1
|
Ribeiro N, Martins Sá RW, Antunes VR. Depletion of C1 neurons attenuates the salt-induced hypertension in unanesthetized rats. Brain Res 2020; 1748:147107. [PMID: 32905820 DOI: 10.1016/j.brainres.2020.147107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 08/24/2020] [Accepted: 08/31/2020] [Indexed: 02/06/2023]
Abstract
High salt intake is able to evoke neuroendocrine and autonomic responses that include vasopressin release and sympathoexcitation resulting in increasing in the arterial blood pressure (BP). The C1 neurons are a specific population of catecholaminergic neurons located in the RVLM region and they control BP under homeostatic imbalance. Thus, here we hypothesized that the ablation of C1 neurons mitigate the high blood pressure induced by high-salt intake. To test this hypothesis, we injected anti-DβH-SAP saporin at the RVLM and monitored the BP in unanesthetized animals exposed to high salt intake of 2% NaCl solution for 7 days. The injection of anti-DβH-SAP into the RVLM depleted 80% of tyrosine hydroxylase-positive neurons (TH+ neurons) in the C1, 38% in the A5, and no significant reduction in the A1 region, when compared to control group (saline as vehicle). High salt intake elicited a significant increase in BP in the control group, while in the anti-DβH-SAP group the depletion of TH+ neurons prevents the salt-induced hypertension. Moreover, the low frequency component of systolic BP and pulse interval were increased by high-salt intake in control animals but not in anti-DβH-SAP group, which indirectly suggests that the increase in the BP is mediated by increase in sympathetic activity. In conclusion, our data show that hypertension induced by high-salt intake is dependent on C1 neurons.
Collapse
Affiliation(s)
- Natalia Ribeiro
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Renato W Martins Sá
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Vagner R Antunes
- Department of Physiology and Biophysics, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
2
|
Hökfelt T, Barde S, Xu ZQD, Kuteeva E, Rüegg J, Le Maitre E, Risling M, Kehr J, Ihnatko R, Theodorsson E, Palkovits M, Deakin W, Bagdy G, Juhasz G, Prud’homme HJ, Mechawar N, Diaz-Heijtz R, Ögren SO. Neuropeptide and Small Transmitter Coexistence: Fundamental Studies and Relevance to Mental Illness. Front Neural Circuits 2018; 12:106. [PMID: 30627087 PMCID: PMC6309708 DOI: 10.3389/fncir.2018.00106] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 11/05/2018] [Indexed: 12/31/2022] Open
Abstract
Neuropeptides are auxiliary messenger molecules that always co-exist in nerve cells with one or more small molecule (classic) neurotransmitters. Neuropeptides act both as transmitters and trophic factors, and play a role particularly when the nervous system is challenged, as by injury, pain or stress. Here neuropeptides and coexistence in mammals are reviewed, but with special focus on the 29/30 amino acid galanin and its three receptors GalR1, -R2 and -R3. In particular, galanin's role as a co-transmitter in both rodent and human noradrenergic locus coeruleus (LC) neurons is addressed. Extensive experimental animal data strongly suggest a role for the galanin system in depression-like behavior. The translational potential of these results was tested by studying the galanin system in postmortem human brains, first in normal brains, and then in a comparison of five regions of brains obtained from depressed people who committed suicide, and from matched controls. The distribution of galanin and the four galanin system transcripts in the normal human brain was determined, and selective and parallel changes in levels of transcripts and DNA methylation for galanin and its three receptors were assessed in depressed patients who committed suicide: upregulation of transcripts, e.g., for galanin and GalR3 in LC, paralleled by a decrease in DNA methylation, suggesting involvement of epigenetic mechanisms. It is hypothesized that, when exposed to severe stress, the noradrenergic LC neurons fire in bursts and release galanin from their soma/dendrites. Galanin then acts on somato-dendritic, inhibitory galanin autoreceptors, opening potassium channels and inhibiting firing. The purpose of these autoreceptors is to act as a 'brake' to prevent overexcitation, a brake that is also part of resilience to stress that protects against depression. Depression then arises when the inhibition is too strong and long lasting - a maladaption, allostatic load, leading to depletion of NA levels in the forebrain. It is suggested that disinhibition by a galanin antagonist may have antidepressant activity by restoring forebrain NA levels. A role of galanin in depression is also supported by a recent candidate gene study, showing that variants in genes for galanin and its three receptors confer increased risk of depression and anxiety in people who experienced childhood adversity or recent negative life events. In summary, galanin, a neuropeptide coexisting in LC neurons, may participate in the mechanism underlying resilience against a serious and common disorder, MDD. Existing and further results may lead to an increased understanding of how this illness develops, which in turn could provide a basis for its treatment.
Collapse
Affiliation(s)
- Tomas Hökfelt
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Swapnali Barde
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Zhi-Qing David Xu
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Neurobiology, Beijing Key Laboratory of Neural Regeneration and Repair, Beijing Laboratory of Brain Disorders (Ministry of Science and Technology), Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Eugenia Kuteeva
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Joelle Rüegg
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- The Center for Molecular Medicine, Stockholm, Sweden
- Swedish Toxicology Sciences Research Center, Swetox, Södertälje, Sweden
| | - Erwan Le Maitre
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Mårten Risling
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jan Kehr
- Pronexus Analytical AB, Solna, Sweden
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Robert Ihnatko
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Elvar Theodorsson
- Department of Clinical Chemistry, Linköping University, Linköping, Sweden
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Miklos Palkovits
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - William Deakin
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
| | - Gyorgy Bagdy
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- MTA-SE Neuropsychopharmacology and Neurochemistry Research Group, Hungarian Academy of Sciences, Semmelweis University, Budapest, Hungary
- NAP 2-SE New Antidepressant Target Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | - Gabriella Juhasz
- Neuroscience and Psychiatry Unit, University of Manchester, Manchester, United Kingdom
- Department of Pharmacodynamics, Semmelweis University, Budapest, Hungary
- SE-NAP2 Genetic Brain Imaging Migraine Research Group, Hungarian Brain Research Program, Semmelweis University, Budapest, Hungary
| | | | - Naguib Mechawar
- Douglas Hospital Research Centre, Verdun, QC, Canada
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | | | - Sven Ove Ögren
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
3
|
Afferent and efferent connections of C1 cells with spinal cord or hypothalamic projections in mice. Brain Struct Funct 2015; 221:4027-4044. [PMID: 26560463 DOI: 10.1007/s00429-015-1143-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 11/02/2015] [Indexed: 12/20/2022]
Abstract
The axonal projections and synaptic input of the C1 adrenergic neurons of the rostral ventrolateral medulla (VLM) were examined using transgenic dopamine-beta hydroxylase Cre mice and modified rabies virus. Cre-dependent viral vectors expressing TVA (receptor for envelopeA) and rabies glycoprotein were injected into the left VLM. EnvelopeA-pseudotyped rabies-EGFP glycoprotein-deficient virus (rabies-EGFP) was injected 4-6 weeks later in either thoracic spinal cord (SC) or hypothalamus. TVA immunoreactivity was detected almost exclusively (95 %) in VLM C1 neurons. In mice with SC injections of rabies-EGFP, starter cells (expressing TVA + EGFP) were found at the rostral end of the VLM; in mice with hypothalamic injections starter C1 cells were located more caudally. C1 neurons innervating SC or hypothalamus had other terminal fields in common (e.g., dorsal vagal complex, locus coeruleus, raphe pallidus and periaqueductal gray matter). Putative inputs to C1 cells with SC or hypothalamic projections originated from the same brain regions, especially the lower brainstem reticular core from spinomedullary border to rostral pons. Putative input neurons to C1 cells were also observed in the nucleus of the solitary tract, caudal VLM, caudal spinal trigeminal nucleus, cerebellum, periaqueductal gray matter and inferior and superior colliculi. In sum, regardless of whether they innervate SC or hypothalamus, VLM C1 neurons receive input from the same general brain regions. One interpretation is that many types of somatic or internal stimuli recruit these neurons en bloc to produce a stereotyped acute stress response with sympathetic, parasympathetic, vigilance and neuroendocrine components.
Collapse
|
4
|
Kourtesis I, Kasparov S, Verkade P, Teschemacher AG. Ultrastructural Correlates of Enhanced Norepinephrine and Neuropeptide Y Cotransmission in the Spontaneously Hypertensive Rat Brain. ASN Neuro 2015; 7:7/5/1759091415610115. [PMID: 26514659 PMCID: PMC4641560 DOI: 10.1177/1759091415610115] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The spontaneously hypertensive rat (SHR) replicates many clinically relevant features of human essential hypertension and also exhibits behavioral symptoms of attention-deficit/hyperactivity disorder and dementia. The SHR phenotype is highly complex and cannot be explained by a single genetic or physiological mechanism. Nevertheless, numerous studies including our own work have revealed striking differences in central catecholaminergic transmission in SHR such as increased vesicular catecholamine content in the ventral brainstem. Here, we used immunolabeling followed by confocal microscopy and electron microscopy to quantify vesicle sizes and populations across three catecholaminergic brain areas—nucleus tractus solitarius and rostral ventrolateral medulla, both key regions for cardiovascular control, and the locus coeruleus. We also studied colocalization of neuropeptide Y (NPY) in norepinephrine and epinephrine-containing neurons as NPY is a common cotransmitter with central and peripheral catecholamines. We found significantly increased expression and coexpression of NPY in norepinephrine and epinephrine-positive neurons of locus coeruleus in SHR compared with Wistar rats. Ultrastructural analysis revealed immunolabeled vesicles of 150 to 650 nm in diameter (means ranging from 250 to 300 nm), which is much larger than previously reported. In locus coeruleus and rostral ventrolateral medulla, but not in nucleus tractus solitarius, of SHR, noradrenergic and adrenergic vesicles were significantly larger and showed increased NPY colocalization when compared with Wistar rats. Our morphological evidence underpins the hypothesis of hyperactivity of the noradrenergic and adrenergic system and increased norepinephrine and epinephrine and NPY cotransmission in specific brain areas in SHR. It further strengthens the argument for a prohypertensive role of C1 neurons in the rostral ventrolateral medulla as a potential causative factor for essential hypertension.
