1
|
Krämer SD, Schuhmann MK, Volkmann J, Fluri F. Deep Brain Stimulation in the Subthalamic Nucleus Can Improve Skilled Forelimb Movements and Retune Dynamics of Striatal Networks in a Rat Stroke Model. Int J Mol Sci 2022; 23:15862. [PMID: 36555504 PMCID: PMC9779486 DOI: 10.3390/ijms232415862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022] Open
Abstract
Recovery of upper limb (UL) impairment after stroke is limited in stroke survivors. Since stroke can be considered as a network disorder, neuromodulation may be an approach to improve UL motor dysfunction. Here, we evaluated the effect of high-frequency stimulation (HFS) of the subthalamic nucleus (STN) in rats on forelimb grasping using the single-pellet reaching (SPR) test after stroke and determined costimulated brain regions during STN-HFS using 2-[18F]Fluoro-2-deoxyglucose-([18F]FDG)-positron emission tomography (PET). After a 4-week training of SPR, photothrombotic stroke was induced in the sensorimotor cortex of the dominant hemisphere. Thereafter, an electrode was implanted in the STN ipsilateral to the infarction, followed by a continuous STN-HFS or sham stimulation for 7 days. On postinterventional day 2 and 7, an SPR test was performed during STN-HFS. Success rate of grasping was compared between these two time points. [18F]FDG-PET was conducted on day 2 and 3 after stroke, without and with STN-HFS, respectively. STN-HFS resulted in a significant improvement of SPR compared to sham stimulation. During STN-HFS, a significantly higher [18F]FDG-uptake was observed in the corticosubthalamic/pallidosubthalamic circuit, particularly ipsilateral to the stimulated side. Additionally, STN-HFS led to an increased glucose metabolism within the brainstem. These data demonstrate that STN-HFS supports rehabilitation of skilled forelimb movements, probably by retuning dysfunctional motor centers within the cerebral network.
Collapse
Affiliation(s)
- Stefanie D. Krämer
- Radiopharmaceutical Sciences/Biopharmacy, Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Michael K. Schuhmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany
| | - Jens Volkmann
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany
| | - Felix Fluri
- Department of Neurology, University Hospital Würzburg, Josef-Schneider Strasse 11, 97080 Würzburg, Germany
| |
Collapse
|
2
|
Bahners BH, Waterstraat G, Kannenberg S, Curio G, Schnitzler A, Nikulin V, Florin E. Electrophysiological characterization of the hyperdirect pathway and its functional relevance for subthalamic deep brain stimulation. Exp Neurol 2022; 352:114031. [PMID: 35247373 DOI: 10.1016/j.expneurol.2022.114031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 02/01/2022] [Accepted: 02/28/2022] [Indexed: 11/04/2022]
Abstract
The subthalamic nucleus (STN) receives input from various cortical areas via hyperdirect pathway (HDP) which bypasses the basal-ganglia loop. Recently, the HDP has gained increasing interest, because of its relevance for STN deep brain stimulation (DBS). To understand the HDP's role cortical responses evoked by STN-DBS have been investigated. These responses have short (<2 ms), medium (2-15 ms), and long (20-70 ms) latencies. Medium-latency responses are supposed to represent antidromic cortical activations via HDP. Together with long-latency responses the medium responses can potentially be used as biomarker of DBS efficacy as well as side effects. We here propose that the activation sequence of the cortical evoked responses can be conceptualized as high frequency oscillations (HFO) for signal analysis. HFO might therefore serve as marker for antidromic activation. Using existing knowledge on HFO recordings, this approach allows data analyses and physiological modeling to advance the pathophysiological understanding of cortical DBS-evoked high-frequency activity.
Collapse
Affiliation(s)
- Bahne Hendrik Bahners
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gunnar Waterstraat
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neurophysics Group, Department of Neurology, Berlin, Germany
| | - Silja Kannenberg
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Gabriel Curio
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Neurophysics Group, Department of Neurology, Berlin, Germany; Bernstein Center for Computational Neuroscience, Berlin, Germany
| | - Alfons Schnitzler
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany; Department of Neurology, Center for Movement Disorders and Neuromodulation, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Vadim Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Esther Florin
- Institute of Clinical Neuroscience and Medical Psychology, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany.
| |
Collapse
|
3
|
Beta Frequency Oscillations in the Subthalamic Nucleus Are Not Sufficient for the Development of Symptoms of Parkinsonian Bradykinesia/Akinesia in Rats. eNeuro 2019; 6:ENEURO.0089-19.2019. [PMID: 31540998 PMCID: PMC6817717 DOI: 10.1523/eneuro.0089-19.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 07/30/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022] Open
Abstract
Substantial correlative evidence links the synchronized, oscillatory patterns of neural activity that emerge in Parkinson's disease (PD) in the beta (β) frequency range (13-30 Hz) with bradykinesia in PD. However, conflicting evidence exists, and whether these changes in neural activity are causal of motor symptoms in PD remains unclear. We tested the hypothesis that the synchronized β oscillations that emerge in PD are causal of symptoms of bradykinesia/akinesia. We designed patterns of stimulation that mimicked the temporal characteristics of single unit β bursting activity seen in PD animals and humans. We applied these β-patterned stimulation patterns along with continuous low-frequency and high-frequency controls to the subthalamic nucleus (STN) of intact and 6-OHDA-lesioned female Long-Evans and Sprague-Dawley rats. β-Patterned paradigms were superior to low-frequency controls at induction of β power in downstream substantia nigra reticulata (SNr) neurons and in ipsilateral motor cortex. However, we did not detect deleterious effects on motor performance across a wide battery of validated behavioral tasks. Our results suggest that β frequency oscillations (BFOs) may not be sufficient for the generation of bradykinesia/akinesia in PD.
Collapse
|
4
|
Cortical Potentials Evoked by Subthalamic Stimulation Demonstrate a Short Latency Hyperdirect Pathway in Humans. J Neurosci 2018; 38:9129-9141. [PMID: 30201770 DOI: 10.1523/jneurosci.1327-18.2018] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/23/2018] [Accepted: 07/23/2018] [Indexed: 11/21/2022] Open
Abstract
A monosynaptic projection from the cortex to the subthalamic nucleus is thought to have an important role in basal ganglia function and in the mechanism of therapeutic subthalamic deep-brain stimulation, but in humans the evidence for its existence is limited. We sought physiological confirmation of the cortico-subthalamic hyperdirect pathway using invasive recording techniques in patients with Parkinson's disease (9 men, 1 woman). We measured sensorimotor cortical evoked potentials using a temporary subdural strip electrode in response to low-frequency deep-brain stimulation in patients undergoing awake subthalamic or pallidal lead implantations. Evoked potentials were grouped into very short latency (<2 ms), short latency (2-10 ms), and long latency (10-100 ms) from the onset of the stimulus pulse. Subthalamic and pallidal stimulation resulted in very short-latency evoked potentials at 1.5 ms in the primary motor cortex accompanied by EMG-evoked potentials consistent with corticospinal tract activation. Subthalamic, but not pallidal stimulation, resulted in three short-latency evoked potentials at 2.8, 5.8, and 7.7 ms in a widespread cortical distribution, consistent with antidromic activation of the hyperdirect pathway. Long-latency potentials were evoked by both targets, with subthalamic responses lagging pallidal responses by 10-20 ms, consistent with orthodromic activation of the thalamocortical pathway. The amplitude of the first short-latency evoked potential was predictive of the chronic therapeutic stimulation contact.SIGNIFICANCE STATEMENT This is the first physiological demonstration of the corticosubthalamic hyperdirect pathway and its topography at high spatial resolution in humans. We studied cortical potentials evoked by deep-brain stimulation in patients with Parkinson's disease undergoing awake lead implantation surgery. Subthalamic stimulation resulted in multiple short-latency responses consistent with activation of hyperdirect pathway, whereas no such response was present during pallidal stimulation. We contrast these findings with very short latency, direct corticospinal tract activations, and long-latency responses evoked through polysynaptic orthodromic projections. These findings underscore the importance of incorporating the hyperdirect pathway into models of human basal ganglia function.
Collapse
|
5
|
Kumaravelu K, Oza CS, Behrend CE, Grill WM. Model-based deconstruction of cortical evoked potentials generated by subthalamic nucleus deep brain stimulation. J Neurophysiol 2018; 120:662-680. [PMID: 29694280 DOI: 10.1152/jn.00862.2017] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Parkinson's disease is associated with altered neural activity in the motor cortex. Chronic high-frequency deep brain stimulation (DBS) of the subthalamic nucleus (STN) is effective in suppressing parkinsonian motor symptoms and modulates cortical activity. However, the anatomical pathways responsible for STN DBS-mediated cortical modulation remain unclear. Cortical evoked potentials (cEP) generated by STN DBS reflect the response of cortex to subcortical stimulation, and the goal of this study was to determine the neural origin of STN DBS-generated cEP using a two-step approach. First, we recorded cEP over ipsilateral primary motor cortex during different frequencies of STN DBS in awake healthy and unilateral 6-OHDA-lesioned parkinsonian rats. Second, we used a detailed, biophysically based model of the thalamocortical network to deconstruct the neural origin of the recorded cEP. The in vivo cEP included short (R1)-, intermediate (R2)-, and long-latency (R3) responses. Model-based cortical responses to simulated STN DBS matched remarkably well the in vivo responses. The short-latency response was generated by antidromic activation of layer 5 pyramidal neurons, whereas recurrent activation of layer 5 pyramidal neurons via excitatory axon collaterals reproduced the intermediate-latency response. The long-latency response was generated by polysynaptic activation of layer 2/3 pyramidal neurons via the cortico-thalamic-cortical pathway. Antidromic activation of the hyperdirect pathway and subsequent intracortical and cortico-thalamo-cortical synaptic interactions were sufficient to generate cortical potential evoked by STN DBS, and orthodromic activation through basal ganglia-thalamus-cortex pathways was not required. These results demonstrate the utility of cEP to determine the neural elements activated by STN DBS that might modulate cortical activity and contribute to the suppression of parkinsonian symptoms. NEW & NOTEWORTHY Subthalamic nucleus (STN) deep brain stimulation (DBS) is increasingly used to treat Parkinson's disease (PD). Cortical potentials evoked by STN DBS in patients with PD exhibit consistent short-latency (1-3 ms), intermediate-latency (5-15 ms), and long-latency (18-25 ms) responses. The short-latency response occurs as a result of antidromic activation of the hyperdirect pathway comprising corticosubthalamic axons. However, the neural origins of intermediate- and long-latency responses remain elusive, and the dominant view is that these are produced through the orthodromic pathway (basal ganglia-thalamus-cortex). By combining in vivo electrophysiology with computational modeling, we demonstrate that antidromic activation of the cortico-thalamic-cortical pathway is sufficient to generate the intermediate- and long-latency cortical responses to STN DBS.
