1
|
Koriem KMM, El-Soury NHT. Luteolin amends neural neurotransmitters, antioxidants, and inflammatory markers in the cerebral cortex of Adderall exposed rats. Neurosci Lett 2024; 823:137652. [PMID: 38266975 DOI: 10.1016/j.neulet.2024.137652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/10/2024] [Accepted: 01/21/2024] [Indexed: 01/26/2024]
Abstract
BACKGROUND Adderall is a central nervous system stimulant while luteolin has neuroprotective activity. This study aimed to determine whether luteolin can amend neural neurotransmitters, antioxidants, and inflammatory markers in the cerebral cortex of Adderall exposed rats. METHODS Thirty-six male albino rats were divided into 6 equal groups, Control, Luteolin (1 g/kg)-treated, and Luteolin (2 g/kg)-treated groups: normal rats were orally administrated once a day with 2 ml distilled water, luteolin (1 g/kg), and luteolin (2 g/kg), respectively for 4 weeks. Adderall rats, Adderall rats + luteolin (1 g/kg)-treated, and Adderall rats + luteolin (2 g/kg)-treated groups: normal rats were orally administrated once a day with 10 mg/kg of Adderall, 3 days/week for 4 weeks, then these rats orally administrated daily once a day with 2 ml of distilled water, luteolin (1 g/kg), and luteolin (2 g/kg), respectively for another 4 weeks. RESULTS AND CONCLUSION Adderall decreased superoxide dismutase, glutathione peroxidase, catalase, NADPH oxidase, interleukin-10, serotonin, dopamine, norepinephrine, γ-aminobutyric acid, and acetylcoline estrase but increased malondialdehyde, conjugated dienes, oxidative index, tumour necrosis factor-α, interleukin-1β, and interleukin-6 levels in the cerebral cortex. Adderall increased the expression of glial fibrillary acidic protein, ionized calcium binding adaptor molecule 1, and anti-calbindin in the cerebral cortex of Adderall-treated rats. In Adderall-treated rats, daily oral administration of luteolin for 4 weeks brought all these parameters back to values that were close to control where higher dose was more effective than lower dose. The importance of this research is to provide natural compound that amends Adderall-related neural disturbances and this natural compound is cheap, avaliable without any side effect and it does not interfer with Adderall efficiency.
Collapse
Affiliation(s)
- Khaled M M Koriem
- Medical Physiology Department, Medical Research and Clinical Studies Institute, National Research Centre, Dokki, Giza, Egypt.
| | - Noura H T El-Soury
- Pathology Department, Faculty of Veterinary Medicine, Cairo University, Egypt
| |
Collapse
|
2
|
Dzurjašková Z, Blaško J, Tomori Z, Vanický I. A method to prepare large resin sections for counting myelinated axons in rodent CNS and PNS structures. Neurosci Lett 2021; 750:135767. [PMID: 33636286 DOI: 10.1016/j.neulet.2021.135767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/08/2021] [Accepted: 02/21/2021] [Indexed: 10/22/2022]
Abstract
We present a method that allows preparing histological sections from large blocks of nervous tissue embedded in epoxy resin. Resin-embedding provides excellent resolution especially for the myelin-rich white matter and is often being used for visualizing the myelinated axons in peripheral nerves. However, because of the limited penetration of the reagents, only very small tissue specimens can be processed in this way. Here, we describe a method that enables to embed large specimens and their sectioning on a standard sliding microtome. To process the large specimens, modifications in several steps of the processing technique had to be made. In this paper we demonstrate, that with this technique 1-3 μm thick transversal sections can be prepared from the resin-embedded specimens as large as rat brain hemisphere. Such a large section allows simultaneously: 1.) overviewing and delineating the gross anatomical structures, and 2.) observing the subcellular details at the highest possible optical magnifications. Such a large section with excellent resolution allows application of unbiased stereological methods and reliable quantification of very small objects within the area of interest.
Collapse
Affiliation(s)
- Zuzana Dzurjašková
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia.
| | - Juraj Blaško
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia.
| | - Zoltán Tomori
- Institute of Experimental Physics, Slovak Academy of Sciences, Watsonova 47, 040 01 Košice, Slovakia.
| | - Ivo Vanický
- Institute of Neurobiology, Biomedical Research Center of the Slovak Academy of Sciences, Šoltésovej 4, 040 01 Košice, Slovakia.
| |
Collapse
|
3
|
Rho HJ, Kim JH, Lee SH. Function of Selective Neuromodulatory Projections in the Mammalian Cerebral Cortex: Comparison Between Cholinergic and Noradrenergic Systems. Front Neural Circuits 2018; 12:47. [PMID: 29988373 PMCID: PMC6023998 DOI: 10.3389/fncir.2018.00047] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 06/01/2018] [Indexed: 12/15/2022] Open
Abstract
Cortical processing is dynamically modulated by different neuromodulators. Neuromodulation of the cerebral cortex is crucial for maintaining cognitive brain functions such as perception, attention and learning. However, we do not fully understand how neuromodulatory projections are organized in the cerebral cortex to exert various functions. The basal forebrain (BF) cholinergic projection and the locus coeruleus (LC) noradrenergic projection are well-known neuromodulatory projections to the cortex. Decades of studies have identified anatomical and physiological characteristics of these circuits. While both cholinergic and noradrenergic neurons widely project to the cortex, they exhibit different levels of selectivity. Here, we summarize their anatomical and physiological features, highlighting selectivity and specificity of these circuits to different cortical regions. We discuss the importance of selective modulation by comparing their functions in the cortex. We highlight key features in the input-output circuits and target selectivity of these neuromodulatory projections and their roles in controlling four major brain functions: attention, reinforcement, learning and memory, sleep and wakefulness.
Collapse
Affiliation(s)
- Hee-Jun Rho
- Sensory Processing Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| | - Jae-Hyun Kim
- Sensory Processing Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| | - Seung-Hee Lee
- Sensory Processing Laboratory, Department of Biological Sciences, Korea Advanced Institute of Science & Technology (KAIST), Daejeon, South Korea
| |
Collapse
|
4
|
Agster KL, Mejias-Aponte CA, Clark BD, Waterhouse BD. Evidence for a regional specificity in the density and distribution of noradrenergic varicosities in rat cortex. J Comp Neurol 2013; 521:2195-207. [PMID: 23184811 PMCID: PMC4529674 DOI: 10.1002/cne.23270] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 11/09/2012] [Accepted: 11/13/2012] [Indexed: 11/10/2022]
Abstract
The brainstem nucleus locus coeruleus (LC) is the sole source of norepinephrine (NE)-containing fibers in the mammalian cortex. Previous studies suggest that the density of noradrenergic fibers in rat is relatively uniform across cortical regions and that cells in the nucleus discharge en masse. This implies that activation of the LC results in equivalent release of NE throughout the cortex. However, it is possible that there could be differences in the density of axonal varicosities across regions, and that these differences, rather than a difference in fiber density, may contribute to the regulation of NE efflux. Quantification of dopamine β-hydroxylase (DβH)-immunostained varicosities was performed on several cortical regions and in the ventral posterior medial (VPM) thalamus by using unbiased sampling methods. The density of DβH varicosities is greater in the prefrontal cortex than in motor, somatosensory, or piriform cortices, greater in superficial than in deep layers of cortex, and greater in the VPM than in the somatosensory cortex. Our results provide anatomical evidence for non-uniform release of NE across functionally discrete cortical regions. This morphology may account for a differential, region-specific, impact of LC output on different cortical areas.
Collapse
Affiliation(s)
- Kara L. Agster
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | | | - Brian D. Clark
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| | - Barry D. Waterhouse
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129
| |
Collapse
|
5
|
Ramkumar K, Srikumar BN, Venkatasubramanian D, Siva R, Shankaranarayana Rao BS, Raju TR. Reversal of stress-induced dendritic atrophy in the prefrontal cortex by intracranial self-stimulation. J Neural Transm (Vienna) 2011; 119:533-43. [PMID: 22167578 DOI: 10.1007/s00702-011-0740-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Accepted: 11/15/2011] [Indexed: 11/24/2022]
Abstract
The mammalian prefrontal cortex (PFC) has been implicated in a variety of motivational and emotional processes underlying working memory, attention and decision making. The PFC receives dopaminergic projections from the ventral tegmental area (VTA) and contains high density of D1 and D2 receptors and these projections are important in higher integrative cortical functions. The neurons of the PFC have been shown to undergo atrophy in response to stress. In an earlier study, we demonstrated that the chronic stress-induced atrophy of hippocampal neurons and behavioral impairment in the T-maze task were reversed by the activation of dopaminergic pathway by intracranial self-stimulation (ICSS) of the VTA. The stress-induced decrease in hippocampal dopamine (DA) levels was also restored by ICSS. Whether the reversal of stress-induced behavioral deficits by ICSS involves changes in the morphology of PFC neurons is unknown and the current study addresses this issue. Male Wistar rats underwent 21 days of restraint stress followed by ICSS for 10 days. The dendritic morphology of the PFC neurons was studied in Golgi-impregnated sections. Stress produced atrophy of the layer II/III and V PFC pyramidal neurons and ICSS to naïve rats significantly increased the dendritic arborization of these neurons compared to control. Interestingly, ICSS of stressed rats resulted in the reversal of the dendritic atrophy. Further, these structural changes were associated with a restored tissue levels of DA, norepinephrine and serotonin in the PFC. These results indicate that the behavioral restoration in stressed rats could involve changes in the plasticity of the PFC neurons and these results further our understanding of the role of dopaminergic neurotransmitter system in the amelioration of stress-induced deficits.