Collapse
Affiliation(s)
- Ioannis Kourtesis
- School of Physiology & Pharmacology, University of Bristol, UK Bristol Heart Institute, University of Bristol, UK Sars International Centre for Marine Molecular Biology, University of Bergen, Norway
| | - Sergey Kasparov
- School of Physiology & Pharmacology, University of Bristol, UK Bristol Heart Institute, University of Bristol, UK
| | - Paul Verkade
- School of Physiology & Pharmacology, University of Bristol, UK Bristol Heart Institute, University of Bristol, UK School of Biochemistry, University of Bristol, UK Wolfson Bioimaging Facility, University of Bristol, UK
| | - Anja G Teschemacher
- School of Physiology & Pharmacology, University of Bristol, UK Bristol Heart Institute, University of Bristol, UK
| |
Collapse
|
5
|
Bochorishvili G, Nguyen T, Coates MB, Viar KE, Stornetta RL, Guyenet PG. The orexinergic neurons receive synaptic input from C1 cells in rats. J Comp Neurol 2014; 522:3834-46. [PMID: 24984694 DOI: 10.1002/cne.23643] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 11/10/2022]
Abstract
The C1 cells, located in the rostral ventrolateral medulla (RVLM), are activated by pain, hypoxia, hypoglycemia, infection, and hypotension and elicit cardiorespiratory stimulation, adrenaline and adrenocorticotropic hormone (ACTH) release, and arousal. The orexin neurons contribute to the autonomic responses to acute psychological stress. Here, using an anatomical approach, we consider whether the orexin neurons could also be contributing to the autonomic effects elicited by C1 neuron activation. Phenylethanolamine N-methyl transferase-immunoreactive (PNMT-ir) axons were detected among orexin-ir somata, and close appositions between PNMT-ir axonal varicosities and orexin-ir profiles were observed. The existence of synapses between PNMT-ir boutons labeled with diaminobenzidine and orexinergic neurons labeled with immunogold was confirmed by electron microscopy. We labeled RVLM neurons with a lentiviral vector that expresses the fusion protein ChR2-mCherry under the control of the catecholaminergic neuron-selective promoter PRSx8 and obtained light and ultrastructural evidence that these neurons innervate the orexin cells. By using a Cre-dependent adeno-associated vector and TH-Cre rats, we confirmed that the projection from RVLM catecholaminergic neurons to the orexinergic neurons originates predominantly from PNMT-ir catecholaminergic (i.e., C1 cells). The C1 neurons were found to establish predominantly asymmetric synapses with orexin-ir cell bodies or dendrites. These synapses were packed with small clear vesicles and also contained dense-core vesicles. In summary, the orexin neurons are among the hypothalamic neurons contacted and presumably excited by the C1 cells. The C1-orexin neuronal connection is probably one of several suprabulbar pathways through which the C1 neurons activate breathing and the circulation, raise blood glucose, and facilitate arousal from sleep.
Collapse
|
6
|
Monosynaptic glutamatergic activation of locus coeruleus and other lower brainstem noradrenergic neurons by the C1 cells in mice. J Neurosci 2014; 33:18792-805. [PMID: 24285886 DOI: 10.1523/jneurosci.2916-13.2013] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The C1 neurons, located in the rostral ventrolateral medulla (VLM), are activated by pain, hypotension, hypoglycemia, hypoxia, and infection, as well as by psychological stress. Prior work has highlighted the ability of these neurons to increase sympathetic tone, hence peripheral catecholamine release, probably via their direct excitatory projections to sympathetic preganglionic neurons. In this study, we use channelrhodopsin-2 (ChR2) optogenetics to test whether the C1 cells are also capable of broadly activating the brain's noradrenergic system. We selectively expressed ChR2(H134R) in rostral VLM catecholaminergic neurons by injecting Cre-dependent adeno-associated viral vectors into the brain of adult dopamine-β-hydroxylase (DβH)(Cre/0) mice. Most ChR2-expressing VLM neurons (75%) were immunoreactive for phenylethanolamine N-methyl transferease, thus were C1 cells, and most of the ChR2-positive axonal varicosities were immunoreactive for vesicular glutamate transporter-2 (78%). We produced light microscopic evidence that the axons of rostral VLM (RVLM) catecholaminergic neurons contact locus coeruleus, A1, and A2 noradrenergic neurons, and ultrastructural evidence that these contacts represent asymmetric synapses. Using optogenetics in tissue slices, we show that RVLM catecholaminergic neurons activate the locus coeruleus as well as A1 and A2 noradrenergic neurons monosynaptically by releasing glutamate. In conclusion, activation of RVLM catecholaminergic neurons, predominantly C1 cells, by somatic or psychological stresses has the potential to increase the firing of both peripheral and central noradrenergic neurons.
Collapse
|
7
|
Abbott SBG, Holloway BB, Viar KE, Guyenet PG. Vesicular glutamate transporter 2 is required for the respiratory and parasympathetic activation produced by optogenetic stimulation of catecholaminergic neurons in the rostral ventrolateral medulla of mice in vivo. Eur J Neurosci 2013; 39:98-106. [PMID: 24236954 DOI: 10.1111/ejn.12421] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/17/2013] [Accepted: 10/11/2013] [Indexed: 11/27/2022]
Abstract
Catecholaminergic neurons of the rostral ventrolateral medulla (RVLM-CA neurons; C1 neurons) contribute to the sympathetic, parasympathetic and neuroendocrine responses elicited by physical stressors such as hypotension, hypoxia, hypoglycemia, and infection. Most RVLM-CA neurons express vesicular glutamate transporter (VGLUT)2, and may use glutamate as a ionotropic transmitter, but the importance of this mode of transmission in vivo is uncertain. To address this question, we genetically deleted VGLUT2 from dopamine-β-hydroxylase-expressing neurons in mice [DβH(Cre/0) ;VGLUT2(flox/flox) mice (cKO mice)]. We compared the in vivo effects of selectively stimulating RVLM-CA neurons in cKO vs. control mice (DβH(Cre/0) ), using channelrhodopsin-2 (ChR2-mCherry) optogenetics. ChR2-mCherry was expressed by similar numbers of rostral ventrolateral medulla (RVLM) neurons in each strain (~400 neurons), with identical selectivity for catecholaminergic neurons (90-99% colocalisation with tyrosine hydroxylase). RVLM-CA neurons had similar morphology and axonal projections in DβH(Cre/0) and cKO mice. Under urethane anesthesia, photostimulation produced a similar pattern of activation of presumptive ChR2-positive RVLM-CA neurons in DβH(Cre/0) and cKO mice. Photostimulation in conscious mice produced frequency-dependent respiratory activation in DβH(Cre/0) mice but no effect in cKO mice. Similarly, photostimulation under urethane anesthesia strongly activated efferent vagal nerve activity in DβH(Cre/0) mice only. Vagal responses were unaffected by α1 -adrenoreceptor blockade. In conclusion, two responses evoked by RVLM-CA neuron stimulation in vivo require the expression of VGLUT2 by these neurons, suggesting that the acute autonomic responses driven by RVLM-CA neurons are mediated by glutamate.
