The experimental analyses suggested that depression of excitatory inputs had the strongest influence on the patterning of network activity. The simulation supported a role for this effect, and also suggested that the inhibitory facilitating group could modulate the influence of the excitatory synaptic depression. Short-term activity-dependent synaptic plasticity has not generally been considered in spinal cord models. These results provide further evidence for short-term plasticity between locomotor network interneurons. As this plasticity could influence the patterning of the network output it should be considered as a potential functional component of spinal cord networks.
Collapse
Affiliation(s)
| | - David Parker
- Department of Physiology, Development and Neuroscience, University of CambridgeCambridge, UK
| |
Collapse
|
12
|
Alford ST, Alpert MH. A synaptic mechanism for network synchrony. Front Cell Neurosci 2014; 8:290. [PMID: 25278839 PMCID: PMC4166887 DOI: 10.3389/fncel.2014.00290] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Accepted: 08/31/2014] [Indexed: 01/06/2023] Open
Abstract
Within neural networks, synchronization of activity is dependent upon the synaptic connectivity of embedded microcircuits and the intrinsic membrane properties of their constituent neurons. Synaptic integration, dendritic Ca2+ signaling, and non-linear interactions are crucial cellular attributes that dictate single neuron computation, but their roles promoting synchrony and the generation of network oscillations are not well understood, especially within the context of a defined behavior. In this regard, the lamprey spinal central pattern generator (CPG) stands out as a well-characterized, conserved vertebrate model of a neural network (Smith et al., 2013a), which produces synchronized oscillations in which neural elements from the systems to cellular level that control rhythmic locomotion have been determined. We review the current evidence for the synaptic basis of oscillation generation with a particular emphasis on the linkage between synaptic communication and its cellular coupling to membrane processes that control oscillatory behavior of neurons within the locomotor network. We seek to relate dendritic function found in many vertebrate systems to the accessible lamprey central nervous system in which the relationship between neural network activity and behavior is well understood. This enables us to address how Ca2+ signaling in spinal neuron dendrites orchestrate oscillations that drive network behavior.
Collapse
Affiliation(s)
- Simon T Alford
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL, USA
| | - Michael H Alpert
- Department of Biological Sciences, University of Illinois at Chicago Chicago, IL, USA
| |
Collapse
|
13
|
Wang WC, McLean DL. Selective responses to tonic descending commands by temporal summation in a spinal motor pool. Neuron 2014; 83:708-21. [PMID: 25066087 DOI: 10.1016/j.neuron.2014.06.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2014] [Indexed: 12/12/2022]
Abstract
Motor responses of varying intensities rely on descending commands to heterogeneous pools of motoneurons. In vertebrates, numerous sources of descending excitatory input provide systematically more drive to progressively less excitable spinal motoneurons. While this presumably facilitates simultaneous activation of motor pools, it is unclear how selective patterns of recruitment could emerge from inputs weighted this way. Here, using in vivo electrophysiological and imaging approaches in larval zebrafish, we find that, despite weighted excitation, more excitable motoneurons are preferentially activated by a midbrain reticulospinal nucleus by virtue of longer membrane time constants that facilitate temporal summation of tonic drive. We confirm the utility of this phenomenon by assessing the activity of the midbrain and motoneuron populations during a light-driven behavior. Our findings demonstrate that weighted descending commands can generate selective motor responses by exploiting systematic differences in the biophysical properties of target motoneurons and their relative sensitivity to tonic input.
Collapse
Affiliation(s)
- Wei-Chun Wang
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208, USA
| | - David L McLean
- Interdepartmental Neuroscience Program, Northwestern University, Evanston, IL 60208, USA; Department of Neurobiology, Northwestern University, Evanston, IL 60208, USA.
| |
Collapse
|
14
|
Villar-Cerviño V, Fernández-López B, Celina Rodicio M, Anadón R. Aspartate-containing neurons of the brainstem and rostral spinal cord of the sea lampreyPetromyzon marinus: Distribution and comparison with γ-aminobutyric acid. J Comp Neurol 2014; 522:1209-31. [DOI: 10.1002/cne.23493] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 10/29/2013] [Accepted: 10/29/2013] [Indexed: 12/26/2022]
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología; Facultad de Biología, Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| | - Blanca Fernández-López
- Departamento de Biología Celular y Ecología; Facultad de Biología, Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| | - María Celina Rodicio
- Departamento de Biología Celular y Ecología; Facultad de Biología, Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| | - Ramón Anadón
- Departamento de Biología Celular y Ecología; Facultad de Biología, Universidad de Santiago de Compostela; Santiago de Compostela 15782 Spain
| |
Collapse
|
15
|
Villar-Cerviño V, Barreiro-Iglesias A, Fernández-López B, Mazan S, Rodicio MC, Anadón R. Glutamatergic neuronal populations in the brainstem of the sea lamprey, Petromyzon marinus: an in situ hybridization and immunocytochemical study. J Comp Neurol 2013; 521:522-57. [PMID: 22791297 DOI: 10.1002/cne.23189] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 07/06/2012] [Indexed: 12/27/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in vertebrates, and glutamatergic cells probably represent a majority of neurons in the brain. Physiological studies have demonstrated a wide presence of excitatory (glutamatergic) neurons in lampreys. The present in situ hybridization study with probes for the lamprey vesicular glutamate transporter (VGLUT) provides an anatomical basis for the general distribution and precise localization of glutamatergic neurons in the sea lamprey brainstem. Most glutamatergic neurons were found within the periventricular gray layer throughout the brainstem, with the following regions being of particular interest: the optic tectum, torus semicircularis, isthmus, dorsal and medial nuclei of the octavolateral area, dorsal column nucleus, solitary tract nucleus, motoneurons, and reticular formation. The reticular population revealed a high degree of cellular heterogeneity including small, medium-sized, large, and giant glutamatergic neurons. We also combined glutamate immunohistochemistry with neuronal tract-tracing methods or γ-aminobutyric acid (GABA) immunohistochemistry to better characterize the glutamatergic populations. Injection of Neurobiotin into the spinal cord revealed that retrogradely labeled small and medium-sized cells of some reticulospinal-projecting groups were often glutamate-immunoreactive, mostly in the hindbrain. In contrast, the large and giant glutamatergic reticulospinal perikarya mostly lacked glutamate immunoreactivity. These results indicate that glutamate immunoreactivity did not reveal the entire set of glutamatergic populations. Some spinal-projecting octaval populations lacked both VGLUT and glutamate. As regards GABA and glutamate, their distribution was largely complementary, but colocalization of glutamate and GABA was observed in some small neurons, suggesting that glutamate immunohistochemistry might also detect non-glutamatergic cells or neurons that co-release both GABA and glutamate.
Collapse
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | | | | | | | | |
Collapse
|
16
|
Synaptic NMDA receptor-dependent Ca²⁺ entry drives membrane potential and Ca²⁺ oscillations in spinal ventral horn neurons. PLoS One 2013; 8:e63154. [PMID: 23646190 PMCID: PMC3640011 DOI: 10.1371/journal.pone.0063154] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/28/2013] [Indexed: 11/28/2022] Open
Abstract
During vertebrate locomotion, spinal neurons act as oscillators when initiated by glutamate release from descending systems. Activation of NMDA receptors initiates Ca2+-mediated intrinsic membrane potential oscillations in central pattern generator (CPG) neurons. NMDA receptor-dependent intrinsic oscillations require Ca2+-dependent K+ (KCa2) channels for burst termination. However, the location of Ca2+ entry mediating KCa2 channel activation, and type of Ca2+ channel – which includes NMDA receptors and voltage-gated Ca2+ channels (VGCCs) – remains elusive. NMDA receptor-dependent Ca2+ entry necessitates presynaptic release of glutamate, implying a location at active synapses within dendrites, whereas VGCC-dependent Ca2+ entry is not similarly constrained. Where Ca2+ enters relative to KCa2 channels is crucial to information processing of synaptic inputs necessary to coordinate locomotion. We demonstrate that Ca2+ permeating NMDA receptors is the dominant source of Ca2+ during NMDA-dependent oscillations in lamprey spinal neurons. This Ca2+ entry is synaptically located, NMDA receptor-dependent, and sufficient to activate KCa2 channels at excitatory interneuron synapses onto other CPG neurons. Selective blockade of VGCCs reduces whole-cell Ca2+ entry but leaves membrane potential and Ca2+ oscillations unaffected. Furthermore, repetitive oscillations are prevented by fast, but not slow, Ca2+ chelation. Taken together, these results demonstrate that KCa2 channels are closely located to NMDA receptor-dependent Ca2+ entry. The close spatial relationship between NMDA receptors and KCa2 channels provides an intrinsic mechanism whereby synaptic excitation both excites and subsequently inhibits ventral horn neurons of the spinal motor system. This places the components necessary for oscillation generation, and hence locomotion, at glutamatergic synapses.