Collapse
Affiliation(s)
- K Ramkumar
- Department of Neurophysiology, National Institute of Mental Health and Neuro Sciences (NIMHANS), PB # 2900, Hosur Road, Bangalore 560 029, India
| | | | | | | | | | | |
Collapse
|
6
|
Solich J, Faron-Gorecka A, Kusmider M, Palach P, Gaska M, Dziedzicka-Wasylewska M. Norepinephrine transporter (NET) knock-out upregulates dopamine and serotonin transporters in the mouse brain. Neurochem Int 2011; 59:185-91. [PMID: 21693154 DOI: 10.1016/j.neuint.2011.04.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 04/21/2011] [Accepted: 04/27/2011] [Indexed: 01/27/2023]
Abstract
The noradrenaline, serotonin and dopamine transporters are three main transporters, which are the target of the antidepressant drugs. In the present study we demonstrate that the life-long deletion of the noradrenaline transporter (NET) induced up-regulation of two other monoamine transporters, dopamine and serotonin (DAT and SERT, respectively). An increase in the binding of [(3)H]paroxetine to the SERT and [(3)H]GBR12935 to the DAT was observed in various brain regions of NET-KO mice, without alterations of mRNA encoding these transporters, as measured by in situ hybridization. This important finding impacts the interpretation of previous data indicating the supersensitizity of NET-KO mice for psychostimulants or stronger effect of citalopram in behavioral tests. While using the NET-KO mice in various psychopharmacological studies is very important, one has to be aware that these mice lack NET from the earliest period of their existence, thus compensatory alterations do take place and have to be considered when it comes to interpretation of the obtained results.
Collapse
Affiliation(s)
- Joanna Solich
- Institute of Pharmacology, Polish Academy of Sciences, Smetna 12, 31-343 Krakow, Poland
| | | | | | | | | | | |
Collapse
|
7
|
Parent M, Wallman MJ, Descarries L. Distribution and ultrastructural features of the serotonin innervation in rat and squirrel monkey subthalamic nucleus. Eur J Neurosci 2010; 31:1233-42. [PMID: 20345924 DOI: 10.1111/j.1460-9568.2010.07143.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The main purpose of this light and electron microscopic immunocytochemical study was to characterize and compare the serotonin (5-HT) innervation of the subthalamic nucleus (STN) in rats and squirrel monkeys (Saimiri sciureus) following labeling with an antibody against the 5-HT transporter (SERT). Unbiased counts of SERT+ axon varicosities revealed an average density of 5-HT innervation higher in monkeys (1.52 x 10(6) varicosities/mm3) than rats (1.17 x 10(6)), particularly in the anterior half of the nucleus (1.70 x 10(6)). As measured by electron microscopy, SERT+ axon varicosity profiles in the STN of both species were smaller than unlabeled profiles. The number of SERT+ profiles displaying a synaptic junction indicated that, in both rat and monkey STN, approximately half of 5-HT axon varicosities were asynaptic. In monkeys, all synaptic junctions made by SERT+ varicosities were asymmetrical, as opposed to only 77% in rats. Despite the higher density of 5-HT innervation in the anterior half of monkey STN, the ultrastructural features of its SERT+ varicosities, including synaptic incidence, did not significantly differ from those in its posterior half. These findings suggest that, throughout the rat and monkey STN, 5-HT afferents may exert their influence via both synaptic delivery and diffusion of 5-HT, and that an ambient level of 5-HT maintained in STN by these two modes of transmission might also modulate neuronal activity and influence motor behavior. A better understanding of the factors governing the complex interplay between these signaling processes would greatly improve our knowledge of the physiopathology of the STN.
Collapse
Affiliation(s)
- Martin Parent
- Department of Pathology and Cell Biology, Université de Montréal, Montreal, QC, Canada H3C 3J7.
| | | | | |
Collapse
|
8
|
Descarries L, Riad M, Parent M. Ultrastructure of the Serotonin Innervation in the Mammalian Central Nervous System. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2010. [DOI: 10.1016/s1569-7339(10)70072-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
9
|
Luft AR, Schwarz S. Dopaminergic signals in primary motor cortex. Int J Dev Neurosci 2009; 27:415-21. [PMID: 19446627 DOI: 10.1016/j.ijdevneu.2009.05.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2008] [Revised: 05/05/2009] [Accepted: 05/05/2009] [Indexed: 10/20/2022] Open
Abstract
Brainstem monoamine areas such as the ventral tegmental area (VTA) send dopaminergic projections to the cerebral cortex that are widely distributed across different cortical regions. Whereas the projection to prefrontal areas (PFC) has been studied in detail, little is known about dopaminergic projections to primary motor cortex (M1). These projections have been anatomically characterized in rat and primate M1. Primates have even denser dopaminergic projections to M1 than rats. The physiological role, the effects of dopaminergic input on the activity of M1 circuits, and the behavioral function of this projection are unknown. This review explores the existing anatomical, electrophysiological and behavioral evidence on dopaminergic projections to M1 and speculates about its functional role. The projection may explain basic features of motor learning and memory phenomena. It is of clinical interest because of its potential for augmenting motor recovery after a brain lesion as well as for understanding the symptomatology of patients with Parkinson's disease. Therefore, targeted investigations are necessary.
Collapse
Affiliation(s)
- Andreas R Luft
- Clinical Neurorehabilitation, Department of Neurology, University of Zurich, Switzerland.
| | | |
Collapse
|
10
|
Vizi ES, Zsilla G, Caron MG, Kiss JP. Uptake and release of norepinephrine by serotonergic terminals in norepinephrine transporter knock-out mice: implications for the action of selective serotonin reuptake inhibitors. J Neurosci 2005; 24:7888-94. [PMID: 15356201 PMCID: PMC6729924 DOI: 10.1523/jneurosci.1506-04.2004] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Our aim was to investigate the functional properties of the noradrenergic system in genetically modified mice lacking the norepinephrine transporter (NET). We measured the uptake and release of [(3)H]norepinephrine ([(3)H]NE) from hippocampal and cortical slices of NET(-/-) knock-out (KO) and NET(+/+) wild-type (WT) mice and investigated the presynaptic alpha2-adenoceptor-mediated modulation of NE release in vitro and in vivo. The [(3)H]NE uptake was reduced to 12.6% (hippocampus) and 33.5% (frontal cortex) of WT control in KO mice. The neuronal component of this residual uptake was decreased by 79.4 and 100%, respectively, when a selective serotonin reuptake inhibitor (SSRI) citalopram was present during the loading. The more preserved neuronal release of [(3)H]NE (hippocampus, 28.1%; frontal cortex, 74.4%; compared with WT) almost completely disappeared in both regions (94.1 and 95.3% decrease compared with KO, respectively) in the presence of citalopram, suggesting that [(3)H]NE was taken up and released by serotonergic varicosities. This was further supported by the finding that the release of [(3)H]NE from hippocampal slices of KO mice was not modulated by the alpha2-adrenoceptor antagonist 7,8-(methylenedioxy)-14-alpha-hydroxyalloberbane HCl, whereas the endogenous release of NE measured by microdialysis was even more efficiently enhanced by this drug in NET-deficient mice. These experiments indicate that serotonergic varicosities can accumulate and release NE as a result of the heterologous uptake of transmitters. Because the diffusion of NE may be spatially limited by serotonin transporters, the SSRIs, despite their selectivity, might enhance not only serotonergic but also noradrenergic neurotransmission, which might contribute to their antidepressant action.
Collapse
Affiliation(s)
- E Sylvester Vizi
- Department of Pharmacology, Institute of Experimental Medicine, Hungarian Academy of Sciences, H-1450 Budapest, Hungary.
| | | | | | | |
Collapse
|
11
|
Bowyer JF, Delongchamp RR, Jakab RL. Glutamate N-methyl-d-aspartate and dopamine receptors have contrasting effects on the limbic versus the somatosensory cortex with respect to amphetamine-induced neurodegeneration. Brain Res 2004; 1030:234-46. [PMID: 15571672 DOI: 10.1016/j.brainres.2004.10.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2004] [Indexed: 01/02/2023]
Abstract
The roles that glutamate N-methyl-D-aspartate (NMDA) and dopamine D1-like and D2-like receptors play in the cortical neurotoxicity occurring in rats exposed to multiple doses of amphetamine (AMPH) for 2 days was evaluated. Neurodegeneration in rats that did not become hyperthermic during AMPH exposure was quantified by counting isolectin B4-labeled phagocytic microglia and Fluoro-Jade (F-J)-labeled neurons in the somatosensory parietal cortex, piriform cortex and posterolateral cortical amygdaloid nucleus (PLCo). The NMDA receptor antagonist, dizocilpine (0.63 mg/kg day) blocked AMPH-induced neurodegeneration in the somatosensory cortex. However, it did not affect degeneration in the piriform cortex and PLCo indicating that limbic degeneration was not NMDA-mediated. The dopamine antagonists, eticlopride (D2/3, 0.25 mg/kg day) and SCH-23390 (D1, 0.25 mg/kg day), blocked the stereotypic behavior and neurodegeneration in the somatosensory cortex. However, eticlopride had a lesser protective effect in the limbic regions. As well, the dopamine D2/D3 agonist quinpirole (1.5 mg/kg day) protected against cortical neurodegeneration when it was given during AMPH exposure and continued until sacrifice. The dopamine D1 agonist (SKF-38393, 12.5 mg/kg day) had no significant effect on neurodegeneration. These data indicate that there are significant differences in NMDA and dopamine D2 modulation of AMPH-induced neurodegeneration in the somatosensory cortex compared to the limbic cortices, and limbic cortical degeneration is not necessarily dependent on excessive stimulation of NMDA receptors as it is in the somatosensory cortex. Although excessive dopamine receptor stimulation during amphetamine exposure may trigger the neurodegenerative processes, continued D2 stimulation after AMPH exposure is neuroprotective in the cortex.