Collapse
Affiliation(s)
- Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | | | | | | |
Collapse
|
8
|
Guyenet PG, Stornetta RL, Bochorishvili G, Depuy SD, Burke PGR, Abbott SBG. C1 neurons: the body's EMTs. Am J Physiol Regul Integr Comp Physiol 2013; 305:R187-204. [PMID: 23697799 DOI: 10.1152/ajpregu.00054.2013] [Citation(s) in RCA: 216] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The C1 neurons reside in the rostral and intermediate portions of the ventrolateral medulla (RVLM, IVLM). They use glutamate as a fast transmitter and synthesize catecholamines plus various neuropeptides. These neurons regulate the hypothalamic pituitary axis via direct projections to the paraventricular nucleus and regulate the autonomic nervous system via projections to sympathetic and parasympathetic preganglionic neurons. The presympathetic C1 cells, located in the RVLM, are probably organized in a roughly viscerotopic manner and most of them regulate the circulation. C1 cells are variously activated by hypoglycemia, infection or inflammation, hypoxia, nociception, and hypotension and contribute to most glucoprivic responses. C1 cells also stimulate breathing and activate brain stem noradrenergic neurons including the locus coeruleus. Based on the various effects attributed to the C1 cells, their axonal projections and what is currently known of their synaptic inputs, subsets of C1 cells appear to be differentially recruited by pain, hypoxia, infection/inflammation, hemorrhage, and hypoglycemia to produce a repertoire of stereotyped autonomic, metabolic, and neuroendocrine responses that help the organism survive physical injury and its associated cohort of acute infection, hypoxia, hypotension, and blood loss. C1 cells may also contribute to glucose and cardiovascular homeostasis in the absence of such physical stresses, and C1 cell hyperactivity may contribute to the increase in sympathetic nerve activity associated with diseases such as hypertension.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908-0735, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Glutamatergic neurotransmission between the C1 neurons and the parasympathetic preganglionic neurons of the dorsal motor nucleus of the vagus. J Neurosci 2013; 33:1486-97. [PMID: 23345223 DOI: 10.1523/jneurosci.4269-12.2013] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The C1 neurons are a nodal point for blood pressure control and other autonomic responses. Here we test whether these rostral ventrolateral medullary catecholaminergic (RVLM-CA) neurons use glutamate as a transmitter in the dorsal motor nucleus of the vagus (DMV). After injecting Cre-dependent adeno-associated virus (AAV2) DIO-Ef1α-channelrhodopsin2(ChR2)-mCherry (AAV2) into the RVLM of dopamine-β-hydroxylase Cre transgenic mice (DβH(Cre/0)), mCherry was detected exclusively in RVLM-CA neurons. Within the DMV >95% mCherry-immunoreactive(ir) axonal varicosities were tyrosine hydroxylase (TH)-ir and the same proportion were vesicular glutamate transporter 2 (VGLUT2)-ir. VGLUT2-mCherry colocalization was virtually absent when AAV2 was injected into the RVLM of DβH(Cre/0);VGLUT2(flox/flox) mice, into the caudal VLM (A1 noradrenergic neuron-rich region) of DβH(Cre/0) mice or into the raphe of ePet(Cre/0) mice. Following injection of AAV2 into RVLM of TH-Cre rats, phenylethanolamine N-methyl transferase and VGLUT2 immunoreactivities were highly colocalized in DMV within EYFP-positive or EYFP-negative axonal varicosities. Ultrastructurally, mCherry terminals from RVLM-CA neurons in DβH(Cre/0) mice made predominantly asymmetric synapses with choline acetyl-transferase-ir DMV neurons. Photostimulation of ChR2-positive axons in DβH(Cre/0) mouse brain slices produced EPSCs in 71% of tested DMV preganglionic neurons (PGNs) but no IPSCs. Photostimulation (20 Hz) activated PGNs up to 8 spikes/s (current-clamp). EPSCs were eliminated by tetrodotoxin, reinstated by 4-aminopyridine, and blocked by ionotropic glutamate receptor blockers. In conclusion, VGLUT2 is expressed by RVLM-CA (C1) neurons in rats and mice regardless of the presence of AAV2, the C1 neurons activate DMV parasympathetic PGNs monosynaptically and this connection uses glutamate as an ionotropic transmitter.
Collapse
|
10
|
Function and innervation of the locus ceruleus in a macaque model of Functional Hypothalamic Amenorrhea. Neurobiol Dis 2012; 50:96-106. [PMID: 23069677 DOI: 10.1016/j.nbd.2012.10.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 08/30/2012] [Accepted: 10/03/2012] [Indexed: 02/04/2023] Open
Abstract
A body of knowledge implicates an increase in output from the locus ceruleus (LC) during stress. We questioned the innervation and function of the LC in our macaque model of Functional Hypothalamic Amenorrhea, also known as Stress-Induced Amenorrhea. Cohorts of macaques were initially characterized as highly stress resilient (HSR) or stress-sensitive (SS) based upon the presence or absence of ovulation during a protocol involving 2 menstrual cycles with psychosocial and metabolic stress. Afterwards, the animals were rested until normal menstrual cycles resumed and then euthanized on day 5 of a new menstrual cycle [a] in the absence of further stress; or [b] after 5 days of resumed psychosocial and metabolic stress. In this study, parameters of the LC were examined in HSR and SS animals in the presence and absence of stress (2×2 block design) using ICC and image analysis. Tyrosine hydroxylase (TH) is the rate-limiting enzyme for the synthesis of catecholamines; and the TH level was used to assess by inference, NE output. The pixel area of TH-positive dendrites extending outside the medial border of the LC was significantly increased by stress to a similar degree in both HSR and SS animals (p<0.0001). There is a significant CRF innervation of the LC. The positive pixel area of CRF boutons, lateral to the LC, was higher in SS than HSR animals in the absence of stress. Five days of moderate stress significantly increased the CRF-positive bouton pixel area in the HSR group (p<0.02), but not in the SS group. There is also a significant serotonin innervation of the LC. A marked increase in medial serotonin dendrite swelling and beading was observed in the SS+stress group, which may be a consequence of excitotoxicity. The dendrite beading interfered with analysis of axonal boutons. However, at one anatomical level, the serotonin-positive bouton area was obtained between the LC and the superior cerebellar peduncle. Serotonin-positive bouton pixel area was significantly higher in HSR than SS animals (p<0.04). There was no change in either group after 5 days of moderate stress. The ratio of serotonin/TH correlates with ovarian estrogen production with a sensitivity×stress interaction. Therefore, it appears that the serotonin system determines stress sensitivity and the NE system responds to stress. We hypothesize that elevated NE with low serotonin functionality ultimately leads to stress-induced infertility. In contrast, high serotonin functionality maintains ovulation in the presence of stress even with elevated NE.
Collapse
|
11
|
Abbott SB, Kanbar R, Bochorishvili G, Coates MB, Stornetta RL, Guyenet PG. C1 neurons excite locus coeruleus and A5 noradrenergic neurons along with sympathetic outflow in rats. J Physiol 2012; 590:2897-915. [PMID: 22526887 PMCID: PMC3448155 DOI: 10.1113/jphysiol.2012.232157] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 04/20/2012] [Indexed: 12/14/2022] Open
Abstract
C1 neurons activate sympathetic tone and stimulate the hypothalamic–pituitary–adrenal axis in circumstances such as pain, hypoxia or hypotension. They also innervate pontine noradrenergic cell groups, including the locus coeruleus (LC) and A5. Activation of C1 neurons reportedly inhibits LC neurons; however, because these neurons are glutamatergic and have excitatory effects elsewhere, we re-examined the effect of C1 activation on pontine noradrenergic neurons (LC and A5) using a more selective method. Using a lentivirus that expresses channelrhodopsin2 (ChR2) under the control of the artificial promoter PRSx8, we restricted ChR2 expression to C1 neurons (67%), retrotrapezoid nucleus neurons (20%) and cholinergic neurons (13%). The LC contained ChR2-positive terminals that formed asymmetric synapses and were immunoreactive for vesicular glutamate transporter type 2. Low-frequency photostimulation of ChR2-expressing neurons activated LC (38 of 65; 58%) and A5 neurons (11 of 16; 69%) and sympathetic nerve discharge. Locus coeruleus and A5 inhibition was not seen unless preceded by excitation. Locus coeruleus activation was eliminated by intracerebroventricular kynurenic acid. Stimulation of ChR2-expressing neurons at 20 Hz produced modest increases in LC and A5 neuronal discharge. In additional rats, the retrotrapezoid nucleus region was destroyed with substance P–saporin prior to lentivirus injection into the rostral ventrolateral medulla, increasing the proportion of C1 ChR2-expressing neurons (83%). Photostimulation in these rats activated the same proportion of LC and A5 neurons as in control rats but produced no effect on sympathetic nerve discharge owing to the destruction of bulbospinal C1 neurons. In conclusion, low-frequency stimulation of C1 neurons activates pontine noradrenergic neurons and sympathetic nerve discharge, possibly via the release of glutamate from monosynaptic C1 inputs.
Collapse
Affiliation(s)
- S B Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, VA 22908, USA
| | | | | | | | | | | |
Collapse
|
12
|
Liao IH, Corbett BA, Gilbert DL, Bunge SA, Sharp FR. Blood gene expression correlated with tic severity in medicated and unmedicated patients with Tourette Syndrome. Pharmacogenomics 2011; 11:1733-41. [PMID: 21142917 DOI: 10.2217/pgs.10.160] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Tourette Syndrome (TS) has been linked to both genetic and environmental factors. Gene-expression studies provide valuable insight into the causes of TS; however, many studies of gene expression in TS do not account for the effects of medication. MATERIALS & METHODS To investigate the effects of medication on gene expression in TS patients, RNA was isolated from the peripheral blood of 20 medicated TS subjects (MED) and 23 unmedicated TS subjects (UNMED), and quantified using whole-genome Affymetrix microarrays. RESULTS D2 dopamine receptor expression correlated positively with tic severity in MED but not UNMED. GABA(A) receptor ε subunit expression negatively correlated with tic severity in UNMED but not MED. Phenylethanolamine N-methyltransferase expression positively correlated with tic severity in UNMED but not MED. CONCLUSION Modulation of tics by TS medication is associated with changes in dopamine, norepinephrine and GABA pathways.