Collapse
|
17
|
Barreiro-Iglesias A, Mysiak KS, Adrio F, Rodicio MC, Becker CG, Becker T, Anadón R. Distribution of glycinergic neurons in the brain of glycine transporter-2 transgenic Tg(glyt2:Gfp) adult zebrafish: Relationship to brain-spinal descending systems. J Comp Neurol 2012; 521:389-425. [DOI: 10.1002/cne.23179] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Revised: 01/25/2012] [Accepted: 06/21/2012] [Indexed: 12/19/2022]
|
18
|
Villar-Cerviño V, Barreiro-Iglesias A, Mazan S, Rodicio MC, Anadón R. Glutamatergic neuronal populations in the forebrain of the sea lamprey, Petromyzon marinus: an in situ hybridization and immunocytochemical study. J Comp Neurol 2012; 519:1712-35. [PMID: 21452205 DOI: 10.1002/cne.22597] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Despite the importance of glutamate as a major excitatory neurotransmitter in the brain, the distribution of glutamatergic populations in the brain of most vertebrates is still unknown. Here, we studied for the first time the distribution of glutamatergic neurons in the forebrain of the sea lamprey (Petromyzon marinus), belonging to the most ancient group of vertebrates (agnathans). For this, we used in situ hybridization with probes for a lamprey vesicular glutamate transporter (VGLUT) in larvae and immunofluorescence with antiglutamate antibodies in both larvae and adults. We also compared glutamate and γ-aminobutyric acid (GABA) immunoreactivities in sections using double-immunofluorescence methods. VGLUT-expressing neurons were observed in the olfactory bulb, pallium, septum, subhippocampal lobe, preoptic region, thalamic eminence, prethalamus, thalamus, epithalamus, pretectum, hypothalamus, posterior tubercle, and nucleus of the medial longitudinal fascicle. Comparison of VGLUT signal and glutamate immunoreactivity in larval forebrain revealed a consistent distribution of positive cells, which were numerous in most regions. Glutamate-immunoreactive cell populations were also found in similar regions of the adult forebrain. These include mitral-like cells of the olfactory bulbs and abundant cells in the lateral pallium, septum, and various diencephalic regions, mainly in the prethalamus, thalamus, habenula, pineal complex, and pretectum. Only a small portion of the glutamate-immunoreactive cells showed colocalization with GABA, which was observed mainly in the olfactory bulb, telencephalon, hypothalamus, ventral thalamus, and pretectum. Comparison with glutamatergic cells observed in rodent forebrains suggests that the regional distribution of glutamatergic cells does not differ greatly in lampreys and mammals.
Collapse
Affiliation(s)
- Verona Villar-Cerviño
- Departamento de Biología Celular y Ecología, Facultad de Biología, Universidad de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | | | | | | | | |
Collapse
|
19
|
Mullins OJ, Hackett JT, Buchanan JT, Friesen WO. Neuronal control of swimming behavior: comparison of vertebrate and invertebrate model systems. Prog Neurobiol 2011; 93:244-69. [PMID: 21093529 PMCID: PMC3034781 DOI: 10.1016/j.pneurobio.2010.11.001] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2010] [Revised: 11/01/2010] [Accepted: 11/08/2010] [Indexed: 01/26/2023]
Abstract
Swimming movements in the leech and lamprey are highly analogous, and lack homology. Thus, similarities in mechanisms must arise from convergent evolution rather than from common ancestry. Despite over 40 years of parallel investigations into this annelid and primitive vertebrate, a close comparison of the approaches and results of this research is lacking. The present review evaluates the neural mechanisms underlying swimming in these two animals and describes the many similarities that provide intriguing examples of convergent evolution. Specifically, we discuss swim initiation, maintenance and termination, isolated nervous system preparations, neural-circuitry, central oscillators, intersegmental coupling, phase lags, cycle periods and sensory feedback. Comparative studies between species highlight mechanisms that optimize behavior and allow us a broader understanding of nervous system function.
Collapse
Affiliation(s)
- Olivia J. Mullins
- Dept. of Biology University of Virginia Charlottesville, VA 22904-4328
- Neuroscience Graduate Program University of Virginia Charlottesville, VA 22904-4328
| | - John T. Hackett
- Neuroscience Graduate Program University of Virginia Charlottesville, VA 22904-4328
- Dept. of Molecular Physiology and Biological Physics University of Virginia Charlottesville, VA 22904-4328
| | - James T. Buchanan
- Dept. of Biological Sciences Marquette University Milwaukee, WI 53233
| | - W. Otto Friesen
- Dept. of Biology University of Virginia Charlottesville, VA 22904-4328
- Neuroscience Graduate Program University of Virginia Charlottesville, VA 22904-4328
| |
Collapse
|
20
|
Sankrithi NS, O'Malley DM. Activation of a multisensory, multifunctional nucleus in the zebrafish midbrain during diverse locomotor behaviors. Neuroscience 2010; 166:970-93. [PMID: 20074619 DOI: 10.1016/j.neuroscience.2010.01.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2009] [Revised: 01/04/2010] [Accepted: 01/05/2010] [Indexed: 11/25/2022]
Abstract
Action potentials from the brain control the activity of spinal neural networks to produce, by as yet unknown mechanisms, a variety of motor behaviors. Particularly lacking are details on how identified descending neurons integrate diverse sensory inputs to generate specific locomotor patterns. We have examined the operations of the principal neurons in an intriguing midbrain nucleus, the nucleus of the medial longitudinal fasciculus (nMLF), in the larval zebrafish. The nMLF is the most rostral grouping of neurons that projects from the brain well into the spinal cord of teleost fishes, yet there is little direct physiological data available regarding its function. We report here that a distinct set of large, individually-identifiable neurons in nMLF (the MeL and MeM neurons) are activated by diverse sensory stimuli and contribute to distinct locomotor behaviors. Using in vivo confocal calcium imaging we observed that both photic and mechanical stimuli elicit calcium responses indicative of the firing of action potentials. Calcium responses were observed simultaneously with distinct swimming, turning and struggling movements of the larval trunk. While selectively contralateral responses were at times observed in response to a head-tap stimulus, these nMLF cells showed roughly similar numbers of bilateral responses. Calcium responses were observed at a range of latencies, suggesting involvement with both slow swimming patterns and the burst swimming component of the escape behavior. The MeL cells in particular were strongly activated during light-evoked slow swimming. The activation of MeL cells during the slow and burst forward swim gaits is consistent with their driving and/or coordinating the activity of slow and fast central pattern generators in spinal cord. As such, the MeL cells may help to shape a variety of larval behaviors including the optomotor response, escape swimming and prey capture.
Collapse
Affiliation(s)
- N S Sankrithi
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | | |
Collapse
|
21
|
|
22
|
Presynaptic G-protein-coupled receptors dynamically modify vesicle fusion, synaptic cleft glutamate concentrations, and motor behavior. J Neurosci 2009; 29:10221-33. [PMID: 19692597 DOI: 10.1523/jneurosci.1404-09.2009] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Understanding how neuromodulators regulate behavior requires investigating their effects on functional neural systems, but also their underlying cellular mechanisms. Utilizing extensively characterized lamprey motor circuits, and the unique access to reticulospinal presynaptic terminals in the intact spinal cord that initiate these behaviors, we investigated effects of presynaptic G-protein-coupled receptors on locomotion from the systems level, to the molecular control of vesicle fusion. 5-HT inhibits neurotransmitter release via a Gbetagamma interaction with the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex that promotes kiss-and-run vesicle fusion. In the lamprey spinal cord, we demonstrate that, although presynaptic 5-HT receptors inhibit evoked neurotransmitter release from reticulospinal command neurons, their activation does not abolish locomotion but rather modulates locomotor rhythms. Liberation of presynaptic Gbetagamma causes substantial inhibition of AMPA receptor-mediated synaptic responses but leaves NMDA receptor-mediated components of neurotransmission mostly intact. Because Gbetagamma binding to the SNARE complex is displaced by Ca(2+)-synaptotagmin binding, 5-HT-mediated inhibition displays Ca(2+) sensitivity. We show that, as Ca(2+) accumulates presynaptically during physiological bouts of activity, 5-HT/Gbetagamma-mediated presynaptic inhibition is relieved, leading to a frequency-dependent increase in synaptic concentrations of glutamate. This frequency-dependent phenomenon mirrors a shift in the vesicle fusion mode and a recovery of AMPA receptor-mediated EPSCs from inhibition without a modification of NMDA receptor EPSCs. We conclude that activation of presynaptic 5-HT G-protein-coupled receptors state-dependently alters vesicle fusion properties to shift the weight of NMDA versus AMPA receptor-mediated responses at excitatory synapses. We have therefore identified a novel mechanism in which modification of vesicle fusion modes may profoundly alter locomotor behavior.
