1
|
Andreou AP, Fuccaro M, Lambru G. The role of erenumab in the treatment of migraine. Ther Adv Neurol Disord 2020; 13:1756286420927119. [PMID: 32523630 PMCID: PMC7257830 DOI: 10.1177/1756286420927119] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Accepted: 04/23/2020] [Indexed: 01/03/2023] Open
Abstract
Calcitonin gene related peptide (CGRP) monoclonal antibodies (mAbs) have been the
first class of specifically developed preventive treatments for migraine.
Clinical trials data suggest superiority of the CGRP mAbs to placebo in terms of
prevention of migraine symptoms, migraine-specific quality of life and headache
related disability. Treatment-related side effects overall did not differ
significantly from placebo and discontinuation rate due to side effects has been
low across the clinical trials, perhaps in view of their peripheral mode of
action. Along with their route and frequency of administration, these novel
class of drugs may constitute an improvement compared with the established
arsenal of migraine treatments. Erenumab is a fully human antibody and the only
mAb acting on the CGRP pathway by blocking its receptor. It is the first of the
CGRP mAb class approved by the US Food and Drug Administration (May 2018) and
the European Medicines Agency (July 2018). Erenumab exists in two different
doses (70 mg and 140 mg) and it is administered with monthly subcutaneous
injections. This review summarises erenumab pharmacological characteristics,
clinical trials data, focusing on the potential role of this treatment in
clinical practice.
Collapse
Affiliation(s)
- Anna P Andreou
- The Headache Service, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - Matteo Fuccaro
- Department of Neurology, Treviso Hospital, Treviso, Italy
| | - Giorgio Lambru
- The Headache Service, Guy's and St Thomas' NHS Foundation Trust, Westminster Bridge Road, London, SE1 7EH, UK
| |
Collapse
|
2
|
Ren H, Jin H, Jia Z, Ji N, Luo F. Pulsed Radiofrequency Applied to the Sciatic Nerve Improves Neuropathic Pain by Down-regulating The Expression of Calcitonin Gene-related Peptide in the Dorsal Root Ganglion. Int J Med Sci 2018; 15:153-160. [PMID: 29333099 PMCID: PMC5765728 DOI: 10.7150/ijms.20501] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 07/06/2017] [Indexed: 01/12/2023] Open
Abstract
Background: Clinical studies have shown that applying pulsed radiofrequency (PRF) to the neural stem could relieve neuropathic pain (NP), albeit through an unclear analgesic mechanism. And animal experiments have indicated that calcitonin gene-related peptide (CGRP) expressed in the dorsal root ganglion (DRG) is involved in generating and maintaining NP. In this case, it is uncertain whether PRF plays an analgesic role by affecting CGRP expression in DRG. Methods: Rats were randomly divided into four groups: Groups A, B, C, and D. In Groups C and D, the right sciatic nerve was ligated to establish the CCI model, while in Groups A and B, the sciatic nerve was isolated without ligation. After 14 days, the right sciatic nerve in Groups B and D re-exposed and was treated with PRF on the ligation site. Thermal withdrawal latency (TWL) and hindpaw withdrawal threshold (HWT) were measured before PRF treatment (Day 0) as well as after 2, 4, 8, and 14 days of treatment. At the same time points of the behavioral tests, the right L4-L6 DRG was sampled and analyzed for CGRP expression using RT-qPCR and an enzyme-linked immunosorbent assay (ELISA). Results: Fourteen days after sciatic nerve ligation, rats in Groups C and D had a shortened TWL (P<0.001) and a reduced HWT (P<0.001) compared to those in Groups A and B. After PRF treatment, the TWL of the rats in Group D gradually extended with HWT increasing progressively. Prior to PRF treatment (Day 0), CGRP mRNA expressions in the L4-L6 DRG of Groups C and D increased significantly (P<0.001) and were 2.7 and 2.6 times that of Group A respectively. ELISA results showed that the CGRP content of Groups C and D significantly increased in comparison with that of Groups A and B (P<0.01). After PRF treatment, the mRNA expression in the DRG of Group D gradually decreased and the mRNA expression was 1.7 times that of Group A on the 4th day(P> 0.05). On the 8th and 14th days, the mRNA levels in Group D were restored to those of Groups A and B. Meanwhile, the CGRP content of Group D gradually dropped over time, from 76.4 pg/mg (Day 0) to 57.5 pg/mg (Day 14). Conclusions: In this study, we found that, after sciatic nerve ligation, rats exhibited apparent hyperalgesia and allodynia, and CGRP mRNA and CGRP contents in the L4-L6 DRG increased significantly. Through lowering CGRP expression in the DRG, PRF treatment might relieve the pain behaviors of NP.
Collapse
Affiliation(s)
- Hao Ren
- Department of Anesthesiology and Pain Management, Beijing Tiantan Hospital, Capital Medical University
| | - Hailong Jin
- Department of Anesthesiology and Pain Management, Beijing Tiantan Hospital, Capital Medical University
| | - Zipu Jia
- Department of Anesthesiology and Pain Management, Beijing Tiantan Hospital, Capital Medical University
| | - Nan Ji
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University
| | - Fang Luo
- Department of Anesthesiology and Pain Management, Beijing Tiantan Hospital, Capital Medical University
| |
Collapse
|
3
|
Hibberd TJ, Kestell GR, Kyloh MA, Brookes SJH, Wattchow DA, Spencer NJ. Identification of different functional types of spinal afferent neurons innervating the mouse large intestine using a novel CGRPα transgenic reporter mouse. Am J Physiol Gastrointest Liver Physiol 2016; 310:G561-73. [PMID: 26822917 DOI: 10.1152/ajpgi.00462.2015] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 01/27/2016] [Indexed: 01/31/2023]
Abstract
Spinal afferent neurons detect noxious and physiological stimuli in visceral organs. Five functional classes of afferent terminals have been extensively characterized in the colorectum, primarily from axonal recordings. Little is known about the corresponding somata of these classes of afferents, including their morphology, neurochemistry, and electrophysiology. To address this, we made intracellular recordings from somata in L6/S1 dorsal root ganglia and applied intraluminal colonic distensions. A transgenic calcitonin gene-related peptide-α (CGRPα)-mCherry reporter mouse, which enabled rapid identification of soma neurochemistry and morphology following electrophysiological recordings, was developed. Three distinct classes of low-threshold distension-sensitive colorectal afferent neurons were characterized; an additional group was distension-insensitive. Two of three low-threshold classes expressed CGRPα. One class expressing CGRPα discharged phasically, with inflections on the rising phase of their action potentials, at low frequencies, to both physiological (<30 mmHg) and noxious (>30 mmHg) distensions. The second class expressed CGRPα and discharged tonically, with smooth, briefer action potentials and significantly greater distension sensitivity than phasically firing neurons. A third class that lacked CGRPα generated the highest-frequency firing to distension and had smaller somata. Thus, CGRPα expression in colorectal afferents was associated with lower distension sensitivity and firing rates and larger somata, while colorectal afferents that generated the highest firing frequencies to distension had the smallest somata and lacked CGRPα. These data fill significant gaps in our understanding of the different classes of colorectal afferent somata that give rise to distinct functional classes of colorectal afferents. In healthy mice, the majority of sensory neurons that respond to colorectal distension are low-threshold, wide-dynamic-range afferents, encoding both physiological and noxious ranges.
Collapse
Affiliation(s)
- Timothy J Hibberd
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia; and
| | - Garreth R Kestell
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia; and
| | - Melinda A Kyloh
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia; and
| | - Simon J H Brookes
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia; and
| | - David A Wattchow
- Discipline of Surgery and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia
| | - Nick J Spencer
- Discipline of Human Physiology and Centre for Neuroscience, Flinders University, Adelaide, South Australia, Australia; and
| |
Collapse
|
4
|
Wang D, Wang P, Jiang J, Lv Q, Zeng X, Hong Y. Activation of Mas Oncogene-Related G Protein-Coupled Receptors Inhibits Neurochemical Alterations in the Spinal Dorsal Horn and Dorsal Root Ganglia Associated with Inflammatory Pain in Rats. J Pharmacol Exp Ther 2015; 354:431-9. [PMID: 26157044 DOI: 10.1124/jpet.115.225672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/07/2015] [Indexed: 08/30/2023] Open
Abstract
Mas oncogene-related G protein-coupled receptor C (MrgC) is unequally expressed in sensory ganglia and has been shown to modulate pathologic pain. This study investigated the mechanism underlying the effect of MrgC receptors on inflammatory pain. Intrathecal administration of the selective MrgC receptor agonist bovine adrenal medulla 8-22 (BAM8-22) (30 nmol) inhibited complete Freund's adjuvant-evoked hyperalgesia. This was associated with the inhibition of protein kinase C-γ and phosphorylated extracellular signal-regulated protein kinase in the spinal cord and/or dorsal root ganglia (DRG). The complete Freund's adjuvant injection in the hindpaw induced an increase in Gq, but not Gi and Gs, protein in the spinal dorsal horn. This increase was inhibited by the intrathecal administration of BAM8-22. The exposure of DRG cultures to bradykinin (10 μM) and prostaglandin E2 (1 μM) increased the expression of calcitonin gene-related peptide (CGRP) and neuronal nitric oxide synthase in small- and medium-sized neurons as well as the levels of CGRP, aspartate, and glutamate in the cultured medium. The bradykinin/prostaglandin E2-induced alterations were absent in the presence of BAM8-22 (10 nM). These results suggest that the activation of MrgC receptors can modulate the increase in the expression of CGRP and neuronal nitric oxide synthase as well as the release of CGRP and excitatory amino acids in DRG associated with inflammatory pain. This modulation results in the inhibition of pain hypersensitivity by suppressing the expression of Gq protein and protein kinase C-γ and extracellular signal-regulated protein kinase signaling pathways in the spinal cord and/or DRG. The present study suggests that MrgC receptors may be a novel target for relieving inflammatory pain.