Collapse
|
13
|
Guyenet PG, Stornetta RL, Abbott SBG, Depuy SD, Fortuna MG, Kanbar R. Central CO2 chemoreception and integrated neural mechanisms of cardiovascular and respiratory control. J Appl Physiol (1985) 2010; 108:995-1002. [PMID: 20075262 DOI: 10.1152/japplphysiol.00712.2009] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In this review, we examine why blood pressure (BP) and sympathetic nerve activity (SNA) increase during a rise in central nervous system (CNS) P(CO(2)) (central chemoreceptor stimulation). CNS acidification modifies SNA by two classes of mechanisms. The first one depends on the activation of the central respiratory controller (CRG) and causes the much-emphasized respiratory modulation of the SNA. The CRG probably modulates SNA at several brain stem or spinal locations, but the most important site of interaction seems to be the caudal ventrolateral medulla (CVLM), where unidentified components of the CRG periodically gate the baroreflex. CNS P(CO(2)) also influences sympathetic tone in a CRG-independent manner, and we propose that this process operates differently according to the level of CNS P(CO(2)). In normocapnia and indeed even below the ventilatory recruitment threshold, CNS P(CO(2)) exerts a tonic concentration-dependent excitatory effect on SNA that is plausibly mediated by specialized brain stem chemoreceptors such as the retrotrapezoid nucleus. Abnormally high levels of P(CO(2)) cause an aversive interoceptive awareness in awake individuals and trigger arousal from sleep. These alerting responses presumably activate wake-promoting and/or stress-related pathways such as the orexinergic, noradrenergic, and serotonergic neurons. These neuronal groups, which may also be directly activated by brain acidification, have brainwide projections that contribute to the CO(2)-induced rise in breathing and SNA by facilitating neuronal activity at innumerable CNS locations. In the case of SNA, these sites include the nucleus of the solitary tract, the ventrolateral medulla, and the preganglionic neurons.
Collapse
Affiliation(s)
- Patrice G Guyenet
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908-0735, USA.
| | | | | | | | | | | |
Collapse
|
14
|
Weston M, Wang H, Stornetta RL, Sevigny CP, Guyenet PG. Fos expression by glutamatergic neurons of the solitary tract nucleus after phenylephrine-induced hypertension in rats. J Comp Neurol 2003; 460:525-41. [PMID: 12717712 DOI: 10.1002/cne.10663] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The baroreflex pathway might include a glutamatergic connection between the nucleus of the solitary tract (NTS) and a segment of the ventrolateral medulla (VLM) called the caudal ventrolateral medulla. The main goal of this study was to seek direct evidence for such a connection. Awake rats were subjected to phenylephrine- (PE-) induced hypertension (N=5) or received saline (N=5). Neuronal activation was gauged by the presence of Fos-immunoreactive (Fos-ir) nuclei. Fos-ir neurons that contained vesicular glutamate transporter 2 mRNA (glutamatergic neurons) or glutamic acid decarboxylase mRNA (GABAergic neurons) were mapped throughout the medulla oblongata. Saline-treated rats had very few Fos-ir neurons. In PE-treated rats, Fos-ir neurons were detected in both NTS and VLM. In NTS, 72% of Fos-ir neurons were glutamatergic and 26% were GABAergic. In the VLM, 41% of Fos-ir neurons were glutamatergic and 56% were GABAergic. In VLM, Fos-ir glutamatergic neurons were evenly distributed and were often catecholaminergic, whereas Fos-ir GABAergic cells were clustered around Bregma -13.0 mm. This region of the VLM was injected with Fluoro-Gold (FG) in eight rats, four of which received PE and the rest saline. Fos-ir NTS neurons retrogradely labeled with FG were detected only in PE-treated rats. These cells were exclusively glutamatergic and were concentrated within the NTS subnuclei that receive the densest inputs from arterial baroreceptors. In conclusion, PE, presumably via baroreceptor stimulation, induces Fos in glutamatergic and GABAergic neurons in both NTS and VLM. At least 29% of the Fos-ir glutamatergic neurons of NTS project to the vicinity of the VLM GABAergic interneurons that are presumed to mediate the sympathetic baroreflex.
Collapse
Affiliation(s)
- Matthew Weston
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | | | |
Collapse
|
15
|
Hajszán T, Zaborszky L. Direct catecholaminergic-cholinergic interactions in the basal forebrain. III. Adrenergic innervation of choline acetyltransferase-containing neurons in the rat. J Comp Neurol 2002; 449:141-57. [PMID: 12115685 DOI: 10.1002/cne.10279] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The central adrenergic neurons have been suggested to play a role in the regulation of arousal and in the neuronal control of the cardiovascular system. To provide morphological evidence that these functions could be mediated via the basal forebrain, we performed correlated light and electron microscopic double-immunolabeling experiments using antibodies against phenylethanolamine N-methyltransferase (PNMT) and choline acetyltransferase, the synthesizing enzymes for adrenaline and acetylcholine, respectively. Most adrenergic/cholinergic appositions were located in the horizontal limb of diagonal band of Broca, within the substantia innominata, and in a narrow band bordering the substantia innominata and the globus pallidus. Quantitative analysis indicated that cholinergic neurons of the substantia innominata receive significantly higher numbers of adrenergic appositions than cholinergic cells in the rest of the basal forebrain. In the majority of cases, the ultrastructural analysis revealed axodendritic asymmetric synapses. By comparing the number and distribution of dopamine beta-hydroxylase (DBH)/cholinergic appositions, described earlier, with those of PNMT/cholinergic interactions in the basal forebrain, it can be concluded that a significant proportion of putative DBH/cholinergic contacts may represent adrenergic input. Our results support the hypothesis that the adrenergic/cholinergic link in the basal forebrain may represent a critical component of a central network coordinating autonomic regulation with cortical activation.
Collapse
Affiliation(s)
- Tibor Hajszán
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | | |
Collapse
|
16
|
Smeets WJ, González A. Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:308-79. [PMID: 11011071 DOI: 10.1016/s0165-0173(00)00034-5] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A comparative analysis of catecholaminergic systems in the brain and spinal cord of vertebrates forces to reconsider several aspects of the organization of catecholamine systems. Evidence has been provided for the existence of extensive, putatively catecholaminergic cell groups in the spinal cord, the pretectum, the habenular region, and cortical and subcortical telencephalic areas. Moreover, putatively dopamine- and noradrenaline-accumulating cells have been demonstrated in the hypothalamic periventricular organ of almost every non-mammalian vertebrate studied. In contrast with the classical idea that the evolution of catecholamine systems is marked by an increase in complexity going from anamniotes to amniotes, it is now evident that the brains of anamniotes contain catecholaminergic cell groups, of which the counterparts in amniotes have lost the capacity to produce catecholamines. Moreover, a segmental approach in studying the organization of catecholaminergic systems is advocated. Such an approach has recently led to the conclusion that the chemoarchitecture and connections of the basal ganglia of anamniote and amniote tetrapods are largely comparable. This review has also brought together data about the distribution of receptors and catecholaminergic fibers as well as data about developmental aspects. From these data it has become clear that there is a good match between catecholaminergic fibers and receptors, but, at many places, volume transmission seems to play an important role. Finally, although the available data are still limited, striking differences are observed in the spatiotemporal sequence of appearance of catecholaminergic cell groups, in particular those in the retina and olfactory bulb.
Collapse
Affiliation(s)
- W J Smeets
- Graduate School of Neurosciences of Amsterdam, Research Institute of Neurosciences, Amsterdam, The Netherlands.
| | | |
Collapse
|
17
|
Van Bockstaele EJ. Morphological substrates underlying opioid, epinephrine and gamma-aminobutyric acid inhibitory actions in the rat locus coeruleus. Brain Res Bull 1998; 47:1-15. [PMID: 9766384 DOI: 10.1016/s0361-9230(98)00062-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The locus coeruleus (LC) has been implicated in attentional processes related to orienting behaviors, learning and memory, anxiety, stress, the sleep-wake cycle, and autonomic control, as well as to contributing to the affective state. Direct activation of LC neurons causes desynchronization of the electroencephalogram, suggesting that the LC is an important modulator of the behavioral state. The LC has been an intensely studied neuronal system, as the physiology and pharmacology of this nucleus is well understood. This is mainly because of the similarity in neurochemical composition of LC cells which all contain norepinephrine in the rat. However, the homogeneity in neurotransmitter content in LC neurons is sharply contrasted by the heterogeneity of neurochemicals found in its afferent processes. Among these are axon terminals that contain inhibitory and excitatory amino acids, monoamines, and neuropeptides, many of which have been shown to exert differential physiological effects on LC discharge activity. Although much attention has focused on physiological activation of LC neurons, substantial evidence indicates that diverse afferents prominently inhibit noradrenergic cellular activity. Such inhibitory neurochemicals, which arise from local and extrinsic sources, include gamma-aminobutyric acid (GABA) and epinephrine as well as the neuropeptides methionine5-enkephalin and leucine5-enkephalin. Inhibitory transmission in the LC has widespread implications for norepinephrine release at diverse postsynaptic targets, and clinically useful pharmacological agents such as clonidine, an alpha2 adrenergic receptor agonist that potently inhibits the firing of LC neurons, alleviate some negative physical symptoms observed following withdrawal from opiates. In the present review, the synaptic and functional organization of selected inhibitory-type neurotransmitters in the LC obtained from immunoelectron microscopic data will be discussed.