Collapse
Affiliation(s)
- John F Bowyer
- Division of Neurotoxicology, National Center for Toxicological Research, Jefferson, Arkansas 72079, USA.
| | | | | |
Collapse
|
12
|
Astrocytes from cerebral cortex or striatum attract adult host serotoninergic axons into intrastriatal ventral mesencephalic co-grafts. J Neurosci 2001. [PMID: 11549729 DOI: 10.1523/jneurosci.21-18-07182.2001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The identification of axon growth inhibitory molecules offers new hopes for repair of the injured CNS. However, the navigational ability of adult CNS axons and the guidance cues they can recognize are still essentially unknown. Astrocytes may express guidance molecules and are known to have different regional phenotypes. To evaluate their influence on the affinity of adult serotoninergic (5-HT) axons for a projection target, we co-implanted astrocytes from the neonatal striatum, cortex, or ventral mesencephalon together with fetal ventral mesencephalic tissue into the striatum of adult rats. Two months after surgery, quantification after in vitro 5-[1,2-(3)H]serotonin ([(3)H]5-HT) uptake and autoradiography showed that ventral mesencephalic grafts with co-grafted cortical or striatal astrocytes were four times and three times, respectively, more densely innervated by host 5-HT axons than control ventral mesencephalic grafts with or without co-grafted ventral mesencephalic astrocytes. Immunohistochemistry for glial fibrillary acidic protein, vimentin, or chondroitin-sulfate proteoglycans revealed no qualitative or quantitative differences in host astroglial scar or production of inhibitory molecules that could explain these differences in 5-HT innervation. These results demonstrate that astrocytes grown in culture from different brain regions have the potential to influence the growth and maintenance of adult 5-HT axons in a graft of neural tissue from another brain region. It should now be feasible to identify the molecules expressed by cultured cortical or striatal, but not by ventral mesencephalic, astrocytes that have these tropic actions on 5-HT axons of the neostriatum.
Collapse
|
13
|
Becq H, Bosler O, Geffard M, Enjalbert A, Herman JP. Anatomical and functional reconstruction of the nigrostriatal system in vitro: selective innervation of the striatum by dopaminergic neurons. J Neurosci Res 1999; 58:553-66. [PMID: 10533047 DOI: 10.1002/(sici)1097-4547(19991115)58:4<553::aid-jnr8>3.0.co;2-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
To study development of the nigrostriatal pathway in an in vitro model system, organotypic slices obtained from rat pups (P4) and containing the striatum and the cortex were grown together with apposed embryonic (E13.5) mesencephalic blocks according to the static slice culture method of Stoppini et al. (1991; J. Neurosci. Methods 37:173-182). Under these conditions, mesencephalic dopaminergic (DA) fibers rapidly grow through the slice, preferentially its striatal portion. This innervation provides a true synaptic innervation to the striatum, as shown by the presence of DA terminals on striatal neurons. DA fibers are able to exert a functional influence, as seen by their ability to modulate c-Fos expression in striatal neurons in the same way as in vivo. Thus, blockade, under basal conditions, of the effect of spontaneously released dopamine by the D2 receptor antagonist haloperidol leads to the activation of c-Fos expression in the striatum. Furthermore, stimulation of DA release by amphetamine induces striatal c-Fos expression in a D1 receptor-dependent manner. Next, the mechanisms of the selective striatal innervation were examined. Indeed, DA fibers innervated specifically the striatum, avoiding the cortical portion of the slice. This selectivity seems to be specific for DA neurons; no selectivity could be observed when noradrenergic neurons were substituted for DA neurons. Short-term cocultures in a collagen gel of mesencephalic blocks with striatal blocks failed to reveal any oriented outgrowth of DA fibers from the mesencephalon, suggesting that the selective innervation observed in the organotypic slices results from some contact-dependent, presumably adhesive interactions rather than from the presence of some diffusible substance orienting the growth of DA fibers towards the striatum. On the other hand, DA neurons seeded onto striatal slices did not attach selectively onto the striatal portion of the slice, indicating that the putative specific adhesive interactions governing the selective striatal innervation are not the same as those determining the adhesion of the DA neurons. These results show that cocultures of cortex-striatum and mesencephalic slices result in a system that displays a number of the morphological and functional traits of the normal nigrostriatal system and that can be relied on as a good in vitro model of in vivo development.
Collapse
Affiliation(s)
- H Becq
- ICNE, UMR 6544 CNRS-Université Aix-Marseille II, and INSERM U-501; IFR Jean Roche, Faculté de Médecine Nord, Boulevard Pierre Dramard, Marseille, France
| | | | | | | | | |
Collapse
|
14
|
Plasma membrane transporters of serotonin, dopamine, and norepinephrine mediate serotonin accumulation in atypical locations in the developing brain of monoamine oxidase A knock-outs. J Neurosci 1998. [PMID: 9712661 DOI: 10.1523/jneurosci.18-17-06914.1998] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetic loss or pharmacological inhibition of monoamine oxidase A (MAOA) in mice leads to a large increase in whole-brain levels of serotonin (5-HT). Excess 5-HT in mouse neonates prevents the normal barrel-like clustering of thalamic axons in the somatosensory cortex. Projection fields of other neuron populations may develop abnormally. In the present study, we have analyzed the localization of 5-HT immunolabeling in the developing brain of MAOA knock-out mice. We show numerous atypical locations of 5-HT during embryonic and postnatal development. Catecholaminergic cells of the substantia nigra, ventral tegmental area, hypothalamus, and locus ceruleus display transient 5-HT immunoreactivity. Pharmacological treatments inhibiting specific monoamine plasma membrane transporters and genetic crosses with mice lacking the dopamine plasma membrane transporter show that the accumulation of 5-HT in these catecholaminergic cells is attributable to 5-HT uptake via the dopamine or the norepinephrine plasma membrane transporter. In the telencephalon, transient 5-HT immunolabeling is observed in neurons in the CA1 and CA3 fields of the hippocampus, the central amygdala, the indusium griseum, and the deep layers of the anterior cingulate and retrosplenial cortices. In the diencephalon, primary sensory nuclei, as well as the mediodorsal, centrolateral, oval paracentral, submedial, posterior, and lateral posterior thalamic nuclei, are transiently 5-HT immunolabeled. The cortical projections of these thalamic nuclei are also labeled. In the brainstem, neurons in the lateral superior olivary nucleus and the anteroventral cochlear nucleus are transiently 5-HT immunolabeled. None of these structures appear to express the monoamine biosynthetic enzyme L-aromatic amino acid decarboxylase. The administration of monoamine plasma membrane transporter inhibitors indicates that the 5-HT immunolabeling in these structures is attributable to an uptake of 5-HT by the 5-HT plasma membrane transporter. This points to neuron populations that form highly precise projection maps that could be affected by 5-HT during specific developmental stages.
Collapse
|
15
|
Pierret P, Vallée A, Bosler O, Dorais M, Moukhles H, Abbaszadeh R, Lepage Y, Doucet G. Serotonin axons of the neostriatum show a higher affinity for striatal than for ventral mesencephalic transplants: a quantitative study in adult and immature recipient rats. Exp Neurol 1998; 152:101-15. [PMID: 9682017 DOI: 10.1006/exnr.1998.6823] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We previously showed that grafts of fetal ventral mesencephalic tissue are practically not innervated by host serotonin (5-HT) axons after implantation into the striatum of rats aged more than 14 days, at variance with transplants of cortical or striatal tissue into the adult striatum, which are well innervated by these axons. Using 5-HT immunohistochemistry and in vitro [3H]5-HT uptake/autoradiography, we have examined and quantified the innervation of ventral mesencephalic versus striatal grafts several months after implantation into the striatum of neonatal (postnatal day 5 or P5), juvenile (P15), and adult rats. Ventral mesencephalic grafts implanted in P5 rats received a moderate 5-HT innervation, while similar grafts implanted in P15 or adult recipients were almost free of any 5-HT fibers (-80%, compared to P5). The density of 5-HT innervation showed a tendency toward higher values in striatal than in ventral mesencephalic grafts (1.6-2 times higher in P5 and adult recipients; 4 times higher in P15 recipients). The difference was more striking, and significant, when only the true striatal portions of the striatal grafts were considered, i.e., DARPP-32-immunopositive areas (4-5 times higher in P5 and adult recipients; 10 times higher in P15 recipients). Accordingly, these DARPP-32-positive areas were also more densely innervated than the DARPP-32-negative zones of the same grafts (3 times higher at any age). The 5-HT innervation density also decreased with increasing age of the recipients in DARPP-32-positive, as well as DARPP-32-negative compartments of the striatal grafts (-75% in adults), but this decrease appeared more gradual (-50% in juveniles) than with mesencephalic grafts. It is concluded that the 5-HT axons innervating the neostriatum have a better affinity for striatal grafts than for ventral mesencephalic grafts or the nonstriatal portions of striatal grafts. In adulthood, the relative affinity of these axons for the different types of grafts is maintained, even though their growth capacity decreases irrespective of the target tissue considered. This experimental model may prove useful for the identification of the receptors and ligands that are responsible for target recognition by 5-HT axons and to test the possibility that the progressive decrease of axonal growth capacity from neonatal age to adulthood be related to a downregulation of such molecules.