Collapse
|
23
|
Gruhn M, von Uckermann G, Westmark S, Wosnitza A, Büschges A, Borgmann A. Control of stepping velocity in the stick insect Carausius morosus. J Neurophysiol 2009; 102:1180-92. [PMID: 19535483 DOI: 10.1152/jn.00257.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We performed electrophysiological and behavioral experiments in single-leg preparations and intact animals of the stick insect Carausius morosus to understand mechanisms underlying the control of walking speed. At the level of the single leg, we found no significant correlation between stepping velocity and spike frequency of motor neurons (MNs) other than the previously shown modification in flexor (stance) MN activity. However, pauses between stance and swing motoneuron activity at the transition from stance to swing phase and stepping velocity are correlated. Pauses become shorter with increasing speed and completely disappear during fast stepping sequences. By means of extra- and intracellular recordings in single-leg stick insect preparations we found no systematic relationship between the velocity of a stepping front leg and the motoneuronal activity in the ipsi- or contralateral mesothoracic protractor and retractor, as well as flexor and extensor MNs. The observations on the lack of coordination of stepping velocity between legs in single-leg preparations were confirmed in behavioral experiments with intact stick insects tethered above a slippery surface, thereby effectively removing mechanical coupling through the ground. In this situation, there were again no systematic correlations between the stepping velocities of different legs, despite the finding that an increase in stepping velocity in a single front leg is correlated with a general increase in nerve activity in all connectives between the subesophageal and all thoracic ganglia. However, when the tethered animal increased walking speed due to a short tactile stimulus, provoking an escape-like response, stepping velocities of ipsilateral legs were found to be correlated for several steps. These results indicate that there is no permanent coordination of stepping velocities between legs, but that such coordination can be activated under certain circumstances.
Collapse
Affiliation(s)
- Matthias Gruhn
- Department of Animal Physiology, Zoological Institute, University of Cologne, 50923 Cologne, Germany.
| | | | | | | | | | | |
Collapse
|
24
|
The contribution of synaptic inputs to sustained depolarizations in reticulospinal neurons. J Neurosci 2009; 29:1140-51. [PMID: 19176823 DOI: 10.1523/jneurosci.3073-08.2009] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Sensory stimulation elicits sustained depolarizations in lamprey reticulospinal (RS) cells for which intrinsic properties were shown to play a crucial role. The depolarizations last up to minutes, and we tested whether the intrinsic properties required the cooperation of synaptic inputs to maintain RS cells depolarized for such long periods of time. Ascending spinal inputs to RS cells were reversibly blocked by applying xylocaine over the rostral spinal cord segments. The duration of the sustained depolarizations was markedly reduced. The membrane potential oscillations in tune with locomotor activity that were present under control condition were also abolished. The contribution of excitatory glutamatergic inputs was then assessed by applying CNQX and AP-5 over one of two simultaneously recorded homologous RS cells on each side of the brainstem. The level of sensory-evoked depolarization decreased significantly in the cell exposed to the antagonists compared with the other RS cell monitored as a control. In contrast, local application of glycine only produced a transient membrane potential hyperpolarization with a marked reduction in the amplitude of membrane potential oscillations. Locally applied strychnine did not change the duration of the sustained depolarizations, suggesting that mechanisms other than glycinergic inhibition are involved in ending the sustained depolarizations in RS cells. It is concluded that excitatory glutamatergic inputs, including ascending spinal feedback, cooperate with intrinsic properties of RS cells to maintain the cells depolarized for prolonged periods, sustaining long bouts of escape swimming.
Collapse
|
25
|
Nishiyama T. Interaction between a NMDA receptor antagonist, AP-5 and an AMPA receptor antagonist, YM 872 in antinociception in the spinal cord. Acta Anaesthesiol Scand 2008; 52:493-8. [PMID: 18339155 DOI: 10.1111/j.1399-6576.2008.01593.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND The intrathecal N-methyl-D-aspartate (NMDA) receptor antagonist, AP-5 and the alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor antagonist, YM 872 showed inhibition on both acute and facilitated nociception in our previous study. The present study was performed to investigate the interaction between intrathecal AP-5 and YM 872 in antinociception for acute and chronic nociception. METHODS Sprague-Dawley rats with lumbar intrathecal catheters were tested for their thermal tail withdrawal response and for their paw flinches by formalin injection after intrathecal administration of AP-5 or YM 872. The effects of the combination were tested by an isobolographic analysis using 50% effective dose (ED50). Total fractional dose was calculated as (ED50 dose of AP-5 in combination)/(ED50 dose of AP-5 alone)+(ED50 dose of YM 872 in combination)/(ED50 dose of YM 872 alone). RESULTS Intrathecally administered AP-5, YM 872, and their combination produced dose-dependent increases of the tail-flick latency and decreases in the number of flinches in both phase 1 and 2 of the formalin test. The ED50 values of the combination were significantly lower than the calculated additive values (P<0.01). Total fractional dose value was 0.22 in the tail flick test, 0.12 in the phase 1 and 0.14 in the phase 2 of the formalin test. CONCLUSION An NMDA receptor antagonist, AP-5 and an AMPA receptor antagonist, YM 872 had synergistic antinociceptive effects on both acute thermal and inflammatory induced acute and facilitated nociception.
Collapse
Affiliation(s)
- T Nishiyama
- Department of Anesthesiology, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
26
|
Dubuc R, Brocard F, Antri M, Fénelon K, Gariépy JF, Smetana R, Ménard A, Le Ray D, Viana Di Prisco G, Pearlstein E, Sirota MG, Derjean D, St-Pierre M, Zielinski B, Auclair F, Veilleux D. Initiation of locomotion in lampreys. ACTA ACUST UNITED AC 2007; 57:172-82. [PMID: 17916380 DOI: 10.1016/j.brainresrev.2007.07.016] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Accepted: 07/01/2007] [Indexed: 11/28/2022]
Abstract
The spinal circuitry underlying the generation of basic locomotor synergies has been described in substantial detail in lampreys and the cellular mechanisms have been identified. The initiation of locomotion, on the other hand, relies on supraspinal networks and the cellular mechanisms involved are only beginning to be understood. This review examines some of the findings relative to the neural mechanisms involved in the initiation of locomotion of lampreys. Locomotion can be elicited by sensory stimulation or by internal cues associated with fundamental needs of the animal such as food seeking, exploration, and mating. We have described mechanisms by which escape swimming is elicited in lampreys in response to mechanical skin stimulation. A rather simple neural connectivity is involved, including sensory and relay neurons, as well as the brainstem rhombencephalic reticulospinal cells, which act as command neurons. We have shown that reticulospinal cells have intrinsic membrane properties that allow them to transform a short duration sensory input into a long-lasting excitatory command that activates the spinal locomotor networks. These mechanisms constitute an important feature for the activation of escape swimming. Other sensory inputs can also elicit locomotion in lampreys. For instance, we have recently shown that olfactory signals evoke sustained depolarizations in reticulospinal neurons and chemical activation of the olfactory bulbs with local injections of glutamate induces fictive locomotion. The mechanisms by which internal cues initiate locomotion are less understood. Our research has focused on one particular locomotor center in the brainstem, the mesencephalic locomotor region (MLR). The MLR is believed to channel inputs from many brain regions to generate goal-directed locomotion. It activates reticulospinal cells to elicit locomotor output in a graded fashion contrary to escape locomotor bouts, which are all-or-none. MLR inputs to reticulospinal cells use both glutamatergic and cholinergic transmission; nicotinic receptors on reticulospinal cells are involved. MLR excitatory inputs to reticulospinal cells in the middle (MRRN) are larger than those in the posterior rhombencephalic reticular nucleus (PRRN). Moreover at low stimulation strength, reticulospinal cells in the MRRN are activated first, whereas those in the PRRN require stronger stimulation strengths. The output from the MLR on one side activates reticulospinal neurons on both sides in a highly symmetrical fashion. This could account for the symmetrical bilateral locomotor output evoked during unilateral stimulation of the MLR in all animal species tested to date. Interestingly, muscarinic receptor activation reduces sensory inputs to reticulospinal neurons and, under natural conditions, the activation of MLR cholinergic neurons will likely reduce sensory inflow. Moreover, exposing the brainstem to muscarinic agonists generates sustained recurring depolarizations in reticulospinal neurons through pre-reticular effects. Cells in the caudal half of the rhombencephalon appear to be involved and we propose that the activation of these muscarinoceptive cells could provide additional excitation to reticulospinal cells when the MLR is activated under natural conditions. One important question relates to sources of inputs to the MLR. We found that substance P excites the MLR, whereas GABA inputs tonically maintain the MLR inhibited and removal of this inhibition initiates locomotion. Other locomotor centers exist such as a region in the ventral thalamus projecting directly to reticulospinal cells. This region, referred to as the diencephalic locomotor region, receives inputs from several areas in the forebrain and is likely important for goal-directed locomotion. In summary, this review focuses on the most recent findings relative to initiation of lamprey locomotion in response to sensory and internal cues in lampreys.