Collapse
Affiliation(s)
- Dongmei Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University , Fuzhou, Fujian, China (D.W., P.W., J.J., Q.L., Y.H.); and Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, China (X.Z.)
| | - Peizhong Wang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University , Fuzhou, Fujian, China (D.W., P.W., J.J., Q.L., Y.H.); and Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, China (X.Z.)
| | - Jianping Jiang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University , Fuzhou, Fujian, China (D.W., P.W., J.J., Q.L., Y.H.); and Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, China (X.Z.)
| | - Qingqin Lv
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University , Fuzhou, Fujian, China (D.W., P.W., J.J., Q.L., Y.H.); and Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, China (X.Z.)
| | - Xueai Zeng
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University , Fuzhou, Fujian, China (D.W., P.W., J.J., Q.L., Y.H.); and Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, China (X.Z.)
| | - Yanguo Hong
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University , Fuzhou, Fujian, China (D.W., P.W., J.J., Q.L., Y.H.); and Fujian Academy of Traditional Chinese Medicine, Fuzhou, Fujian, China (X.Z.)
| |
Collapse
|
5
|
Kestell GR, Anderson RL, Clarke JN, Haberberger RV, Gibbins IL. Primary afferent neurons containing calcitonin gene-related peptide but not substance P in forepaw skin, dorsal root ganglia, and spinal cord of mice. J Comp Neurol 2015; 523:2555-69. [PMID: 26010480 DOI: 10.1002/cne.23804] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 04/20/2015] [Accepted: 04/29/2015] [Indexed: 12/11/2022]
Abstract
In mice dorsal root ganglia (DRG), some neurons express calcitonin gene-related peptide (CGRP) without substance P (SP; CGRP(+) SP(-) ). The projections and functions of these neurons are unknown. Therefore, we combined in vitro axonal tracing with multiple-labeling immunohistochemistry to neurochemically define these neurons and characterize their peripheral and central projections. Cervical spinal cord, DRG, and forepaw skin were removed from C57Bl/6 mice and multiple-labeled for CGRP, SP, and either marker for the sensory neuron subpopulations transient receptor potential vanilloid type 1 (TRPV1), neurofilament 200 (NF200), or vesicular glutamate transporter 2 (VGluT1). To determine central projections of CGRP(+) SP(-) neurons, Neurobiotin (NB) was applied to the C7 ventral ramus and visualized in DRG and spinal cord sections colabeled for CGRP and SP. Half (50%) of the CGRP-immunoreactive DRG neurons lacked detectable SP and had a mean soma size of 473 ± 14 μm(2) (n = 5); 89% of the CGRP(+) SP(-) neurons expressed NF200 (n = 5), but only 32% expressed TRPV1 (n = 5). Cutaneous CGRP(+) SP(-) fibers were numerous within dermal papillae and around hair shafts (n = 4). CGRP(+) SP(-) boutons were prevalent in lateral lamina I and in lamina IV/V of the dorsal horn (n = 5). NB predominantly labeled fibers penetrating lamina IV/V, 6 ± 3% contained CGRP (n = 5), and 21 ± 2% contained VGluT1 (n = 3). CGRP(+) SP(-) afferent neurons are likely to be non-nociceptive. Their soma size, neurochemical profile, and peripheral and central targets suggest that CGRP(+) SP(-) neurons are polymodal mechanoceptors.
Collapse
Affiliation(s)
- Garreth R Kestell
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Rebecca L Anderson
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Jennifer N Clarke
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Rainer V Haberberger
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| | - Ian L Gibbins
- Department of Anatomy and Histology, and Centre for Neuroscience, Flinders University, Adelaide, South Australia, 5001, Australia
| |
Collapse
|
6
|
Barry CM, Kestell G, Gillan M, Haberberger RV, Gibbins IL. Sensory nerve fibers containing calcitonin gene-related peptide in gastrocnemius, latissimus dorsi and erector spinae muscles and thoracolumbar fascia in mice. Neuroscience 2015; 291:106-17. [PMID: 25681518 DOI: 10.1016/j.neuroscience.2015.01.062] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/21/2015] [Accepted: 01/28/2015] [Indexed: 10/24/2022]
Abstract
Chronic pain is a significant burden and much is attributed to back muscles. Back muscles and their associated fasciae make important and distinct contributions to back pain. Peptidergic nociceptors innervating these structures contribute to central transmission and pain modulation by peripheral and central actions. Plastic changes that augment and prolong pain are exhibited by neurons containing calcitonin gene-related peptide (CGRP) following muscle injury. Subpopulations of neurons containing this peptide have been identified in dorsal root ganglia but the distribution of their fibers in skeletal muscles and associated fasciae has not been fully documented. This study used multiple-labeling immunofluorescence and retrograde axonal tracing to identify dorsal root ganglion cells associated with muscle, and to characterize the distribution and density of their nerve fibers in mouse gastrocnemius and back muscles and in the thoracolumbar fascia. Most nerve fibers in these tissues contained CGRP and two major subpopulations of neurons were found: those containing CGRP and substance P (SP) and those containing CGRP but not SP. Innervation density was three times higher in the thoracolumbar fascia than in muscles of the back. These studies show mouse back and leg muscles are predominantly innervated by neurons containing CGRP, an important modulator of pain signal transmission. There are two distinct populations of neurons containing this peptide and their fibers were three times more densely distributed in the thoracolumbar fascia than back muscles.
Collapse
Affiliation(s)
- C M Barry
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Australia.
| | - G Kestell
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Australia
| | - M Gillan
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Australia
| | - R V Haberberger
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Australia
| | - I L Gibbins
- Anatomy and Histology and Centre for Neuroscience, Flinders University, Australia
| |
Collapse
|
7
|
Jiang J, Wang D, Zhou X, Huo Y, Chen T, Hu F, Quirion R, Hong Y. Effect of Mas-related gene (Mrg) receptors on hyperalgesia in rats with CFA-induced inflammation via direct and indirect mechanisms. Br J Pharmacol 2014; 170:1027-40. [PMID: 23909597 DOI: 10.1111/bph.12326] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 12/01/2022] Open
Abstract
BACKGROUND AND PURPOSE Mas oncogene-related gene (Mrg) receptors are exclusively distributed in small-sized neurons in trigeminal and dorsal root ganglia (DRG). We investigated the effects of MrgC receptor activation on inflammatory hyperalgesia and its mechanisms. EXPERIMENTAL APPROACH A selective MrgC receptor agonist, bovine adrenal medulla peptide 8-22 (BAM8-22) or melanocyte-stimulating hormone (MSH) or the μ-opioid receptor (MOR) antagonist CTAP was administered intrathecally (i.t.) in rats injected with complete Freund's adjuvant (CFA) in one hindpaw. Thermal and mechanical nociceptive responses were assessed. Neurochemicals were measured by immunocytochemistry, Western blot, ELISA and RT-PCR. KEY RESULTS CFA injection increased mRNA for MrgC receptors in lumbar DRG. BAM8-22 or MSH, given i.t., generated instant short and delayed long-lasting attenuations of CFA-induced thermal hyperalgesia, but not mechanical allodynia. These effects were associated with decreased up-regulation of neuronal NOS (nNOS), CGRP and c-Fos expression in the spinal dorsal horn and/or DRG. However, i.t. administration of CTAP blocked the induction by BAM8-22 of delayed anti-hyperalgesia and inhibition of nNOS and CGRP expression in DRG. BAM8-22 also increased mRNA for MORs and pro-opiomelanocortin, along with β-endorphin content in the lumbar spinal cord and/or DRG. MrgC receptors and nNOS were co-localized in DRG neurons. CONCLUSIONS AND IMPLICATIONS Activation of MrgC receptors suppressed up-regulation of pronociceptive mediators and consequently inhibited inflammatory pain, because of the activation of up-regulated MrgC receptors and subsequent endogenous activity at MORs. The uniquely distributed MrgC receptors could be a novel target for relieving inflammatory pain.
Collapse
Affiliation(s)
- Jianping Jiang
- College of Life Sciences and Provincial Key Laboratory of Developmental Biology and Neuroscience, Fujian Normal University, Fuzhou, China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Bullock CM, Kelly S. Calcitonin gene-related peptide receptor antagonists: beyond migraine pain--a possible analgesic strategy for osteoarthritis? Curr Pain Headache Rep 2014; 17:375. [PMID: 24068339 PMCID: PMC3824306 DOI: 10.1007/s11916-013-0375-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Osteoarthritis (OA) pain is poorly understood and managed, as current analgesics have only limited efficacy and unwanted side effect profiles. A broader understanding of the pathological mechanisms driving OA joint pain is vital for the development of improved analgesics. Both clinical and preclinical data suggest an association between joint levels of the sensory neuropeptide calcitonin gene-related peptide (CGRP) and pain during OA. Whether a direct causative link exists remains an important unanswered question. Given the recent development of small molecule CGRP receptor antagonists with clinical efficacy against migraine pain, the interrogation of the role of CGRP in OA pain mechanisms is extremely timely. In this article, we provide the background to the importance of CGRP in pain mechanisms and review the emerging clinical and preclinical evidence implicating a role for CGRP in OA pain. We suggest that the CGRP receptor antagonists developed for migraine pain warrant further investigation in OA.
Collapse
Affiliation(s)
- C. M. Bullock
- Arthritis Research UK Pain Centre, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD UK
| | - S. Kelly
- Arthritis Research UK Pain Centre, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Leicestershire, LE12 5RD UK
| |
Collapse
|
9
|
Chen J, Hou S, Peng B, Wu W, Shi Y, Li L, Yang Y. Effect of the L2 ramus communicans on the nociceptive pathway in lumbar intervertebral discs in rats. Eur J Pain 2012; 12:798-803. [PMID: 18243022 DOI: 10.1016/j.ejpain.2007.12.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2007] [Revised: 11/07/2007] [Accepted: 12/03/2007] [Indexed: 10/22/2022]
|
10
|
Huang J, Fan Y, Jia Y, Hong Y. Antagonism of 5-HT(2A) receptors inhibits the expression of pronociceptive mediator and enhances endogenous opioid mechanism in carrageenan-induced inflammation in rats. Eur J Pharmacol 2010; 654:33-41. [PMID: 21185821 DOI: 10.1016/j.ejphar.2010.12.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Revised: 11/17/2010] [Accepted: 12/11/2010] [Indexed: 02/05/2023]
Abstract
We have recently reported that treatment with the 5-HT(2A) receptor antagonist ketanserin in the inflamed paw raises the nociceptive threshold above normal level (hypoalgesia) and this response is naloxone-reversible. The present study aimed to investigate neurochemical changes at the site of inflammation and in dorsal root ganglia (DRG) and the spinal cord following the blockade of 5-HT(2A) receptors. Intraplantar injection of ketanserin (20 μg) inhibited carrageenan-induced increase in CGRP immunoreactivity-positive neurons in DRG. On the other hand, administration of ketanserin (20 μg) and 5-HT (10 μg), but not vehicle, enhanced and inhibited recruitment of β-endorphin-expressing immune cells, respectively, in subcutaneous loci of inflamed hindpaw. Moreover, the treatment with ketanserin increased the number of endomorphine-containing cells in the inflamed paw and μ-opioid receptor-expressing neurons in DRG at L4-5 but reduced the expression of endomorphine in superficial layers of the lumbar spinal cord. The present study provided evidence at the cellular level showing that the blockade of 5-HT(2A) receptors inhibited inflammation-associated increase in pronociceptive mediator, and that the pronociceptive property of 5-HT is mediated by the suppression of inflammation-activated opioid mechanism. Therefore, targeting the 5-HT(2A) receptors in the site of inflammation may be a promising approach to inhibit inflammatory pain.