Collapse
Affiliation(s)
- P Pierret
- Département de pathologie & biologie cellulaire and Centre de recherche en sciences neurologiques, Département de mathématiques et de statistique, Université de Montréal, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Compan V, Segu L, Buhot MC, Daszuta A. Differential effects of serotonin (5-HT) lesions and synthesis blockade on neuropeptide-Y immunoreactivity and 5-HT1A, 5-HT1B/1D and 5-HT2A/2C receptor binding sites in the rat cerebral cortex. Brain Res 1998; 795:264-76. [PMID: 9622647 DOI: 10.1016/s0006-8993(98)00316-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The present study was aimed at comparing the effects of serotonin (5-HT) synthesis blockade using chronic administration of p-chlorophenylalanine (PCPA) and 5,7-dihydroxytryptamine injections of variable volume (3 vs. 6 microl) on the density of NPY immunoreactive (Ir) neurons and binding of [3H]8-OH-DPAT, S-CM-G[125I]TNH2 and [125I]DOI to 5-HT1A, 5-HT1B/1D, and 5-HT2A/2C receptors in rat cortical regions. Three weeks after large but partial (89% depletion in 5-HT tissue concentration) lesions of 5-HT neurons no changes in neither NPY immunoreactivity nor 5-HT receptor binding were detected. The complete 5,7-DHT lesions produced increases in the number of NPY-Ir neurons in the upper regions of the cingular (134%), frontal (140%) and parietal cortex (48%) and corresponding decreases in 5-HT2A/2C binding (16-26%). No changes in 5-HT1A and 5-HT1B/1D binding were observed after lesions of this kind. After PCPA treatment, decreases in NPY-Ir neurons density (22-40%) and increases in 5-HT1A and 5-HT1B/1D receptor binding sites (20-50%) were distributed in both upper and deeper cortical regions. The lack of effect of the partial lesion suggests that spared 5-HT neurons may exert compensatory mechanisms up to a large extent. The changes in NPY immunoreactivity and 5-HT2A/2C binding detected in the upper regions of the cortex after complete 5-HT lesions probably result from local cellular rearrangements, whereas blocking 5-HT synthesis has more widespread influence on NPY neurons and on 5-HT1A and 5-HT1B/1D receptor subtypes. Moreover, decreases in DOPAC concentrations detected only after complete lesions suggest that the involvement of catecholaminergic transmission may also differentiate 5,7-DHT and PCPA treatments. Altogether, these data suggest that different receptor subtypes might be involved in 5-HT-NPY relationships.
Collapse
MESH Headings
- 3,4-Dihydroxyphenylacetic Acid/metabolism
- 5,7-Dihydroxytryptamine/pharmacology
- 8-Hydroxy-2-(di-n-propylamino)tetralin/pharmacology
- Amphetamines/pharmacology
- Animals
- Binding, Competitive/physiology
- Cerebral Cortex/chemistry
- Cerebral Cortex/drug effects
- Cerebral Cortex/metabolism
- Dipeptides/pharmacology
- Dopamine/metabolism
- Female
- Fenclonine/pharmacology
- Iodine Radioisotopes
- Neuronal Plasticity/physiology
- Neuropeptide Y/analysis
- Neuropeptide Y/immunology
- Rats
- Rats, Wistar
- Receptor, Serotonin, 5-HT1D
- Receptor, Serotonin, 5-HT2A
- Receptors, Serotonin/analysis
- Receptors, Serotonin/immunology
- Receptors, Serotonin, 5-HT1
- Serotonin/analogs & derivatives
- Serotonin/biosynthesis
- Serotonin/pharmacology
- Serotonin Agents/pharmacology
- Tritium
Collapse
Affiliation(s)
- V Compan
- CNRS UPR 9013 - Laboratoire de Neurobiologie Cellulaire et Fonctionnelle, Marseille, France
| | | | | | | |
Collapse
|
17
|
Pierret P, Quenneville N, Vandaele S, Abbaszadeh R, Lanctôt C, Crine P, Doucet G. Trophic and tropic effects of striatal astrocytes on cografted mesencephalic dopamine neurons and their axons. J Neurosci Res 1998; 51:23-40. [PMID: 9452306 DOI: 10.1002/(sici)1097-4547(19980101)51:1<23::aid-jnr3>3.0.co;2-n] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Astrocytes from the ventral mesencephalon and from the striatum respectively promote the dendritic and axonal arborization of dopamine (DA) neurons in vitro. To test this response in vivo, astrocytes in primary cultures from the neonatal cerebral cortex, ventral mesencephalon, or striatum were coimplanted with fetal ventral mesencephalic tissue into the intact or DA-denervated striatum of adult rats and these cografts examined after 3-6 months by tyrosine hydroxylase (TH) immunohistochemistry (intact recipients) or after 5-6 months by in vitro [3H]DA-uptake autoradiography (DA-denervated recipients). In contrast with single ventral mesencephalic grafts, all types of cograft displayed a rather uniform distribution of TH-immunoreactive perikarya. The average size of TH-immunoreactive cell bodies was not significantly different in cografts containing cortical or mesencephalic astrocytes and in single ventral mesencephalic grafts, but it was significantly larger in cografts containing striatal astrocytes. Nevertheless, the number of [3H]DA-labeled terminals in the DA-lesioned host striatum was clearly smaller with cografts of striatal astrocytes than with single mesencephalic grafts or with cografts containing cortical astrocytes. On the other hand, cografts of striatal astrocytes contained much higher numbers of [3H]DA-labeled terminals than the other types of graft or cograft. Thus, while cografted astrocytes in general influence the distribution of DA neurons within the graft, astrocytes from the neonatal striatum have a trophic effect on DA perikarya and a tropic effect on DA axons, keeping the latter within the graft.
Collapse
Affiliation(s)
- P Pierret
- Centre de recherche en sciences neurologiques, Université de Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
18
|
Johansson B, Georgiev V, Fredholm BB. Distribution and postnatal ontogeny of adenosine A2A receptors in rat brain: comparison with dopamine receptors. Neuroscience 1997; 80:1187-207. [PMID: 9284070 DOI: 10.1016/s0306-4522(97)00143-7] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In adult rat brain, adenosine A2A receptors and dopamine D2 receptors are known to be located on the same cells where they interact in an antagonistic manner. In the present study we wanted to examine when this situation develops and compared the postnatal ontogeny of the binding of the adenosine A2A receptor agonist [3H]CGS 21680, the binding of the dopamine D1 receptor antagonist [3H]SCH 23390 and the dopamine D2 receptor antagonist [3H]raclopride. All three radioligands bound to the striatum at birth and this binding increased several-fold during the postnatal period. [3H]SCH 23390 binding developed first (mostly during the first week), followed by [3H]raclopride binding (first to third week) and [3H]CGS 21680 binding (only during second and third week). For all three radioligands the binding tended to decrease between 21 days and adulthood. This occurred earlier and was more pronounced in the globus pallidus than in the other examined structures. The increase in [3H]CGS 21680 binding from newborn to adult was mainly due to four-fold increase in the number of binding sites. The pharmacology of [3H]CGS 21680 binding to caudate-putamen was similar in newborn, one-week-old and adult animals, and was indicative of A2A receptors. The binding was inhibited by guanylyl imidodiphosphate at all ages, indicating that A2A receptors are G-protein-coupled already at birth. In contrast to the large increase in [3H]CGS 21680 binding, there was a decrease in the levels of A2A messenger RNA during the postnatal period in the caudate-putamen. In cerebral cortex [3H]CGS 21680 bound to a different site than the A2A receptor. From birth to adulthood cortical binding of [3H]CGS 21680 increased four-fold and that of the adenosine A1 agonist [3H]cyclohexyladenosine 19-fold. During early postnatal development [3H]SCH 23390 binding was higher in deep than in superficial cortical layers, but this difference disappeared in adult animals. There was binding of both [3H]CGS 21680 and [3H]cyclohexyladenosine to the olfactory bulb, suggesting a role of the two adenosine receptors in processing of olfactory information. [3H]CGS 21680 binding was present in the external plexiform layer and glomerular layer, and increased during development, but the density of binding sites was about one tenth of that seen in caudate putamen. [3H]cyclohexyladenosine showed a very different labelling pattern, resembling that observed with [3H]SCH 23390. Postnatal changes in adenosine receptors may explain age-dependent differences in stimulatory caffeine effects and endogenous protection against seizures. Since A2A receptors show a co-distribution with D2 receptors throughout development, caffeine may partly exert such actions by regulating the activity of D2 receptor-containing striatopallidal neurons.
Collapse
Affiliation(s)
- B Johansson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
19
|
Moukhles H, Bosler O, Bolam JP, Vallée A, Umbriaco D, Geffard M, Doucet G. Quantitative and morphometric data indicate precise cellular interactions between serotonin terminals and postsynaptic targets in rat substantia nigra. Neuroscience 1997; 76:1159-71. [PMID: 9027876 DOI: 10.1016/s0306-4522(96)00452-6] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
We have quantified the density of serotonin axonal varicosities, their synaptic incidence and their distribution among potential targets in the pars reticulata and pars compacta of the rat substantia nigra. Serotonin axonal varicosities, counted at the light microscopic level following in vitro [3H]serotonin uptake and autoradiography, amounted to 9 x 10(6)/mm3 in the pars reticulata and 6 x 10(6)/mm3 in the pars compacta, among the densest serotonin innervations in brain. As determined at the electron microscopic level following immunolabelling for serotonin, virtually all serotonin varicosities in the pars reticulata and 50% of those in the pars compacta formed a synapse, essentially with dendrites. The combination of serotonin immunocytochemistry with tyrosine hydroxylase immunolabelling of dopamine neurons reveals that 20% of the serotonin synaptic contacts in the pars reticulata are on dopamine dendrites and 6% are on a type of unlabelled dendrite characterized by its peculiarly high cytoplasmic content of microtubules. The comparison of the diameter of the dendritic profiles that were in synaptic contact with serotonin-immunoreactive varicosities with the diameter of all other dendritic profiles of the same type suggests that serotoninergic varicosities innervate dopamine dendrites uniformly along their length, whereas they tend to contact microtubule-filled dendrites in more proximal regions and the other, unidentified dendrites in more distal regions. Furthermore, the size of the serotonin-immunoreactive varicosities and of their synaptic junctions is significantly smaller on dopamine dendrites and larger on microtubule-filled dendrites than on other, unidentified dendrites, indicating that the nature of the postsynaptic target is an important determinant of synaptic dimensions. These data should help to clarify the role of serotonin in the nigral control of motor functions. They indicate that this dense serotonin input to the substantia nigra is very precisely organized, acting through both "non-junctional" and "junctional" modes of neurotransmission in the pars compacta, which projects to the neostriatum and the limbic system, whereas the predominant mode of serotonin transmission appears to be of the "junctional" type in the pars reticulata, where serotonin can finely control the motor output of the basal ganglia by acting on the GABA projection neurons either directly or through the local release of dopamine by dopaminergic dendrites. The data also raise the possibility that the postsynaptic targets have trophic retrograde influences on serotoninergic terminals.