Collapse
Affiliation(s)
- Karthik Kumaravelu
- Department of Biomedical Engineering, Duke University , Durham, North Carolina
| | - Chintan S Oza
- Department of Biomedical Engineering, Duke University , Durham, North Carolina
| | - Christina E Behrend
- Department of Biomedical Engineering, Duke University , Durham, North Carolina.,School of Medicine, Duke University , Durham, North Carolina
| | - Warren M Grill
- Department of Biomedical Engineering, Duke University , Durham, North Carolina.,Department of Electrical and Computer Engineering, Duke University , Durham, North Carolina.,Department of Neurobiology, Duke University , Durham, North Carolina.,Department of Neurosurgery, Duke University , Durham, North Carolina
| |
Collapse
|
6
|
Çavdar S, Özgür M, Çakmak YÖ, Kuvvet Y, Kunt SK, Sağlam G. Afferent projections of the subthalamic nucleus in the rat: emphasis on bilateral and interhemispheric connections. Acta Neurobiol Exp (Wars) 2018. [DOI: 10.21307/ane-2018-023] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
7
|
Human subthalamic oscillatory dynamics following somatosensory stimulation. Clin Neurophysiol 2017; 129:79-88. [PMID: 29161621 DOI: 10.1016/j.clinph.2017.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 07/20/2017] [Accepted: 10/04/2017] [Indexed: 11/23/2022]
Abstract
OBJECTIVE Electrical median nerve somatosensory stimulation leads to a distinct modulation of cortical oscillations. Initial high frequency and gamma augmentation, as well as modulation of beta and alpha oscillations have been reported. We aimed at investigating the involvement of the subthalamic nucleus in somatosensory processing by means of local field potential recordings, since recordings during passive movements and peripheral somatosensory stimulation have suggested a prominent role. METHODS Recordings of subthalamic neuronal activity following median nerve stimulation in 11 Parkinson's disease patients were performed. Time-frequency analysis from 1 to 500 Hz was averaged and analyzed. RESULTS Several oscillatory components in response to somatosensory stimulation were revealed in the time-frequency analysis: (I) prolonged increase in alpha band power, followed by attenuation; (II) initial suppression of power followed by a subsequent rebound in the beta band; (III) early broad-frequency increase in gamma band power; (IV) and sustained increase of 160 Hz frequency oscillations throughout the trial. CONCLUSIONS These results further corroborate the involvement of the subthalamic nucleus in somatosensory processing. SIGNIFICANCE The present results not only support the notion of somatosensory processing in the subthalamic nucleus. Moreover, an improvement of somatosensory processing during subthalamic deep brain stimulation in Parkinson's disease might be accounted for by enhancement of prevailing high frequency oscillations.
Collapse
|
8
|
Heldmann M, Münte TF, Paracka L, Beyer F, Brüggemann N, Saryyeva A, Rasche D, Krauss JK, Tronnier VM. Human subthalamic nucleus - Automatic auditory change detection as a basis for action selection. Neuroscience 2017; 355:141-148. [PMID: 28504196 DOI: 10.1016/j.neuroscience.2017.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 04/28/2017] [Accepted: 05/03/2017] [Indexed: 11/30/2022]
Abstract
The subthalamic nucleus (STN) shapes motor behavior and is important for the initiation and termination of movements. Here we ask whether the STN takes aggregated sensory information into account, in order to exert this function. To this end, local field potentials (LFP) were recorded in eight patients suffering from Parkinson's disease and receiving deep-brain stimulation of the STN bilaterally. Bipolar recordings were obtained postoperatively from the externalized electrode leads. Patients were passively exposed to trains of auditory stimuli containing global deviants, local deviants or combined global/local deviants. The surface event-related potentials of the Parkinson's patients as well as those of 19 age-matched healthy controls were characterized by a mismatch negativity (MMN) that was most pronounced for the global/local double deviants and less prominent for the other deviant conditions. The left and right STN LFPs similarly were modulated by stimulus deviance starting at about 100ms post-stimulus onset. The MMN has been viewed as an index of an automatic auditory change detection system, more recently phrased in terms of predictive coding theory, which prepares the organism for attention shifts and for action. The LFP-data from the STN clearly demonstrate that the STN receives information on stimulus deviance, possibly as a means to bias the system to interrupt ongoing and to allow alternative actions.
Collapse
Affiliation(s)
- Marcus Heldmann
- Department of Neurology, University of Lübeck, Lübeck, Germany; Institute of Psychology II, University of Lübeck, Lübeck, Germany
| | - Thomas F Münte
- Department of Neurology, University of Lübeck, Lübeck, Germany; Institute of Psychology II, University of Lübeck, Lübeck, Germany.
| | - Lejla Paracka
- Department of Neurology, Medical School Hannover, Hannover, Germany
| | - Frederike Beyer
- Department of Neurology, University of Lübeck, Lübeck, Germany; Institute of Cognitive Neuroscience, University College London, London, UK
| | - Norbert Brüggemann
- Department of Neurology, University of Lübeck, Lübeck, Germany; Institute of Neurogenetics, University of Lübeck, Lübeck, Germany
| | - Assel Saryyeva
- Department of Neurosurgery, Medical School Hannover, Hannover, Germany
| | - Dirk Rasche
- Department of Neurosurgery, University of Lübeck, Lübeck, Germany
| | - Joachim K Krauss
- Department of Neurosurgery, Medical School Hannover, Hannover, Germany
| | | |
Collapse
|
9
|
Swanger SA, Vance KM, Pare JF, Sotty F, Fog K, Smith Y, Traynelis SF. NMDA Receptors Containing the GluN2D Subunit Control Neuronal Function in the Subthalamic Nucleus. J Neurosci 2015; 35:15971-83. [PMID: 26631477 PMCID: PMC4666920 DOI: 10.1523/jneurosci.1702-15.2015] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/20/2015] [Accepted: 10/29/2015] [Indexed: 01/25/2023] Open
Abstract
The GluN2D subunit of the NMDA receptor is prominently expressed in the basal ganglia and associated brainstem nuclei, including the subthalamic nucleus (STN), globus pallidus, striatum, and substantia nigra. However, little is known about how GluN2D-containing NMDA receptors contribute to synaptic activity in these regions. Using Western blotting of STN tissue punches, we demonstrated that GluN2D is expressed in the rat STN throughout development [age postnatal day 7 (P7)-P60] and in the adult (age P120). Immunoelectron microscopy of the adult rat brain showed that GluN2D is predominantly expressed in dendrites, unmyelinated axons, and axon terminals within the STN. Using subunit-selective allosteric modulators of NMDA receptors (TCN-201, ifenprodil, CIQ, and DQP-1105), we provide evidence that receptors containing the GluN2B and GluN2D subunits mediate responses to exogenously applied NMDA and glycine, as well as synaptic NMDA receptor activation in the STN of rat brain slices. EPSCs in the STN were mediated primarily by AMPA and NMDA receptors and GluN2D-containing NMDA receptors controlled the slow deactivation time course of EPSCs in the STN. In vivo recordings from the STN of anesthetized adult rats demonstrated that the spike firing rate was increased by the GluN2C/D potentiator CIQ and decreased by the GluN2C/D antagonist DQP-1105, suggesting that NMDA receptor activity can influence STN output. These data indicate that the GluN2B and GluN2D NMDA receptor subunits contribute to synaptic activity in the STN and may represent potential therapeutic targets for modulating subthalamic neuron activity in neurological disorders such as Parkinson's disease.
Collapse
Affiliation(s)
| | | | - Jean-François Pare
- Yerkes National Primate Research Center and Morris K. Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329, and
| | - Florence Sotty
- H. Lundbeck A/S, Division of Neurodegeneration and Biologics, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Karina Fog
- H. Lundbeck A/S, Division of Neurodegeneration and Biologics, Ottiliavej 9, DK-2500 Valby, Denmark
| | - Yoland Smith
- Department of Neurology, Emory University School of Medicine, Atlanta, Georgia 30322, Yerkes National Primate Research Center and Morris K. Udall Center of Excellence for Parkinson's Disease Research, Emory University, Atlanta, Georgia 30329, and
| | | |
Collapse
|
10
|
Kita T, Osten P, Kita H. Rat subthalamic nucleus and zona incerta share extensively overlapped representations of cortical functional territories. J Comp Neurol 2014; 522:4043-56. [PMID: 25048050 DOI: 10.1002/cne.23655] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 07/15/2014] [Accepted: 07/18/2014] [Indexed: 11/10/2022]
Abstract
The subthalamic nucleus (STN) and the zona incerta (ZI) are two major structures of the subthalamus. The STN has strong connections between the basal ganglia and related nuclei. The ZI has strong connections between brainstem reticular nuclei, sensory nuclei, and nonspecific thalamic nuclei. Both the STN and ZI receive heavy projections from a subgroup of layer V neurons in the cerebral cortex. The major goal of this study was to investigate the following two questions about the cortico-subthalamic projections using the lentivirus anterograde tracing method in the rat: 1) whether cortical projections to the STN and ZI have independent functional organizations or a global organization encompassing the entire subthalamus as a whole; and 2) how the cortical functional zones are represented in the subthalamus. This study revealed that the subthalamus receives heavy projections from the motor and sensory cortices, that the cortico-subthalamic projections have a large-scale functional organization that encompasses both the STN and two subdivisions of the ZI, and that the group of cortical axons that originate from a particular area of the cortex sequentially innervate and form separate terminal fields in the STN and ZI. The terminal zones formed by different cortical functional areas have highly overlapped and fuzzy borders, as do the somatotopic representations of the sensorimotor cortex in the subthalamus. The present study suggests that the layer V neurons in the wide areas of the sensorimotor cortex simultaneously control STN and ZI neurons. Together with other known afferent and efferent connections, possible new functionality of the STN and ZI is discussed.