Collapse
Affiliation(s)
- Jian Huang
- College of Life Sciences, Fujian Normal University, Key Provincial Laboratory of Developmental and Neurological Biology, Fuzhou, People's Republic of China
| | | | | | | |
Collapse
|
11
|
Chi XX, Schmutzler BS, Brittain JM, Wang Y, Hingtgen CM, Nicol GD, Khanna R. Regulation of N-type voltage-gated calcium channels (Cav2.2) and transmitter release by collapsin response mediator protein-2 (CRMP-2) in sensory neurons. J Cell Sci 2009; 122:4351-62. [PMID: 19903690 DOI: 10.1242/jcs.053280] [Citation(s) in RCA: 120] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Collapsin response mediator proteins (CRMPs) mediate signal transduction of neurite outgrowth and axonal guidance during neuronal development. Voltage-gated Ca(2+) channels and interacting proteins are essential in neuronal signaling and synaptic transmission during this period. We recently identified the presynaptic N-type voltage-gated Ca(2+) channel (Cav2.2) as a CRMP-2-interacting partner. Here, we investigated the effects of a functional association of CRMP-2 with Cav2.2 in sensory neurons. Cav2.2 colocalized with CRMP-2 at immature synapses and growth cones, in mature synapses and in cell bodies of dorsal root ganglion (DRG) neurons. Co-immunoprecipitation experiments showed that CRMP-2 associates with Cav2.2 from DRG lysates. Overexpression of CRMP-2 fused to enhanced green fluorescent protein (EGFP) in DRG neurons, via nucleofection, resulted in a significant increase in Cav2.2 current density compared with cells expressing EGFP. CRMP-2 manipulation changed the surface levels of Cav2.2. Because CRMP-2 is localized to synaptophysin-positive puncta in dense DRG cultures, we tested whether this CRMP-2-mediated alteration of Ca(2+) currents culminated in changes in synaptic transmission. Following a brief high-K(+)-induced stimulation, these puncta became loaded with FM4-64 dye. In EGFP and neurons expressing CRMP-2-EGFP, similar densities of FM-loaded puncta were observed. Finally, CRMP-2 overexpression in DRG increased release of the immunoreactive neurotransmitter calcitonin gene-related peptide (iCGRP) by approximately 70%, whereas siRNA targeting CRMP-2 significantly reduced release of iCGRP by approximately 54% compared with control cultures. These findings support a novel role for CRMP-2 in the regulation of N-type Ca(2+) channels and in transmitter release.
Collapse
Affiliation(s)
- Xian Xuan Chi
- Pharmacology and Toxicology Department, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | | | | | |
Collapse
|
12
|
Upregulation of adrenomedullin in the spinal cord and dorsal root ganglia in the early phase of CFA-induced inflammation in rats. Pain 2009; 146:105-13. [DOI: 10.1016/j.pain.2009.07.015] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2008] [Revised: 07/06/2009] [Accepted: 07/13/2009] [Indexed: 02/05/2023]
|
13
|
Schmutzler BS, Roy S, Hingtgen CM. Glial cell line-derived neurotrophic factor family ligands enhance capsaicin-stimulated release of calcitonin gene-related peptide from sensory neurons. Neuroscience 2009; 161:148-56. [PMID: 19285119 DOI: 10.1016/j.neuroscience.2009.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2009] [Revised: 03/02/2009] [Accepted: 03/04/2009] [Indexed: 11/19/2022]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family ligands (GFLs) are a group of peptides that have been implicated as important factors in inflammation, since they are released in increased amounts during inflammation and induce thermal hyperalgesia upon injection. Mouse isolated sensory neurons in culture and freshly dissociated spinal cord slices were used to examine the enhancement in stimulated-release of the neuropeptide, calcitonin gene-related peptide (CGRP), as a measure of sensitization. Exposure of isolated sensory neurons in culture to GDNF, neurturin, and artemin enhanced the capsaicin-stimulated release of immunoreactive calcitonin gene-related peptide (iCGRP) two- to threefold, but did not increase potassium-stimulated release of iCGRP. A similar profile of sensitization was observed in freshly dissociated spinal cord slices. Persephin, another member of the GFL family thought to be important in development, was unable to induce an enhancement in the release of iCGRP. These results demonstrate that specific GFLs are important mediators affecting sensory neuronal sensitivity, likely through modulation of the capsaicin receptor. The sensitization of sensory neurons during inflammation, and the pain and neurogenic inflammation resulting from this sensitization, may be due in part to the effects of these selected GFLs.
Collapse
Affiliation(s)
- B S Schmutzler
- Department of Pharmacology and Toxicology, Indiana University School of Medicine, Stark Neurosciences Research Institute, 950 West Walnut Street, Research Building 2, Room 444, Indianapolis, IN 46202, USA.
| | | | | |
Collapse
|
14
|
Extreme tolerance to ammonia fumes in African naked mole-rats: animals that naturally lack neuropeptides from trigeminal chemosensory nerve fibers. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:419-27. [DOI: 10.1007/s00359-009-0420-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 01/20/2009] [Accepted: 01/23/2009] [Indexed: 11/26/2022]
|
15
|
Shi TJS, Li J, Dahlström A, Theodorsson E, Ceccatelli S, Decosterd I, Pedrazzini T, Hökfelt T. Deletion of the neuropeptide Y Y1 receptor affects pain sensitivity, neuropeptide transport and expression, and dorsal root ganglion neuron numbers. Neuroscience 2006; 140:293-304. [PMID: 16564642 DOI: 10.1016/j.neuroscience.2006.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2005] [Revised: 02/03/2006] [Accepted: 02/04/2006] [Indexed: 01/05/2023]
Abstract
Neuropeptide Y has been implicated in pain modulation and is substantially up-regulated in dorsal root ganglia after peripheral nerve injury. To identify the role of neuropeptide Y after axotomy, we investigated the behavioral and neurochemical phenotype of neuropeptide Y Y1 receptor knockout mice with focus on dorsal root ganglion neurons and spinal cord. Using a specific antibody Y1 receptor immunoreactivity was found in dorsal root ganglia and in dorsal horn neurons of wild-type, but not knockout mice. The Y1 receptor knockout mice exhibited a pronounced mechanical hypersensitivity. After sciatic nerve axotomy, the deletion of Y1 receptor protected knockout mice from the axotomy-induced loss of dorsal root ganglion neurons seen in wild-type mice. Lower levels of calcitonin gene-related peptide and substance P were identified by immunohistochemistry in dorsal root ganglia and dorsal horn of knockout mice, and the axotomy-induced down-regulation of both calcitonin gene-related peptide and substance P was accentuated in Y1 receptor knockout. However, the transcript levels for calcitonin gene-related peptide and substance P were significantly higher in knockout than in wild-type dorsal root ganglia ipsilateral to the axotomy, while more calcitonin gene-related peptide- and substance P-like immunoreactivity accumulated proximal and distal to a crush of the sciatic nerve. These results indicate that the deletion of the Y1 receptor causes increased release and compensatory increased synthesis of calcitonin gene-related peptide and substance P in dorsal root ganglion neurons. Together, these findings suggest that, after peripheral nerve injury, neuropeptide Y, via its Y1 receptor receptor, plays a key role in cell survival as well as in transport and synthesis of the excitatory dorsal horn messengers calcitonin gene-related peptide and substance P and thus may contribute to pain hypersensitivity.
Collapse
Affiliation(s)
- T-J S Shi
- Department of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Sun RQ, Tu YJ, Lawand NB, Yan JY, Lin Q, Willis WD. Calcitonin gene-related peptide receptor activation produces PKA- and PKC-dependent mechanical hyperalgesia and central sensitization. J Neurophysiol 2005; 92:2859-66. [PMID: 15486424 DOI: 10.1152/jn.00339.2004] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Calcitonin gene-related peptide (CGRP), acting through CGRP receptors, produces behavioral signs of mechanical hyperalgesia in rats and sensitization of wide dynamic range (WDR) neurons in the spinal cord dorsal horn. Although involvement of CGRP receptors in central sensitization has been confirmed, the second-messenger systems activated by CGRP receptor stimulation and involved in pain transmission are not clear. This study tested whether the hyperalgesia and sensitizing effects of CGRP receptor activation on WDR neurons are mediated by protein kinase A or C (PKA or PKC) signaling. Intrathecal injection of CGRP in rats produced mechanical hyperalgesia, as shown by paw withdrawal threshold tests. CGRP-induced hyperalgesia was attenuated significantly by the CGRP1 receptor antagonist, CGRP8-37. The effect was also attenuated significantly by a PKA inhibitor (H89) or a PKC inhibitor (chelerythrine chloride). Electrophysiological experiments demonstrated that superfusion of the spinal cord with CGRP-induced sensitization of spinal dorsal horn neurons. The CGRP effect could be blocked by CGRP8-37. Either a PKA or PKC inhibitor (H89 or chelerythrine) also attenuated this effect of CGRP. These results are consistent with the hypothesis that CGRP produces hyperalgesia by a direct action on CGRP1 receptors in the spinal cord dorsal horn and suggest that the effects of CGRP are mediated by both PKA and PKC second-messenger pathways.
Collapse
Affiliation(s)
- Rui-Qing Sun
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, 301 University Blvd., Galveston, Texas 77555-1069, USA
| | | | | | | | | | | |
Collapse
|
17
|
Sun RQ, Lawand NB, Lin Q, Willis WD. Role of calcitonin gene-related peptide in the sensitization of dorsal horn neurons to mechanical stimulation after intradermal injection of capsaicin. J Neurophysiol 2004; 92:320-6. [PMID: 15212441 DOI: 10.1152/jn.00086.2004] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
This study was designed to assess the role of calcitonin gene-related peptide (CGRP) and its receptor in the sensitization of dorsal horn neurons induced by intradermal injection of capsaicin in rats. Extracellular recordings were made from wide dynamic range (WDR) dorsal horn neurons with receptive fields on the hindpaw in the lumbar enlargement of anesthetized rats. The background activity and responses to brushing, pressing, and pinching the skin were assessed. A postsuperfusion or a presuperfusion of CGRP(8-37) paradigm was followed. When tested 30 min after capsaicin injection, there was an increase in background activity and responses to brush, press, and pinch applied to the receptive field. Superfusion of CGRP(8-37) into the spinal cord at 45 min after capsaicin injection significantly reversed the increased background activity and responses to brush, press, and pinch applied to the receptive field. On the other hand, spinal superfusion of CGRP(8-37) prior to capsaicin injection prevented the increased background activity and responses to brush, press, and pinch of WDR neurons that occurred following capsaicin injection in control experiments. A sensitization of spinal dorsal horn neurons could also be induced by superfusion of the spinal cord with CGRP. The effect could be blocked by CGRP(8-37) dose-dependently. Collectively, these results suggest that CGRP and its receptors are involved in the spinal cord central sensitization induced by intradermal injection of capsaicin.