Collapse
Affiliation(s)
- H Moukhles
- Département de pathologie, Faculté de médecine, Université de Montréal, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
20
|
Lebrand C, Cases O, Adelbrecht C, Doye A, Alvarez C, El Mestikawy S, Seif I, Gaspar P. Transient uptake and storage of serotonin in developing thalamic neurons. Neuron 1996; 17:823-35. [PMID: 8938116 DOI: 10.1016/s0896-6273(00)80215-9] [Citation(s) in RCA: 259] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Serotonin (5-HT) has been shown to affect the development and patterning of the mouse barrelfield. We show that the dense transient 5-HT innervation of the somatosensory, visual, and auditory cortices originates in the thalamus rather than in the raphe: 5-HT is detected in thalamocortical fibers and most 5-HT cortical labeling disappears after thalamic lesions. Thalamic neurons do not synthesize 5-HT but take up exogenous 5-HT through 5-HT high affinity uptake sites located on thalamocortical axons and terminals. 3H-5-HT injected into the cortex is retrogradely transported to thalamic neurons. In situ hybridization shows a transient expression of the genes encoding the serotonin transporter and the vesicular monoamine transporter in thalamic sensory neurons. In these glutamatergic neurons, internalized 5-HT might thus be stored and used as a "borrowed transmitter" for extraneuronal signaling or could exert an intraneuronal control on thalamic maturation.
Collapse
Affiliation(s)
- C Lebrand
- INSERM U106, IFR des Neurosciences, Hôpital de la Salpêtrière, Paris,France
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Jiménez-Capdeville ME, Reader TA, Molina-Holgado E, Dykes RW. Changes in extracellular levels of dopamine metabolites in somatosensory cortex after peripheral denervation. Neurochem Res 1996; 21:1-6. [PMID: 8833217 DOI: 10.1007/bf02527665] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This study examined the effects of a nerve transection on monoamine release from primary somatosensory cortex. The technique of microdialysis was employed to sample extracellular levels of norepinephrine (NE), 3,4-dihydroxyphenylacetic acid (DOPAC), 5-hydroxyindole-3-acetic acid (5-HIAA) and homovanillic acid (HVA) in the barrel field of freely moving rats following the surgical transection of the contralateral infraorbital nerve. Microdialysates obtained 3, 4, and 5 days after deafferentation were analyzed using high-performance liquid chromatography with electrochemical detection. We found a significant increase in the release of the dopamine metabolites, DOPAC and HVA from the deafferented cortex. Three days after deafferentation the release of DOPAC was three-fold higher in the deafferented than in the control animals, and remained about 100% higher in the next two days in this group of animals. The release of HVA showed a gradual increase following the deafferentation procedure, since a 92% larger value on day 3 increased to a 338% difference on day 5. On the other hand, the release rate of NE and the levels of the serotonin metabolite 5-HIAA were not significantly affected by the deafferentation procedure. These results are discussed in the context of the possible participation of dopamine in the reorganization of the deafferented somatosensory cortex.
Collapse
Affiliation(s)
- M E Jiménez-Capdeville
- Departmento de Bioquimica, Facultad de Medicina, Universidad Autonoma de San Luis Potosi, Mexico
| | | | | | | |
Collapse
|
22
|
Descarries L, Soucy JP, Lafaille F, Mrini A, Tanguay R. Evaluation of three transporter ligands as quantitative markers of serotonin innervation density in rat brain. Synapse 1995; 21:131-9. [PMID: 8584974 DOI: 10.1002/syn.890210206] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Direct counting of axon terminals (varicosities) labeled by uptake/storage of a tritiated monoamine provides a means to test radioligands of the corresponding membrane transporter as quantitative markers of regional monoamine innervation density in brain tissue. In autoradiographs from alternate rat brain slices, counts of [3H]5-HT-labeled axon terminals were matched with densitometric measurements of the specific binding of tritiated cyanoimipramine (CYI), citalopram (CITAL), and 6-nitroquipazine (6-NTQ), under conditions of hypo-, normo-, or hyper-5-HT innervation of the neostriatum. A total of 267 pairs of data were subjected to a multilevel analysis (iterative generalized least square procedure). With all three ligands, there was a linear relationship between the density of 5-HT innervation and the density of specific binding and no change in the slope of the regression lines as a function of 5-HT innervation density. Thus, none of these ligands gave any sign of down- or up-regulation of the 5-HT transporter consequent to 5-HT hypo- or hyper-innervation. The regression lines for CYI and CITAL were not significantly different from one another and crossed the ordinate near zero, whereas the regression line for 6-NTQ was less steep and had a higher intercept with the ordinate. In addition, the dispersion of values around the regression line (residuals) was lower with CYI and CITAL than 6-NTQ. It was concluded that both CYI and CITAL may serve as quantitative markers of 5-HT innervation density, at least in vitro, whereas 6-NTQ demonstrates a certain lack of specificity and sensitivity. Further work will be needed to assess the potential of CYI and CITAL for positron emission tomographic studies of living brain. Such empirical testing should also be applicable for screening radioligands of the dopamine or the noradrenaline transporters.
Collapse
Affiliation(s)
- L Descarries
- Département de Pathologie, Université de Montréal, Québec, Canada
| | | | | | | | | |
Collapse
|
23
|
Mrini A, Soucy JP, Lafaille F, Lemoine P, Descarries L. Quantification of the serotonin hyperinnervation in adult rat neostriatum after neonatal 6-hydroxydopamine lesion of nigral dopamine neurons. Brain Res 1995; 669:303-8. [PMID: 7712186 DOI: 10.1016/0006-8993(94)01210-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Light microscope autoradiography after uptake and storage of tritiated serotonin (5-HT) in brain slices was used to count 5-HT axon terminals (varicosities) in the 5-HT-hyperinnervated neostriatum of adult rats subjected to neonatal 6-hydroxydopamine treatment and age-matched, normal controls. After correction for incomplete autoradiographic exposure and for section thickness, the results were expressed in millions of varicosities per mm3 of tissue. Control values ranged from 4.8 in the rostral to 6.3 in the caudal neostriatum (5.8 at intermediate level), for an average of 5.6. The corresponding values in 5-HT-hyperinnervated tissue ranged from 9.7 to 7.7 (8.8 at intermediate level), for an average of 8.7 and increases of 102%, 52% and 22% above control in the rostral, intermediate and caudal neostriatum, respectively (average increase of 55%). These data confirmed the predilection of the 5-HT hyperinnervation for the rostral neostriatum and demonstrated its presence in the caudal neostriatum also.
Collapse
Affiliation(s)
- A Mrini
- Département de pathologie, Université de Montréal, Qué, Canada
| | | | | | | | | |
Collapse
|
24
|
Steroid Regulation of Neuronotrophic Activity: Primary Microcultures of Midbrain Raphe and Hippocampus. ACTA ACUST UNITED AC 1994. [DOI: 10.1016/b978-0-12-185292-4.50028-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
25
|
King VR, Corwin JV. Spatial deficits and hemispheric asymmetries in the rat following unilateral and bilateral lesions of posterior parietal or medial agranular cortex. Behav Brain Res 1992; 50:53-68. [PMID: 1449649 DOI: 10.1016/s0166-4328(05)80287-6] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Studies of spatial behavior in both the human and non-human primate have generally focused on the role of the posterior parietal and prefrontal cortices and have indicated that destruction of these regions produce allocentric and egocentric deficits, respectively. The present study examined the role of the rodent analogs of these regions, the posterior parietal (PPC) and medial agranular (AGm) cortices, in egocentric and allocentric spatial processing, and whether spatial processing in rodents is organized in a hemispatial and/or lateralized manner as has been found in the primate. Eighty male rats receiving either a unilateral or bilateral lesion of AGm or PPC were examined on an egocentric (adjacent arm) or an allocentric (cheeseboard) maze task. The results indicated that PPC and AGm have dissociable spatial functions. Bilateral AGm destruction resulted in egocentric spatial deficits, and unilateral AGm operates demonstrated an intermediate deficit. In contrast, bilateral PPC operates demonstrated a severe deficit in allocentric processing. In addition, there were lateralized differences in the performance of unilateral PPC operates. While right PPC lesions resulted in a significant deficit on the allocentric task, no such deficit was seen in left PPC operates. In addition, neither unilateral AGm nor unilateral PPC operates demonstrated a hemispatial impairment on either the egocentric or allocentric tasks.
Collapse
Affiliation(s)
- V R King
- Department of Psychology, University of Wisconsin, Madison 53706
| | | |
Collapse
|
26
|
Amundson RH, Goderie SK, Kimelberg HK. Uptake of [3H]serotonin and [3H]glutamate by primary astrocyte cultures. II. Differences in cultures prepared from different brain regions. Glia 1992; 6:9-18. [PMID: 1355075 DOI: 10.1002/glia.440060103] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Regional astrocyte cultures were derived by dissecting six regions; brain stem, cerebellum, mesencephalon, basal ganglia plus diencephalon, cerebral cortex, and hippocampus, from 3 to 4-day-old neonatal rat brains. Glial fibrillary acidic protein (GFAP) immunocytochemistry was used to confirm the astrocyte composition of the cultures. The percentage of GFAP (+) cells between regions varied from 75% to 100%. Once confluent these cultures were incubated with radiolabeled serotonin or glutamate for uptake and autoradiographic studies. For the different brain regions Na(+)-dependent, [3H] L-glutamate, and fluoxetine-sensitive [3H] 5-HT uptake varied markedly. The relative order of uptake for [3H] 5-HT was MS (mesencephalon) greater than CC (cerebral cortex) greater than BG + DI (basal ganglia + diencephalon) greater than HP (hippocampus) greater than BS (brain stem) greater than CB (cerebellum). For [3H] L-glutamate the order was HP greater than CC greater than BG + DI greater than MS = BS greater than CB. For [3H] 5-HT this essentially corresponds to the reported order of binding in situ of the [3H] 5-HT-specific uptake ligand [3H] citalopram. For [3H] L-glutamate regional variation of the uptake for the different cultures corresponds to the regional uptake reported for different regions of rat brain. Double-label studies with GFAP and radiolabeled neurotransmitters were also used to study uptake into GFAP(+) astrocytes by autoradiography. Flat GFAP cells with or without processes comprised 65-98% of the cultures and represented most of the uptake. The percentage of all GFAP(+) cells that were positive for uptake of ARG varied from 50% to 90% and also showed differences in grain density both intra- and inter-regionally. These differences in transmitter uptake by GFAP(+) astrocytes in primary culture, which are dependent on the region of origin and correspond to regional differences in situ, suggest that such uptake in vitro may reflect uptake by astrocytes in vivo. Implied in this is that uptake by astrocytes represents a significant component of serotonin uptake in vivo.