Collapse
Affiliation(s)
- Réjean Dubuc
- Département de kinanthropologie, Université du Québec à Montréal, Case postale 8888, succursale Centre-ville, Montréal, (Québec), Canada H3C 3P8.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schwartz EJ, Blackmer T, Gerachshenko T, Alford S. Presynaptic G-protein-coupled receptors regulate synaptic cleft glutamate via transient vesicle fusion. J Neurosci 2007; 27:5857-68. [PMID: 17537956 PMCID: PMC6672243 DOI: 10.1523/jneurosci.1160-07.2007] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
When synaptic vesicles fuse with the plasma membrane, they may completely collapse or fuse transiently. Transiently fusing vesicles remain structurally intact and therefore have been proposed to represent a form of rapid vesicle recycling. However, the impact of a transient synaptic vesicle fusion event on neurotransmitter release, and therefore on synaptic transmission, has yet to be determined. Recently, the molecular mechanism by which a serotonergic presynaptic G-protein-coupled receptor (GPCR) regulates synaptic vesicle fusion and inhibits synaptic transmission was identified. By making paired electrophysiological recordings in the presence and absence of low-affinity antagonists, we now demonstrate that activation of this presynaptic GPCR lowers the peak synaptic cleft glutamate concentration independently of the probability of vesicle fusion. Furthermore, this change in cleft glutamate concentration differentially inhibits synaptic NMDA and AMPA receptor-mediated currents. We conclude that a presynaptic GPCR regulates the profile of glutamate in the synaptic cleft through altering the mechanism of vesicle fusion leading to qualitative as well as quantitative changes in neural signaling.
Collapse
Affiliation(s)
- Eric J. Schwartz
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Trillium Blackmer
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Tatyana Gerachshenko
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| | - Simon Alford
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, Illinois 60607
| |
Collapse
|
28
|
Ménard A, Auclair F, Bourcier-Lucas C, Grillner S, Dubuc R. Descending GABAergic projections to the mesencephalic locomotor region in the lamprey Petromyzon marinus. J Comp Neurol 2007; 501:260-73. [PMID: 17226790 DOI: 10.1002/cne.21258] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mesencephalic locomotor region (MLR) plays a significant role in the control of locomotion in all vertebrate species investigated. Forebrain neurons are likely to modulate MLR activity, but little is known about their inputs. Descending GABAergic projections to the MLR were identified by double-labeling neurons using Neurobiotin injected into the MLR combined with immunofluorescence against GABA. Several GABAergic projections to the MLR were identified in the telencephalon and diencephalon. The most abundant GABAergic projection to the MLR came from the caudal portion of the medial pallium, a region that may have similarities with the amygdala of higher vertebrates. A small population of GABAergic cells projecting to the MLR was found in the striatum and the ventral portion of the lateral pallium, which could respectively correspond to the input and output components of the basal ganglia thought to be involved in the selection of motor programs. Other GABAergic projections were found to come from the thalamus and the hypothalamus, which could take part in the motivational aspect of motor behavior in lampreys. Electrophysiological experiments were also carried out to examine the effects of GABA agonists and antagonists injected into the MLR in a semi-intact lamprey preparation. The GABA agonist inhibited locomotion, whereas the GABA antagonist initiated it. These results suggest that the GABAergic projections to the MLR modulate the activity of MLR neurons, which would be inhibited by GABA at rest.
Collapse
Affiliation(s)
- Ariane Ménard
- Nobel Institute for Neurophysiology, Department of Neuroscience, Karolinska Institutet, SE-17177 Stockholm, Sweden
| | | | | | | | | |
Collapse
|
29
|
Kozlov AK, Lansner A, Grillner S, Kotaleski JH. A hemicord locomotor network of excitatory interneurons: a simulation study. BIOLOGICAL CYBERNETICS 2007; 96:229-43. [PMID: 17180687 DOI: 10.1007/s00422-006-0132-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2006] [Accepted: 09/26/2006] [Indexed: 05/13/2023]
Abstract
Locomotor burst generation is simulated using a full-scale network model of the unilateral excitatory interneuronal population. Earlier small-scale models predicted that a population of excitatory neurons would be sufficient to produce burst activity, and this has recently been experimentally confirmed. Here we simulate the hemicord activity induced under various experimental conditions, including pharmacological activation by NMDA and AMPA as well as electrical stimulation. The model network comprises a realistic number of cells and synaptic connectivity patterns. Using similar distributions of cellular and synaptic parameters, as have been estimated experimentally, a large variation in dynamic characteristics like firing rates, burst, and cycle durations were seen in single cells. On the network level an overall rhythm was generated because the synaptic interactions cause partial synchronization within the population. This network rhythm not only emerged despite the distributed cellular parameters but relied on this variability, in particular, in reproducing variations of the activity during the cycle and showing recruitment in interneuronal populations. A slow rhythm (0.4-2 Hz) can be induced by tonic activation of NMDA-sensitive channels, which are voltage dependent and generate depolarizing plateaus. The rhythm emerges through a synchronization of bursts of the individual neurons. A fast rhythm (4-12 Hz), induced by AMPA, relies on spike synchronization within the population, and each burst is composed of single spikes produced by different neurons. The dynamic range of the fast rhythm is limited by the ability of the network to synchronize oscillations and depends on the strength of synaptic connections and the duration of the slow after hyperpolarization. The model network also produces prolonged bouts of rhythmic activity in response to brief electrical activations, as seen experimentally. The mutual excitation can sustain long-lasting activity for a realistic set of synaptic parameters. The bout duration depends on the strength of excitatory synaptic connections, the level of persistent depolarization, and the influx of Ca(2+) ions and activation of Ca(2+)-dependent K(+) current.
Collapse
Affiliation(s)
- A K Kozlov
- Computational Biology and Neurocomputing, School of Computer Science and Communication, Royal Institute of Technology, Stockholm 100 44, Sweden.
| | | | | | | |
Collapse
|
30
|
Gabriel JP, Büschges A. Control of stepping velocity in a single insect leg during walking. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2007; 365:251-71. [PMID: 17148059 DOI: 10.1098/rsta.2006.1912] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
In the single middle leg preparation of the stick insect walking on a treadmill, the activity of flexor and extensor tibiae motor neurons and muscles, which are responsible for the movement of the tibia in stance and swing phases, respectively, was investigated with respect to changes in stepping velocity. Changes in stepping velocity were correlated with cycle period. There was a close correlation of flexor motor neuron activity (stance phase) with stepping velocity, but the duration and activation of extensor motor neurons (swing phase) was not altered. The depolarization of flexor motor neurons showed two components. At all step velocities, a stereotypic initial depolarization was generated at the beginning of stance phase activity. A subsequent larger depolarization and activation was tightly linked to belt velocity, i.e. it occurred earlier and with larger amplitude during fast steps compared with slow steps. Alterations in a tonic background excitation appear not to play a role in controlling the motor neuron activity for changes in stepping velocity. Our results indicate that in the single insect leg during walking, mechanisms for altering stepping velocity become effective only during an already ongoing stance phase motor output. We discuss the putative mechanisms involved.
Collapse
Affiliation(s)
- Jens Peter Gabriel
- Institute for Zoology, University of Cologne, Weyertal 119, 50923 Cologne, Germany
| | | |
Collapse
|
31
|
Photowala H, Freed R, Alford S. Location and function of vesicle clusters, active zones and Ca2+ channels in the lamprey presynaptic terminal. J Physiol 2005; 569:119-35. [PMID: 16141275 PMCID: PMC1464202 DOI: 10.1113/jphysiol.2005.091314] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 05/24/2005] [Accepted: 08/30/2005] [Indexed: 11/08/2022] Open
Abstract
Synaptic transmission requires spatial and temporal coordination of a specific sequence of events. The trigger for synaptic vesicle exocytosis is Ca(2)(+) entry into presynaptic terminals, leading to neurotransmitter release at highly specialized sites known as active zones. Ca(2)(+) channel proximity to exocytotic proteins and vesicle clusters at active zones have been inferred from biochemical, histological and ultrastructural data, but direct evidence about functional relationships between these elements in central synapses is absent. We have utilized the lamprey giant reticulospinal synapse to characterize functional colocalization of known synaptic markers in the presynaptic terminal, as well as their reliability during repeated activation. Recycling vesicle clusters, surrounding actin filaments, and physiologically relevant Ca(2)(+) influx all show identical morphological distribution. Ca(2)(+) influx is mediated by clusters of Ca(2)(+) channels that colocalize with the vesicle clusters, defined by imaged sites of vesicle recycling and actin localization. Synaptic transmission is inhibited by block of actin depolymerization, but Ca(2)(+) signalling is unaffected. Functional Ca(2)(+) channels are localized to presynaptic clusters, and Ca(2)(+) transients at these sites account for neurotransmitter release based on their spatial and temporal profiles. Ca(2)(+) transients evoked by single axonal action potentials are mediated solely by voltage-operated Ca(2)(+) channel activation, and slower Ca(2)(+) rises observed throughout the axon result from Ca(2)(+) diffusion from the synaptic regions. We conclude that at lamprey giant reticulospinal synapses, Ca(2)(+) channels and release sites colocalize, creating a close spatial relationship between active zones and Ca(2)(+) entry sites, which is necessary for site-specific, Ca(2)(+)-dependent secretion.