Collapse
Affiliation(s)
- Rui-Qing Sun
- Department of Neuroscience and Cell Biology, The University of Texas Medical Branch, 301 University Blvd., Galveston, TX 77555-1069, USA
| | | | | | | |
Collapse
|
18
|
Schaible HG, Hope PJ, Lang CW, Duggan AW. Calcitonin Gene-related Peptide Causes Intraspinal Spreading of Substance P Released by Peripheral Stimulation. Eur J Neurosci 2002; 4:750-7. [PMID: 12106319 DOI: 10.1111/j.1460-9568.1992.tb00184.x] [Citation(s) in RCA: 84] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Experiments were performed in barbiturate-anaesthetized, spinalized cats to investigate the effect of calcitonin gene-related peptide (CGRP) on the spatial distribution of immunoreactive substance P (ir-SP) in the spinal cord released by electrical nerve stimulation and noxious mechanical stimuli. The presence of ir-SP was assessed with microprobes bearing C-terminus-directed antibodies to SP. CGRP was microinjected into the grey matter of the spinal cord near microprobe insertion sites at depths of 2500, 2000, 1500 and 1000 microm using minute amounts (in total 0.2 - 0.5 microl) of Ringer solution containing CGRP at a concentration of 10-5 or 10-3 M. In the untreated cord electrical stimulation of the tibial nerve (suprathreshold for all C fibres) elicited release of ir-SP which was centred in and around the lamina II. After microinjection of CGRP, stimulation-associated ir-SP was detected in a region extending from the cord surface down to the ventral horn. This pattern was similar to that observed after the microinjection of synthetic peptidase inhibitors (Duggan et al., Brain Res., 579, 261 - 269, 1992). The large expansion of sites accessed by ir-SP was time-dependent, reaching a maximal effect within 10 - 40 min after microinjection of CGRP, and reversal was observed in subsequent probes. A similar expansion of the regions accessed by ir-SP after microinjection of CGRP was also observed when release of ir-SP was evoked by noxious mechanical stimulation of the toes. These results indicate that one important function of CGRP in the spinal cord may be the control of the intraspinal sites and neuronal circuits accessed by released substance P, possibly by inhibition of endopeptidases responsible for peptide degradation.
Collapse
Affiliation(s)
- H G Schaible
- Department of Preclinical Veterinary Sciences, University of Edinburgh, Summerhall, Edinburgh EH9 1QH, UK
| | | | | | | |
Collapse
|
19
|
Ohtori S, Takahashi K, Chiba T, Yamagata M, Sameda H, Moriya H. Substance P and calcitonin gene-related peptide immunoreactive sensory DRG neurons innervating the lumbar intervertebral discs in rats. Ann Anat 2002; 184:235-40. [PMID: 12056753 DOI: 10.1016/s0940-9602(02)80113-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The rat L5/6 disc is innervated from T13 to L6 dorsal root ganglia (DRGs) multisegmentally. Sensory fibers from T13, L1 and L2 DRGs have been reported to innervate through the paravertebral sympathetic trunks, whereas those from L3 to L6 DRGs innervate directly through sinuvertebral nerves on the posterior longitudinal ligament (PLL). The presence of substance P (SP)- and calcitonin gene-related peptide (CGRP)-immunoreactive (ir) nerve fibers has been demonstrated in the lumbar intervertebral discs, but their percentages in DRG neurons have not been studied. Fluoro-gold (F-G) labeled neurons innervating the L5/6 disc were distributed throughout DRGs from T13 to L6 levels. Of F-G labeled neurons innervating the L5/6 disc, the percentage of SP-ir T13 to L6 DRG neurons was 30%, and that of CGRP-ir neurons was 47%. The mean cross-sectional area of the cell of SP-ir neurons was 696+/-66 microm2 (mean +/- S. E.), and that of CGRP-ir neurons was 695+/-72 microm2 (mean +/- S. E.). SP- and CGRP-ir were mainly observed in small neurons. The percentages of SP- or CGRP-ir neurons in L1 and L2 DRGs innervating the L5/6 disc were not different from those in L3, L4 or L5 DRGs. In the physiological condition in rats, DRG neurons at all levels may have the same significant role in pain sensation of the disc.
Collapse
Affiliation(s)
- Seiji Ohtori
- The Department of Orthopaedic Surgery, School of Medicine, Chiba University, Japan.
| | | | | | | | | | | |
Collapse
|
20
|
Yu Y, Lundeberg T, Yu LC. Role of calcitonin gene-related peptide and its antagonist on the evoked discharge frequency of wide dynamic range neurons in the dorsal horn of the spinal cord in rats. REGULATORY PEPTIDES 2002; 103:23-7. [PMID: 11738245 DOI: 10.1016/s0167-0115(01)00326-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The present study was performed to explore the effect of calcitonin gene-related peptide (CGRP) and its antagonist CGRP8-37 on the evoked discharge frequency of wide dynamic range (WDR) neurons in the dorsal horn of the spinal cord in rats. Recording was performed with a multibarrelled glass micropipette and the chemicals were delivered by iontophoresis. The discharge of WDR neurons was evoked by transdermic electrical stimulation applied on the ipsilateral hindpaw. (1) Iontophoretic application of CGRP at an ejection current of 100 nA increased the discharge frequency of WDR neurons significantly. (2) Iontophoretic application of CGRP8-37 at an ejection current of 80 or 160 nA induced significant decreases in the discharge frequency of WDR neurons, but not at 40 nA. (3) Iontophoretic application of CGRP8-37 not only antagonized the CGRP-induced increase in the evoked discharge frequency of WDR neurons but also induced a significant decrease in the evoked discharge frequency of WDR neurons compared to basal levels. The results indicate that CGRP and its receptors play a facilitary role on the transmission and/or modulation of nociceptive information in the dorsal horn of the spinal cord in rats.
Collapse
Affiliation(s)
- Yi Yu
- Department of Physiology, College of Life Sciences, Peking University, 100871, Beijing, People's Republic of China
| | | | | |
Collapse
|
21
|
Broberger C, Holmberg K, Shi TJ, Dockray G, Hökfelt T. Expression and regulation of cholecystokinin and cholecystokinin receptors in rat nodose and dorsal root ganglia. Brain Res 2001; 903:128-40. [PMID: 11382396 DOI: 10.1016/s0006-8993(01)02468-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Cholecystokinin (CCK) is an important satiety factor, acting via the vagus nerve to influence central feeding centers. CCK binding sites have been demonstrated in the vagal sensory nodose ganglion and within the nerve proper. Using in situ hybridization, expression of the CCK(A) and (B) receptors (Rs), as well as of CCK itself, was studied in the normal nodose ganglion (NG), and after vagotomy, starvation and high-fat diet. CCK(A)-R mRNA expression in dorsal root ganglia (DRGs) was also explored. In the NG, 33% of the neuron profiles (NPs) contained CCK(A)-R mRNA and in 9% we observed CCK(B)-R mRNA. CCK mRNA was not found in normal NGs. Peripheral vagotomy decreased the number of CCK(A)-R mRNA-expressing NPs, dramatically increased the number of CCK(B)-R mRNA, and induced CCK mRNA and preproCCK-like immunoreactivity in nodose NPs. No significant differences in the number of NPs labelled for either mRNA species were detected following 48 h food deprivation or in rats fed a high-fat content diet. In DRGs, 10% of the NPs expressed CCK(A)-R mRNA, a number that was not affected by either axotomy or inflammation. This cell population was distinct from neurons expressing calcitonin gene-related peptide mRNA. These results demonstrate that the CCK(A)-R is expressed by both viscero- and somatosensory primary sensory neurons, supporting a role for this receptor as a mediator both of CCK-induced satiety and in sensory processing at the spinal level. The stimulation of CCK and CCK(B)-R gene expression following vagotomy suggests a possible involvement in the response to injury for these molecules.
Collapse
Affiliation(s)
- C Broberger
- Department of Neuroscience, Berzelius Väg 1, Karolinska Institutet, 171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
22
|
Ohtori S, Takahashi K, Chiba T, Yamagata M, Sameda H, Moriya H. Phenotypic inflammation switch in rats shown by calcitonin gene-related peptide immunoreactive dorsal root ganglion neurons innervating the lumbar facet joints. Spine (Phila Pa 1976) 2001; 26:1009-13. [PMID: 11337618 DOI: 10.1097/00007632-200105010-00005] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN The changes in dorsal root ganglion neurons innervating the L5-L6 facet joint were studied using the retrograde neurotransport method and the immunohistochemistry of calcitonin gene-related peptide in an inflammatory model of rats. OBJECTIVES To determine by inflammatory stimulation the changes in calcitonin gene-related peptide-immunoreactive dorsal root ganglion neurons innervating the L5-L6 facet. SUMMARY OF BACKGROUND DATA The rat L5-L6 facet joint is innervated from L1-L5 dorsal root ganglia. The presence of calcitonin gene-related peptide-immunoreactive dorsal root ganglion neurons innervating the L5-L6 facet joint has been confirmed, but the changes in the number and distribution of these neurons caused by inflammation have not been studied. METHODS Retrograde transport of fluorogold was used in 20 rats: 10 in the control group and 10 in the inflammatory group. Using the dorsal approach, fluorogold crystals were injected into the left L5-L6 facet joint. Then 5 days after application, complete Freund's adjuvant (50 microg Mycobacterium butyricum in oil saline emulsion) was injected into the same L5-L6 facet joint (inflammatory group). Of the total fluorogold-labeled dorsal root ganglion neurons from T13-L6, the number and cross-sectional area of the cell profiles of fluorogold-labeled, calcitonin gene-related peptide-immunoreactive neurons in the bilateral dorsal root ganglia of both groups were evaluated. RESULTS Fluorogold-labeled neurons were distributed throughout the ipsilateral dorsal root ganglia from L1-L5 in both groups. Of the fluorogold-labeled neurons, the ratios of the calcitonin gene-related peptide-immunoreactive L1, L2, L3, L4, and L5 dorsal root ganglion neurons, respectively, were 17%, 24%, 44%, 56%, and 50% in the control group and 50%, 39%, 51%, 61%, and 56% in the inflammatory group. The ratios of the calcitonin gene-related peptide-immunoreactive L1 and L2 dorsal root ganglion neurons labeled by fluorogold were significantly higher in the inflammatory group than in the control group (P < 0.05). The mean cross-sectional area of fluorogold-labeled, calcitonin gene-related peptide-immunoreactive cells from L1-L5 dorsal root ganglia increased from 621 +/- 64 microm2 to 893 +/- 63 microm2 in the inflammatory group (P < 0.01). CONCLUSIONS The ratio of fluorogold-labeled, calcitonin gene-related peptide-immunoreactive neurons was significantly higher in the L1 and L2 dorsal root ganglia of the inflammatory group than in those of the control group, and the average cross-sectional area of the cells from L1-L5 dorsal root ganglion increased. Associated with the inflammation in the facet joints, the change in calcitonin gene-related peptide-immunoreactive neuron distribution and the phenotypic switch to large neurons may complicate the mechanism of facet joint inflammatory pain.
Collapse
Affiliation(s)
- S Ohtori
- Third Department of Anatomy, School of Medicine, Chiba University, Chiba, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Ulrich-Lai YM, Flores CM, Harding-Rose CA, Goodis HE, Hargreaves KM. Capsaicin-evoked release of immunoreactive calcitonin gene-related peptide from rat trigeminal ganglion: evidence for intraganglionic neurotransmission. Pain 2001; 91:219-226. [PMID: 11275377 DOI: 10.1016/s0304-3959(00)00439-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Chemically-mediated cross-excitation has been described between neurons within sensory ganglia. However, the identity and source of the chemical mediators is not known. Ca(2+)-dependent release of neurotransmitters from cultured sensory neurons in vitro has been observed, although neurite outgrowth may confound the ability to extrapolate findings from culture systems to in vivo conditions. Thus, the present studies evaluate the hypothesis of capsaicin-sensitive intraganglionic neuropeptide release from freshly prepared slices of rat sensory ganglia. The ganglionic slice preparation provides an advantage over neuronal cultures, because release may be assessed within minutes after tissue collection (minimizing phenotypic changes) and while maintaining gross anatomical relationships. Trigeminal ganglia (TGG) were quickly removed from male, Sprague--Dawley rats (175--200 g), chopped into 200 microm slices and placed into chambers within 3 min of collection. Chambers were perfused with buffer, and superfusates were collected and assayed for immunoreactive calcitonin gene-related peptide (iCGRP) release via radioimmunoassay. After about 90 min of baseline collection, tissue was treated with capsaicin followed by a washout period. Capsaicin (1--100 microM) evoked concentration-dependent increases in iCGRP release. A competitive capsaicin receptor antagonist, capsazepine, significantly inhibited capsaicin-evoked release of iCGRP. In addition, capsaicin-evoked release of iCGRP was dependent on the presence of extracellular calcium. Furthermore, capsaicin-evoked release from TGG slices was significantly greater than that from slices of equivalent weights of adjacent trigeminal nerve shown histologically to be free of neuronal somata. These data support the hypothesis that Ca(2+)-dependent exocytosis of neuropeptides may occur within the TGG in vivo and that the majority of this release derives from neuronal somata.