Collapse
Affiliation(s)
- R H Amundson
- Division of Neurosurgery, Albany Medical College, New York 12208
| | | | | |
Collapse
|
27
|
Abstract
Co-localization of glial fibrillary acidic protein (GFAP) and radioactivity was examined after intraventricular injection of [3H]5-HT in adult rat brains. Radioactivity localized over GFAP-positive astrocytes was seen, especially when image-enhancing techniques were applied to the data. Also slices prepared from astrogliotic hippocampi of rats pretreated with kainic acid showed a twofold increased uptake of [3H]5-HT compared to control slices. This indicates that the uptake of [3H]5-HT seen in primary astrocyte cultures also occurs for astrocytes in situ. Also, as with astrocyte cultures, only some of the GFAP(+) astrocytes in situ showed localization of radioactivity, supporting the concept of intraregional heterogeneity of astrocyte functions.
Collapse
Affiliation(s)
- E J Anderson
- Division of Neurosurgery, Albany Medical College, New York 12204
| | | | | |
Collapse
|
28
|
Reid MS, Herrera-Marschitz M, Ungerstedt U. Effects of intranigral substance P and neurokinin A injections on extracellular dopamine levels measured with microdialysis in the striatum and frontoparietal cortex of rats. J Neurochem 1991; 57:970-4. [PMID: 1713616 DOI: 10.1111/j.1471-4159.1991.tb08245.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Extracellular levels of dopamine (DA) and its metabolite, 3,4-dihydroxyphenylacetic acid (DOPAC), in the striatum and frontoparietal (sensorimotor) cortex in halothane-anesthetized rats were analyzed simultaneously using in vivo microdialysis. Basal DA levels, measured from the microdialysis perfusate, were 6.4 +/- 0.8 nM (n = 15) in the striatum and 0.9 +/- 0.1 nM (n = 15) in the frontoparietal cortex. Subcutaneous injections of d-amphetamine (2 mg/kg) increased DA levels 10-fold in the striatum and fivefold in the cortex. Injections of substance P (0.07 nmol/0.2 microliters) into the substantia nigra pars reticulata (SNR) increased DA and DOPAC levels approximately 30% in the ipsilateral striatum and approximately 50% in the ipsilateral frontoparietal cortex. Injections of neurokinin A (0.09 nmol/0.2 microliter) into the SNR increased DA and DOPAC levels approximately 30% in the ipsilateral striatum but did not significantly affect DA levels in the ipsilateral frontoparietal cortex, although DOPAC levels were increased by approximately 50%. It is suggested that striatal and cortical DA release is regulated differently by nigral substance P and neurokinin A terminals.
Collapse
Affiliation(s)
- M S Reid
- Department of Pharmacology, Karolinska Institute, Stockholm, Sweden
| | | | | |
Collapse
|
29
|
Beauregard M, Ferron A, Descarries L. Comparative analysis of the effects of iontophoretically applied dopamine in different regions of the rat brain, with special reference to the cingulate cortex. Synapse 1991; 9:27-34. [PMID: 1839089 DOI: 10.1002/syn.890090105] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A systematic comparison of the effects of iontophoresed dopamine (DA) was carried out in the neostriatum (NS), nucleus accumbens (Acb) and anterior cingulate (ACg), prefrontal (PF) and parietal (Par) cortex of urethane-anesthetized rats, before and after treatment with the specific DA uptake blockers GBR 12909 and Bupropion. Similar experiments were also conducted after DA denervation with 6-hydroxydopamine and after DA depletion with alpha-methyl-p-tyrosine. The average rate of spontaneous neuronal firing was comparable in all regions, except in the NS after DA depletion. A majority of the units were inhibited by DA in every region and condition tested. As assessed with the IT50 index, the responsiveness to DA was not markedly different between regions, indicating that the postsynaptic sensitivity to this amine is independent of the density of DA receptors and of DA innervation. In contrast, the average duration of DA inhibitions (RT90) was considerably longer (5-fold) in the intact ACg than in the PF, Par, NS, or Acb. Moreover, treatment with both DA uptake blockers reduced the duration of DA inhibitions in ACg (4- to 9-fold); while lengthening it in PF, NS and Acb; and having no apparent effect in Par. DA depletion and DA denervation also reduced the duration of the DA inhibitions in ACg without effect in Par. Taken together, these results provide further evidence for the existence of a presynaptic, positive-feedback mechanism in ACg, triggered by DA, and favouring the further release of this transmitter upon its reuptake in DA nerve terminals.
Collapse
Affiliation(s)
- M Beauregard
- Département de Physiologie, Faculté de Médecine, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
30
|
Dewar KM, Reader TA, Grondin L, Descarries L. [3H]paroxetine binding and serotonin content of rat and rabbit cortical areas, hippocampus, neostriatum, ventral mesencephalic tegmentum, and midbrain raphe nuclei region. Synapse 1991; 9:14-26. [PMID: 1724575 DOI: 10.1002/syn.890090104] [Citation(s) in RCA: 64] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The high-affinity binding of [3H]paroxetine to membranes was measured in different regions of the rat and rabbit brain: cingulate, frontal, parietal, piriform, entorhinal, and visual cortical areas; dorsal and ventral hippocampus; rostral and caudal halves of neostriatum (rat) or caudate nucleus and putamen (rabbit); ventral mesencephalic tegmentum; and midbrain raphe nuclei region. The tissue concentrations of serotonin (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA) and 5-hydroxy-l-tryptophan (5-HTP) were also determined by high-performance liquid chromatography (HPLC) in the same brain samples. The regional density of [3H]paroxetine binding varied in both species; the highest values (Bmax) were found in the midbrain raphe region and ventral mesencephalic tegmentum. The cortical values ranged from moderate to low, with a significantly higher density in the cingulate cortex of the rat compared with rabbit. In the rat, there was also a higher density in the ventral than dorsal hippocampus, and the caudal than rostral neostriatum. In the rabbit, the hippocampal and neostriatal values were generally lower and more uniform. In both species, there was an excellent correlation between regional 5-HT levels and specific [3H]paroxetine binding (r = 0.87 in the rat and 0.96 in the rabbit). Considering the available quantitative data on the number of 5-HT nerve cell bodies and axon terminals in different regions of the rat brain, it appears likely that the high amount of [3H]paroxetine binding in the midbrain raphe region and ventral mesencephalic tegmentum reflects the presence of 5-HT uptake sites on 5-HT nerve cell bodies and dendrites as well as axon terminals. In other brain regions, the heterogeneous distribution of [3H]paroxetine binding parallels that of the number of 5-HT axon terminals, emphasizing the potential usefulness of this radioligand as a marker of 5-HT innervation density.
Collapse
Affiliation(s)
- K M Dewar
- Centre de Recherche Psychiatrique, Hôpital Louis-H, Lafontaine, Montréal, Québec, Canada
| | | | | | | |
Collapse
|
31
|
Cobo M, Mora F. Acidic Amino Acids and Self-stimulation of the Prefrontal Cortex in the Rat: A Pharmacological Study. Eur J Neurosci 1991; 3:531-538. [PMID: 12106485 DOI: 10.1111/j.1460-9568.1991.tb00840.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of intraventricular and intracortical microinjections of acidic amino acid antagonists on self-stimulation (SS) of the medial prefrontal cortex (MPC) were investigated. Self-stimulation was measured by depressing a lever in a standard chamber. Spontaneous motor activity of the animal and SS of the contralateral non-injected MPC were used as control for non-specific effects of the drugs. Intraventricular microinjections of gamma-d-glutamylglycine (DGG), an antagonist of NMDA, kainate and quisqualate receptors, or 2-amino-5-phosphonovalerate (AP-5), a specific antagonist of NMDA receptors, produced a dose-related decrease of SS in the MPC. Spontaneous motor activity of the animal was not significantly affected. Unilateral microinjections into the medial prefrontal cortex of DGG or AP-5 produced a decrease of SS in the ipsilateral side while no effects were found on the contralateral MPC. On the contrary, intraventricular microinjections of gamma-d-glutamyltaurine (Glu-tau), an antagonist with more relative affinity for kainate and quisqualate receptors, produced a dose-related decrease of both self-stimulation and spontaneous motor activity of the rats. Moreover, intracortical microinjections of Glu-tau had no effect on self-stimulation of this cortical area. These results suggest that acidic amino acids through NMDA, but not kainate or quisqualate, receptors could be part of the neurochemical substrate underlying SS of the MPC in the rat.