Collapse
Affiliation(s)
- Huzefa Photowala
- Department of Biological Sciences, University of Illinois, Chicago, IL 60607, USA
| | | | | |
Collapse
|
32
|
McDearmid JR, Drapeau P. Rhythmic motor activity evoked by NMDA in the spinal zebrafish larva. J Neurophysiol 2005; 95:401-17. [PMID: 16207779 DOI: 10.1152/jn.00844.2005] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We have examined the localization and activity of the neural circuitry that generates swimming behavior in developing zebrafish that were spinalized to isolate the spinal cord from descending brain inputs. We found that addition of the excitatory amino acid agonist N-methyl-d-aspartate (NMDA) to spinalized zebrafish at 3 days in development induced repeating episodes of rhythmic tail beating activity reminiscent of slow swimming behavior. The neural correlate of this activity, monitored by extracellular recording comprised repeating episodes of rhythmic, rostrocaudally progressing peripheral nerve discharges that alternated between the two sides of the body. Motoneuron recordings revealed an activity pattern comprising a slow oscillatory and a fast synaptic component that was consistent with fictive swimming behavior. Pharmacological and voltage-clamp analysis implicated glycine and glutamate in generation of motoneuron activity. Contralateral alternation of motor activity was disrupted with strychnine, indicating a role for glycine in coordinating left-right alternation during NMDA-induced locomotion. At embryonic stages, while rhythmic synaptic activity patterns could still be evoked in motoneurons, they were typically lower in frequency. Kinematic recordings revealed that prior to 3 days in development, NMDA was unable to reliably generate rhythmic tail beating behavior. We conclude that NMDA induces episodes of rhythmic motor activity in spinalized developing zebrafish that can be monitored physiologically in paralyzed preparations. Therefore as for other vertebrates, the zebrafish central pattern generator is intrinsic to the spinal cord and can operate in isolation provided a tonic source of excitation is given.
Collapse
Affiliation(s)
- Jonathan R McDearmid
- Centre for Research in Neuroscience, Research Institute of the McGill University Health Centre, MGH Neurology L7-132, 1650 Cedar Ave., Montreal, Qc, Canada H3G 1A4
| | | |
Collapse
|
33
|
Schwartz EJ, Gerachshenko T, Alford S. 5-HT Prolongs Ventral Root Bursting Via Presynaptic Inhibition of Synaptic Activity During Fictive Locomotion in Lamprey. J Neurophysiol 2005; 93:980-8. [PMID: 15456802 DOI: 10.1152/jn.00669.2004] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Locomotor pattern generation is maintained by integration of the intrinsic properties of spinal central pattern generator (CPG) neurons in conjunction with synaptic activity of the neural network. In the lamprey, the spinal locomotor CPG is modulated by 5-HT. On a cellular level, 5-HT presynaptically inhibits synaptic transmission and postsynaptically inhibits a Ca2+-activated K+current responsible for the slow afterhyperpolarization (sAHP) that follows action potentials in ventral horn neurons. To understand the contribution of these cellular mechanisms to the modulation of the spinal CPG, we have tested the effect of selective 5-HT analogues against fictive locomotion initiated by bath application of N-methyl-d-aspartate (NMDA). We found that the 5-HT1Dagonist, L694-247, dramatically prolongs the frequency of ventral root bursting. Furthermore, we show that L694-247 presynaptically inhibits synaptic transmission without altering postsynaptic Ca2+-activated K+currents. We also confirm that 5-HT inhibits synaptic transmission at concentrations that modulate locomotion. To examine the mechanism by which selective presynaptic inhibition modulates the frequency of fictive locomotion, we performed voltage- and current-clamp recordings of CPG neurons during locomotion. Our results show that 5-HT decreases glutamatergic synaptic drive within the locomotor CPG during fictive locomotion. Thus we conclude that presynaptic inhibition of neurotransmitter release contributes to 5-HT–mediated modulation of locomotor activity.
Collapse
Affiliation(s)
- Eric J Schwartz
- University of Illinois at Chicago, Department of Biological Sciences, Chicago, IL 60607, USA
| | | | | |
Collapse
|
34
|
Brocard F, Dubuc R. Differential contribution of reticulospinal cells to the control of locomotion induced by the mesencephalic locomotor region. J Neurophysiol 2003; 90:1714-27. [PMID: 12736238 DOI: 10.1152/jn.00202.2003] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In lampreys as in other vertebrates, the reticulospinal (RS) system relays inputs from the mesencephalic locomotor region (MLR) to the spinal locomotor networks. Semi-intact preparations of larval sea lamprey were used to determine the relative contribution of the middle (MRRN) and the posterior (PRRN) rhombencephalic reticular nuclei to swimming controlled by the MLR. Intracellular recordings were performed to examine the inputs from the MLR to RS neurons. Stimulation of the MLR elicited monosynaptic excitatory responses of a higher magnitude in the MRRN than in the PRRN. This differential effect was not attributed to intrinsic properties of RS neurons. Paired recordings showed that at threshold intensity for swimming, spiking activity was primarily elicited in RS cells of the MRRN. Interestingly, cells of the PRRN began to discharge at higher stimulation intensities only when MRRN cells had reached their maximal discharge rate. Glutamate antagonists were ejected in either nucleus to reduce their activity. Ejections over the MRRN increased the stimulation threshold for evoking locomotion and resulted in a marked decrease in the swimming frequency and the strength of the muscle contractions. Ejections over the PRRN decreased the frequency of swimming. This study provides support for the concept that RS cells show a specific recruitment pattern during MLR-induced locomotion. RS cells in the MRRN are primarily involved in initiation and maintenance of low-intensity swimming. At higher frequency locomotor rhythm, RS cells in both the MRRN and the PRRN are recruited.
Collapse
Affiliation(s)
- Frédéric Brocard
- Département de Kinanthropologie, Université du Québec, Montreal H3C 3P8, Canada
| | | |
Collapse
|
35
|
Chau C, Giroux N, Barbeau H, Jordan L, Rossignol S. Effects of intrathecal glutamatergic drugs on locomotion I. NMDA in short-term spinal cats. J Neurophysiol 2002; 88:3032-45. [PMID: 12466428 DOI: 10.1152/jn.00138.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Excitatory amino acids (EAA) have been reported to induce fictive locomotion in different in vitro and in vivo preparations in a variety of species through their actions on both N-methyl-D-aspartate (NMDA), and non-NMDA receptors. NMDA-induced intrinsic membrane properties such as intrinsic motoneuronal membrane oscillations and plateau potentials have been suggested to play a role in the generation of locomotion. There is, however, no information on the ability of NMDA in triggering spinal locomotion in awake behaving animals. Because most of the previous work on the induction of locomotion has concentrated on monoaminergic drugs, mainly noradrenergic drugs, the aim of this study is to examine the potential of NMDA in initiating locomotion in chronic spinal cats within the first week after spinalization. Five cats chronically implanted with an intrathecal cannula and electromyographic (EMG) electrodes were used. EMG activity synchronized to video images of the hindlimbs were recorded. The results show that during the early posttransection period (within the 1st week postspinalization), NMDA did not trigger robust locomotion as did noradrenergic drugs. The predominant effects of NMDA were a general hyperexcitability reflected by fast tremor, toe fanning, and an increase in small alternating hindlimb movements with no foot placement nor weight support. During the intermediate phase posttransection (6-8 days), when the cats were able to make some rudimentary steps with foot placement, NMDA significantly enhanced the locomotor performance, which lasted for 24-72 h postinjection. NMDA was also found to increase the excitability of the cutaneous reflex transmission only in early spinal cats. One possible hypothesis for the ineffectiveness of NMDA in triggering locomotion in early spinal cats could be attributed to the widespread activation of NMDA receptors on various neuronal elements involved in the transmission of afferent pathways that in turn may interfere with the expression of locomotion. The marked effects of NMDA in intermediate-spinal cats suggest that NMDA receptors play an important role in locomotion perhaps through its role on intrinsic membrane properties of neurons in shaping and amplifying spinal neuronal transmission or by augmenting the sensory afferent inputs. The long-term effects mediated by NMDA receptors have been reported in the literature and may involve mechanisms such as induction of long-term potentiation or interactions with neuropeptides. The effects of NMDA injection in intact cats and long-term chronic spinal cats will be addressed in a forthcoming companion paper.
Collapse
Affiliation(s)
- Connie Chau
- Centre de Recherche en Sciences Neurologiques, Faculté de Médecine, Université de Montréal, Montreal, Quebec H3T 1J4
| | | | | | | | | |
Collapse
|
36
|
Gustafsson JS, Birinyi A, Crum J, Ellisman M, Brodin L, Shupliakov O. Ultrastructural organization of lamprey reticulospinal synapses in three dimensions. J Comp Neurol 2002; 450:167-82. [PMID: 12124761 DOI: 10.1002/cne.10310] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The giant reticulospinal synapse in lamprey provides a unique model to study synaptic vesicle traffic. The axon permits microinjections, and the active zones are often separated from each other, which makes it possible to track vesicle cycling at individual release sites. However, the proportion of reticulospinal synapses with individual active zones ("simple synapses") is unknown and a quantitative description of their organization is lacking. Here, we report such data obtained by serial section analysis, intermediate-voltage electron microscopy, and electron tomography. The simple synapse was the most common type (78%). It consisted of one active zone contacting one dendritic process. The remaining synapses were "complex," mostly containing one vesicle cluster and two to three active zones synapsing with distinct dendritic shafts. Occasional axosomatic synapses with multiple active zones forming synapses with the same cell were also observed. The vast majority of active zones in all synapse types contained both chemical and electrotonic synaptic specializations. Quantitative analysis of simple synapses showed that the majority had active zones with a diameter of 0.8-1.8 microm. The number of synaptic vesicles and the height of the vesicle cluster in middle sections of serially cut synapses correlated with the active zone length within, but not above, this size range. Electron tomography of simple synapses revealed small filaments between the clustered synaptic vesicles. A single vesicle could be in contact with up to 12 filaments. Another type of filament, also associated with synaptic vesicles, emerged from dense projections. Up to six filaments could be traced from one dense projection.