Collapse
Affiliation(s)
- E J Van Bockstaele
- Department of Pathology, Anatomy and Cell Biology, Jefferson Medical College of Thomas Jefferson University, Philadelphia, PA 19107, USA.
| |
Collapse
|
18
|
Lee A, Rosin DL, Van Bockstaele EJ. Ultrastructural evidence for prominent postsynaptic localization of ?2C-adrenergic receptors in catecholaminergic dendrites in the rat nucleus locus coeruleus. J Comp Neurol 1998. [DOI: 10.1002/(sici)1096-9861(19980504)394:2<218::aid-cne6>3.0.co;2-5] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
19
|
Pickel VM, Nirenberg MJ, Milner TA. Ultrastructural view of central catecholaminergic transmission: immunocytochemical localization of synthesizing enzymes, transporters and receptors. JOURNAL OF NEUROCYTOLOGY 1996; 25:843-856. [PMID: 9023729 DOI: 10.1007/bf02284846] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Affiliation(s)
- V M Pickel
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
20
|
Van Bockstaele EJ, Chan J, Biswas A. Ultrastructural evidence for convergence of enkephalin and adrenaline-containing axon terminals on common targets and their presynaptic associations in the rat nucleus locus coeruleus. Brain Res 1996; 718:61-75. [PMID: 8925305 DOI: 10.1016/0006-8993(96)00004-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The endogenous opioid peptide, enkephalin, and epincphrine are distributed in varicose processes throughout the nucleus locus coeruleus (LC) in the dorsolateral tegmentum of the rat brain. In this brain region, micro-opioid and alpha-2-adrenergic receptors have been shown to share the same potassium channel suggesting that they may be co-localized in the same terminal or that they may be present in terminals that innervate the same target neuron. However, this has not been demonstrated at the ultrastructural level. Thus, the present study combined the immunocytochemical localization of the opioid peptide leucine5-enkephalin (ENK) and the epinephrine synthesizing enzyme, phenylethanolamine-N-methyltransferase (PNMT) in the same section of tissue within the LC at the electron microscopic level. At the light microscopic level, both ENK and PNMT varicose processes were dense and overlapped the region known to contain the noradrenergic cell bodies and dendrites of the LC. However, the morphological features of the two immunolabeled fiber types appeared different in 30-microns thick coronal sections. PNMT-labeled process were thin, beaded and ramified within the coronal plane. ENK-immunoreactive fibers, however, were more punctate in appearance and processes joining these puncta were not often evident in the frontal plane examined. Varicose fibers immunolabeled for either ENK or PNMT were confirmed to be axons and axon terminals by electron microscopy. Both types contained small clear as well as large dense core vesicles and formed heterogeneous types of synaptic specializations with postsynaptic targets. A common feature encountered in dually labeled tissue sections was convergence of the separately labeled axon terminals on common targets. Another common feature was the apposition of PNMT-labeled axon terminals with ENK-immunoreactive axon terminals that formed synaptic contacts in the plane of section examined. Although numerous ENK and PNMT-labeled axon terminals were identified in similar regions of the neuropil, few terminals were found to contain both labels. These findings indicate that the opioid peptide ENK and epinephrine may elicit concerted actions on common noradrenergic neurons in the LC via separate sets of afferents.
Collapse
Affiliation(s)
- E J Van Bockstaele
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
21
|
van Bockstaele EJ, Colago EE, Pickel VM. Enkephalin terminals form inhibitory-type synapses on neurons in the rat nucleus locus coeruleus that project to the medial prefrontal cortex. Neuroscience 1996; 71:429-42. [PMID: 9053798 DOI: 10.1016/0306-4522(95)00432-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Norepinephrine-containing fibres in the medial prefrontal cortex derive from the locus coeruleus, a brainstem nucleus which also receives a dense innervation of enkephalin-immunoreactive axon terminals. We combined immunogold-silver labelling of retrogradely transported FluoroGold from the medial prefrontal cortex with immunoperoxidase detection of leucine5-enkephalin in the same section of tissue through the locus coeruleus of adult rats. This dual-labelling experiment was conducted to determine whether axon terminals containing lecuine5-enkephalin target neurons in the locus coeruleus that project to the frontal cortex and, if so, what are their morphological characteristics. By light microscopy, enkephalin-labelled processes overlapped FluoroGold retrogradely labelled neurons in the locus coeruleus. By electron microscopy, retrogradely labelled perikarya and dendrites were commonly enveloped by astrocytic processes and received few afferents in the plane of section examined. However, at sites unoccupied by glial processes, abundant afferent input could be identified. In addition, some FluoroGold-labelled perikarya and dendrites lacked this glial ensheathment but were more frequently apposed by axon terminals. Of 163 FluoroGold-labelled perikarya and dendrites examined where enkephalin immunoreactivity was present in the neuropil, 42% were contacted by enkephalin-immunoreactive axon terminals. The peroxidase-labelled enkephalin terminals as well as the unlabelled terminals often contained both small, clear and large dense core vesicles. Both labelled and unlabelled terminals also formed primary symmetric synapses characteristic of inhibitory transmitters with retrogradely labelled perikarya and proximal dendrites. At times, more than one enkephalin-labelled terminal was found to converge on a common retrogradely labelled perikarya or dendrite. These results demonstrate cellular sites where enkephalin-containing afferents may directly modulate and most likely inhibit the activity of cortically projecting neurons in the locus coeruleus.
Collapse
Affiliation(s)
- E J van Bockstaele
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021, USA
| | | | | |
Collapse
|
22
|
Shipley MT, Fu L, Ennis M, Liu WL, Aston-Jones G. Dendrites of locus coeruleus neurons extend preferentially into two pericoerulear zones. J Comp Neurol 1996; 365:56-68. [PMID: 8821441 DOI: 10.1002/(sici)1096-9861(19960129)365:1<56::aid-cne5>3.0.co;2-i] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The intrinsic cytoarchitecture and neurochemical organization of the nucleus locus coeruleus have been characterized extensively, but there is little information about the organization of locus coeruleus neuronal processes extending outside of the nucleus proper. Light and electron microscopic immunocytochemical techniques were used to investigate the distribution of dopamine-beta-hydroxylase- or tyrosine-hydroxylase-labeled extranuclear processes in the rat pericoerulear region. The vast majority of these processes extended preferentially into two zones: (1) the pontine tegmentum medial and rostral to locus coeruleus, here termed the rostromedial pericoerulear region; and (2) a narrow region adjacent to the IVth ventricle caudomedial to locus coeruleus, designated here as the caudal juxtaependymal pericoerulear region. Far fewer labeled processes extended into the lateral and ventral pericoerulear regions. Seventy-seven percent of the labeled profiles in the pericoerulear region were dendrites. All labeled profiles in the rostromedial pericoerulear region and 94% of the labeled profiles in the caudal juxtaependymal zone were dendrites. By contrast, in the rostroventral pericoerulear region, 25% of the labeled profiles were axons. Locus coeruleus extranuclear dendrites were never presynaptic to other structures but were often contacted by several unlabeled presynaptic terminals. These results indicate that the dendrites of locus coeruleus neurons extend preferentially into two pericoerulear zones. Extranuclear dendrites in all pericoerulear regions receive extensive, nonnoradrenergic synaptic contacts. Thus, pericoerulear dendrites, particularly in the rostromedial and caudal juxtaependymal zones, are important sites for the integration of inputs to locus coeruleus neurons.
Collapse
Affiliation(s)
- M T Shipley
- Department of Anatomy, University of Maryland School of Medicine, Baltimore 21201, USA
| | | | | | | | | |
Collapse
|
23
|
Aoki C, Go CG, Venkatesan C, Kurose H. Perikaryal and synaptic localization of alpha 2A-adrenergic receptor-like immunoreactivity. Brain Res 1994; 650:181-204. [PMID: 7953684 DOI: 10.1016/0006-8993(94)91782-5] [Citation(s) in RCA: 157] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Through molecular cloning, the existence of three distinct subtypes of alpha 2-adrenergic receptors (alpha 2AR)--A, B and C--has been established and are referred to as alpha 2A AR, alpha 2B AR and alpha 2CAR. Due to limitations in pharmacological tools, it has been difficult to ascribe the role of each subtype to the central functions of alpha 2AR. In situ hybridization studies have provided valuable information regarding their distribution within brain. However, little is known about their subcellular distribution, and in particular, their pre- versus postsynaptic localization or their relation to noradrenergic neurons in the CNS. We used an antiserum that selectively recognizes the A-subtype of alpha 2AR to determine: (1) the regional distribution of the receptor within brains of rat and monkey; (2) the subcellular distribution of the receptor in locus coeruleus (LC) of rats and prefrontal cortex of monkeys; and (3) the ultrastructural relation of the receptor to noradrenergic processes in LC. Light microscopic immunocytochemistry revealed prominent immunoreactivity in LC, the brainstem regions modulating the baroreflex, the granule cell layer of the cerebellar cortex, the paraventricular and supraoptic nuclei of the hypothalamus (PVN, SON), the basal ganglia, all thalamic nuclei, the hippocampal formation and throughout cerebral cortical areas. Comparison of results obtained from rat and monkey brains revealed no apparent interspecies-differences in the regional distribution of immunoreactivity. Immunoreactivity occurred as small puncta, less than 1 micron in diameter, that cluster over neuronal perikarya. Besides these puncta, cell bodies, proximal dendrites and fine varicose processes--most likely to be axonal--of the PVN and SON and the hippocampal granule cells also exhibited homogeneously intense distribution of immunoreactivity. Subcellularly, alpha 2AAR-ir in LC and prefrontal cortex were associated with synaptic and non-synaptic plasma membrane of dendrites and perikarya as well as perikaryal membranous organelles. In addition, cortical tissue, but not LC, exhibited prominent immunoreactivity within spine heads. Rat brainstem tissue immunolabeled dually for alpha 2AAR and dopamine beta-hydroxylase (D beta H, the noradrenaline-synthesizing enzyme) revealed that alpha 2AAR-li occurs in catecholaminergic terminals but is also prevalent within non-catecholaminergic terminals. Terminals exhibiting alpha 2AAR-li formed symmetric and asymmetric types of synapses onto dendrites with and without D beta H-immunoreactivity. These results indicate that: (1) the A-subtype of alpha 2AR is distributed widely within brain; (2) alpha 2AAR-li reflects the presence of newly synthesized alph 2AAR in perikarya as well as those receptors along the plasma membrane of perikarya, dendritic trunks and spines; and (3) alpha 2AAR in LC may operate as heteroreceptors on non-catecholaminergic terminals as well as autoreceptors on noradrenergic terminals.