Collapse
Affiliation(s)
- M. Cobo
- Department of Physiology, Faculty of Medicine, University Complutense of Madrid, 28040 Madrid, Spain
| | | |
Collapse
|
32
|
Jimenez-Rivera CA, Waterhouse BD. Effects of systemically and locally applied cocaine on cerebrocortical neuron responsiveness to afferent synaptic inputs and glutamate. Brain Res 1991; 546:287-96. [PMID: 1676928 DOI: 10.1016/0006-8993(91)91493-k] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The goal of the present study was to determine the effects of systemically or locally applied cocaine on rat somatosensory cortical neuron responsiveness to afferent synaptic inputs or putative transmitter application and to compare these results with previously observed actions of endogenous cortical monoamines on the same parameters of neuronal function. Individual cells in rat cortex were activated by stimulation of thalamocortical afferents or local iontophoretic application of glutamate. Extracellularly recorded responses to these stimuli were monitored before and after parenteral or microiontophoretic administration of cocaine. The results indicate that while high doses (greater than 2.0 mg/kg i.p.) of the drug can suppress both evoked and spontaneous activity of cortical neurons, low doses (0.5 mg/kg i.p.) can selectively enhance stimulus-evoked discharge. These facilitating effects can also be observed during iontophoretic application of cocaine directly onto recorded cells, thus suggesting that at least a component of the drug's influence on neuronal responsiveness is mediated by local actions at synapses within the cortex. Of the 3 major endogenous cortical monoamines whose synaptic reuptake is influenced by cocaine, the actions reported here mimic those described previously for norepinephrine but not those of dopamine or serotonin. As such these findings suggest that cocaine may enhance the responsiveness of sensory cortical neurons to afferent synaptic inputs via its ability to activate noradrenergic modulatory mechanisms within the cerebrocortical circuitry.
Collapse
Affiliation(s)
- C A Jimenez-Rivera
- Department of Physiology and Biophysics, Hahnemann University, Philadelphia, PA 19102
| | | |
Collapse
|
33
|
Mora F, Cobo M. The neurobiological basis of prefrontal cortex self-stimulation: a review and an integrative hypothesis. PROGRESS IN BRAIN RESEARCH 1991; 85:419-31. [PMID: 2094908 DOI: 10.1016/s0079-6123(08)62693-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- F Mora
- Department of Physiology, Faculty of Medicine, University Complutense of Madrid, Spain
| | | |
Collapse
|
34
|
|
35
|
Oleskevich S, Descarries L. Quantified distribution of the serotonin innervation in adult rat hippocampus. Neuroscience 1990; 34:19-33. [PMID: 2325849 DOI: 10.1016/0306-4522(90)90301-j] [Citation(s) in RCA: 112] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
To quantify the serotonin innervation in adult rat hippocampus, serotonin axon terminals (varicosities) were uptake-labeled for light microscope radioautography in whole hemisphere slices incubated with 1 microM [3H]serotonin. The labeled varicosities were visualized as small aggregates of silver grains and counted with the aid of an image analysis system across all layers in representative sectors of subiculum, Ammon's horn (CA1, CA3-a, CA3-b) and dentate gyrus (medial blade, crest and lateral blade). Counts were obtained in six rats at three equidistant horizontal levels from the ventral two-thirds of the hippocampus. After double correction for duration of radioautographic exposure and section thickness, and measurement of the mean diameter of labeled varicosities in electron microscope radioautographs, the results were expressed in number of varicosities per mm3 of tissue. The overall density of hippocampal serotonin innervation was thus evaluated at 2.7 x 10(6) varicosities per mm3, and appeared significantly higher in subiculum (3.6 x 10(6)) and Ammon's horn (3.1 x 10(6)) than in dentate gyrus (2.2 x 10(6)). Subiculum and dentate gyrus-crest (2.0 x 10(6)) had the highest and lowest regional densities. There was a marked heterogeneity also in terms of laminar distribution. For example, the stratum moleculare of subiculum and CA1, and the stratum oriens of CA3 (5.2 x 10(6)) varicosities in CA3-a), showed much higher values than the pyramidal cell layer (0.7, 1.1 and 0.7 x 10(6) in CA1, CA3-a and CA3-b, respectively). Similarly, the granular layer of dentate gyrus had a much lower density (1.1 x 10(6)) than did the molecular (2.8 x 10(6)) and the polymorph layer (2.4 x 10(6)). From these data, it was possible to evaluate the mean endogenous amine content per hippocampal serotonin varicosity (0.05-0.07 fg), and the average number of serotonin varicosities per hippocampal neuron in both CA3 (130) and dentate gyrus (20-35). In the context of current data on the distribution of serotonin receptors and diverse actions of serotonin at the cellular level in hippocampus, such quantified information provides new insights on some basic properties of serotonin in this part of the brain.
Collapse
Affiliation(s)
- S Oleskevich
- Département de physiologie, Faculté de médecine, Université de Montréal, Québec, Canada
| | | |
Collapse
|
36
|
Séguéla P, Watkins KC, Descarries L. Ultrastructural relationships of serotonin axon terminals in the cerebral cortex of the adult rat. J Comp Neurol 1989; 289:129-42. [PMID: 2808757 DOI: 10.1002/cne.902890111] [Citation(s) in RCA: 117] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PAP immunocytochemistry with an antiserum against serotonin (5-HT)-glutaraldehyde-protein conjugate (kindly donated by M. Geffard) was used to analyze the ultrastructural relationships of 5-HT axon terminals (varicosities) in the frontal (Fr1-Fr2), parietal (Par1), and occipital (Oc1M-Oc2) cortex of adult rats. One hundred-forty-five immunostained varicosities from Fr1-Fr2 (54 from layers I-II; 91 from layer VI) and 97 each from the upper layers (I-II) of Par1 and OcM1-Oc2 were examined in groups of serial thin sections (mean number of sections in series: 3.2 to 7.3). These terminals were of comparable shape and size in the 4 cortical sectors examined, and averaged 0.66 +/- 0.2 microns in mean diameter. The proportion of varicosities engaged in synaptic contact was evaluated by linear transformation of the relationship between the frequency of observed synaptic junctions and the number of thin sections available for examination. Reliability of the sampling was evidenced by a high coefficient of correlation (r greater than 0.95) in each cortical sector. The synaptic incidence extrapolated for whole varicosities ranged from 28% (layer VI of Fr1-Fr2) to 46% (Par1), without statistically significant differences between the 4 sectors examined. The interregional mean could thus be evaluated at 38%. The synaptic 5-HT terminals always made asymmetrical junctions, which were exclusively found on dendritic spines and shafts, and appeared more frequent on spines than shafts in the deep frontal and the upper occipital cortex. In all 4 sectors, dendritic shafts and spines and other axonal varicosities were frequently encountered in the immediate microenvironment of the immunostained varicosities. It is concluded that the cortical 5-HT innervation is predominantly nonjunctional throughout the neocortex of the adult rat, which reinforces earlier views of a highly divergent afferent system with particular functional properties and perhaps capable of widespread, global and/or sustained influences in this part of the brain.
Collapse
Affiliation(s)
- P Séguéla
- Département de Physiologie, Faculté de Médecine, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
37
|
Beauregard M, Ferron A, Descarries L. Possible existence of a presynaptic positive feedback mechanism enhancing dopamine transmission in the anterior cingulate cortex of the rat. EXPERIENTIA 1989; 45:888-92. [PMID: 2570715 DOI: 10.1007/bf01954066] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A series of microiontophoretic and VTA stimulation experiments, conducted in intact, GBR-12909-treated, alpha-methylparatyrosine-depleted or 6-hydroxydopamine-denervated rats, provide suggestive evidence for the existence of a presynaptic, positive feedback mechanism triggered by dopamine reuptake and favoring the release of this transmitter in the anterior cingulate cortex.
Collapse
Affiliation(s)
- M Beauregard
- Centre de Recherche en Sciences Neurologiques (Département de Physiologie), Faculté de Médecine, Université de Montréal, Québec, Canada
| | | | | |
Collapse
|
38
|
Papadopoulos GC, Parnavelas JG, Buijs RM. Light and electron microscopic immunocytochemical analysis of the dopamine innervation of the rat visual cortex. JOURNAL OF NEUROCYTOLOGY 1989; 18:303-10. [PMID: 2746303 DOI: 10.1007/bf01190833] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The dopaminergic innervation of the rat primary (area 17) and secondary (areas 18 and 18a) visual cortical areas was examined immunocytochemically using an antiserum directed against dopamine. This innervation was characterized by the differential density of the respective afferents within individual visual areas. Area 18, especially its rostral part, was observed to receive a considerable amount of dopaminergic axons, whereas areas 17 and 18a were sparsely innervated. The innervation of all layers of area 18 seemed to consist to a considerable extent of axonal branches of radial fibres ascending from layer VI to layer I. At the ultrastructural level, dopamine profiles were found to display similar characteristics in all visual areas. Dopamine labelled axon-terminals and axonal varicosities, examined in single and serial ultrathin sections, were seen to form primarily asymmetrical synaptic contacts with dendritic profiles. These observations suggest a 'specific' innervation of cytoarchitectonically distinct cortical regions by dopaminergic axons.