Collapse
Affiliation(s)
- Takako Kita
- Department of Anatomy and Neurobiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee, 38163
| | | | | |
Collapse
|
11
|
Schroll H, Hamker FH. Computational models of basal-ganglia pathway functions: focus on functional neuroanatomy. Front Syst Neurosci 2013; 7:122. [PMID: 24416002 PMCID: PMC3874581 DOI: 10.3389/fnsys.2013.00122] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 12/11/2013] [Indexed: 11/30/2022] Open
Abstract
Over the past 15 years, computational models have had a considerable impact on basal-ganglia research. Most of these models implement multiple distinct basal-ganglia pathways and assume them to fulfill different functions. As there is now a multitude of different models, it has become complex to keep track of their various, sometimes just marginally different assumptions on pathway functions. Moreover, it has become a challenge to oversee to what extent individual assumptions are corroborated or challenged by empirical data. Focusing on computational, but also considering non-computational models, we review influential concepts of pathway functions and show to what extent they are compatible with or contradict each other. Moreover, we outline how empirical evidence favors or challenges specific model assumptions and propose experiments that allow testing assumptions against each other.
Collapse
Affiliation(s)
- Henning Schroll
- Bernstein Center for Computational Neuroscience, Charitè - Universitätsmedizin Berlin Berlin, Germany ; Department of Psychology, Humboldt-Universität zu Berlin Berlin, Germany ; Department of Neurology, Charitè - Universitätsmedizin Berlin Berlin, Germany ; Department of Computer Science, Chemnitz University of Technology Chemnitz, Germany
| | - Fred H Hamker
- Bernstein Center for Computational Neuroscience, Charitè - Universitätsmedizin Berlin Berlin, Germany ; Department of Computer Science, Chemnitz University of Technology Chemnitz, Germany
| |
Collapse
|
12
|
LEE D, HENRIQUES DY, SNIDER J, SONG D, POIZNER H. Reaching to proprioceptively defined targets in Parkinson's disease: effects of deep brain stimulation therapy. Neuroscience 2013; 244:99-112. [PMID: 23590906 PMCID: PMC3780593 DOI: 10.1016/j.neuroscience.2013.04.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Revised: 04/04/2013] [Accepted: 04/05/2013] [Indexed: 11/26/2022]
Abstract
Deep brain stimulation of the subthalamic nucleus (STN DBS) provides a unique window into human brain function since it can reversibly alter the functioning of specific brain circuits. Basal ganglia-cortical circuits are thought to be excessively noisy in patients with Parkinson's disease (PD), based in part on the lack of specificity of proprioceptive signals in basal ganglia-thalamic-cortical circuits in monkey models of the disease. PD patients are known to have deficits in proprioception, but the effects are often subtle, with paradigms typically restricted to one or two joint movements in a plane. Moreover, the effects of STN DBS on proprioception are virtually unexplored. We tested the following hypotheses: first, that PD patients will show substantial deficits in unconstrained, multi-joint proprioception, and, second, that STN DBS will improve multi-joint proprioception. Twelve PD patients with bilaterally implanted electrodes in the subthalamic nucleus and 12 age-matched healthy subjects were asked to position the left hand at a location that was proprioceptively defined in 3D space with the right hand. In a second condition, subjects were provided visual feedback during the task so that they were not forced to rely on proprioception. Overall, with STN DBS switched off, PD patients showed significantly larger proprioceptive localization errors, and greater variability in endpoint localizations than the control subjects. Visual feedback partially normalized PD performance, and demonstrated that the errors in proprioceptive localization were not simply due to a difficulty in executing the movements or in remembering target locations. Switching STN DBS on significantly reduced localization errors from those of control subjects when patients moved without visual feedback relative to when they moved with visual feedback (when proprioception was not required). However, this reduction in localization errors without vision came at the cost of increased localization variability.
Collapse
Affiliation(s)
- D. LEE
- Institute for Neural Computation, University of California, San Diego, CA, United States
| | - D. Y. HENRIQUES
- School of Kinesiology & Health Science Centre for Vision Research, York University, Toronto, Canada
| | - J. SNIDER
- Institute for Neural Computation, University of California, San Diego, CA, United States
| | - D. SONG
- Department of Neurosciences, University of California, San Diego, CA, United States
| | - H. POIZNER
- Institute for Neural Computation, University of California, San Diego, CA, United States
- Graduate Program in Neurosciences, University of California, San Diego, CA, United States
| |
Collapse
|
13
|
Mathai A, Smith Y. The corticostriatal and corticosubthalamic pathways: two entries, one target. So what? Front Syst Neurosci 2011; 5:64. [PMID: 21866224 PMCID: PMC3149683 DOI: 10.3389/fnsys.2011.00064] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/21/2011] [Indexed: 11/13/2022] Open
Abstract
The basal ganglia receive cortical inputs through two main stations - the striatum and the subthalamic nucleus (STN). The information flowing along the corticostriatal system is transmitted to the basal ganglia circuitry via the "direct and indirect" striatofugal pathways, while information that flows through the STN is transmitted along the so-called "hyperdirect" pathway. The functional significance of this dual entry system is not clear. Although the corticostriatal system has been thoroughly characterized anatomically and electrophysiologically, such is not the case for the corticosubthalamic system. In order to provide further insights into the intricacy of this complex anatomical organization, this review examines and compares the anatomical and functional organization of the corticostriatal and corticosubthalamic systems, and highlights some key issues that must be addressed to better understand the mechanisms by which these two neural systems may interact to regulate basal ganglia functions and dysfunctions.
Collapse
Affiliation(s)
- Abraham Mathai
- Yerkes National Primate Research Center, Emory University Atlanta, GA, USA
| | | |
Collapse
|
14
|
Kamali Sarvestani I, Lindahl M, Hellgren-Kotaleski J, Ekeberg O. The arbitration-extension hypothesis: a hierarchical interpretation of the functional organization of the Basal Ganglia. Front Syst Neurosci 2011; 5:13. [PMID: 21441994 PMCID: PMC3061412 DOI: 10.3389/fnsys.2011.00013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Accepted: 02/24/2011] [Indexed: 11/30/2022] Open
Abstract
Based on known anatomy and physiology, we present a hypothesis where the basal ganglia motor loop is hierarchically organized in two main subsystems: the arbitration system and the extension system. The arbitration system, comprised of the subthalamic nucleus, globus pallidus, and pedunculopontine nucleus, serves the role of selecting one out of several candidate actions as they are ascending from various brain stem motor regions and aggregated in the centromedian thalamus or descending from the extension system or from the cerebral cortex. This system is an action-input/action-output system whose winner-take-all mechanism finds the strongest response among several candidates to execute. This decision is communicated back to the brain stem by facilitating the desired action via cholinergic/glutamatergic projections and suppressing conflicting alternatives via GABAergic connections. The extension system, comprised of the striatum and, again, globus pallidus, can extend the repertoire of responses by learning to associate novel complex states to certain actions. This system is a state-input/action-output system, whose organization enables it to encode arbitrarily complex Boolean logic rules using striatal neurons that only fire given specific constellations of inputs (Boolean AND) and pallidal neurons that are silenced by any striatal input (Boolean OR). We demonstrate the capabilities of this hierarchical system by a computational model where a simulated generic “animal” interacts with an environment by selecting direction of movement based on combinations of sensory stimuli, some being appetitive, others aversive or neutral. While the arbitration system can autonomously handle conflicting actions proposed by brain stem motor nuclei, the extension system is required to execute learned actions not suggested by external motor centers. Being precise in the functional role of each component of the system, this hypothesis generates several readily testable predictions.
Collapse
Affiliation(s)
- Iman Kamali Sarvestani
- Department of Computational Biology, School of Computer Science and Communication, Royal Institute of Technology Stockholm, Sweden
| | | | | | | |
Collapse
|
15
|
Obeso JA, Rodríguez-Oroz MC, Benitez-Temino B, Blesa FJ, Guridi J, Marin C, Rodriguez M. Functional organization of the basal ganglia: therapeutic implications for Parkinson's disease. Mov Disord 2009; 23 Suppl 3:S548-59. [PMID: 18781672 DOI: 10.1002/mds.22062] [Citation(s) in RCA: 375] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The basal ganglia (BG) are a highly organized network, where different parts are activated for specific functions and circumstances. The BG are involved in movement control, as well as associative learning, planning, working memory, and emotion. We concentrate on the "motor circuit" because it is the best understood anatomically and physiologically, and because Parkinson's disease is mainly thought to be a movement disorder. Normal function of the BG requires fine tuning of neuronal excitability within each nucleus to determine the exact degree of movement facilitation or inhibition at any given moment. This is mediated by the complex organization of the striatum, where the excitability of medium spiny neurons is controlled by several pre- and postsynaptic mechanisms as well as interneuron activity, and secured by several recurrent or internal BG circuits. The motor circuit of the BG has two entry points, the striatum and the subthalamic nucleus (STN), and an output, the globus pallidus pars interna (GPi), which connects to the cortex via the motor thalamus. Neuronal afferents coding for a given movement or task project to the BG by two different systems: (1) Direct disynaptic projections to the GPi via the striatum and STN. (2) Indirect trisynaptic projections to the GPi via the globus pallidus pars externa (GPe). Corticostriatal afferents primarily act to inhibit medium spiny neurons in the "indirect circuit" and facilitate neurons in the "direct circuit." The GPe is in a pivotal position to regulate the motor output of the BG. Dopamine finely tunes striatal input as well as neuronal striatal activity, and modulates GPe, GPi, and STN activity. Dopaminergic depletion in Parkinson's disease disrupts the corticostriatal balance leading to increased activity the indirect circuit and reduced activity in the direct circuit. The precise chain of events leading to increased STN activity is not completely understood, but impaired dopaminergic regulation of the GPe, GPi, and STN may be involved. The parkinsonian state is characterized by disruption of the internal balance of the BG leading to hyperactivity in the two main entry points of the network (striatum and STN) and excessive inhibitory output from the GPi. Replacement therapy with standard levodopa creates a further imbalance, producing an abnormal pattern of neuronal discharge and synchronization of neuronal firing that sustain the "off" and "on with dyskinesia" states. The effect of levodopa is robust but short-lasting and converts the parkinsonian BG into a highly unstable system, where pharmacological and compensatory effects act in opposing directions. This creates a scenario that substantially departs from the normal physiological state of the BG.