Collapse
Affiliation(s)
- Yvonne M Ulrich-Lai
- Department of Restorative Sciences, University of Minnesota, Box 120 UMHC, 516 Delaware St. SE Minneapolis, MN 55455, USA Departments of Endodontics and Pharmacology, University of Texas Health Science Center, Mail Code 7892, 7703 Floyd Curl Drive, San Antonio 78229-3900, TX, USA Division of Endodontics, University of California, P.O. Box 758, San Francisco, CA 94143, USA
| | | | | | | | | |
Collapse
|
24
|
Tie-Jun SS, Xu Z, Hökfelt T. The expression of calcitonin gene-related peptide in dorsal horn neurons of the mouse lumbar spinal cord. Neuroreport 2001; 12:739-43. [PMID: 11277575 DOI: 10.1097/00001756-200103260-00025] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Using immunohistochemistry and in situ hybridization the expression of calcitonin gene-related peptide (CGRP) was studied in the mouse spinal cord under normal conditions and after unilateral rhizotomy and after local colchicine treatment. Under normal conditions a dense plexus of CGRP-immunoreactive (IR) fibres was observed in the superfical layers of dorsal horns with lower numbers of fibers in deeper laminae. Seven days after unilateral rhizotomy, there was a marked reduction of CGRP-IR fibres in the ipsilateral superfical layers and distinctly CGRP-IR neurons could be detected in the ipsilateral lamina III. CGRP mRNA-positive neurons were observed in lamina III in both the ipsilateral and contralateral dorsal horn. Colchicine treatment did not markedly increase the number of CGRP-IR neurons. The results suggest that CGRP is synthesized in local dorsal horn neurons of the mouse, and these neurons presumably participate in sensory processing.
Collapse
Affiliation(s)
- S S Tie-Jun
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
25
|
Ohtori S, Takahashi K, Chiba T, Yamagata M, Sameda H, Moriya H. Sensory innervation of the cervical facet joints in rats. Spine (Phila Pa 1976) 2001; 26:147-50. [PMID: 11154533 DOI: 10.1097/00007632-200101150-00007] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN With a retrograde neurotracing method with Fluoro-Gold (FG; Fluorochrome, Denver, CO), the level of dorsal root ganglions (DRGs) innervating the C1-C2, C3-C4, and C5-C6 facet joints and their pathways were investigated in rats. OBJECTIVES To clarify the levels of DRGs and parasympathetic nodose ganglions innervating the cervical facet joints and to determine the pathways from the facet joint to DRGs. SUMMARY OF BACKGROUND DATA Patients with cervical facet lesions and whiplash sometimes experience diffuse neck pain, headache, arm, and shoulder pain, but the pattern of sensory innervation of the facet joint is still unclear. METHODS Sixty male Sprague-Dawley rats were used. Fluoro-gold crystals (FG) were applied into the C1-C2 (C1-C2 group), C3-C4 (C3-C4 group) and C5-C6 (C5-C6 group) facet joints, and numbers of the labeled neurons in DRGs from C1 to T5 and nodose ganglions were determined. To determine the sensory pathway, bilateral sympathectomy was performed. RESULTS Neurons labeled with FG were present in the DRGs from C1 through C8 in the C1-C2 group, from C1 to T2 in the C3-C4 group, and from C3 to T3 in the C5-C6 group without sympathectomy. In the nodose ganglions, 17 FG-labeled neurons were present. The number of the labeled neurons after sympathectomy was not significantly different in the C1, C2, and C3 DRGs in the C1-C2 group, in the C3 and C4 DRGs in the C3-C4 group, and in the C5 and C6 DRGs in the C5-C6 group from that in the groups without sympathectomy. In contrast, the number of labeled neurons in the DRGs was significantly less at the other levels than that in the groups without sympathectomy (P < 0.01). CONCLUSION Sensory nerve fibers of the cervical facet joint were derived from the C1-T3 DRGs. Some sensory nerves from the cervical facet joint entered the paravertebral sympathetic trunks and reached the DRGs at multisegmental levels. The present findings regarding the multisegmental innervation to the facet joint may be of importance in the treatment of facet joint syndrome.
Collapse
Affiliation(s)
- S Ohtori
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Chiba, Japan.
| | | | | | | | | | | |
Collapse
|
26
|
Zhang L, Hoff AO, Wimalawansa SJ, Cote GJ, Gagel RF, Westlund KN. Arthritic calcitonin/alpha calcitonin gene-related peptide knockout mice have reduced nociceptive hypersensitivity. Pain 2001; 89:265-73. [PMID: 11166483 DOI: 10.1016/s0304-3959(00)00378-x] [Citation(s) in RCA: 124] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Peripheral inflammation induced with a knee joint injection of a mixture of kaolin/carrageenan (k/c) produces primary and secondary hyperalgesia. Inflammatory pain is thought to involve a variety of transmitters released from nerve terminals, including amino acids, substance P (SP) and calcitonin gene-related peptide (CGRP). In the present study, mice deficient in the calcitonin/alpha CGRP gene (CGRP(-/-)) displayed normal responses to noxious stimuli. However, the CGRP knockout mice failed to demonstrate development of secondary hyperalgesia after induction of knee joint inflammation in two tests that assess central sensitization, through testing at sites remote from the primary insult. Nociceptive behavioral responses were assessed using the hot-plate test and paw withdrawal latency (PWL) to radiant heat applied to the hindpaw. The CGRP(-/-) mice showed no signs of secondary hyperalgesia after development of knee joint inflammation, while the expected significant decrease in the PWL was observed in the CGRP(+/+) mice as control. The CGRP(-/-) mice also had a prolonged rather than a shortened response latency in the hot-plate test 4 h after knee joint injection of k/c. Immunohistological study showed that CGRP-like immunoreactivity (CGRP-LI) was absent in the spinal cord and dorsal root ganglia taken from the CGRP(-/-) mice. These results indicate that endogenous CGRP plays an important role in the plastic neurogenic changes occurring in response to peripheral inflammatory events including the development of nociceptive behaviors.
Collapse
Affiliation(s)
- L Zhang
- Department of Anatomy and Neurosciences, The University of Texas Medical Branch at Galveston, 301 University Boulevard, Galveston, TX 77555-1069, USA
| | | | | | | | | | | |
Collapse
|
27
|
Ohtori S, Takahashi K, Chiba T, Yamagata M, Sameda H, Moriya H. Substance P and calcitonin gene-related peptide immunoreactive sensory DRG neurons innervating the lumbar facet joints in rats. Auton Neurosci 2000; 86:13-7. [PMID: 11269919 DOI: 10.1016/s1566-0702(00)00194-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The rat L5/6 facet joint is innervated from L1 to L5 dorsal root ganglions (DRGs) multisegmentally. Sensory fibers from L1 and L2 DRGs were reported to innervate nonsegmentally through the paravertebral sympathetic trunks, while those from L3 to L5 DRGs segmentally innervate the L5/6 facet joint. The presence of substance P (SP) and calcitonin gene-related peptide (CGRP) immunoreactive (ir) nerve fibers has been demonstrated in the lumber facet joints, but their ratios have not been determined. Fluoro-gold (F-G) labeled neurons innervating the L5/6 facet joint were distributed throughout the DRGs for levels L1 to L5. Of the F-G labeled neurons, the ratios of SP-ir L1, L2, L3, L4 and L5 DRG neurons were 13, 15, 29, 31 and 30%, respectively, and those of CGRP-ir neurons were 17, 24, 44, 56 and 50%, respectively. The ratios of SP and CGRP-ir neurons in L1 and L2 DRGs were significantly less than those in L3, L4 or L5 DRGs. In conclusion, the neurons of L3, L4 and L5 DRGs may have a more significant role in pain sensation of the facets than L1 and L2 DRG neurons.
Collapse
Affiliation(s)
- S Ohtori
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, 1-8-1 Inohana, Chuo-ku, Chiba 260-8677, Japan.
| | | | | | | | | | | |
Collapse
|
28
|
Ebersberger A, Charbel Issa P, Vanegas H, Schaible HG. Differential effects of calcitonin gene-related peptide and calcitonin gene-related peptide 8-37 upon responses to N-methyl-D-aspartate or (R, S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate in spinal nociceptive neurons with knee joint input in the rat. Neuroscience 2000; 99:171-8. [PMID: 10924961 DOI: 10.1016/s0306-4522(00)00176-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Calcitonin gene-related peptide is involved in the spinal processing of nociceptive input from the knee joint and in the generation and maintenance of joint inflammation-evoked hyperexcitability of spinal cord neurons. The present study examined whether this peptide influences the excitation of nociceptive spinal cord neurons by agonists at the N-methyl-D-aspartate and the non-N-methyl-D-aspartate [(R, S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA)/kainate] receptors, both of which are essential for the excitation and hyperexcitability of spinal cord neurons. In anaesthetized rats extracellular recordings were made from dorsal horn neurons with knee input, and compounds were administered ionophoretically close to the neurons recorded. When calcitonin gene-related peptide was administered the responses of the neurons to the application of both N-methyl-D-aspartate and AMPA were increased. The coadministration of the antagonist calcitonin gene-related peptide 8-37 had no effect on the responses to N-methyl-D-aspartate, but it prevented the enhancement of the responses to N-methyl-D-aspartate by calcitonin gene-related peptide. By contrast, the administration of calcitonin gene-related peptide 8-37 enhanced the responses of the neurons to AMPA, and it did not antagonize but rather increased the effects of calcitonin gene-related peptide on these responses. The data suggest that the facilitatory role of calcitonin gene-related peptide on the development and maintenance of inflammation-evoked hyperexcitability is caused at least in part by the modulation of the activation of the dorsal horn neurons through their N-methyl-D-aspartate and non-N-methyl-D-aspartate receptors. The different effects of calcitonin gene-related peptide 8-37 on the respones to N-methyl-D-aspartate and AMPA suggest that different intracellular pathways may facilitate the activation of N-methyl-D-aspartate and ionotropic non-N-methyl-D-aspartate receptors.