Collapse
Affiliation(s)
- G C Papadopoulos
- Laboratory of Anatomy, Veterinary School, University of Thessaloniki, Greece
| | | | | |
Collapse
|
39
|
Soghomonian JJ, Descarries L, Watkins KC. Serotonin innervation in adult rat neostriatum. II. Ultrastructural features: a radioautographic and immunocytochemical study. Brain Res 1989; 481:67-86. [PMID: 2706468 DOI: 10.1016/0006-8993(89)90486-1] [Citation(s) in RCA: 100] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
High-resolution radioautography after cerebroventricular administration of tritiated serotonin (5-HT) and PAP immunocytochemistry with an antiserum against 5-HT-glutaraldehyde conjugate (kindly donated by M. Geffard) were used in parallel to investigate the intrinsic and relational fine structural features of 5-HT axon varicosities (terminals) in the neostriatum of the adult rat. The uptake-labeled varicosities were examined in single thin sections from a paraventricular sector of neostriatum, whereas their immunostained counterparts were viewed in serial thin sections from the same paraventricular sector plus a dorsal neostriatal sector. The two approaches yielded complementary results in terms of varicosity dimensions, synaptic features and appositional relationships. Serotonin axon terminals were generally small and, as measured in immunostained material, even smaller in the dorsal than in the paraventricular neostriatum. Their internal features, best viewed in radioautographs, included small pleomorphic synaptic vesicles with occasional large granular vesicles and mitochondria. Junctional 5-HT terminals from both the paraventricular and the dorsal neostriatal sectors synapsed exclusively, and with equal frequency, on dendritic spines or shafts, almost always with asymmetrical membrane differentiations. The proportion of junctional varicosities, however, was very low in serial (immunocytochemical) as well as single (radioautographic) thin sections. Only 10-13% of 5-HT varicosities from either the paraventricular or the dorsal neostriatum exhibited a synaptic junction, in contrast with a junctional incidence of at least 70% for randomly selected axonal varicosities similarly sampled in the surrounding neuropil. Serotonin axon terminals, whether or not synaptic, were closely apposed to a variety of structures comprising mostly other axon terminals, dendritic spines and branches, but rarely neuronal somata. The synaptic and appositional features of immunostained 5-HT varicosities were similar for both the dorsal and the paraventricular neostriatum. In this context, it is likely that the effects of 5-HT in the neostriatum are exerted upon a multiplicity of cellular target sites in addition to the restricted number of dendritic spines and shafts synaptically contacted by this type of monoamine terminal.
Collapse
Affiliation(s)
- J J Soghomonian
- Centre de Recherche en Sciences Neurologiques, Faculté de Médecine (Département de Physiologie), Université de Montréal, Qué., Canada
| | | | | |
Collapse
|
40
|
Audet MA, Doucet G, Oleskevich S, Descarries L. Quantified regional and laminar distribution of the noradrenaline innervation in the anterior half of the adult rat cerebral cortex. J Comp Neurol 1988; 274:307-18. [PMID: 2464617 DOI: 10.1002/cne.902740302] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The regional and laminar distribution of the noradrenaline (NA) innervation in the adult rat cerebral cortex was quantified in radioautographs of semithin sections from whole hemisphere slices incubated with tritiated catecholamines and a monoamine oxidase inhibitor. Uptake-labeled axonal varicosities (aggregates of silver grains) were counted with the help of a computerized image analyzer in seven cytoarchitectonic areas of the rostral half of the cortex: Cg3, rostral AID, Cg2, Fr1, Par1, caudal AID, and Pir (prepiriform) according to Zilles's nomenclature. Both dopamine (DA) and NA terminals were detected after incubation with [3H]DA and citalopram or with [3H]NA alone. In the presence of desipramine (DMI), DA terminals alone were demonstrated; the number of NA terminals was then obtained by subtraction from counts in adjacent slices incubated with or without DMI. These counts suggested that DA and NA varicosities were fully visualized only after labeling with their respective tritiated amine. Similar numbers of labeled NA varicosities as inferred after [3H]NA incubation with or without DMI were observed after [3H]NA incubation in the presence of benztropine (BZ). This indicated that NA terminals were then maximally detected to the exclusion of the DA ones, and the latter approach was adopted for the acquisition of normative data. Since the average diameter of the labeled NA varicosities was known from earlier measurements in electron microscope radioautographs, the initial counts of labeled sites/mm2 of histological section could be expressed as numbers of varicosities/mm3 of tissue following a double correction for incomplete detection at the chosen duration of radioautographic exposure and section thickness. The overall density of NA innervation was thus estimated at 1.2 million varicosities/mm3 of tissue, with no statistically significant differences between the seven cortical areas examined. In every region, the number of NA terminals was the greatest in the molecular layer (1.5-2 times the density in the rest of cortex) and then progressively decreased in the underlying cortex, with a two- to threefold difference between upper and lower layers. These numerical data allowed an estimation to be made of the possible number of cortical NA varicosities per locus coeruleus nerve cell body of origin (at least 300,000), of their average number per cortical neuron (30-50), their actual incidence among all terminals in the cortex (1/1,000), their mean endogenous amine content per varicosity (0.22 fg), and the mean number of recognition sites for the uptake blocker DMI (4,500/varicosity).(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- M A Audet
- Départment de Physiologie, Faculté de Médecine, Université de Montréal, Canada
| | | | | | | |
Collapse
|
41
|
Berger B, Trottier S, Verney C, Gaspar P, Alvarez C. Regional and laminar distribution of the dopamine and serotonin innervation in the macaque cerebral cortex: a radioautographic study. J Comp Neurol 1988; 273:99-119. [PMID: 3209731 DOI: 10.1002/cne.902730109] [Citation(s) in RCA: 195] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The regional density and laminar distribution of dopamine (DA) and serotonin (5-HT) afferents were investigated in the cerebral cortex of cynomolgus monkeys using a radioautographic technique that is based on the high affinity uptake capacity of these aminergic neurons. Large vibratome sections, 50 micron thick, were incubated with [3H] DA (0.2 microM) and desipramine (5 microM) or with unlabeled norepinephrine (5 microM) and [3H] 5-HT (0.6 microM), which allowed for the specific labeling of the DA and 5-HT innervations, respectively. After fixation, these sections were dried, defatted, and radioautographed by dipping. Semiquantitative data on the DA innervation also were provided by counting [3H] DA-labeled axonal varicosities in radioautographs from 4-micron-thick sections of the slices obtained after epon embedding. The DA innervation was widespread and differed in density and laminar distribution in the agranular and granular cortices. DA afferents were densest in the anterior cingulate (area 24) and the motor areas (areas 4, 6, and supplementary motor area [SMA]). In the latter they displayed a trilaminar pattern of distribution, predominating in layers I, IIIa, and V-VI, with characteristic cluster-like formations in layer IIIa, especially in the medial part of motor areas. In the granular prefrontal (areas 46, 9, 10, 11, 12), parietal (areas 1, 2, 3, 5, 7), temporal (areas 21, 22), and posterior cingulate (area 23) cortices, DA afferents were less dense and showed a bilaminar pattern of distribution, predominating in the depth of layer I and in layers V-VI; density in layers II, III, and IV was only 20% of that in layer I. The lowest density was in the visual cortex, particularly in area 17, where the DA afferents were almost restricted to layer I. The density of 5-HT innervation was generally greater than that of DA except in the motor areas and in the anterior cingulate cortex. Region-specific laminar patterns characterized (1) motor areas where a lower density in layer III contrasted with the clusters of DA axons in the same layer; (2) the primary visual cortex (area 17), where two bands of higher density in layers III-IV and layer V outlined a poorly innervated zone in layer IVc-beta; (3) the peristriate area 18, where the 5-HT network was relatively loose but with a denser band in layer III. Thus, DA innervation of the cerebral cortex displays major differences between rodents and primates, characterized by expanded cortical targets and by a highly differentiated laminar distribution.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
Affiliation(s)
- B Berger
- INSERM U 106, Bâtiment de Pédiatrie, Hopital Salpêtrière, Paris, France
| | | | | | | | | |
Collapse
|
42
|
Berger B, Doucet G, Descarries L. Density of the dopamine innervation in rat cerebral cortex after neonatal 6-hydroxydopamine or adult stage DSP-4 noradrenaline denervations: a quantitative radioautographic study. Brain Res 1988; 441:260-8. [PMID: 3129129 DOI: 10.1016/0006-8993(88)91404-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
An in vitro radioautographic approach was used to count dopamine axon terminals (varicosities) of the mediofrontal and the supragenual cingulate cortex in 30-40-day-old rats treated with 6-hydroxydopamine at birth or with N(2-chloro-ethyl)N-ethyl-2-bromobenzylamine hydrochloride (DSP-4) 7-10 days earlier. Compared to controls, there were no increases in the density of dopamine innervation in either region of the noradrenaline-denervated cortex after either treatment. The results, therefore, did not support the hypothesis of a sprouting of dopamine terminals reported to account for augmented cortical dopamine levels under these conditions. In line with earlier observations, such biochemical changes might rather be indicative of altered dopamine steady-state levels.
Collapse
Affiliation(s)
- B Berger
- INSERM U106, Bâtiment de Pédiatrie, Hôpital de la Salpêtrière, Paris, France
| | | | | |
Collapse
|
43
|
Ferron A. Modified coeruleo-cortical noradrenergic neurotransmission after serotonin depletion by PCPA: electrophysiological studies in the rat. Synapse 1988; 2:532-6. [PMID: 2847343 DOI: 10.1002/syn.890020509] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
To detect eventual modifications in the efficacy of the noradrenergic (NA) coeruleo-cortical system after serotonin (5-HT) depletion by parachlorophenylalanine (PCPA), three electrophysiological parameters were investigated in urethane-anesthetized rats which were treated for 2 days with daily injections of this inhibitor of 5-HT synthesis. 1) The spontaneous activity of locus coeruleus (LC) noradrenergic neurons showed a significant increase in PCPA-treated compared to control rats (4.3 vs. 2.6 Hz). 2) The sensitivity of NA autoreceptors was measured in the LC by the effect of intravenous administrations of clonidine or microiontophoretic applications of NA on spontaneous neuronal firing. In treated rats, clonidine and NA induced a lesser reduction of LC neuron firing than in the controls (27 vs. 75% decreases and 1,367 vs. 280 nC, respectively). 3) The responsiveness of cortical neurons to electrical stimulation of the LC was assessed by peristimulus time histograms in the dorsal fronto-parietal cortex. Following stimulation at 2 or 4 Hz, a majority of spontaneously firing cortical units was inhibited by electrical stimulation of the LC, but the percentage of such units was reduced and showed a decreased responsiveness after PCPA treatment. These findings suggest that following 5-HT depletion by PCPA, cortical NA neurotransmission is markedly reduced in its efficacy in spite of some increase in the spontaneous activity of coeruleo-cortical NA neurons.
Collapse
Affiliation(s)
- A Ferron
- Départment de Physiologie, Faculté de Médecine, Université de Montréal, Québec, Canada
| |
Collapse
|