Collapse
Affiliation(s)
- Jose A Obeso
- Department of Neurology and Neurosurgery, Clinica Universitaria and Medical School and Neuroscience Centre, CIMA, University of Navarra, Pamplona, Spain.
| | | | | | | | | | | | | |
Collapse
|
16
|
|
17
|
Klostermann F, Nikulin VV, Kühn AA, Marzinzik F, Wahl M, Pogosyan A, Kupsch A, Schneider GH, Brown P, Curio G. Task-related differential dynamics of EEG alpha- and beta-band synchronization in cortico-basal motor structures. Eur J Neurosci 2007; 25:1604-15. [PMID: 17425586 DOI: 10.1111/j.1460-9568.2007.05417.x] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Movement-related processing results in the modulation of neuronal synchronization over several electroencephalography (EEG) frequency ranges, including alpha- (8-12 Hz) and beta-band (14-30 Hz). Whether modulation patterns differ across sites within the motor system remains unclear, but could denote how information is conveyed across the cortico-basal network. We therefore compared the event-related synchronization/desynchronization (ERS/ERD) in recordings from the scalp, basal ganglia and thalamic structures during a motor task. Simultaneous depth and scalp EEG were recorded in 13 patients, undergoing deep brain stimulation of the thalamic ventral intermediate nucleus (VIM) or the subthalamic nucleus (STN). They performed a choice-reaction task with pre-cued Go-signals, instructive for either left- or right-sided button presses. In the beta-band, pre-cues and Go-signals were followed by ERD starting well before and peaking at task execution, uniformly in all cortical and subcortical recordings. In contrast, a comparable alpha-band ERD was only seen at the scalp, whereas mirror-like ERS were observed in the motor-inhibitory STN. In VIM, which receives strong somatosensory afferences, a major alpha-ERD upon the Go-signal did not start until the motor response. These dissociations of task-related Alpha- and Beta-band dynamics tag a functional diversity in cortico-basal networks, which are simultaneously active in motor processing. Whereas the uniform downregulation of Beta-activity points to an anti-kinetic operation mode throughout the motor system, site-dependent courses of Alpha-synchronization rather reflect the coordination of activity levels in functionally divergent motor structures during the preparation and execution of movements.
Collapse
Affiliation(s)
- Fabian Klostermann
- Department of Neurology, CBF/CVK, Charité-University Medicine Berlin, Berlin, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Blandini F, Levandis G, Bazzini E, Nappi G, Armentero MT. Time-course of nigrostriatal damage, basal ganglia metabolic changes and behavioural alterations following intrastriatal injection of 6-hydroxydopamine in the rat: new clues from an old model. Eur J Neurosci 2007; 25:397-405. [PMID: 17284180 DOI: 10.1111/j.1460-9568.2006.05285.x] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Despite the progressive development of innovative animal models for Parkinson's disease, the intracerebral infusion of neurotoxin 6-hydroxydopamine (6-OHDA) remains the most widely used means to induce an experimental lesion of the nigrostriatal pathway in the animal, due to its relatively low complexity and cost, coupled with the high reproducibility of the lesion obtained. To gain new information from such a classic model, we studied the time-course of the nigrostriatal damage, metabolic changes in the basal ganglia nuclei (cytochrome oxidase activity) and behavioural modifications (rotational response to apomorphine) following unilateral injection of 6-OHDA into the corpus striatum of rat, over a 4-week period. Striatal infusion of 6-OHDA caused early damage of dopaminergic terminals, followed by a slowly evolving loss of dopaminergic cell bodies in the substantia nigra pars compacta, which became apparent during the second week post-injection and peaked at the 28th day post-infusion; the rotational response to apomorphine was already present at the first time point considered (Day 1), and remained substantially stable throughout the 4-week period of observation. The evolution of the nigrostriatal lesion was accompanied by complex changes in the metabolic activity of the other basal ganglia nuclei investigated (substantia nigra pars reticulata, entopeduncular nucleus, globus pallidus and subthalamic nucleus), which led, ultimately, to a generalized, metabolic hyperactivity, ipsilaterally to the lesion. However, peculiar patterns of metabolic activation, or inhibition, characterized the post-lesional responses of each nucleus, in the early and intermediate phases, with peculiar response profiles that varied closely related to the functional position occupied within the basal ganglia circuitry.
Collapse
Affiliation(s)
- Fabio Blandini
- Laboratory of Functional Neurochemistry, IRCCS Neurological Institute C. Mondino, Pavia, Italy.
| | | | | | | | | |
Collapse
|
19
|
Philips ST, Albin RL, Martin DM. Genetics of subthalamic nucleus in development and disease. Exp Neurol 2005; 192:320-30. [PMID: 15755549 DOI: 10.1016/j.expneurol.2004.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2004] [Revised: 11/05/2004] [Accepted: 11/09/2004] [Indexed: 11/16/2022]
Abstract
The subthalamic nucleus (STN) is a crucial node in the basal ganglia. Clinical success in targeting the STN for deep brain stimulation in Parkinson's disease patients has prompted increased interest in understanding STN biology. In this report, we discuss recent evidence for transcription factor mediated regulation of STN development. We also review STN developmental neurobiology and known patterns of gene expression in the developing and mature STN.
Collapse
Affiliation(s)
- Steven T Philips
- Department of Pediatrics, The University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
20
|
Strafella AP, Vanderwerf Y, Sadikot AF. Transcranial magnetic stimulation of the human motor cortex influences the neuronal activity of subthalamic nucleus. Eur J Neurosci 2004; 20:2245-9. [PMID: 15450105 DOI: 10.1111/j.1460-9568.2004.03669.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The critical role of the subthalamic nucleus (STN) in the control of movement and parkinsonian symptoms is well established. Research in animals suggests that the cerebral cortex plays an important role in regulating the activity of the STN but this control is not known in humans. The most extensive cortical innervation of the STN originates from motor areas. Here, we used transcranial magnetic stimulation (TMS) during intraoperative single-unit recordings from STN, in six patients with Parkinson's disease (PD) undergoing implantation of deep brain stimulators, to determine whether TMS of the motor cortex (MC) modulates the activity of STN and to investigate in vivo the functional organization of the corticosubthalamic circuit in the human brain. Single-pulse TMS of the MC induced an excitation in 74.9% of neurons investigated. This activation was followed by a long-lasting inhibition of the STN neuronal activity that did not correlate with PD severity. Responsive neurons to TMS of the hand area of motor cortex were located mainly in the lateral and dorsal region of the subthalamus while unresponsive cells had a prevalently medial distribution. This is the first report of TMS-induced modulation of STN neuronal activity in humans. These findings open up new avenues for in vivo studies of corticosubthalamic interactions in human brain and PD.
Collapse
Affiliation(s)
- Antonio P Strafella
- Montreal Neurological Institute & Hospital, McGill University, 3801 University St, Montreal, Quebec H3A 2B4, Canada.
| | | | | |
Collapse
|
21
|
Zhu ZT, Munhall A, Shen KZ, Johnson SW. Calcium-dependent subthreshold oscillations determine bursting activity induced by N-methyl-D-aspartate in rat subthalamic neurons in vitro. Eur J Neurosci 2004; 19:1296-304. [PMID: 15016087 DOI: 10.1111/j.1460-9568.2004.03240.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
We used whole-cell patch recordings in current clamp to investigate the ionic dependence of burst firing induced by N-methyl-d-aspartate (NMDA) in neurons of the subthalamic nucleus (STN) in slices of rat brain. NMDA (20 microm) converted single-spike firing to burst firing in 87% of STN neurons tested. NMDA-induced bursting was blocked by AP5 (50 microm), and was not mimicked by the non-NMDA receptor agonist AMPA (0.6 microm). Tetrodotoxin (1 microm) converted bursts to oscillations of membrane potential, which were most robust when oscillations ranged between -50 and -70 mV. The NMDA bursts were blocked by an elevated extracellular concentration of Mg(2+), but superfusate containing no added Mg(2+) either reduced or increased burst firing, depending upon the amount of intracellular current injection. Block of K(+) conductances by apamin and tetraethylammonium prolonged burst duration, but iberiotoxin had no effect. NMDA-induced burst firing and membrane oscillations were completely blocked by superfusate containing no added Ca(2+), and they were significantly reduced when patch pipettes contained BAPTA. Selective antagonists for T-type (mibefradil, 10 microm), L-type (nifedipine, 3 microm), and N-type (omega-conotoxin GVIA, 1 micro m) Ca(2+) channels had no effect on NMDA burst firing. Superfusate containing a low concentration of Na(+) (20 mm) completely abolished NMDA-induced burst firing. Flufenamic acid (10 microm), which blocks current mediated by Ca(2+)-activated nonselective cation channels (I(CAN)), reversibly abolished NMDA-depended bursting. These results are consistent with the hypothesis that NMDA-induced burst firing in STN neurons requires activation of either an I(CAN) or a Na(+)-Ca(2+) exchanger.