Collapse
Affiliation(s)
- C Aoki
- Center for Neural Science, New York University, NY 10003
| | | | | | | |
Collapse
|
24
|
Arai R, Karasawa N, Deura S, Kobayashi K, Nagatsu T, Nagatsu I. Protein products of the bacterial reporter gene are found within axon terminals in the brain of transgenic mice. Neurosci Lett 1994; 168:76-80. [PMID: 7913218 DOI: 10.1016/0304-3940(94)90420-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The aim of this study is to examine whether protein products of the bacterial reporter gene are localized within axon terminals in transgenic mice. We have previously created transgenic mice carrying a chimeric gene composed of the human tyrosine hydroxylase gene promoter and the bacterial gene encoding chloramphenicol acetyltransferase (CAT). In the present study, we used an antiserum that detects specifically CAT, and examined immunocytochemically the brain of the transgenic mice. At a light microscopic level, CAT immunoreactivity was found in a dense plexus of fibers in the central nucleus of the amygdala, and in cell bodies of the ventral tegmental area. At an electron microscopic level, in the central nucleus of the amygdala, CAT immunoreactivity was observed in axon terminals. In the ventral tegmental area, the immunoreactivity was found in the perikaryal cytoplasm and on the microtubule of dendrites. The present findings suggest that protein products of the bacterial gene may be transported in axons up to their terminals, and also moved along the microtubules of dendrites.
Collapse
Affiliation(s)
- R Arai
- Department of Anatomy, School of Medicine, Fujita Health University, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Rosin DL, Zeng D, Stornetta RL, Norton FR, Riley T, Okusa MD, Guyenet PG, Lynch KR. Immunohistochemical localization of alpha 2A-adrenergic receptors in catecholaminergic and other brainstem neurons in the rat. Neuroscience 1993; 56:139-55. [PMID: 7901804 DOI: 10.1016/0306-4522(93)90569-2] [Citation(s) in RCA: 149] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
alpha 2-Adrenergic receptors mediate a large portion of the known inhibitory effects of catecholamines on central and peripheral neurons. Molecular cloning studies have established the identity of three alpha 2-adrenergic receptor genes from several species that encode the A, B and C subtypes of the receptor. The rat alpha 2A-adrenergic receptor, as defined by sequence similarity, is the orthologue of the human alpha 2A-adrenergic receptor. In this paper, we report the development of rabbit antisera directed against a portion of the third intracellular loop of the rat alpha 2A-adrenergic receptor and the histochemical localization of alpha 2A-adrenergic receptor-like immunoreactive material in the brainstem and spinal cord of the adult rat. Our antisera detected alpha 2A-adrenergic receptor-specific punctate staining associated with neuronal perikarya. alpha 2A-adrenergic receptor-like immunoreactivity was widely, but heterogeneously, distributed in the brainstem and spinal cord, predominantly in areas involved in the control of autonomic function. Double labelling with antisera to tyrosine hydroxylase or phenylethanolamine-N-methyl-transferase revealed that alpha 2A-adrenergic receptor-like immunoreactivity is present in most, perhaps all, noradrenergic and adrenergic cells of the brainstem. alpha 2A-Adrenergic receptor-like immunoreactivity was detected in a small percentage of the dopaminergic cells of the A9 and A10 groups. This study provides the first description of the specific immunohistochemical localization of alpha 2A-adrenergic receptors using a subtype-specific polyclonal antibody. The results support the view that alpha 2-adrenergic receptors are involved in central cardiovascular control and suggest that the catecholaminergic autoreceptors of central noradrenergic and adrenergic neurons are the A subtype of the alpha 2-adrenergic receptors.
Collapse
Affiliation(s)
- D L Rosin
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville 22908
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Alonso G. Differential organization of synapses immunoreactive to phenylethanolamine-N-methyltransferase or neuropeptide Y in the parvicellular compartments of the hypothalamic paraventricular nucleus of the rat. J Chem Neuroanat 1993; 6:55-67. [PMID: 8476541 DOI: 10.1016/0891-0618(93)90028-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The parvicellular compartments of the paraventricular nucleus of the hypothalamus (pPVN) contains particularly high concentrations of neuropeptide (NPY)-containing fibres of two main cellular origins including (i) neurons of the medulla oblongata, most of which co-store phenylethanolamine-N-methyltransferase (PNMT), the enzyme characterizing adrenergic neurons, and (ii) non-catecholaminergic neurons of the mediobasal hypothalamus. The aim of the present study is to compare the fine organization of the two types of axons terminating in the pPVN. Immunocytochemistry at light and electron microscope levels was used to study both the density and the ultrastructural organization of NPY- and PNMT-immunoreactive fibres in the pPVN of animals bearing surgical lesions disrupting axonal pathways from the hindbrain or from the sublying mediobasal hypothalamus. The brainstem knife-cut induced a strong decrease (65%) in the numerical density of PNMT fibres innervating the pPVN, but was without significant effects on the density of NPY fibres. On the other hand, the hypothalamic knife-cut induced an 80% decrease in the density of NPY fibres within the PVN without affecting the number of PNMT fibres. The electron microscope study showed that in the control pPVN contralateral to the lesions, the majority (64%) of PNMT synapses were asymmetric axo-dendritic synapses, whereas the majority (67%) of NPY synapses form symmetric contacts with both dendrites and perikarya of the hypothalamic nucleus. By contrast, after a hypothalamic knife-cut, the majority (66%) of NPY synapses identified in the pPVN exhibited features of asymmetric synapses. These data indicate that the large majority of NPY-immunoreactive fibres detected within the pPVN arise from non-catecholaminergic neurons located in the mediobasal hypothalamus and mainly form symmetric synapses on neurons of the pPVN, whereas only a minority of them arise from hindbrain regions, and like PNMT fibres innervating this nucleus preferentially form asymmetric axo-dendritic synapses.
Collapse
Affiliation(s)
- G Alonso
- INSERM U 336, Université de Montpellier II, France
| |
Collapse
|
27
|
Huangfu D, Verberne AJ, Guyenet PG. Rostral ventrolateral medullary neurons projecting to locus coeruleus have cardiorespiratory inputs. Brain Res 1992; 598:67-75. [PMID: 1486504 DOI: 10.1016/0006-8993(92)90169-a] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This study was designed to characterize some of the properties of the rostral ventrolateral medullary (RVLM) cells with axonal projection to the locus coeruleus (LC) in urethane anesthetized, vagotomized, paralyzed and artificially respirated rats. The vast majority of RVLM units antidromically (AD) activated from LC (RVLM-LC units) were silent and unresponsive to peripheral chemoreceptor stimulation or nociceptive stimulation. Twenty seven spontaneously active RVLM-LC neurons, AD activated from LC with currents below 30 microA (17 +/- 2 microA) were analyzed. AD mapping (n = 18) indicated that the lowest threshold for AD activation occurred within the LC itself. Axonal branching within or close to LC was suggested by the presence of sudden jumps in AD latency. Maximal AD latencies ranged from 7 to 37 ms. Most spontaneously active RVLM-LC neurons displayed marked central respiratory modulation characterized by either a post-inspiratory or an inspiratory pattern. The majority of the tested neurons were affected (excited or inhibited) by brief peripheral chemoreceptor stimulation (N2 inhalation). Most cells were inhibited by raising arterial pressure but none exhibited any detectable pulse synchrony. Reticulospinal sympathetic premotor neurons of RVLM were not found to project to LC (sample of 9) and very few RVLM cells with on-off respiratory discharges appeared to project to LC (2 out of 110). This study suggests that much of the information conveyed by the RVLM to LC could be of a mixed cardiorespiratory nature.