Collapse
Affiliation(s)
- A Ebersberger
- Institut für Physiologie, Friedrich-Schiller-Universität, Teichgraben 8, 07740, Jena, Germany
| | | | | | | |
Collapse
|
29
|
Wang H, Wang R, Nie H, Zhang R, Qiao JT. Neurokinin A, calcitonin gene-related peptide, and dynorphin A (1-8) in spinal dorsal horn contribute to descending inhibition evoked by nociceptive afferent pathways: an immunocytochemical study. REGULATORY PEPTIDES 2000; 89:7-12. [PMID: 10771307 DOI: 10.1016/s0167-0115(99)00100-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Immunocytochemical technique was used to compare the contents of neurokinin A (NKA), calcitonin gene-related peptide (CGRP), and dynorphin A (1-8) (DynA) on two sides of the lumbar dorsal horn of rats in which the unilateral thoracic dorsalateral funiculus (DLF) was transected while formalin (0.2 ml, 0.5%) was injected equally into two hindpaws. The results showed that all the NKA-like, CGRP-like, and DynA (1-8)-like immunoreactivities were significantly lower in the superficial laminae of the dorsal horn on the side ipsilateral to the lesioned DLF than that on the side with intact DLF. This implies that peripheral noxious inputs activate the supraspinal descending inhibitory systems which in turn modulate the transmission of noxious message at the spinal level by changing the release of related neuropeptides.
Collapse
Affiliation(s)
- H Wang
- Department of Neurobiology, Shanxi Medical University, Taiyuan, Shanxi, People's Republic of China
| | | | | | | | | |
Collapse
|
30
|
Yu LC, Zheng EM, Lundeberg T. Calcitonin gene-related peptide 8-37 inhibits the evoked discharge frequency of wide dynamic range neurons in dorsal horn of the spinal cord in rats. REGULATORY PEPTIDES 1999; 83:21-4. [PMID: 10498340 DOI: 10.1016/s0167-0115(99)00046-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
The present study was performed to explore the effect of calcitonin gene-related peptide 8-37 (CGRP8-37) on the electrical stimulation-evoked discharge frequency of wide dynamic range (WDR) neurons in the dorsal horn of the spinal cord in rats. The discharge frequencies of WDR neurons were evoked by transdermic electrical stimulation applied on the ipsilateral hindpaw. CGRP8-37 was applied directly on the dorsal surface of the L3 to L5 spinal cord. After the administration of 3 nmol of CGRP8-37, the evoked discharge frequency of WDR neurons decreased significantly, an effect lasting more than 30 min. The results indicate that CGRP receptors play an important role in the transmission of presumed nociceptive information in the dorsal horn of the spinal cord.
Collapse
Affiliation(s)
- L C Yu
- Department of Physiology, College of Life Science, Peking University, Beijing, People's Republic of China.
| | | | | |
Collapse
|
31
|
Ye Z, Wimalawansa SJ, Westlund KN. Receptor for calcitonin gene-related peptide: localization in the dorsal and ventral spinal cord. Neuroscience 1999; 92:1389-97. [PMID: 10426493 DOI: 10.1016/s0306-4522(99)00088-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although the distribution of calcitonin gene-related peptide has been extensively studied in the spinal cord, little is known about the precise subcellular localization of receptors for calcitonin gene-related peptide. The present study was undertaken to localize calcitonin gene-related peptide receptors in both the dorsal and ventral horns of the rat spinal cord. Immunocytochemical localization with specific monoclonal antibodies was performed at the light and electron microscopic levels. Calcitonin gene-related peptide receptor was expressed in neuronal but not glial elements. Discrete postsynaptic localization of receptor for the calcitonin gene-related peptide was evident in the cells and dendrites of the superficial dorsal horn. Some of the terminal endings apposing the stained synapses formed the central terminals of glomerular complexes. The endings were scallop shaped (Type I), typical of primary afferent terminations. Other dorsal horn structures with postsynaptic labeling were contacted by dome-shaped or elongated axonal endings. Presynaptic localization on some dorsal horn terminations may serve an autoreceptor function. Motoneurons, on the other hand, were contacted by axonal terminals with presynaptic calcitonin gene-related peptide receptors. These data suggest that (i) dorsal horn neurons are capable of direct primary afferent, calcitonin gene-related peptide receptor-mediated interactions and (ii) neuronal terminals contacting motor horn cells can be influenced through presynaptic paracrine-like calcitonin gene-related peptide receptor-mediated interactions. Thus, calcitonin gene-related peptide can have multiple modulatory effects on spinal cord neurons through site-specific receptors.
Collapse
Affiliation(s)
- Z Ye
- Department of Anatomy and Neurosciences, Marine Biomedical Institute, University of Texas Medical Branch, Galveston 77555-1069, USA
| | | | | |
Collapse
|
32
|
Tonra JR. Classical and novel directions in neurotrophin transport and research: anterograde transport of brain-derived neurotrophic factor by sensory neurons. Microsc Res Tech 1999; 45:225-32. [PMID: 10383115 DOI: 10.1002/(sici)1097-0029(19990515/01)45:4/5<225::aid-jemt6>3.0.co;2-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
After the discovery of nerve growth factor, a classic model of neurotrophin action was developed. In this model, nerve endings compete for limited quantities of neurotrophic factors produced in neuronal target tissues. Neurotrophins are bound with high-affinity receptors expressed on the neuronal membrane and then endocytosed and retrogradely transported back to the cell body of responsive neurons. This classic model of target derived trophic support has been utilized to explain a wide range of trophic actions including effects on neuronal survival, terminal branching, and protein expression. However, a number of recent findings in the field of neurotrophin research cannot be explained using the classic model. In the peripheral nervous system (PNS), sensory neurons have been shown to contain mRNA for a member of the neurotrophin family, brain-derived neurotrophic factor (BDNF). Sensory neurons do not receive synaptic input so neurotrophin production by these cells does not fit into the classic target derived model. In contrast to target derived trophic support, BDNF produced by sensory neurons provides local autocrine and paracrine neurotrophic support in vitro. Furthermore, in vivo, sensory neurons transport BDNF in the anterograde direction away from the cell body, and opposite to the retrograde direction utilized in the classic model. Thus, out of necessity, a new direction for neurotrophin research has developed to study the production and anterograde transport of neurotrophins. The importance of this new mode of neurotrophin action in the PNS is indicated by results that implicate it in the response to pain, inflammation, and nerve injury.
Collapse
Affiliation(s)
- J R Tonra
- Millennium BioTherapeutics, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
33
|
Abstract
The highly disagreeable sensation of pain results from an extraordinarily complex and interactive series of mechanisms integrated at all levels of the neuroaxis, from the periphery, via the dorsal horn to higher cerebral structures. Pain is usually elicited by the activation of specific nociceptors ('nociceptive pain'). However, it may also result from injury to sensory fibres, or from damage to the CNS itself ('neuropathic pain'). Although acute and subchronic, nociceptive pain fulfils a warning role, chronic and/or severe nociceptive and neuropathic pain is maladaptive. Recent years have seen a progressive unravelling of the neuroanatomical circuits and cellular mechanisms underlying the induction of pain. In addition to familiar inflammatory mediators, such as prostaglandins and bradykinin, potentially-important, pronociceptive roles have been proposed for a variety of 'exotic' species, including protons, ATP, cytokines, neurotrophins (growth factors) and nitric oxide. Further, both in the periphery and in the CNS, non-neuronal glial and immunecompetent cells have been shown to play a modulatory role in the response to inflammation and injury, and in processes modifying nociception. In the dorsal horn of the spinal cord, wherein the primary processing of nociceptive information occurs, N-methyl-D-aspartate receptors are activated by glutamate released from nocisponsive afferent fibres. Their activation plays a key role in the induction of neuronal sensitization, a process underlying prolonged painful states. In addition, upon peripheral nerve injury, a reduction of inhibitory interneurone tone in the dorsal horn exacerbates sensitized states and further enhance nociception. As concerns the transfer of nociceptive information to the brain, several pathways other than the classical spinothalamic tract are of importance: for example, the postsynaptic dorsal column pathway. In discussing the roles of supraspinal structures in pain sensation, differences between its 'discriminative-sensory' and 'affective-cognitive' dimensions should be emphasized. The purpose of the present article is to provide a global account of mechanisms involved in the induction of pain. Particular attention is focused on cellular aspects and on the consequences of peripheral nerve injury. In the first part of the review, neuronal pathways for the transmission of nociceptive information from peripheral nerve terminals to the dorsal horn, and therefrom to higher centres, are outlined. This neuronal framework is then exploited for a consideration of peripheral, spinal and supraspinal mechanisms involved in the induction of pain by stimulation of peripheral nociceptors, by peripheral nerve injury and by damage to the CNS itself. Finally, a hypothesis is forwarded that neurotrophins may play an important role in central, adaptive mechanisms modulating nociception. An improved understanding of the origins of pain should facilitate the development of novel strategies for its more effective treatment.
Collapse
Affiliation(s)
- M J Millan
- Institut de Recherches Servier, Psychopharmacology Department, Paris, France
| |
Collapse
|
34
|
Hull KL, Fathimani K, Sharma P, Harvey S. Calcitropic peptides: neural perspectives. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART C, PHARMACOLOGY, TOXICOLOGY & ENDOCRINOLOGY 1998; 119:389-410. [PMID: 9827010 DOI: 10.1016/s0742-8413(98)00010-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In mammals and higher vertebrates, calcitropic peptides are produced by peripheral endocrine glands: the parathyroid gland (PTH), thyroid or ultimobranchial gland (calcitonin) and the anterior pituitary gland (growth hormone and prolactin). These hormones are, however, also found in the neural tissues of lower vertebrates and invertebrates that lack these endocrine organs, suggesting that neural tissue may be an ancestral site of calcitropic peptide synthesis. Indeed, the demonstration of CNS receptors for these calcitropic peptides and their induction of neurological actions suggest that these hormones arose as neuropeptides. Neural and neuroendocrine roles of some of these calcitropic hormones (calcitonin and parathyroid hormone) and related peptides (calcitonin gene related peptide, stanniocalcin and parathyroid hormone related peptide) are thus the focus of this review.
Collapse
Affiliation(s)
- K L Hull
- Department of Physiology, University of Alberta, Edmonton, Canada
| | | | | | | |
Collapse
|
35
|
Roche AK, Koutlas IG, Kajander KC. Labeling of calcitonin gene-related peptide and substance P increases in subnucleus caudalis of rabbit during maxillary sinusitis. Brain Res 1998; 791:283-9. [PMID: 9593942 DOI: 10.1016/s0006-8993(97)01556-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Calcitonin gene-related peptide-like immunoreactivity (CGRP-LI) and substance P-like immunoreactivity (SP-LI) were evaluated in subnucleus caudalis following induction of sinusitis. Three days after induction, intensity of labeling for CGRP-LI and SP-LI increased in ipsilateral subnucleus caudalis. Labeling for CGRP-LI and SP-LI appeared normal at later time points (20 and 28 days). Early changes in these neuropeptides may contribute to the inflammatory process and painful symptoms accompanying sinusitis.