Collapse
Affiliation(s)
- Zi-Tao Zhu
- Department of Neurology, Oregon Health & Science University, Portland, OR 97239, USA
| | | | | | | |
Collapse
|
22
|
Shen KZ, Johnson SW. Group II metabotropic glutamate receptor modulation of excitatory transmission in rat subthalamic nucleus. J Physiol 2003; 553:489-96. [PMID: 14500768 PMCID: PMC2343573 DOI: 10.1113/jphysiol.2003.052209] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Patch pipettes were used to record currents in whole-cell configuration to study the effects of group II metabotropic glutamate receptor (mGluR) stimulation on synaptic transmission in slices of rat subthalamic nucleus. Evoked glutamatergic excitatory postsynaptic currents (EPSCs) were reversibly reduced by the selective group II mGluR agonist (2'S,2'R,3'R)-2-(2',3'-dicarboxycyclopropyl)glycine (DCG IV) in a concentration-dependent manner, with an IC50 of 0.19 +/- 0.05 microM. DCG IV (1 microM) had no effect on inhibitory postsynaptic currents mediated by GABA. DCG IV-induced inhibition of EPSCs was reversed by the selective group II mGluR antagonist LY 341495 (100 nM) and mimicked by another selective group II agonist (2S,1'S,2'S)-2-(carboxycyclopropyl)glycine (L-CCG-I). Inhibition of EPSC amplitude by DCG IV and L-CCG-I was associated with an increase in the paired-pulse ratio of EPSCs. The protein kinase C (PKC) activator phorbol 12-myristate 13-acetate (2 microM) reduced the inhibitory effect of DCG IV on EPSCs. However, the response to DCG IV was not affected by the protein kinase A (PKA) activator forskolin (20 microM), by the adenylyl cyclase inhibitor MDL 12230A (20 microM), or by the phosphodiesterase inhibitor Ro 20-1724 (50 microM). DCG IV-induced inhibition of EPSCs was reduced by the non-selective protein kinase inhibitors H-7 (100 microM), H-8 (50 microM) and HA-1004 (100 microM). These results suggest that group II mGluR stimulation acts presynaptically to inhibit glutamate release by a PKC-dependent mechanism in the subthalamic nucleus.
Collapse
Affiliation(s)
- Ke-Zhong Shen
- Departments of Neurology, and Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
23
|
Consequences of dopaminergic denervation on the metabolic activity of the cortical neurons projecting to the subthalamic nucleus in the rat. J Neurosci 2002. [PMID: 12351752 DOI: 10.1523/jneurosci.22-19-08762.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Parkinsonian symptoms are currently thought to be related to hyperactivity of the subthalamic nucleus (STN). Because the STN is known to receive many inputs including glutamatergic cortical afferent fibers, we sought to determine whether the activity of this pathway is altered after dopaminergic denervation to estimate its contribution to the impairment of STN activity. A precise mapping of the origin of the corticosubthalamic projection was first performed using retrograde and anterograde tracing methods. Cortical neurons projecting to the STN were found to originate in layer V of the motor, anterior cingulate, and dorsal insular cortices, and the most anterior tip of the frontal lobe, leading to different functional corticosubthalamic inputs. The metabolic activity of the neurons projecting to the STN, first identified by retrograde tracing, was then evaluated by in situ hybridization of the first subunit of cytochrome oxidase (COI), a marker of metabolic activity, in unilateral 6-hydroxydopamine-lesioned rats. Measurements of COI mRNA expression showed a 38 and 41.5% decrease after dopaminergic denervation in the neurons projecting to the STN located in the motor and dorsal insular areas, respectively, whereas neuronal activity was mildly changed in neurons of the anterior cingulate cortex. The modified activity of STN neurons in parkinsonism may thus result in part from complex interactions between glutamatergic hyperactive fibers originating in the thalamus and the pedunculopontine nucleus and hypoactive fibers originating in the cerebral cortex.
Collapse
|
24
|
Bacci JJ, Kerkerian-Le Goff L, Salin P. Effects of intralaminar thalamic nuclei lesion on glutamic acid decarboxylase (GAD65 and GAD67) and cytochrome oxidase subunit I mRNA expression in the basal ganglia of the rat. Eur J Neurosci 2002; 15:1918-28. [PMID: 12099898 DOI: 10.1046/j.1460-9568.2002.02039.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This study investigated the influence of thalamic inputs on neuronal metabolic activity in the rat basal ganglia. By means of in situ hybridization histochemistry, we examined the consequences of ibotenate-induced unilateral lesion of intralaminar thalamic nuclei on mRNA expression of cytochrome oxidase subunit-I (CoI) in the striatum and the subthalamic nucleus (STN) and of the two isoforms of glutamate decarboxylase (GAD65 and GAD67) in the striatum, globus pallidus (GP), entopeduncular nucleus (EP) and substantia nigra pars reticulata (SNr). In the striatum, GAD67 mRNA expression decreased selectively in the rostral part of the structure at 5 and 12 days postlesion (approximately -30%), whereas, GAD65 mRNA levels was downregulated only in the caudal striatum at 12 days (-29%). In both the striatum and STN, CoI mRNA expression decreased ipsilaterally at 5 and bilaterally at 12 days. In GP, GAD67 and GAD65 mRNA expression decreased ipsilaterally at 5 (-20% and -26%) and 12 days (-23% and -36%). In EP, selective bilateral decreases in GAD67 mRNA expression were found at 5 and 12 days (-50% and -40%). Conversely, in SNr, only GAD65 mRNA expression was reduced bilaterally at both time points. These data show that the thalamus exerts a widespread excitatory influence on the basal ganglia network that cannot be accounted for solely by its known direct connections. Given the recent data showing that intralaminar thalamic nuclei are a major nondopaminergic site of neurodegeneration in Parkinson's disease, these results may have a critical bearing on understanding the cellular basis of basal ganglia dysfunction in parkinsonism.
Collapse
Affiliation(s)
- Jean-Jacques Bacci
- Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, UPR 9013, CNRS, 31 chemin Joseph Aiguier, 13 402 Marseille Cedex 20, France
| | | | | |
Collapse
|
25
|
Orieux G, Francois C, Féger J, Yelnik J, Vila M, Ruberg M, Agid Y, Hirsch EC. Metabolic activity of excitatory parafascicular and pedunculopontine inputs to the subthalamic nucleus in a rat model of Parkinson's disease. Neuroscience 2000; 97:79-88. [PMID: 10771341 DOI: 10.1016/s0306-4522(00)00011-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Using a combination of metabolic measurement and retrograde tracing, we show that the neurons in the pedunculopontine nucleus and parafascicular nucleus of the thalamus that project to the subthalamic nucleus are hyperactive after nigrostriatal dopaminergic denervation in rats. In Parkinson's disease, the loss of dopaminergic neurons induces a cascade of functional changes in the basal ganglia circuitry including a hyperactivity of the subthalamic nucleus. This hyperactivity is thought to be due to a diminution of the inhibitory pallidal influence. However, recent studies have suggested that other cerebral structures are involved in the subthalamic neuronal hyperactivity. This study was undertaken to identify these cerebral structures. Neurons projecting to the subthalamic nucleus were identified by retrograde transport of wheat germ agglutinin conjugated to horseradish peroxidase, injected into the subthalamic nucleus of rats with 6-hydroxydopamine unilateral lesion of the substantia nigra pars compacta and sham-lesioned animals. Metabolic activity was determined in the same neurons using in situ hybridization for the first subunit of cytochrome oxidase messenger RNA, a metabolic marker, and image analysis. Horseradish peroxidase-labeled neurons were found in the globus pallidus, parafascicular and pedunculopontine nucleus and sometimes in raphe nuclei and the substantia nigra pars compacta. Measurement of metabolic activity was performed for the globus pallidus, the pedunculopontine and parafascicular nuclei. The expression level of the first subunit of cytochrome oxidase messenger RNA in neurons projecting to the subthalamic nucleus was 62% higher in parafascicular neurons and 123% higher in pedunculopontine neurons in 6-hydroxydopamine-lesioned rats, compared to sham-lesioned animals. An increase was also observed in the globus pallidus, but did not reach significance. Our results suggest that hyperactivity of subthalamic neurons could be due, at least in part, to an increase of excitatory input arising from the pedunculopontine and parafascicular nuclei. These data also suggest that the latter structures may play an important role in the physiopathology of Parkinson's disease.
Collapse
Affiliation(s)
- G Orieux
- INSERM U289, Mécanismes et conséquences de la mort neuronale, Hôpital de la Salpêtrière, 47 bd de l'Hôpital, 75651, Paris, France
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Nambu A, Tokuno H, Hamada I, Kita H, Imanishi M, Akazawa T, Ikeuchi Y, Hasegawa N. Excitatory cortical inputs to pallidal neurons via the subthalamic nucleus in the monkey. J Neurophysiol 2000; 84:289-300. [PMID: 10899204 DOI: 10.1152/jn.2000.84.1.289] [Citation(s) in RCA: 379] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
How the motor-related cortical areas modulate the activity of the output nuclei of the basal ganglia is an important issue for understanding the mechanisms of motor control by the basal ganglia. In the present study, by using awake monkeys, the polysynaptic effects of electrical stimulation in the forelimb regions of the primary motor and primary somatosensory cortices on the activity of globus pallidus (GP) neurons, especially mediated by the subthalamic nucleus (STN), have been characterized. Cortical stimulation induced an early, short-latency excitation followed by an inhibition and a late excitation in neurons of both the external and internal segments of the GP. It also induced an early, short-latency excitation followed by a late excitation and an inhibition in STN neurons. The early excitation in STN neurons preceded that in GP neurons. Blockade of STN neuronal activity by muscimol (GABA(A) receptor agonist) injection resulted in abolishment of both the early and late excitations evoked in GP neurons by cortical stimulation. At the same time, the spontaneous discharge rate of GP neurons decreased, pauses between the groups of spikes of GP neurons became prominent, and the firing pattern became regular. Injection of (+/-)-3-(2-carboxypiperazin-4-yl)-propyl-1-phosphonic acid (CPP) [N-methyl-D-aspartate (NMDA) receptor antagonist], but not 1,2,3, 4-tetrahydro-6-nitro-2,3-dioxo-benzo[f]quinoxaline-7-sulfonamide disodium [NBQX (non-NMDA receptor antagonist)], into the STN attenuated the early and late excitations in GP neurons, suggesting that cortico-subthalamic transmission is mediated mainly by NMDA receptors. Interference with the pallido-subthalamic transmission by bicuculline (GABA(A) receptor antagonist) injection into the STN made the inhibition distinct without affecting the early excitation. The present results indicate that the cortico-subthalamo-pallidal pathway conveys powerful excitatory effects from the motor-related cortical areas to the GP with shorter conduction time than the effects conveyed through the striatum.