Collapse
Affiliation(s)
- D Huangfu
- University of Virginia School of Medicine, Department of Pharmacology, Charlottesville 22908
| | | | | |
Collapse
|
28
|
Palkovits M, Mezey E, Skirboll LR, Hökfelt T. Adrenergic projections from the lower brainstem to the hypothalamic paraventricular nucleus, the lateral hypothalamic area and the central nucleus of the amygdala in rats. J Chem Neuroanat 1992; 5:407-15. [PMID: 1418754 DOI: 10.1016/0891-0618(92)90057-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Fine networks of phenylethanolamine N-methyltransferase (PNMT)-immunoreactive fibers are found in the hypothalamic paraventricular nucleus--mainly in the anterior, dorsal and dorso-medial parvicellular subdivisions, the lateral hypothalamus (dorsal, lateral and ventral to the fornix) and in the central amygdaloid nucleus. Coronal hemisections of the brainstem through the rostral level of the medulla oblongata show that most hypothalamic and amygdaloid PNMT fibers arise from the medullary adrenergic cell groups. Fourteen, but not 10 days after total hemisections, PNMT fibers disappeared almost completely from the hypothalamus and amygdala, ipsilateral to the knife cuts. A small decrease was also observed in the ventral, lateral hypothalamus on the contralateral side. Partial depletion of PNMT-immunoreactivity in the hypothalamus and the amygdala after medial or lateral brainstem hemisections indicates that ascending PNMT-immunoreactive fibers pass through mainly the lateral portion of the medulla, but some fibers also in its medial portion. Midsagittal transection of the diencephalon slightly reduced PNMT immunostaining in the paraventricular nucleus and the lateral hypothalamus bilaterally. The results show that the ascending PNMT system essentially is ipsilateral, but probably with a small crossing-over component, both at the diencephalic and lower brainstem level.
Collapse
Affiliation(s)
- M Palkovits
- First Department of Anatomy, Semmelweis University Medical School, Budapest, Hungary
| | | | | | | |
Collapse
|
29
|
Aston-Jones G, Astier B, Ennis M. Inhibition of noradrenergic locus coeruleus neurons by C1 adrenergic cells in the rostral ventral medulla. Neuroscience 1992; 48:371-81. [PMID: 1351268 DOI: 10.1016/0306-4522(92)90497-p] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Recent anatomical and physiological experiments indicate that the nucleus locus coeruleus receives a predominant excitatory amino acid input, as well as a substantial inhibitory input, from the nucleus paragigantocellularis in the ventrolateral medulla. To determine whether C1 adrenergic neurons are involved in the inhibitory projection, the effects of the alpha-2 adrenoceptor antagonist, idazoxan, on inhibitory responses of locus coeruleus neurons to paragigantocellularis stimulation were characterized in the rat. Intravenous administration of idazoxan (0.2-1 mg/kg) attenuated paragigantocellularis-evoked inhibition, and often revealed an underlying weak excitation. Intraventricular administration of kynurenate, an excitatory amino acid antagonist, eliminated excitation from paragigantocellularis and disclosed an underlying inhibitory response in many locus coeruleus neurons that were previously excited by paragigantocellularis stimulation. These results revealed that about 90% of locus coeruleus neurons receive inhibition from the paragigantocellularis. Intravenous idazoxan significantly reduced such paragigantocellularis-evoked inhibition, completely blocking this response in three of eight locus coeruleus cells tested. Idazoxan was much more potent when locally infused into the locus coeruleus. Local infusion of idazoxan (0.1-2.5 ng) into locus coeruleus produced a dose-dependent decrease of paragigantocellularis-evoked inhibition and completely blocked the inhibition in 10/33 locus coeruleus neurons, indicating that the site of idazoxan action was in the locus coeruleus. These results extend our previous anatomical studies of adrenergic input to locus coeruleus, and indicate that C1 adrenergic neurons in the paragigantocellularis provide a direct inhibitory input to the great majority of locus coeruleus noradrenergic neurons. In addition, this is the first report of a neuronal response to activation of C1 adrenergic cells indicating that these neurons are strongly inhibitory when acting at alpha-2 receptors in vivo.
Collapse
Affiliation(s)
- G Aston-Jones
- Department of Mental Health Sciences, Hahnemann University, Philadelphia, PA 19102-1192
| | | | | |
Collapse
|
30
|
Kimura N, Miura Y, Miura K, Takahashi N, Osamura RY, Nagatsu I, Nagura H. Adrenal and retroperitoneal mixed neuroendocrine-neural tumors. Endocr Pathol 1991; 2:139-147. [PMID: 32357642 DOI: 10.1007/bf02915454] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Four cases of mixed neuroendocrine-neural tumors composed of pheochromocytoma and neuroblastoma elements (including ganglioneuroma and ganglioneuroblastoma) were studied for the presence of catecholamine-synthesizing enzymes, neuroendocrine markers, and peptide hormones with clinicopathological correlations. Paroxysmal hypertension with hypercatech olaminemia was observed in 3 patients. One patient had an extremely elevated level of dopamine. The location of the tumor was in the adrenal glands in 2 patients and in the retroperitoneum in the other 2. Numerous electron-dense granules in the cytoplasm and neural processes with abundant neurotubules were characteristic of mixed neuroendocrine-neural tumors. Immunohistochemical study revealed that catecholamine-synthesizing enzymes were present in both components of the pheochromocytoma and neuroblastoma group, but phenylethanolamine N-methyltransferase was detectable only in epinephrine-producing tumors. Chromogranin and neurofilament immunoreactivities were present in both components; however, the intensity of chromogranin immunoreactivity was stronger in pheochromocytoma than in the other components. In contrast, neurofilament positivity was stronger in the neuroblastoma group than it was in pheochromocytoma. Multiple peptide hormones were immunoreactive in both components. Neuropeptide Y and met-enkephalin-positive cells were numerous in both; cells containing vasoactive intestinal peptide and somatostatin were less common but were comparatively more frequently found in ganglion cells than in pheochromocytoma cells.
Collapse
Affiliation(s)
- Noriko Kimura
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| | - Yukio Miura
- Department of Internal Medicine, Tohoku University School of Medicine, Japan
| | - Kiyoshi Miura
- Department of Internal Medicine, Gifu University School of Medicine, Japan
| | - Naohiko Takahashi
- Department of Internal Medicine, Ohita University School of Medicine, Japan
| | | | - Ikuko Nagatsu
- Department of Anatomy, Fujita Gakuen Health University School of Medicine, Japan
| | - Hiroshi Nagura
- Department of Pathology, Tohoku University School of Medicine, Sendai, Japan
| |
Collapse
|
31
|
Velley L, Milner TA, Chan J, Morrison SF, Pickel VM. Relationship of Met-enkephalin-like immunoreactivity to vagal afferents and motor dendrites in the nucleus of the solitary tract: a light and electron microscopic dual labeling study. Brain Res 1991; 550:298-312. [PMID: 1715806 DOI: 10.1016/0006-8993(91)91332-u] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Methionine (Met5)-enkephalin has been implicated in autonomic functions involving vagal reflexes within the nucleus of the solitary tract (NTS). We examined the light and electron microscopic relationships between neurons containing methionine (Met5)-enkephalin-like immunoreactivity (MELI) and vagal afferents and motor dendrites in the rat NTS. A polyclonal antibody raised against Met5-enkephalin and showing maximal cross-reactivity with this peptide was localized by immunoautoradiography. In the same sections, vagal afferents and motor neurons were identified by histochemical detection of anterogradely and retrogradely transported horseradish peroxidase (HRP). By light microscopy, the MELI was detected in perikarya distributed principally in the dorsomedial, intermediate and parasolitary subdivisions of the NTS. These subnuclei as well as medial and commissural divisions of the NTS also showed: (1) aggregates of silver grains thought to overlie terminals containing MELI, and (2) anterogradely transported HRP in varicose processes. Electron microscopic analysis of the dorsomedial NTS at the level of the area postrema established that MELI was detectable in perikarya, dendrites, and axon terminals. Most of the MELI was associated with large dense core vesicles (dcvs). These opioid terminals formed primarily symmetric synapses on proximal and asymmetric synapses on distal dendrites. Analysis of the dendritic targets of terminals containing MELI revealed that 13/222 were in synaptic contact with dendrites also containing MELI. The remainder of the terminals containing MELI either lacked recognized junctions or formed synapses with unlabeled dendrites. In comparison to the terminals containing MELI in the same series of sections, anterogradely labeled vagal terminals extensively formed asymmetric junctions with distal dendrites and spines. Of the observed anterogradely labeled terminals 6/84 formed synapses with dendrites containing MELI and 3/84 with dendrites containing retrogradely transported HRP. The remainder of the junctions were with dendrites lacking detectable immunoautoradiographic or HRP-labeling. The majority of the recognized synapses on labeled dendrites were at more proximal sites possibly reflecting more limited detection of both MELI and retrogradely transported HRP in smaller dendrites. However, the presence of even a few junctions at proximal sites on dendrites where synaptic transmission is known to be more effective suggests a potentially strong modulation of both opioid and vagal motor neurons by visceral afferents in the NTS. In addition to forming synapses on dendrites, both vagal afferents and terminals containing MELI showed frequent synaptic associations with unlabeled terminals, but not with each other. This finding suggests that the previously demonstrated opiate binding sites on vagal afferents is most likely attributed to other endogenous opiates.