Collapse
Affiliation(s)
- Jenny S Gustafsson
- Department of Neuroscience, Karolinska Institutet, S-171 77 Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
37
|
Wang H, Jung R. Variability analyses suggest that supraspino-spinal interactions provide dynamic stability in motor control. Brain Res 2002; 930:83-100. [PMID: 11879799 DOI: 10.1016/s0006-8993(02)02232-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Effects of supraspino-spinal feedforward-feedback (FF-FB) interactions on variability in locomotor rhythm and coordination were examined in in vitro brain-spinal cord lamprey preparations. Spinal locomotor networks were activated by applying 0.2 mM N-methyl-DL-aspartate (NMA) to three spinal pools: gill, rostral and caudal. Bathing the brain with zero Ca(2+) saline altered supraspinal-spinal drive and FF-FB interaction while spino-supraspinal feedback was changed by applying NMA to the caudal pool only. Wavelet analyses indicated a non-uniform energy distribution in ventral root (VR) activity that shifted between frequency bands on FF-FB interruption. Wavelet analysis was used to extract 300-s long epochs of low frequency burst rhythm. These were analyzed using a sliding-window time-varying covariance method. From the autocovariance in each window, the cycle period and height of the first side lobe peak were determined. Rostral VR variability (determined from standard deviation and coefficient of variation of all cycle periods and the mean peak height) was significantly higher than caudal VR variability. FF-FB interruption significantly decreased the rostral VR cycle period and variability but the rostro-caudal gradient remained. The intersegmental delay was also affected. The caudal VR rhythm with NMA in the caudal pool only was slower but more variable than with NMA over the entire cord. These results indicate that the locomotor rhythm in the presence of supraspino-spinal interactions is slower but has a higher variability. The higher variability may reflect a dynamic stability of the system. Additionally, differences in local neural organization likely contribute to rostro-caudal differences in variability of the motor output.
Collapse
Affiliation(s)
- H Wang
- Center for Biomedical Engineering, University of Kentucky, Wenner-Gren Laboratory, Rose Street, Lexington, KY 40506-0070, USA
| | | |
Collapse
|
38
|
Takahashi M, Freed R, Blackmer T, Alford S. Calcium influx-independent depression of transmitter release by 5-HT at lamprey spinal cord synapses. J Physiol 2001; 532:323-36. [PMID: 11306653 PMCID: PMC2278557 DOI: 10.1111/j.1469-7793.2001.0323f.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. The mechanisms by which 5-hydroxytryptamine (5-HT) depresses transmitter release from lamprey reticulospinal axons were investigated. These axons make glutamatergic synapses onto spinal ventral horn neurons. 5-HT reduces release at these synapses, yet the mechanisms remain unclear. 2. Excitatory postsynaptic currents (EPSCs) evoked by stimulation of reticulospinal axons were recorded in ventral horn neurons. 5-HT depressed the EPSCs in a dose-dependent manner with an apparent Km of 2.3 microM. 3. To examine the presynaptic effect of 5-HT, electrophysiological and optical recordings were made from presynaptic axons. Action potentials evoked Ca(2+) transients in the axons loaded with a Ca(2+)-sensitive dye. 5-HT slightly reduced the Ca(2+) transient. 4. A third-power relationship between Ca(2+) entry and transmitter release was determined. However, presynaptic Ca(2+) currents were unaffected by 5-HT. 5. Further, in the presence of a K(+) channel blocker, 4-aminopyridine (4-AP), 5-HT left unaltered the presynaptic Ca(2+) transient, ruling out the possibility of its direct action on presynaptic Ca(2+) current. 5-HT activated a 4-AP-sensitive current with a reversal potential of -95 mV in these axons. 6. The basal Ca(2+) concentration did not affect 5-HT-mediated inhibition of release. Although 5-HT caused a subtle reduction in resting axonal [Ca(2+)]i, synaptic responses recorded during enhanced resting [Ca(2+)]i, by giving stimulus trains, were equally depressed by 5-HT. 7. 5-HT reduced the frequency of TTX-insensitive spontaneous EPSCs at these synapses, but had no effect on their amplitude. We propose a mechanism of inhibition for transmitter release by 5-HT that is independent of presynaptic Ca(2+) entry.
Collapse
Affiliation(s)
- M Takahashi
- Department of Physiology, Northwestern University Medical School, Chicago, IL 60611, USA
| | | | | | | |
Collapse
|
39
|
Buchanan JT. Contributions of identifiable neurons and neuron classes to lamprey vertebrate neurobiology. Prog Neurobiol 2001; 63:441-66. [PMID: 11163686 DOI: 10.1016/s0301-0082(00)00050-2] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Among the advantages offered by the lamprey brainstem and spinal cord for studies of the structure and function of the nervous system is the unique identifiability of several pairs of reticulospinal neurons in the brainstem. These neurons have been exploited in investigations of the patterns of sensory input to these cells and the patterns of their outputs to spinal neurons, but no doubt these cells could be used much more effectively in exploring their roles in descending control of the spinal cord. The variability of cell positions of neurons in the spinal cord has precluded the recognition of unique spinal neurons. However, classes of nerve cells can be readily defined and characterized within the lamprey spinal cord and this has led to progress in understanding the cellular and synaptic mechanisms of locomotor activity. In addition, both the identifiable reticulospinal cells and the various spinal nerve cell classes and their known synaptic interactions have been used to demonstrate the degree and specificity of regeneration within the lamprey nervous system. The lack of uniquely identifiable cells within the lamprey spinal cord has hampered progress in these areas, especially in gaining a full understanding of the locomotor network and how neuromodulation of the network is accomplished.
Collapse
Affiliation(s)
- J T Buchanan
- Department of Biology, Marquette University, P.O. Box 1881, Milwaukee, WI 53201-1881, USA.
| |
Collapse
|
40
|
Nishiyama T. Interaction among NMDA receptor-, NMDA glycine site- and AMPA receptor antagonists in spinally mediated analgesia. Can J Anaesth 2000; 47:693-8. [PMID: 10930211 DOI: 10.1007/bf03019004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
PURPOSE The NMDA (N-methyl-D-aspartate) receptor antagonists and the NMDA glycine site antagonists given alone have minimal effects on acute nociception. In contrast, the AMPA (alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid) receptor antagonists have a major role in acute nociception. We investigated the interactions among these three antagonists in acute nociception. METHODS Sprague-Dawley rats (250-300 g) were implanted with chronic lumbar intrathecal catheters and were tested for their thermal withdrawal response using the hot plate test after intrathecal administration of AP-5 (NMDA receptor antagonist), ACEA 1021 (NMDA glycine site antagonist), or ACEA 2085 (AMPA receptor antagonist). The combinations of these three agents were also tested. RESULTS Intrathecal administration of ACEA 2085 had a dose dependent analgesic effect while intrathecal AP-5 or ACEA 1021 could not induce dose dependent effect. Co-administration of AP-5 10 microg and ACEA 2085 intrathecally showed no changes in the thermal response latency compared with ACEA 2085 alone. ACEA 1021, 12 microg, and AP-5 showed left-ward shift of the dose effect curve only with small doses of AP-5 (1 microg, 3 microg). Only the smallest dose of ACEA 2085 (0.1 ng) with ACEA 1021 12 microg induced antinociception compared with that of ACEA 2085 alone. CONCLUSIONS The combination of the NMDA glycine site antagonist and low doses of the NMDA receptor antagonist or the AMPA receptor antagonist increased the analgesic effect on acute thermal nociception with increased side effects, while the NMDA receptor antagonist and the AMPA receptor antagonist had no such interaction.