Collapse
Affiliation(s)
- A K Roche
- Department of Pharmacology, University of Minnesota, Minneapolis, USA
| | | | | |
Collapse
|
36
|
|
37
|
Carr PA, Wenner P. Calcitonin gene-related peptide: distribution and effects on spontaneous rhythmic activity in embryonic chick spinal cord. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 106:47-55. [PMID: 9554950 DOI: 10.1016/s0165-3806(97)00191-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Immunohistochemical and in vitro electrophysiological techniques were utilized to examine the distribution and possible role of calcitonin gene-related peptide (CGRP) in the spinal cord of the developing chick. CGRP-like immunoreactivity first appeared in the lateral motor column of the lumbosacral spinal cord at embryonic day 6 followed by the emergence of fiber immunoreactivity in the dorsal horn at embryonic day 11. A rostrocaudal survey of the cervical to lumbosacral spinal cord in embryonic day 18 chick demonstrated robust CGRP-like immunoreactivity at all levels in both putative motor neurons and dorsal horn fibers. Additionally, small immunoreactive lamina VII neurons were observed in sections of lumbosacral cord. In the embryonic day 10 (E10) in vitro reduced spinal cord preparation, bath application of the calcitonin gene-related peptide antagonist human alpha-CGRP fragment 8-37 decreased the frequency and increased the duration of episodes of spontaneously occurring rhythmic activity. Conversely, application of alpha or beta forms of calcitonin gene-related peptide increased the frequency of the rhythmic episodes. The electrophysiological results suggest there is a constitutive release of calcitonin gene-related peptide contributing to the spontaneous rhythmic activity. Immunohistochemical results from E10 animals suggest that CGRP-like immunoreactive putative motoneurons may be the source of the released CGRP.
Collapse
Affiliation(s)
- P A Carr
- Section on Developmental Neurobiology, NINDS, NIH, Bethesda, MD 20892, USA.
| | | |
Collapse
|
38
|
Miki K, Fukuoka T, Tokunaga A, Noguchi K. Calcitonin gene-related peptide increase in the rat spinal dorsal horn and dorsal column nucleus following peripheral nerve injury: up-regulation in a subpopulation of primary afferent sensory neurons. Neuroscience 1998; 82:1243-52. [PMID: 9466443 DOI: 10.1016/s0306-4522(97)00258-3] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Calcitonin gene-related peptide in sensory primary afferent neurons has an excitatory effect on postsynaptic neurons and potentiates the effect of substance P in the rat spinal dorsal horn. It has been established that calcitonin gene-related peptide expression in dorsal root ganglion neurons is depressed, and the effect of calcitonin gene-related peptide on dorsal horn neurons is attenuated, following peripheral nerve injury. We report here that a subpopulation of injured dorsal root ganglion neurons show increased expression of calcitonin gene-related peptide. Using in situ hybridization and the retrograde tracer, FluoroGold, we detected an increased number of medium- to large-sized rat dorsal root ganglion neurons projecting to the gracile nucleus that expressed alpha-calcitonin gene-related peptide messenger RNA following spinal nerve transection. Immunohistochemistry revealed a significant increase in calcitonin gene-related peptide immunoreactivity in the gracile nucleus and in laminae III-IV of the spinal dorsal horn. These results indicate that a subpopulation of dorsal root ganglion neurons express alpha-calcitonin gene-related peptide messenger RNA in response to peripheral nerve injury, and transport this peptide to the gracile nucleus and to laminae III-IV of the spinal dorsal horn. The increase of the excitatory neuropeptide, calcitonin gene-related peptide, in sites of primary afferent termination may affect the excitability of postsynaptic neurons, and have a role in neuronal plasticity following peripheral nerve injury.
Collapse
Affiliation(s)
- K Miki
- Department of Anatomy and Neuroscience, Hyogo College of Medicine, Nishinomiya, Japan
| | | | | | | |
Collapse
|
39
|
van Rossum D, Hanisch UK, Quirion R. Neuroanatomical localization, pharmacological characterization and functions of CGRP, related peptides and their receptors. Neurosci Biobehav Rev 1997; 21:649-78. [PMID: 9353797 DOI: 10.1016/s0149-7634(96)00023-1] [Citation(s) in RCA: 386] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Calcitonin generelated peptide (CGRP) is a neuropeptide discovered by a molecular approach over 10 years ago. More recently, islet amyloid polypeptide or amylin, and adrenomedullin were isolated from human insulinoma and pheochromocytoma respectively, and revealed between 25 and 50% sequence homology with CGRP. This review discusses findings on the anatomical distributions of CGRP mRNA, CGRP-like immunoreactivity and receptors in the central nervous system, as well as the potential physiological roles for CGRP. The anatomical distribution and biological activities of amylin and adrenomedullin are also presented. Based upon the differential biological activity of various CGRP analogs, the CGRP receptors have been classified in two major classes, namely the CGRP1 and CGRP2 subtypes. A third subtype has also been proposed (e.g. in the nucleus accumbens) as it does not share the pharmacological properties of the other two classes. The anatomical distribution and the pharmacological characteristics of amylin binding sites in the rat brain are different from those reported for CGRP but share several similarities with the salmon calcitonin receptors. The receptors identified thus far for CGRP and related peptides belong to the G protein-coupled receptor superfamily. Indeed, modulation of adenylate cyclase activity following receptor activation has been reported for CGRP, amylin and adrenomedullin. Furthermore, the binding affinity of CGRP and related peptides is modulated by nucleotides such as GTP. The cloning of various calcitonin and most recently of CGRP1 and adrenomedullin receptors was reported and revealed structural similarities but also significant differences to other members of the G protein-coupled receptors. They may thus form a new subfamily. The cloning of the amylin receptor(s) as well as of the other putative CGRP receptor subtype(s) are still awaited. Finally, a broad variety of biological activities has been described for CGRP-like peptides. These include vasodilation, nociception, glucose uptake and the stimulation of glycolysis in skeletal muscles. These effects may thus suggest their potential role and therapeutic applications in migraine, subarachnoid haemorrhage, diabetes and pain-related mechanisms, among other disorders.
Collapse
Affiliation(s)
- D van Rossum
- Department of Pharmacology, McGill University, Douglas Hospital Research Centre, Verdun, Québec, Canada
| | | | | |
Collapse
|
40
|
Suseki K, Takahashi Y, Takahashi K, Chiba T, Tanaka K, Morinaga T, Nakamura S, Moriya H. Innervation of the lumbar facet joints. Origins and functions. Spine (Phila Pa 1976) 1997; 22:477-85. [PMID: 9076878 DOI: 10.1097/00007632-199703010-00003] [Citation(s) in RCA: 77] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
STUDY DESIGN The levels of dorsal root ganglia and paravertebral sympathetic ganglia innervating the lumbar facet joint were investigated in rats using the retrograde transport method. The pathways and functions of the nerve fibers supplying the lumbar facet joint were determined immunohistochemically. OBJECTIVES To study lumbar facet pain in relation to its innervation. SUMMARY OF BACKGROUND DATA The lumbar facet joints have been reported to be innervated segmentally. Little is known, however, about the origins and functions of the nerve fibers. METHODS Cholera toxin B subunit, a neural tracer, was placed in the L5-L6 facet joint, and the bilateral dorsal root ganglia and paravertebral sympathetic ganglia were examined immunohistochemically. The serial sections of lumbar vertebrae of newborn rats and the sections of the facet joint capsules, dorsal root ganglia, and paravertebral sympathetic ganglia of adult rats were investigated immunohistochemically. The pathways of the nerve fibers supplying the facet joint were reconstituted. RESULTS Labeled neurons existed in ipsilateral dorsal root ganglia from L1 to L5 and in paravertebral sympathetic ganglia from T12 to L6. The dorsal ramus of the spinal nerve and rami communicantes were connected to each other by calcitonin gene-related peptide immunoreactive fibers and dopamine beta-hydroxylase immunoreactive fibers. CONCLUSIONS The L5-L6 facet joint was innervated by ipsilateral dorsal root ganglia and paravertebral sympathetic ganglia, segmentally and nonsegmentally. Some of the sensory fibers from the facet joint may pass through the paravertebral sympathetic trunk, reaching L1 and/or L2 dorsal root ganglia. Inguinal and/or anterior thigh pain with lower lumbar facet joint lesions may be explained as referred pain.
Collapse
MESH Headings
- Animals
- Antibody Specificity
- Calcitonin Gene-Related Peptide/analysis
- Calcitonin Gene-Related Peptide/immunology
- Cell Count
- Cholera Toxin
- Dopamine beta-Hydroxylase/analysis
- Dopamine beta-Hydroxylase/immunology
- Ganglia, Spinal/chemistry
- Ganglia, Spinal/cytology
- Ganglia, Spinal/physiology
- Ganglia, Sympathetic/chemistry
- Ganglia, Sympathetic/cytology
- Ganglia, Sympathetic/physiology
- Immunohistochemistry
- Lumbar Vertebrae/innervation
- Male
- Nerve Fibers/chemistry
- Nerve Fibers/enzymology
- Nerve Fibers/immunology
- Neurons, Afferent/chemistry
- Neurons, Afferent/immunology
- Neurons, Afferent/ultrastructure
- Neuropeptide Y/analysis
- Neuropeptide Y/immunology
- Pain/physiopathology
- Rats
- Rats, Sprague-Dawley
- Substance P/analysis
- Substance P/immunology
- Vasoactive Intestinal Peptide/analysis
- Vasoactive Intestinal Peptide/immunology
Collapse
Affiliation(s)
- K Suseki
- Department of Orthopaedic Surgery, School of Medicine, Chiba University, Japan
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Scarfone E, Ulfendahl M, Lundeberg T. The cellular localization of the neuropeptides substance P, neurokinin A, calcitonin gene-related peptide and neuropeptide Y in guinea-pig vestibular sensory organs: a high-resolution confocal microscopy study. Neuroscience 1996; 75:587-600. [PMID: 8931021 DOI: 10.1016/0306-4522(96)00243-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Four neuropeptides, substance P, neurokinin A, calcitonin gene-related peptide and neuropeptide Y, were detected by radioimmunoassay in guinea-pig vestibular end-organs. High-resolution confocal microscopy visualization of immunofluorescence staining was used to determine the cellular localization of these peptides. Substance P- and neurokinin A-like immunoreactivities were found to co-exist in afferent fibers innervating the peripheral regions of both the utricular and ampullar sensory organs. The immunoreactivity was more concentrated in the distal ends of the calyceal-shaped nerve endings that innervate type I sensory cells. While in the guinea-pig, nerve calyces and type I cells are distributed in both the central and peripheral regions of the sensory epithelia, immunoreactive calyces were found only in the peripheral regions. Calcitonin gene-related peptide-like immunoreactivity was localized in small bouton endings situated at the level of the base of the hair cells. These boutons were in a position to make axosomatic contacts with type II sensory cells and axodendritic contacts with afferent nerve endings. Calcitonin gene-related peptide immunoreactivity co-existed with choline acetyltransferase immunoreactivity. The localization and shape of these boutons identified them as the axonal endings of efferent vestibular fibers. Neuropeptide Y-like immunoreactivity was not observed in the actual sensory epithelium but in the underlying connective tissue, where it was located in varicose fibers along blood vessels. The synaptic position of the tachykinins is clearly distinct from that of calcitonin gene-related peptide. This segregation distinguishes the vestibular end-organs from most peripheral tissues where these peptides are co-localized. The tachykinin-immunoreactive afferent fibers are postsynaptic to the hair cells. If, as in somatic sensory endings, these fibers can be triggered to release the neuropeptides by an axon reflex type of activation, then the tachykinins could interfere directly with the function of type I and type II vestibular hair cells. Calcitonin gene-related peptide co-exists with acetylcholine in the efferent axonal endings that are presynaptic to type II hair cells and to afferent fibers. Calcitonin gene-related peptide can thus interfere by direct synaptic action with type II hair cells only. It may also regulate the activity of the tachykinin-containing afferents.