Collapse
Affiliation(s)
- A Nambu
- Department of Neurobiology, Tokyo Metropolitan Institute for Neuroscience, Tokyo Metropolitan Organization for Medical Research, Fuchu, Tokyo 183-8526, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Vila M, Périer C, Féger J, Yelnik J, Faucheux B, Ruberg M, Raisman-Vozari R, Agid Y, Hirsch EC. Evolution of changes in neuronal activity in the subthalamic nucleus of rats with unilateral lesion of the substantia nigra assessed by metabolic and electrophysiological measurements. Eur J Neurosci 2000; 12:337-44. [PMID: 10651888 DOI: 10.1046/j.1460-9568.2000.00901.x] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Cellular expression of cytochrome oxidase subunit I (COI) mRNA has recently been used as a metabolic marker for neuronal activity to study the functional changes in the subthalamic nucleus (STN) in parkinsonism. The previous experimental studies have been performed when the pathological state was stabilized at a maximal level. In order to determine the evolution of changes in neuronal activity in the STN after nigrostriatal denervation, we analysed by in situ hybridization the cellular expression of COI mRNA in the subthalamic neurons at different times, from 6 h to 14 days, after unilateral intranigral microinjection of 6-hydroxydopamine (6-OHDA) in rats. In parallel, the time-dependent changes of the unit neuronal activity of subthalamic neurons have been recorded. Levels of COI mRNA increased by 41% in subthalamic neurons from 24 h after 6-OHDA intoxication, to 14 days (+26%). Similarly, electrical activity started to increase slightly 24 h after lesion (+20%) and remained significantly higher at 14 days after the lesion (+189%). Changes in neuronal mean discharge rate were associated with changes in the pattern of spiking activity, from a regular firing pattern to an irregular one with a high bursting activity. These results show that: (i) the hyperactivity of the STN represents a very early phenomenon in the physiopathology of parkinsonian syndromes; and (ii) that changes in COI mRNA expression slightly precede changes in electrical neuronal activity.
Collapse
Affiliation(s)
- M Vila
- Institut National de la Santé et de la Recherche Médicale U289, Hôpital de la Salpêtrière, 75013 Paris, France
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Broman J, Hassel B, Rinvik E, Ottersen O. Chapter 1 Biochemistry and anatomy of transmitter glutamate. ACTA ACUST UNITED AC 2000. [DOI: 10.1016/s0924-8196(00)80042-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
|
29
|
Hassani OK, Féger J. Effects of intrasubthalamic injection of dopamine receptor agonists on subthalamic neurons in normal and 6-hydroxydopamine-lesioned rats: an electrophysiological and c-Fos study. Neuroscience 1999; 92:533-43. [PMID: 10408602 DOI: 10.1016/s0306-4522(98)00765-9] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Subthalamic neuronal activity is controlled by a dopaminergic innervation, which may act via D1 and D2 dopamine receptors. This study investigates the effect of apomorphine and the selective D1 and D2 agonists, SKF 82958 and quinpirole respectively, in normal and 6-hydroxydopamine-lesioned rats. The effect of microinjection of these drugs into the subthalamic nucleus was assessed by recording unit activity and the expression of the c-Fos-immunoreactive protein in the subthalamic nucleus. Dopaminergic agonists reduced the discharge rate and did not induce c-Fos expression in the normal rat. Apomorphine and quinpirole increased the discharge rate and induced a strong expression of c-Fos-like immunoreactive proteins, whereas SKF 82958 induced a decrease of the discharge rate and a slight expression of c-Fos in 6-hydroxydopamine-lesioned rats. The striking contrast in the changes obtained with apomorphine and quinpirole in normal and 6-hydroxydopamine-lesioned rats is discussed in relation to a hyperexpression of D2 dopaminergic receptors on the GABAergic terminals into the subthalamic nucleus. These results show that, in normal rats, dopamine agonists exert an inhibitory control on subthalamic neurons via D1 and D2 receptors. However, in 6-hydroxydopamine-lesioned rats, the hyperactivity of subthalamic neurons is also reduced by D1 receptor agonist but not by D2 dopamine agonists. This last result points out one aspect of the complex mechanisms underlying the physiopathology of Parkinson's disease.
Collapse
Affiliation(s)
- O K Hassani
- Laboratoire de Pharmacologie, Faculté de Pharmacie, Université R. Descartes, Paris, France
| | | |
Collapse
|
30
|
Intrastriatal mesencephalic grafts affect neuronal activity in basal ganglia nuclei and their target structures in a rat model of Parkinson's disease. J Neurosci 1998. [PMID: 9465005 DOI: 10.1523/jneurosci.18-05-01806.1998] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Nigrostriatal dopamine (DA) lesions lead to changes of neuronal activity in basal ganglia nuclei such as the globus pallidus (GP, the rodent homolog of lateral globus pallidus), entopeduncular nucleus (EP, the rodent homolog of medial globus pallidus), substantia nigra pars reticulata (SNR), and subthalamic nucleus (STN). We investigated in rats whether embryonic mesencephalic DA neurons grafted in the striatum may affect the lesion-induced alterations of neuronal activity in these structures. Regional neuronal activity was determined by use of quantitative cytochrome oxidase histochemistry. It was also examined in lesioned rats whether the grafts may regulate the expression of c-Fos after systemic administration of apomorphine in the basal ganglia nuclei as well as their target structures, including the ventromedial thalamic nucleus (VM), superior colliculus (SC), and pedunculopontine nucleus (PPN). Lesioned rats exhibited an increased activity of CO in the GP, EP, SNR, and STN ipsilateral to the lesion. Intrastriatal nigral grafts reversed the increases in the CO activity in the EP and SNR, whereas the grafts failed to affect the enzyme activity in the GP or STN. Apomorphine induced an increased expression of c-Fos in the GP, STN, VM, SC, and PPN on the lesioned side. The enhanced expression of this protein in all the structures except for the STN was attenuated by nigral grafts. The present results indicate that intrastriatal DA neuron grafts can normalize the lesion-induced changes of neuronal activity in the output nuclei of the basal ganglia as well as their target structures.
Collapse
|
31
|
Murer MG, Riquelme LA, Tseng KY, Pazo JH. Substantia nigra pars reticulata single unit activity in normal and 60HDA-lesioned rats: effects of intrastriatal apomorphine and subthalamic lesions. Synapse 1997; 27:278-93. [PMID: 9372551 DOI: 10.1002/(sici)1098-2396(199712)27:4<278::aid-syn2>3.0.co;2-9] [Citation(s) in RCA: 107] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The spontaneous activity and the response to intrastriatal application of apomorphine of substantia nigra pars reticulata (SNpr) single units was studied in four experimental groups of rats: (1) normal rats; (2) subthalamic nucleus (STN) lesioned rats; (3) rats bearing a 6-hydroxydopamine (60HDA) lesion; and (4) 60HDA-lesioned animals with an additional STN lesion. Thirty-eight percent of units from 60HDA-lesioned rats showed a bursting pattern of spontaneous activity, which was never found in normal rats. STN lesions had no effect on the spontaneous activity of SNpr units from normal rats, but reduced the percentage of burst units in 60HDA-lesioned animals. Intrastriatal apomorphine produced responses in 62% of SNpr units from normal rats and 85% of units from 60HDA-lesioned animals (P < 0.05). In addition, the modifications in the firing rate and in the coefficient of variation of the interspike intervals induced by intrastriatal apomorphine were significantly greater for the units isolated from 60HDA-lesioned rats. In particular, it was noted that all the burst units responded to apomorphine, showing the highest changes in firing rate and coefficient of variation. However, intrastriatal apomorphine did not always turn the activity of burst units into a more physiological pattern. STN lesions reduced the percentage of units responding to intrastriatal apomorphine in normal rats. In 60HDA-lesioned rats, STN lesions reduced the number of responsive units, and their change in mean firing rate and coefficient of variation. Our results show that the STN participates in the genesis of the bursting pattern of activity of SNpr units in 60HDA-lesioned rats, and that STN lesions can partially revert the abnormal spontaneous and apomorphine-induced responses of SNpr units in these animals.
Collapse
Affiliation(s)
- M G Murer
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires, Argentina
| | | | | | | |
Collapse
|
32
|
Sgambato V, Abo V, Rogard M, Besson MJ, Deniau JM. Effect of electrical stimulation of the cerebral cortex on the expression of the Fos protein in the basal ganglia. Neuroscience 1997; 81:93-112. [PMID: 9300404 DOI: 10.1016/s0306-4522(97)00179-6] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The protein Fos is a transcription factor which is quickly induced in response to a variety of extracellular signals. Since this protein is expressed in a variety of neuronal systems in response to activation of synaptic afferents, it has been suggested that it might contribute to activity-dependent plasticity in neural networks. The present study investigated the effect of cortical electrical stimulation on the expression of Fos in the basal ganglia in the rat, a group of structures that participate in sensorimotor learning. Results show that the repetitive application of electrical shocks in restricted areas of the cerebral cortex induces an expression of Fos mostly confined to the striatum and the subthalamic nucleus. The induction which can be elicited from different cortical areas (sensorimotor, auditory and limbic areas) does not require particular temporal patterns of stimulation but rather depends on the total number of shocks delivered during a given period of time. Moreover, it appears to be rather independent of the number of spikes discharged by the activated cells. In the striatum, the distribution of immunoreactive neurons is precisely delineated and conforms to the known topographical organization of stimulated corticostriatal projections. As demonstrated using a variety of double labelling techniques (combination of the immunocytochemical detection of Fos with the autoradiography of mu opioid receptors, calbindin immunocytochemistry, in situ hybridization of preproenkephalin and preprotachykinin A messenger RNAs), striatal neurons which express Fos are mostly localized in the matrix compartment and concern equally enkephaline and substance P containing efferent neurons. In the subthalamic nucleus, Fos expression evoked by cortical stimulation is also confined to discrete regions of the nucleus, the localizations corresponding to the primary projection site of the stimulated cortical cells. These results indicate that in addition to its phasic synaptic influence on the basal ganglia, the cerebral cortex could exert a long-term effect on the functional state of this system via a genomic control. Since the basal ganglia are involved in sensorimotor learning and motor habit formation, it is tempting to speculate that the activity-dependent Fos induction at corticostriatal and subthalamic synapses may contribute to consolidate the functionality of the neuronal networks activated during the completion of given motor tasks.