Collapse
Affiliation(s)
- L Velley
- Department of Neurology and Neuroscience, Cornell University Medical College, New York, NY 10021
| | | | | | | | | |
Collapse
|
32
|
Jones BE. Noradrenergic locus coeruleus neurons: their distant connections and their relationship to neighboring (including cholinergic and GABAergic) neurons of the central gray and reticular formation. PROGRESS IN BRAIN RESEARCH 1991; 88:15-30. [PMID: 1813920 DOI: 10.1016/s0079-6123(08)63797-8] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Noradrenergic LC neurons appear to be relatively unique in the brain, being unsurpassed in the divergence and ubiquity of their projections through the central nervous system. In this regard, they share certain characteristics with peripheral noradrenaline neurons of the sympathetic nervous system. As such they would be assumed to play a very general role in modulating the activity of large populations of neurons in multiple, functionally diverse systems. Like other periventricular and reticular neurons, they have the potential to receive afferent information from multiple sources via long dendrites, upon which the majority of their inputs from brainstem and forebrain may arrive. They appear closely related to the cholinergic neurons of the laterodorsal tegmental nucleus, their neighbors that are located medial and rostral to them within the periventricular gray and that have similarly oriented and positioned long dendrites that would allow reception of similar afferent input as the LC neurons and also possibly interaction with the LC neurons. As evidenced by input to the noradrenergic cell bodies in the compact portion of the nucleus, a moderate GABAergic innervation, that may derive in part from local neurons, could have a potent influence on the activity of the cells. Periventricular GABAergic cells could also serve as intermediaries to other afferent input, from a distance, terminating in the periventricular region or from local neurons such as the cholinergic cells of the laterodorsal tegmental nucleus.
Collapse
Affiliation(s)
- B E Jones
- Department of Neurology and Neurosurgery, McGill University, Montreal Neurological Institute, Canada
| |
Collapse
|
33
|
Maeda T, Kojima Y, Arai R, Fujimiya M, Kimura H, Kitahama K, Geffard M. Monoaminergic interaction in the central nervous system: a morphological analysis in the locus coeruleus of the rat. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. C, COMPARATIVE PHARMACOLOGY AND TOXICOLOGY 1991; 98:193-202. [PMID: 1673910 DOI: 10.1016/0742-8413(91)90195-y] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The locus coeruleus of the rat is richly innervated by many aminergic neurons varying in amine content and in site of origin. There are adrenergic and noradrenergic neurons originating in the medulla oblongata, dopaminergic from the hypothalamus, serotonergic from the mesencephalon and also intrinsic noradrenergic neurons in the locus coeruleus complex. Of these, adrenergic and dopaminergic inputs appear relatively specific and powerful.
Collapse
Affiliation(s)
- T Maeda
- Department of Anatomy, Shiga University of Medical Science, Otsu, Japan
| | | | | | | | | | | | | |
Collapse
|
34
|
Abstract
Detailed maps of neurochemicals in the locus coeruleus and adjacent dorsal tegmental areas are discussed in this chapter. The locus coeruleus appears to be one of the most complex brain regions with six neurochemicals (acetylcholinesterase, tyrosine hydroxylase, galanin, neuropeptide Y, neurotensin, and vasoactive intestinal protein) contained within the cell bodies.
Collapse
Affiliation(s)
- E L Sutin
- Laboratory of Clinical Science, National Institute of Mental Health, Bethesda, MD
| | | |
Collapse
|
35
|
Pieribone VA, Aston-Jones G. Adrenergic innervation of the rat nucleus locus coeruleus arises predominantly from the C1 adrenergic cell group in the rostral medulla. Neuroscience 1991; 41:525-42. [PMID: 1714551 DOI: 10.1016/0306-4522(91)90346-p] [Citation(s) in RCA: 60] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Focal iontophoretic injections of the retrograde tracer Fluoro-Gold into the locus coeruleus were combined with immunocytochemistry for phenylethanolamine N-methyltransferase, the final enzyme in the synthesis of epinephrine. Retrograde labeling confirmed recent findings that the major afferents to the locus coeruleus are present in the ventrolateral (nucleus paragigantocellularis) and dorsomedial medulla (nucleus prepositus hypoglossi), areas containing the C1 and C3 adrenergic cell groups, respectively. The Fluoro-Gold label revealed morphologic details of locus coeruleus afferent cells. Labeled neurons in the prepositus hypoglossi region were typically round (10 microns diameter) or ellipsoidal and compressed against the ventricle wall (10 x 20 microns), while those in the paragigantocellularis were most often multipolar and ellipsoidal or triangular in shape (10 x 20-20 x 30 microns). Double labeling in the same tissue sections revealed that locus coeruleus afferent neurons are intercalated among phenylethanolamine N-methyltransferase-positive C1 and C3 neurons. Twenty-one per cent of locus coeruleus afferent neurons in paragigantocellularis stained for phenylethanolamine N-methyltransferase while only 4% of locus coeruleus afferents in the prepositus hypoglossi area exhibited phenylethanolamine N-methyltransferase immunoreactivity. In paragigantocellularis, doubly labeled neurons were usually the smaller locus coeruleus afferents, while in the prepositus hypoglossi phenylethanolamine N-methyltransferase labeling was found in all cell types that project to the locus coeruleus. Phenylethanolamine N-methyltransferase-positive fibers from the C1 and C3 cell groups form an adrenergic fiber bundle in the dorsomedial medulla; in the pons, these fibers appear to exit this bundle and innervate the locus coeruleus. Fibers from the neurons of the C3 cell group also appear to ascend on the dorsal surface of the medulla to innervate the locus coeruleus. The phenylethanolamine N-methyltransferase fiber innervation in the locus coeruleus was dense and highly varicose. Phenylethanolamine N-methyltransferase innervation in the dorsal pons was not restricted to the locus coeruleus but was also prominent in neighboring areas such as Barrington's nucleus and the lateral dorsal tegmental nucleus of Gudden.
Collapse
Affiliation(s)
- V A Pieribone
- Department of Mental Health Sciences, Hahnemann University, Philadelphia, PA 19102-1192
| | | |
Collapse
|
36
|
Kachidian P, Astier B, Renaud B, Bosler O. Adrenergic innervation of noradrenergic locus coeruleus neurons. A dual labeling immunocytochemical study in the rat. Neurosci Lett 1990; 109:23-9. [PMID: 1969131 DOI: 10.1016/0304-3940(90)90532-e] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
By means of dual immunocytochemistry, synaptic associations between adrenergic terminals and noradrenergic neurons were directly demonstrated in the rat locus ceruleus (LC). It could be estimated that every adrenergic afferent contacts at least one noradrenergic dendrite in the nucleus. An adrenergic innervation of non-noradrenergic targets was also evidenced. These data add to our knowledge on the synaptic circuitry by which activation of the adrenergic input could affect central mechanisms known to be influenced by LC neurons.
Collapse
Affiliation(s)
- P Kachidian
- Equipe de Neuromorphologie Fonctionnelle, CNRS, Marseilles, France
| | | | | | | |
Collapse
|
37
|
Milner TA, Pickel VM, Morrison SF, Reis DJ. Adrenergic neurons in the rostral ventrolateral medulla: ultrastructure and synaptic relations with other transmitter-identified neurons. PROGRESS IN BRAIN RESEARCH 1989; 81:29-47. [PMID: 2694222 DOI: 10.1016/s0079-6123(08)61998-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The first part of this chapter demonstrates that the C1 adrenergic neurons have high mitochondrial content and a close proximity to capillaries and glia suggestive of a high metabolic activity and a possible chemosensory function. Adrenergic terminals arising primarily from these neurons (1) can influence sympathetic nerve discharge through direct contacts on sympathetic preganglionic neurons in the IML of the spinal cord; and (2) are one of the more prevalent synaptic inputs to the principally noradrenergic neurons in the locus coeruleus. In both the IML and locus coeruleus, adrenergic terminals may be either excitatory (asymmetric synapses) or inhibitory (symmetric synapses) depending on their distribution on the post-synaptic target. The second part of this chapter shows that C1 adrenergic neurons in the RVL are modulated by synaptic associations with a variety of transmitter systems (see schematic Fig. 8). Specifically, C1 adrenergic neurons receive (1) major inhibitory input (symmetric synapses) from GABA-ergic and opioid terminals as well as from unidentified (unlabelled) transmitter-containing terminals; (2) major excitatory input (asymmetric synapses) from terminals containing substance P as well as other unidentified terminals and (3) minor inputs from cholinergic, adrenergic and noradrenergic pathways. Moreover, cholinergic terminals in the RVL form symmetric synapses mainly on unidentified transmitter-containing neurons rather than the C1 neurons suggesting that the reported cardiovascular effects of cholinergic agents in the RVL are most likely mediated via inhibitory interneurons. Within the RVL, adrenergic and noradrenergic terminals innervate cholinergic and opioid neurons. Thus, these results not only provide direct evidence that a number of transmitters modulate the activity of C1 adrenergic neurons, but also suggest new directions for studies of functional interactions involving catecholaminergic regulation of other transmitter-containing neurons within the RVL.
Collapse
|