Collapse
Affiliation(s)
- T Nishiyama
- Department of Anesthesiology, The University of Tokyo, Japan.
| |
Collapse
|
41
|
Schwartz NE, Alford S. Physiological activation of presynaptic metabotropic glutamate receptors increases intracellular calcium and glutamate release. J Neurophysiol 2000; 84:415-27. [PMID: 10899215 DOI: 10.1152/jn.2000.84.1.415] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of metabotropic glutamate receptors (mGluRs) has diverse effects on the functioning of vertebrate synapses. The cellular mechanisms that underlie these changes, however, are largely unknown. The role of presynaptic mGluRs in modulating Ca(2+) dynamics and regulating neurotransmitter release was investigated at the vestibulospinal-reticulospinal (VS-RS) synapse in the lamprey brain stem. Application of the specific Group I mGluRs antagonist 7-(hydroxyimino) cyclopropa[b]chromen-1a-carboxylate ethyl ester (CPCCOEt) reduced the amplitude of consecutive high-frequency evoked excitatory postsynaptic currents (EPSCs). A series of experiments using techniques of electrophysiology and calcium imaging were carried out to determine the cellular mechanisms by which this phenomenon occurs. Concentration-dependent increases in the pre- and postsynaptic [Ca(2+)](i) were seen with the application of mGluR agonists. Similarly, high-frequency stimulation of axons caused a Group I mGluR-dependent enhancement in presynaptic Ca(2+) transients. Application of mGluR agonist caused a depolarization of the presynaptic elements, while thapsigargin decreased the high-frequency stimulus- and agonist-induced rises in [Ca(2+)](i). These data suggest that both membrane depolarization and the release of Ca(2+) from intracellular stores potentially play a role in mGluR-induced Ca(2+) signaling. To determine the effect of this modulation of Ca(2+) dynamics on spontaneous glutamate release, miniature EPSCs were recorded from postsynaptic reticulospinal neurons. A potent Group I mGluR agonist, (S)-homoquisqualic acid, caused a large increase in the frequency of events. These results demonstrate the presence of presynaptic Group I mGluRs at the VS-RS synapse. Activation of these receptors leads to a rise in [Ca(2+)](i) and enhances the spontaneous and evoked release of glutamate. Taken together, these studies highlight the importance of synaptic activation of these facilitatory autoreceptors in both short-term plasticity and synaptic transmission.
Collapse
Affiliation(s)
- N E Schwartz
- Department of Physiology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
42
|
Abstract
Movement, the fundamental component of behavior and the principal extrinsic action of the brain, is produced when skeletal muscles contract and relax in response to patterns of action potentials generated by motoneurons. The processes that determine the firing behavior of motoneurons are therefore important in understanding the transformation of neural activity to motor behavior. Here, we review recent studies on the control of motoneuronal excitability, focusing on synaptic and cellular properties. We first present a background description of motoneurons: their development, anatomical organization, and membrane properties, both passive and active. We then describe the general anatomical organization of synaptic input to motoneurons, followed by a description of the major transmitter systems that affect motoneuronal excitability, including ligands, receptor distribution, pre- and postsynaptic actions, signal transduction, and functional role. Glutamate is the main excitatory, and GABA and glycine are the main inhibitory transmitters acting through ionotropic receptors. These amino acids signal the principal motor commands from peripheral, spinal, and supraspinal structures. Amines, such as serotonin and norepinephrine, and neuropeptides, as well as the glutamate and GABA acting at metabotropic receptors, modulate motoneuronal excitability through pre- and postsynaptic actions. Acting principally via second messenger systems, their actions converge on common effectors, e.g., leak K(+) current, cationic inward current, hyperpolarization-activated inward current, Ca(2+) channels, or presynaptic release processes. Together, these numerous inputs mediate and modify incoming motor commands, ultimately generating the coordinated firing patterns that underlie muscle contractions during motor behavior.
Collapse
Affiliation(s)
- J C Rekling
- Department of Neurobiology, University of California, Los Angeles, California 90095-1763, USA
| | | | | | | | | |
Collapse
|
43
|
Petropoulos D, Lund JP, Dubuc R. A physiological study of brainstem and peripheral inputs to trigeminal motoneurons in lampreys. Neuroscience 1999; 91:379-89. [PMID: 10336086 DOI: 10.1016/s0306-4522(98)00634-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The inputs to trigeminal motoneurons from sensory afferents and rhombencephalic premotor regions were studied in isolated brainstem preparations of adult lampreys (Petromyzon marinus). Stimulation of both trigeminal nerves, contralateral nucleus motorius nervi trigemini, nucleus sensibilis nervi trigemini and ipsilateral rostral reticular formation elicited large-amplitude excitatory postsynaptic potentials with short latencies. These were significantly attenuated by adding 6-cyano-7-nitroquinoxaline2,3-dione (10 microM) and 2-amino-5-phosphonopentanoate (200 microM) to the bath, suggesting participation of both alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate and N-methyl-D-aspartate receptors. The inputs from ipsilateral trigeminal afferents included a di- or oligosynaptic glycinergic inhibition. Sustained rhythmical membrane potential oscillations were observed in 52% of the recorded cells upon stimulation of trigeminal afferents or the contralateral nucleus sensibilis nervi trigemini. Two types of rhythm were obtained: (i) low-frequency oscillations (0.1-0.5 Hz), with peak-to-peak amplitudes between 8.5 and 17 mV; and (ii) higher frequency oscillations (1.0-2.8 Hz) with smaller amplitudes (1.8-5.1 mV). The two types of trigeminal rhythm could occur independently of fictive locomotion and fictive breathing. In a decerebrate semi-intact preparation, slow rhythmical trigeminal motoneuron potential oscillations were also evoked by stimulation of the oral disc. This study shows that trigeminal motoneurons receive excitatory synaptic inputs from several brainstem sites, and that membrane potential oscillations can be triggered upon stimulation of trigeminal afferents or the nucleus sensibilis nervi trigemini. We suggest that these oscillations recorded in vitro may represent the centrally generated components that underlie rhythmical feeding in lampreys.
Collapse
Affiliation(s)
- D Petropoulos
- Centre de recherche en sciences neurologiques, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
44
|
Abstract
The present study was carried out to characterize anatomically the vestibulospinal (VS) system of lampreys. Cobalt-lysine or Texas Red dextran amines were applied in vitro to the rostral spinal cord. Two distinct populations of VS neurons were labeled in the ventral nucleus of the area octavolateralis. The rostral group, comprising the intermediate octavomotor nucleus (ION), contained between 100 and 150 neurons, having somata of variable size and morphology. Intracellular injections of Lucifer Yellow in single neurons revealed ION VS neurons with dendrites extending in the ventrolateral alar plate as well as medially in the basal plate. The caudal group, comprising the posterior octavomotor nucleus (PON), contained approximately 65 neurons, most of which were unipolar with round or oval somata. To study the projections of VS axons, cobalt-lysine was injected into the ION or PON regions in the brainstem. Axons from the ION projected to the ipsilateral spinal cord, whereas PON axons decussated within the basal plate giving out descending and ascending branches. The descending branch projected to the contralateral spinal cord. Injections of two fluorescent dextran-amines, each restricted to one side of the spinal cord, did not double-label VS cells in either octavomotor nuclei, indicating that the projections of each nucleus are restricted to one side. Injections of horseradish peroxidase further caudally in the spinal cord revealed that VS axons from the ION reached past the gill region. Our results indicate that the organization of the VS system of lampreys is similar to that observed in other vertebrates.
Collapse
Affiliation(s)
- N Bussières
- Centre de Recherche en Sciences Neurologiques, Université de Montréal, Centre-ville, Québec, Canada
| | | | | |
Collapse
|
45
|
Vinay L, Bongianni F, Ohta Y, Grillner S, Dubuc R. Spinal inputs from lateral columns to reticulospinal neurons in lampreys. Brain Res 1998; 808:279-93. [PMID: 9767174 DOI: 10.1016/s0006-8993(98)00835-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This study characterizes the inputs from the lateral columns of the spinal cord to reticulospinal neurons in the lampreys, using the in vitro isolated brainstem and spinal cord preparation. Synaptic responses to the electrical stimulation of the lateral columns were recorded in reticulospinal neurons of the posterior and middle rhombencephalic reticular nuclei. The responses consisted of a mixture of excitation and inhibition. They were markedly potentiated when using trains of two to five pulses, suggesting that the larger part of these synaptic responses was mediated via an oligosynaptic pathway. An early component, however, persisted when using twin pulses at 10-20 Hz on the ipsilateral side, suggesting the presence of an early mono- or disynaptic component. When increasing the stimulation strength, an early fast rising excitatory component appeared. It most likely resulted from an antidromic activation of vestibulospinal axons in the lateral tracts, which make en passant synaptic contacts with reticulospinal neurons. Responses were practically abolished by adding CNQX and AP5 to the Ringer's solution. The late component of excitatory responses was decreased by AP5, suggesting that NMDA receptors were activated. The NMDA receptor-mediated component was larger when using trains of stimuli or in Mg2+-free Ringer's. The application of NMDA depolarized reticulospinal neurons. The glycinergic inhibitory component was markedly increased in Mg2+-free Ringer's. Moreover, GABAB-receptor activation with (-)-baclofen abolished both excitatory and inhibitory responses. Taken together, the present results indicate that ascending lateral column axons generate large excitatory and inhibitory synaptic potentials in reticulospinal neurons. The possible role of these inputs in modulating the activity of reticulospinal neurons during locomotion is discussed.