Collapse
Affiliation(s)
- V Sgambato
- Université Pierre et Marie Curie, Department de Neurochimie-Anatomie, U.R.A. 1488, Paris, France
| | | | | | | | | |
Collapse
|
33
|
Gold SJ, Ambros-Ingerson J, Horowitz JR, Lynch G, Gall CM. Stoichiometries of AMPA receptor subunit mRNAs in rat brain fall into discrete categories. J Comp Neurol 1997; 385:491-502. [PMID: 9302102 DOI: 10.1002/(sici)1096-9861(19970908)385:4<491::aid-cne1>3.0.co;2-z] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In situ hybridization was used to estimate the relative concentrations of mRNAs encoding different subunits (GluR1-4) of alpha-amino 3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA)-type glutamate receptors in rat brain and to test the hypothesis that within-region expression profiles reflect a limited number of recurring patterns. Fractional subunit mRNA concentrations were calculated for 33 brain regions, and cluster analysis methods were applied to test for statistically meaningful groupings in the data. Four relatively homogeneous classes were identified and designated as AMPA receptor (AR) categories, numbered according to dominant subunit mRNAs. The AR-1 class (47% GluR1 mRNA) was expressed by structures near the mesodiencephalic border, including basal ganglia-related areas. The AR-2 class (57% GluR2 mRNA) was expressed in cortex and tectum. The AR-1,2 class (31% GluR1, 45% GluR2) was found in the largest number of regions, including such dissimilar cell fields as hippocampus and substantia nigra pars compacta. The AR-2,3 grouping (33% GluR2, 31% GluR3) was associated with the sensory relay and reticular thalamic nuclei. It is suggested that AR-1,2 and AR-2, the most closely related categories in clustering space, are largely telencephalic receptors with the former predominant in the subcortex and the latter in the cortex. The AR-2,3 class is associated with ascending sensory stations, whereas AR-1 appears to include several smaller categories expressed by specialized systems. If the balance of subunit mRNAs is reflected at the protein level, then the present data suggest that forebrain AMPA-type glutamate receptors can be classified into a limited number of recurring types.
Collapse
Affiliation(s)
- S J Gold
- Department of Psychobiology, University of California, Irvine 92697, USA
| | | | | | | | | |
Collapse
|
34
|
Hontanilla B, Parent A, Giménez-Amaya JM. Parvalbumin and calbindin D-28k in the entopeduncular nucleus, subthalamic nucleus, and substantia nigra of the rat as revealed by double-immunohistochemical methods. Synapse 1997; 25:359-67. [PMID: 9097395 DOI: 10.1002/(sici)1098-2396(199704)25:4<359::aid-syn7>3.0.co;2-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cellular localization of calbindin D-28k (CB) and parvalbumin (PV) was analyzed by means of double-immunohistochemical techniques applied to single sections in the entopeduncular nucleus (EP), the subthalamic nucleus (STh), and the substantia nigra (SN) of the rat. In EP, PV-positive cells abounded centrally, where CB immunostaining was minimal. The medial and ventral sectors of EP were markedly enriched with CB neuropil but devoid of PV-positive cells. CB-positive neurons abounded particularly in the rostral pole of EP. In STh, PV-positive neurons and neuropil were concentrated in the lateral two thirds of this nucleus. Only a few PV-positive cells were detected in sectors of STh devoid of PV-positive neuropil. The STh was completely devoid of CB immunostaining. In the rostral two thirds of SN, PV-positive neurons were largely confined to the lateral half of the pars reticulata (SNR), and occurred more ventrally and medially in the caudal third. Intense CB-immunoreactive neuropil was found in medial and dorsal parts of rostral SNR, and CB-positive cells were observed in the SN pars compacta and the ventral tegmental area. PV and CB cells were also observed in the pars lateralis of SN. The markedly heterogeneous pattern of distribution of PV and CB in EP, STh, and SN suggests that these two calcium-binding proteins may label distinct functional domains in each of these three components of the rat basal ganglia.
Collapse
Affiliation(s)
- B Hontanilla
- Departamento de Morfología, Facultad de Medicina, Universidad Autónoma de Madrid, Spain
| | | | | |
Collapse
|
35
|
Brown LL, Hand PJ, Divac I. Representation of a single vibrissa in the rat neostriatum: peaks of energy metabolism reveal a distributed functional module. Neuroscience 1996; 75:717-28. [PMID: 8951868 DOI: 10.1016/0306-4522(96)00310-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In unanaesthetized rats, mechanical stimulation of a single vibrissa increased glucose utilization in one cortical column of the somatosensory area and in several spots in the dorsolateral neostriatum, predominantly on the side contralateral to the stimulation. Two or three peaks of glucose utilization unique to the stimulated animals were seen in cross sections throughout a 1.8 mm anteroposterior extent in the dorsolateral striatum. These observations suggest that one cortical column is functionally related to several neostriatal regions. The distributed modularity may be an important characteristic of the basal ganglia system.
Collapse
Affiliation(s)
- L L Brown
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | | | |
Collapse
|
36
|
Hassani OK, Mouroux M, Féger J. Increased subthalamic neuronal activity after nigral dopaminergic lesion independent of disinhibition via the globus pallidus. Neuroscience 1996; 72:105-15. [PMID: 8730710 DOI: 10.1016/0306-4522(95)00535-8] [Citation(s) in RCA: 294] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Electrophysiological records of unit activity were used to compare the effects of excitotoxic pallidal lesions and 6-hydroxydopamine-induced damage to the midbrain dopaminergic neurons on the discharge rates and patterns of the subthalamic neurons. Removal of the pallidal input induced a slight, but statistically significant, increase (19.5%) in the discharge rate and no change in the firing pattern when compared to control animals. The rats with a dopaminergic lesion showed greater increase (105.7%) while the firing pattern activity of the subthalamic neurons became more irregular, with burst. These results indicate that the increased activity of the subthalamic neurons following a midbrain dopaminergic lesion cannot be due solely to inhibition-disinhibition involving the striato-pallido-subthalamic pathway and induced by the striatal dopaminergic depletion.
Collapse
Affiliation(s)
- O K Hassani
- Laboratoire de Pharmacologie, Faculté des Sciences Pharmaceutiques et Biologiques, Université R. Descartes, Paris, France
| | | | | |
Collapse
|
37
|
Brown LL, Sharp FR. Metabolic mapping of rat striatum: somatotopic organization of sensorimotor activity. Brain Res 1995; 686:207-22. [PMID: 7583286 DOI: 10.1016/0006-8993(95)00457-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Diseases that affect the striatum produce movement disorders, for which rats have been a useful model. To determine the organization of functional, neural activity in the rat striatum related to motor activity, we used electrical stimulation of the motor cortex and [14C]deoxyglucose autoradiography. The stimulation produced movements of each of three body regions. Both the motor and somatosensory cortex were activated. Image analysis was used to objectively localize peak activation and to provide a map for further stereotaxic and localization studies. In the anterior striatum, in the dorsolateral sector, regions of peak activation were well separated for each body region: the hindlimb peak activation was dorsomedial, the forelimb ventrolateral and vibrissae medial. Also, the activation fields were larger in anterior than in posterior striatum. Furthermore, activation ipsilateral to movement was present and the peak localization was offset from peaks contralateral to movement. In addition, there were activation regions in lateral striatum where body region representations may overlap. This is the first demonstration of a global striatal somatotopy that separates the limbs and vibrissae in rats. The functional average revealed by the deoxyglucose autoradiography showed a predominant isotropic or rod-like representation of sensorimotor activity for the limbs in striatum during movement and confirms aspects of the anatomy known for the corticostriate system in primates: metabolism was 'patchy,' and extended throughout long anteroposterior domains in striatum. These extensive and patchy arrangements suggest integrative, combinational and/or associative networks.
Collapse
Affiliation(s)
- L L Brown
- Albert Einstein College of Medicine, Department of Neurology, Bronx, NY 10461, USA
| | | |
Collapse
|
38
|
Mouroux M, Hassani OK, Féger J. Electrophysiological study of the excitatory parafascicular projection to the subthalamic nucleus and evidence for ipsi- and contralateral controls. Neuroscience 1995; 67:399-407. [PMID: 7675175 DOI: 10.1016/0306-4522(95)00032-e] [Citation(s) in RCA: 75] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The activity of subthalamic neurons was recorded extracellularly in anaesthetized rats after stimulation, inhibition or lesioning of the parafascicular nucleus. Electrical stimulation of the parafascicular nucleus evoked a complex response with two excitatory phases. The first response was correlated with a monosynaptically-driven excitation via a parafascicular input to the subthalamic nucleus. Since the second phase was observed even when the early excitation was not recorded and was eliminated by lesion of the globus pallidus, we suggest that it is not generated by a mechanism intrinsic to the subthalamic nucleus and is due to a disinhibitory effect originating from the globus pallidus. Microinjection of carbachol into the parafascicular nucleus enhanced by 119% the discharge rate of the neurons in the ipsilateral subthalamic nucleus and that of muscimol decreased the discharge rate by 91%. Opposite changes, a decrease of the discharge rate of 49% after microinjection of carbachol and an increase of 47% after muscimol, occurred in the contralateral subthalamic nucleus. In contrast to the above results, the unilateral excitotoxic lesion of the parafascicular nucleus, performed one week before recording, decreased the discharge rate by 69% of the ipsilateral subthalamic nucleus neurons and by 34% that of the contralateral neurons. We suggest that the parafascicular input to the subthalamic nucleus is an excitatory pathway which can tonically drive the neuronal activity in this structure. The opposite changes recorded in the ipsi- and contralateral subthalamic nucleus during unilateral microinjection of excitatory or inhibitory drugs in the parafascicular nucleus emphasize the importance of this thalamic structure in the bilateral regulation of basal ganglia activity via the subthalamic nucleus.