Collapse
Affiliation(s)
- E Scarfone
- Laboratoire de Neurophysiologie Sensorielle, INSERM U432, Université de Montpellier II, France
| | | | | |
Collapse
|
42
|
Neugebauer V, Rümenapp P, Schaible HG. Calcitonin gene-related peptide is involved in the spinal processing of mechanosensory input from the rat's knee joint and in the generation and maintenance of hyperexcitability of dorsal horn-neurons during development of acute inflammation. Neuroscience 1996; 71:1095-109. [PMID: 8684614 DOI: 10.1016/0306-4522(95)00473-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In an electrophysiological study in anaesthetized rats, the involvement of calcitonin gene-related peptide in the spinal processing of mechanosensory information from the normal and inflamed knee joint was investigated. Calcitonin gene-related peptide(8-37), a specific antagonist at calcitonin gene-related peptide 1 receptors was administered ionophoretically close to nociceptive neurons with input from the knee joint before, during, and after development of acute inflammation in the knee induced by the intra-articular injections of kaolin and carrageenan. Calcitonin gene-related peptide (8-37) selectively antagonized the effects of ionophoretically applied calcitonin gene-related peptide but not those of ionophoretically applied substance P, neurokinin A, and (R,S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid. Before inflammation, calcitonin gene-related peptide (8-37) reduced the responses to noxious pressure applied to the knee in 22 of 23 neurons; in 14 of 22 neurons, the responses to innocuous pressure were also reduced. In eight neurons calcitonin gene-related peptide (8-37) was administered during induction and in three periods within the first 90 min of inflammation. In these neurons the developing inflammation evoked a significantly smaller increase of the responses to innocuous and noxious pressure applied to the injected knee than in 13 control neurons which were not treated by the antagonist during induction of inflammation. In 16 of 16 neurons, calcitonin gene-related peptide (8-37) reduced the responses to innocuous and noxious pressure once inflammation and hyperexcitability of the spinal cord neurons were established. These data show that calcitonin gene-related peptide is involved in the spinal processing of mechanosensory input from the normal joint. Furthermore, this peptide and its spinal receptors significantly contribute to the generation and expression of inflammation-evoked hyperexcitability of spinal cord neurons during the development of inflammation. Finally, calcitonin gene-related peptide is involved in the maintenance of inflammation-evoked hyperexcitability. By these effects calcitonin gene-related peptide receptors may significantly contribute to the neuronal basis of hyperalgesia and allodynia associated with inflammation.
Collapse
Affiliation(s)
- V Neugebauer
- Physiologisches Institut, Universität Würzburg, Germany
| | | | | |
Collapse
|
43
|
Yu LC, Hansson P, Lundeberg T. The calcitonin gene-related peptide antagonist CGRP8-37 increases the latency to withdrawal responses bilaterally in rats with unilateral experimental mononeuropathy, an effect reversed by naloxone. Neuroscience 1996; 71:523-31. [PMID: 9053804 DOI: 10.1016/0306-4522(95)00428-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present study was performed in rats with experimental mononeuropathy after left common sciatic nerve constriction. A bilateral decrease in hindpaw withdrawal latency to thermal and mechanical stimulation was observed after unilateral ligation of the left common sciatic nerve; however, it was more pronounced on the lesioned side. Compared with sham-operated rats, the content of calcitonin gene-related peptide-like immunoreactivity was significantly decreased in the left dorsal horn of the spinal cord and left dorsal root ganglia in rats with mononeuropathy. Blocking the receptor of calcitonin gene-related peptide, by intrathecal injection of 5 or 10 nmol of calcitonin gene-related peptide (8-37), induced a significant bilateral increase in hindpaw withdrawal latency to both thermal and mechanical stimulation which, however, was significantly less pronounced in mononeuropathic rats than in intact rats. The effect of calcitonin gene-related peptide (8-37) was reversed by intrathecal administration of the opioid antagonist naloxone. The contribution of calcitonin gene-related peptide and its receptors to transmission of presumed nociceptive information appears to be reduced in the sciatic nerve constriction model. The decrease in reflex responsiveness induced by calcitonin gene-related peptide (8-37) was counteracted by naloxone, indicating that opioids control the net effect of excitation in the spinal cord circuitry induced by calcitonin gene-related peptide and possibly other co-released neurotransmitters.
Collapse
Affiliation(s)
- L C Yu
- Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
44
|
Schaible HG, Schmidt RF. Neurophysiology of chronic inflammatory pain: electrophysiological recordings from spinal cord neurons in rats with prolonged acute and chronic unilateral inflammation at the ankle. PROGRESS IN BRAIN RESEARCH 1996; 110:167-76. [PMID: 9000724 DOI: 10.1016/s0079-6123(08)62573-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- H G Schaible
- Physiologisches Institut, Universität Würzburg, Germany
| | | |
Collapse
|
45
|
Schaible HG. On the role of tachykinins and calcitonin gene-related peptide in the spinal mechanisms of nociception and in the induction and maintenance of inflammation-evoked hyperexcitability in spinal cord neurons (with special reference to nociception in joints). PROGRESS IN BRAIN RESEARCH 1996; 113:423-41. [PMID: 9009749 DOI: 10.1016/s0079-6123(08)61102-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- H G Schaible
- Physiologisches Institut, Universität Würzburg, Germany
| |
Collapse
|
46
|
Yoshimma M. Chapter 26. Slow synaptic transmission in the spinal dorsal horn. PROGRESS IN BRAIN RESEARCH 1996. [DOI: 10.1016/s0079-6123(08)61103-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
47
|
Yu LC, Hansson P, Lundeberg T. Opioid antagonists naloxone, beta-funaltrexamine and naltrindole, but not nor-binaltorphimine, reverse the increased hindpaw withdrawal latency in rats induced by intrathecal administration of the calcitonin gene-related peptide antagonist CGRP8-37. Brain Res 1995; 698:23-9. [PMID: 8581488 DOI: 10.1016/0006-8993(95)00752-c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We recently demonstrated that intrathecal administration of calcitonin gene-related peptide 8-37 (CGRP8-37), a selective antagonist of calcitonin gene-related peptide receptors, dose-dependently increased the latency to hindpaw withdrawal responses induced by both thermal and mechanical stimulation in intact rats, indicating a role for CGRP and its receptors in the transmission of presumed nociceptive information in the spinal cord. The present study was performed to explore the interaction between CGRP and opioids in the spinal cord of rats. The effects of naloxone, a non-selective opioid receptor antagonist, and three different selective opioid receptor antagonists on the increased latency to withdrawal response induced by intrathecal injection of CGRP8-37 were explored. Intrathecal administration of 10 nmol of CGRP8-37 induced a significant bilateral increase in hindpaw withdrawal latency to both thermal and mechanical stimulation. The effect was partly reversed by intrathecal injection of 4 or 8 micrograms of naloxone, 10 nmol of either the mu opioid receptor antagonist beta-funaltrexamine or the delta opioid receptor antagonist naltrindole, but not by 10 nmol of the kappa opioid receptor antagonist nor-binaltorphimine. These results indicate that mu and delta, but not kappa, opioid receptors are involved in the modulation of post-synaptic effects and/or release of CGRP and other neurotransmitters.
Collapse
Affiliation(s)
- L C Yu
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
48
|
Radhakrishnan V, Henry JL. Electrophysiology of neuropeptides in the sensory spinal cord. PROGRESS IN BRAIN RESEARCH 1995; 104:175-95. [PMID: 8552768 DOI: 10.1016/s0079-6123(08)61791-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- V Radhakrishnan
- Department of Physiology, McGill University, Montreal, Quebec, Canada
| | | |
Collapse
|
49
|
Hanesch U, Schaible HG. Effects of ankle joint inflammation on the proportion of calcitonin gene-related peptide (CGRP)-immunopositive perikarya in dorsal root ganglia. PROGRESS IN BRAIN RESEARCH 1995; 104:339-47. [PMID: 8552778 DOI: 10.1016/s0079-6123(08)61799-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- U Hanesch
- Physiologisches Institut, Universität Würzburg, Germany
| | | |
Collapse
|
50
|
Schaible HG, Freudenberger U, Neugebauer V, Stiller RU. Intraspinal release of immunoreactive calcitonin gene-related peptide during development of inflammation in the joint in vivo--a study with antibody microprobes in cat and rat. Neuroscience 1994; 62:1293-305. [PMID: 7845599 DOI: 10.1016/0306-4522(94)90361-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
This study addressed the intraspinal release of immunoreactive calcitonin gene-related peptide in vivo during mechanical stimulation of the normal joint and during the development of an acute experimental inflammation in the knee joint in the anaesthetized cat (spinalized) and rat (not spinalized). Release was assessed using microprobes coated with antibody to calcitonin gene-related peptide; inhibition of binding of [125I]calcitonin gene-related peptide to these probes following insertion into the spinal cord is equated with intraspinal release of the endogenous (unlabelled) peptide. Probes inserted prior to inflammation showed marked basal release of immunoreactive calcitonin gene-related peptide in the dorsal horn with a maximum in the superficial dorsal horn in the absence of intentional stimulation. The pattern of binding of [125I]calcitonin gene-related peptide was not or only minimally changed by innocuous mechanical stimuli (flexion of and innocuous pressure to the knee in the cat and innocuous pressure to the knee of the rat) but was significantly altered by electrical stimulation of the tibial nerve in the cat (sufficient to excite unmyelinated afferent fibres), indicating release of the peptide by the latter stimulus. During the first hours of the development of an experimental inflammation in the knee joint induced by intra-articular injections of kaolin and carrageenan, the pattern of binding of [125I]calcitonin gene-related peptide changed. In the cat, the level of immunoreactive calcitonin gene-related peptide showed a persistent increase in the gray matter and up to the surface of the cord and release was slightly increased by innocuous stimuli. In the rat, increased levels of immunoreactive calcitonin gene-related peptide were mainly seen in the superficial and deep dorsal horn during innocuous pressure (this stimulus did not evoke release of the peptide prior to inflammation) and noxious pressure applied to the injected knee, whereas increased basal levels were only observed at later stages. These data show that the development of an acute experimental inflammation in the joint is associated with an enhancement of the intraspinal release of immunoreactive calcitonin gene-related peptide. Since the changes in the release were noted at an early stage, within the first hours, they could contribute to the generation of inflammation-evoked changes of the responsiveness of spinal cord neurons and hence to the mechanisms inducing inflammatory pain.
Collapse
Affiliation(s)
- H G Schaible
- Physiologisches Institut, Universität Würzburg, Germany
| | | | | | | |
Collapse
|