Collapse
Affiliation(s)
- L Vinay
- Centre de Recherche en Sciences Neurologiques, Université de Montréal, C.P. 6128 Succ. A, H3C 3J7, Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
46
|
Zompa IC, Dubuc R. Diencephalic and mesencephalic projections to rhombencephalic reticular nuclei in lampreys. Brain Res 1998; 802:27-54. [PMID: 9748487 DOI: 10.1016/s0006-8993(98)00261-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Behavioral studies in lampreys of the northern genera, Ichthyomyzon, reveal that sensory inputs initiate and modulate locomotion by activation of reticulospinal (RS) neurones, which constitute the primary descending system involved in motor activity. The interneurones relaying afferent vestibular, trigeminal, lateral line, cutaneous and proprioceptive inputs are localized in the rhombencephalic region of the lamprey brainstem, unlike the visual inputs that are relayed in the mesencephalic region. The knowledge of diencephalic-mesencephalic cell distributions that project to the RS neurones is limited. They were isolated by iontophoretically injecting cobalt-lysine in vitro into the middle (MRRN) and posterior (PRRN) rhombencephalic reticular nuclei of Petromyzon marinus and Ichthyomyzon unicuspis, Fourteen of 31 injections were successful (MRRN, 7; PRRN, 7). Cell groups were labeled ipsilateral to the injection site in the thalamus (corpi geniculati; pars dorsalis thalami lateralis and medialis; nucleus (n.) subhabenularis lateralis), in the epithalamus (n. commissura posteriori) and in the pretectum. Cell groups were labeled bilaterally within the dorsal region along the diencephalic-mesencephalic border (caudal pretectum and rostral tectum opticum), in tectum opticum, torus semicircularis, and tegmentum mesencephali. There were more backfilled cells from MRRN injections (538-6466 cells) than from PRRN injections (53-553 cells) (MW Rank Sum, p < 0.001). The cell bodies were less than 40 microns long ipsilateral to the injection site, and longer contralaterally. Those greater than 50 microns were backfilled from PRRN injections. The location and organization of the cell groups identified is comparable to that of other vertebrates.
Collapse
Affiliation(s)
- I C Zompa
- Centre de Recherche en Sciences Neurologiques, Université de Montréal, Québec, Canada
| | | |
Collapse
|
47
|
Schwartz NE, Alford S. Modulation of pre- and postsynaptic calcium dynamics by ionotropic glutamate receptors at a plastic synapse. J Neurophysiol 1998; 79:2191-203. [PMID: 9535978 DOI: 10.1152/jn.1998.79.4.2191] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
This study was conducted to assess the role of ionotropic glutamate receptors in the modulation of calcium dynamics on both sides of a vertebrate plastic synapse. Retrograde labeling of neuronal elements with high-affinity calcium-sensitive dyes was used in conjunction with confocal imaging techniques in an in vitro lamprey brain stem preparation. A prolonged calcium transient was measured both pre- and postsynaptically in response to a period of high-frequency ("tetanic") stimulation to the vestibulospinal-reticulospinal synapse. The ionotropic glutamate receptor antagonists 6-cyano-7-nitroquinoxaline-2,3-dione (10 microM) and D,L-2-amino-5-phosphonopentanoate (D,L-AP5; 100 microM) reduced the calcium signal in both compartments of the synapse. The presynaptic D,L-AP5-sensitive component was enhanced markedly by the removal of Mg2+ from the superfusate. Increasing the extracellular stimulus intensity progressively augmented the presynaptic calcium signal, suggesting the recruitment of excitatory axo-axonic inputs onto these fibers. Further, the presence of an excitatory amino acid-mediated presynaptic potential underlying a component of the Ca2+ signal was demonstrated by electrophysiological recordings from vestibulospinal axons. Bath application of agonist, in the presence of tetrodotoxin (1 microM), confirmed the existence of N-methyl-D-aspartate receptors at the presynaptic element capable of modulating calcium levels. The postsynaptic Ca2+ response, which is known to be necessary for long-term potentiation (LTP) induction at this synapse, was localized to areas of the dendritic tree that correlated with the location of known synaptic inputs; thus the synaptically activated rise in postsynaptic calcium may confer the synapse specificity of LTP induction previously demonstrated. In summary, we have demonstrated the existence of physiologically activated presynaptic ionotropic glutamate receptors that are capable of modulating levels of intracellular calcium and have highlighted the importance of receptor-mediated increases in postsynaptic calcium for neuronal plasticity in the lamprey.
Collapse
Affiliation(s)
- N E Schwartz
- Department of Physiology, Northwestern University Medical School, Chicago, Illinois 60611, USA
| | | |
Collapse
|
48
|
Abstract
In the brains of larval lamprey, biophysical properties of reticulospinal (RS) neurons were determined by applying depolarizing and hyperpolarizing current pulses under current clamp conditions. In response to above threshold depolarizing current pulses, almost all RS neurons produced an initial relatively high spiking frequency (Fi) followed by a variable decay to a steady-state firing frequency (Fss). Spike-frequency adaptation (SFA), defined as [(Fi - Fss)/Fi] x 100%, was minimal at the lowest currents and more pronounced with larger applied current pulses. Some RS neurons, particularly those in the posterior rhombencephalic reticular nucleus (PRRN), either adapted very quickly, and stopped firing, or fired in short bursts during a constant depolarizing current pulse. Several types of RS neurons, including some Muller cells and unidentified neurons in the middle rhombencephalic reticular nucleus (MRRN), displayed delayed excitation (DE) in which spiking in response to a depolarizing current pulse was delayed if preceded by a hyperpolarizing prepulse. Very few neurons fired action potentials following a hyperpolarizing pulse, such as in the case of post-inhibitory rebound (PIR), and no neurons were found that displayed plateau potentials. The possible contributions of these properties to the descending activation of spinal locomotor networks is discussed.
Collapse
Affiliation(s)
- D T Rouse
- Division of Biological Science, University of Missouri, Columbia 65211-6190, USA
| | | | | |
Collapse
|
49
|
Di Prisco GV, Pearlstein E, Robitaille R, Dubuc R. Role of sensory-evoked NMDA plateau potentials in the initiation of locomotion. Science 1997; 278:1122-5. [PMID: 9353193 DOI: 10.1126/science.278.5340.1122] [Citation(s) in RCA: 109] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reticulospinal (RS) neurons constitute the main descending motor system of lampreys. This study reports on natural conditions whereby N-methyl-D-aspartate (NMDA)-mediated plateau potentials were elicited and associated with the onset of locomotion. Reticulospinal neurons responded in a linear fashion to mild skin stimulation. With stronger stimuli, large depolarizing plateaus with spiking activity were elicited and were accompanied by swimming movements. Calcium imaging revealed sustained intracellular calcium rise upon sensory stimulation. Blocking NMDA receptors on RS neurons prevented the plateau potentials as well as the associated rise in intracellular calcium. Thus, the activation of NMDA receptors mediates a switch from sensory-reception mode to a motor command mode in RS neurons.
Collapse
Affiliation(s)
- G V Di Prisco
- Département de Physiologie, Centre de Recherche en Sciences Neurologiques, Université de Montréal, C.P. 6128, succursale Centre-Ville, Montréal, Québec, Canada, H3C 3J7
| | | | | | | |
Collapse
|
50
|
McClellan AD, Hagevik A. Descending control of turning locomotor activity in larval lamprey: neurophysiology and computer modeling. J Neurophysiol 1997; 78:214-28. [PMID: 9242275 DOI: 10.1152/jn.1997.78.1.214] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The purpose of the present study was to examine the mechanisms that produce natural spontaneous turning maneuvers in larval lamprey. During swimming, spontaneous turning movements began with a larger-than-normal bending of the head to one side. Subsequently, undulations propagated down the body with greater amplitude on the side ipsilateral to the turn. During turning to one side, which usually occurred within one cycle, the amplitude and duration of ipsilateral muscle burst activity as well as overall cycle time increased significantly with increasing turn angle. In in vitro brain/spinal cord preparations, brief electrical stimulation applied to the left side of the oral hood at the onset of locomotor burst activity on the right side of the spinal cord produced turninglike motor activity. During the perturbed cycle, the duration and amplitude of the burst on the right as well as cycle time were significantly larger than during preceding control cycles. In several lower vertebrates, unilateral stimulation in brain stem locomotor regions elicits asymmetric, turninglike locomotor activity. In the lamprey, unilateral chemical microstimulation in brain stem locomotor regions elicited continuous asymmetric locomotor activity, but there was little change in cycle time, as occurs during the single turning cycles in whole animals. The descending mechanisms responsible for producing turning locomotor activity were examined with the use of a computer model consisting of left and right phase oscillators in the spinal cord that were coupled by net reciprocal inhibition. With relatively weak reciprocal coupling, a brief unilateral descending excitatory input to one oscillator produced effects ipsilaterally, but there was little effect on the contralateral oscillator. Turninglike patterns could be produced by each of the following modifications of the model: 1) unilateral descending input and relatively strong reciprocal coupling; 2) unilateral descending input that phase shifted as well as increased the amplitude of the waveform generated by an oscillator on one side; and 3) brief descending modulatory inputs that excited the oscillator on one side and inhibited the contralateral oscillator. In all three cases, there was an increase in "burst" duration ipsilateral to the excitatory input and an increase in cycle time, similar to turning locomotor activity in whole animals. It is likely that turning maneuvers are mediated by descending modulatory inputs primarily to the spinal oscillator networks, which control the timing of burst activity, but perhaps also to motoneurons for axial musculature.
Collapse
Affiliation(s)
- A D McClellan
- Division of Biological Science, University of Missouri, Columbia 65211, USA
| | | |
Collapse
|