Collapse
Affiliation(s)
- M Mouroux
- Laboratoire de Pharmacologie, Faculté des Sciences Pharmaceutiques et Biologiques, Université R. Descartes, Paris, France
| | | | | |
Collapse
|
39
|
Féger J, Bevan M, Crossman AR. The projections from the parafascicular thalamic nucleus to the subthalamic nucleus and the striatum arise from separate neuronal populations: a comparison with the corticostriatal and corticosubthalamic efferents in a retrograde fluorescent double-labelling study. Neuroscience 1994; 60:125-32. [PMID: 8052406 DOI: 10.1016/0306-4522(94)90208-9] [Citation(s) in RCA: 120] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The parafascicular thalamic nucleus projects to the subthalamic nucleus and the striatum. Double-retrograde fluorescent tracing was used to determine whether these projections arise from the same neurons via axon collaterals. True Blue was injected into the subthalamic nucleus and Nuclear Yellow was injected into the striatum of each rat and the parafascicular thalamic nucleus was examined under the fluorescence light-microscope. Individual parafascicular neurons were not double-labelled with the tracers. The True Blue- and Nuclear Yellow-labelled neurons wee located in different parts of the parafascicular nucleus ipsilateral to the injections. In the rostral part of the parafascicular nucleus, True Blue-labelled neurons were located ventral to the fasciculus retroflexus, and in the caudal part of the nucleus. True Blue-labelled neurons were located close to the medial and lateral borders of fasciculus retroflexus. Nuclear Yellow-labelled neurons were found mainly to encircle the fasciculus retroflexus in the rostral part of the parafascicular nucleus and in the dorsolateral sector of the caudal part of the parafascicular nucleus. Double-labelled neurons were, however, found in the cortex. The proportion of neurons projecting to both the subthalamic nucleus and the striatum accounted for 38% of the total number of cortiscosubthalamic neurons in the prefrontal cortex, 15.5% in the cingulate cortex and 9% in the sensorimotor cortex. The present finding of an individualization between the parafascicular efferents to the subthalamic nucleus and the striatum emphasize the importance of this projection and provides further evidence of the associative functions attributable to the subthalamic nucleus.
Collapse
Affiliation(s)
- J Féger
- Laboratoire de Pharmacologie, Faculté des Sciences Pharmaceutiques et Biologiques, Université R. Descartes, Paris, France
| | | | | |
Collapse
|
40
|
|
41
|
Tzagournissakis M, Dermon CR, Savaki HE. Functional metabolic mapping of the rat brain during unilateral electrical stimulation of the subthalamic nucleus. J Cereb Blood Flow Metab 1994; 14:132-44. [PMID: 8263049 DOI: 10.1038/jcbfm.1994.18] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The alterations in local metabolic activity of several anatomically distinct brain areas were investigated by means of the quantitative autoradiographic 2-deoxy-D-[1-14C]glucose method in awake rats during unilateral electrical stimulation of the subthalamic nucleus (STH). Unilateral electrical stimulation of the STH induced local metabolic activation (by 70% as compared with the control group), as well as distal metabolic activations in the substantia nigra reticulata (by 34%), globus pallidus (by 19%), entopeduncular nucleus (by 18%), deep layers of the superior colliculi (by 15%), and parafascicular thalamic nucleus (by 18%), ipsilaterally to the stimulated side. The ventrolateral motor thalamic nucleus as well as the limbic components, posterior cingulate cortex, and anteroventral thalamic nucleus displayed bilateral metabolic activations (by 20-28%). These results indicate that, in addition to its known ipsilateral motor connections, each STH is functionally related to the limbic system bilaterally. It is suggested that the STH is a site where the central motor information is accessible to the limbic system. Quantitative image analysis of individual serial sections in the STH, substantia nigra, and globus pallidus revealed a consistent dorsoventral pattern of topographic interrelations. Stimulation of either the dorsal or the ventral subdivision of the STH induced always stronger activation in the dorsal compartment of the substantia nigra and in the ventral compartment of the globus pallidus. These results suggest that the earlier-described inversion of the dorsoventral functional correspondence between the substantia nigra and globus pallidus may be partly mediated via the subthalamic nerve cells projecting collateral axons to both these areas.
Collapse
Affiliation(s)
- M Tzagournissakis
- Department of Basic Sciences, School of Health Sciences, University of Crete, Greece
| | | | | |
Collapse
|
42
|
Hiller JM, Fan LQ, Simon EJ. Alterations in delta opioid receptor levels in discrete areas of the neocortex and in the globus pallidus of the aging guinea pig: a quantitative autoradiographic study. Brain Res 1993; 614:86-98. [PMID: 8394190 DOI: 10.1016/0006-8993(93)91021-j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The effect of aging on delta opioid receptors was examined in the brains of guinea pigs aged 1, 6, 24 and 36 months. Quantitative autoradiography was used to monitor the concentrations of delta receptors in various anatomical regions at five rostro-caudal levels. delta opioid receptor populations were found to be remarkably stable throughout the life span of this species. We have, however, discovered anatomical areas which offer striking exceptions. In the globus pallidus, progressive age-related losses of delta receptors reached 50% in the senescent animal. In contrast, laminae I, II of the lateral agranular frontal cortex and laminae I, II and III, IV of the primary somatosensory cortex demonstrated age-related increases in the concentrations of delta receptors ranging from 30 to 45%. These changes are discussed with the view to their being functionally related components of motor circuitry involving pyramidal and extrapyramidal elements.
Collapse
Affiliation(s)
- J M Hiller
- Department of Psychiatry, New York University Medical Center, NY 10016
| | | | | |
Collapse
|
43
|
Noda T, Oka H. Projections of the anterior coronal gyrus to the subthalamic nucleus in the cat: a combined retrograde and anterograde WGA-HRP study. Brain Res 1993; 605:305-8. [PMID: 7683236 DOI: 10.1016/0006-8993(93)91755-h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to re-examine the corticosubthalamic projections in the cat, WGA-HRP was injected into the subthalamic nucleus (STN). Following WGA-HRP injections into the lateral STN, a small number of retrogradely labeled neurons were found in the anterior coronal gyrus (ACG) as well as the anterior sigmoid gyrus. To confirm the projection of the ACG to the lateral STN, which had not been reported previously, WGA-HRP was injected into the ACG. Anterogradely labeled fiber terminals were found in the dorsolateral part of the STN. These results indicate that the ACG influences the STN activity through its direct projections.
Collapse
Affiliation(s)
- T Noda
- Department of Physiology, Fukui Medical School, Japan
| | | |
Collapse
|
44
|
Brown LL. Somatotopic organization in rat striatum: evidence for a combinational map. Proc Natl Acad Sci U S A 1992; 89:7403-7. [PMID: 1502150 PMCID: PMC49718 DOI: 10.1073/pnas.89.16.7403] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
2-Deoxy-D-[14C]glucose autoradiography was used in awake rats to map neural activity in the sensorimotor sector of striatum. Stimulation of hindlimb, trunk, or forelimb activated primary sensory cortex in a localized columnar pattern, indicating activation of somatosensory receptors and a discrete cortical functional unit. In sensorimotor striatum, an image analysis detection technique revealed regions of maximal activity, or features, that formed a patchy pattern of activation reminiscent of the known anatomic patterns of cortico-striate terminals. Ipsilateral as well as contralateral activation was observed. The activated areas revealed a body map in striatum that was organized in a manner consistent with cortical topography (dorsoventrally: hindlimb, trunk, forelimb) at most anteroposterior levels, similar to that found in other species. However, at other levels, a different organization (e.g., trunk, hindlimb, forelimb) was observed. Furthermore, the arrangements of body region and side were also unique at different anteroposterior levels. Thus, functional activity showed multiple, different juxtapositions of body elements--i.e., a combinational map. The data suggest that striatum may provide an anatomic substrate for different combinations of inputs necessary to select and integrate movement.
Collapse
Affiliation(s)
- L L Brown
- Saul R. Korey Department of Neurology, Albert Einstein College of Medicine, Bronx, NY 10461
| |
Collapse
|
45
|
Canteras NS, Shammah-Lagnado SJ, Silva BA, Ricardo JA. Afferent connections of the subthalamic nucleus: a combined retrograde and anterograde horseradish peroxidase study in the rat. Brain Res 1990; 513:43-59. [PMID: 2350684 DOI: 10.1016/0006-8993(90)91087-w] [Citation(s) in RCA: 220] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A comprehensive characterization of the afferent connections of the subthalamic nucleus of Luys (STN) is a necessary step in the unraveling of extrapyramidal mechanisms. In the present study, the STN afferents in the rat were systematically investigated with the aid of retrograde and anterograde horseradish peroxidase tracer techniques. The results indicate that, besides a massive input from the dorsal pallidum, the STN receives substantial projections from several districts of the cerebral cortex (the medial division of the prefrontal cortex, the first motor and primary somatosensory areas, and the granular insular territory), the ventral pallidum, the parafascicular nucleus of the thalamus and the pedunculopontine tegmental nucleus, as well as a modest innervation from the dorsal raphe nucleus. In spite of the fact that many additional structures were found to contain retrogradely labeled neurons after tracer injections in the STN, no other projection to the latter nucleus could be effectively established in our anterograde experimental series.
Collapse
Affiliation(s)
- N S Canteras
- Department of Physiology and Biophysics, University of Säo Paula, Brazil
| | | | | | | |
Collapse
|