1
|
Microdialysis and its use in behavioural studies: Focus on acetylcholine. J Neurosci Methods 2018; 300:206-215. [DOI: 10.1016/j.jneumeth.2017.08.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/01/2017] [Accepted: 08/11/2017] [Indexed: 12/28/2022]
|
2
|
Deiana S, Platt B, Riedel G. The cholinergic system and spatial learning. Behav Brain Res 2011; 221:389-411. [DOI: 10.1016/j.bbr.2010.11.036] [Citation(s) in RCA: 154] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2010] [Accepted: 11/15/2010] [Indexed: 12/30/2022]
|
3
|
Papandreou MA, Tsachaki M, Efthimiopoulos S, Cordopatis P, Lamari FN, Margarity M. Memory enhancing effects of saffron in aged mice are correlated with antioxidant protection. Behav Brain Res 2011; 219:197-204. [DOI: 10.1016/j.bbr.2011.01.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2010] [Revised: 12/31/2010] [Accepted: 01/07/2011] [Indexed: 10/18/2022]
|
4
|
Bergado JA, Almaguer W, Rojas Y, Capdevila V, Frey JU. Spatial and emotional memory in aged rats: a behavioral-statistical analysis. Neuroscience 2010; 172:256-69. [PMID: 21036203 DOI: 10.1016/j.neuroscience.2010.10.064] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Revised: 10/20/2010] [Accepted: 10/22/2010] [Indexed: 01/20/2023]
Abstract
Age-related impairment in synaptic plasticity, like long-term potentiation (LTP), has been repeatedly reported. We had shown that late stages of LTP in the rat dentate gyrus can be modulated by emotional factors, but this is impaired by aging. In the present study we have searched for possible impairments in emotional and spatial memory tasks that may correspond to the impaired reinforcement observed at the cellular level. We have trained young and aged animals in a battery of tests: exploration (open field) object recognition, anxiety (plus maze) fear conditioning and spatial memory (Morris' water maze (MWM)). The open field, anxiety, and novelty recognition showed no age differences except a reduced velocity in aged rats. Emotional and contextual memories were preserved, but acquisition was slightly impaired. Age-dependent impairments appeared in spatial memory, evaluated in terms of latency and distance to reach the hidden escape platform in the water maze task, but these were not related with impairments in other tests, in particular there was no relation between spatial and emotional memory impairments. Age-related impairments in different paradigms were caused by different independent factors that did not correlated with each other.
Collapse
Affiliation(s)
- J A Bergado
- Centro Internacional de Restauracion Neurologica (CIREN), 11300 Playa, La Habana, Cuba.
| | | | | | | | | |
Collapse
|
5
|
Regulation of cortical acetylcholine release: insights from in vivo microdialysis studies. Behav Brain Res 2010; 221:527-36. [PMID: 20170686 DOI: 10.1016/j.bbr.2010.02.022] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 02/10/2010] [Indexed: 01/12/2023]
Abstract
Acetylcholine release links the activity of presynaptic neurons with their postsynaptic targets and thus represents the intercellular correlate of cholinergic neurotransmission. Here, we review the regulation and functional significance of acetylcholine release in the mammalian cerebral cortex, with a particular emphasis on information derived from in vivo microdialysis studies over the past three decades. This information is integrated with anatomical and behavioral data to derive conclusions regarding the role of cortical cholinergic transmission in normal behavioral and how its dysregulation may contribute to cognitive correlates of several neuropsychiatric conditions. Some unresolved issues regarding the regulation and significance of cortical acetylcholine release and the promise of new methodology for advancing our knowledge in this area are also briefly discussed.
Collapse
|
6
|
Uchida S, Suzuki A, Kagitani F, Hotta H. Responses of Acetylcholine Release and Regional Blood Flow in the Hippocampus during Walking in Aged Rats. J Physiol Sci 2006; 56:253-7. [PMID: 16839458 DOI: 10.2170/physiolsci.sc001706] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2006] [Accepted: 06/06/2006] [Indexed: 11/05/2022]
Abstract
Walking produced increases in both the extracellular acetylcholine level and regional blood flow in the hippocampus in aged rats 26-29 months old. The present results in aged rats were compared with our previous data in young adult rats (Nakajima et al., 2003), and it was found that both the acetylcholine and blood flow responses in the hippocampus were well maintained in aged rats.
Collapse
Affiliation(s)
- Sae Uchida
- Department of the Autonomic Nervous System, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo 173-0015, Japan.
| | | | | | | |
Collapse
|
7
|
Pepeu G, Giovannini MG. Changes in acetylcholine extracellular levels during cognitive processes. Learn Mem 2004; 11:21-7. [PMID: 14747513 DOI: 10.1101/lm.68104] [Citation(s) in RCA: 148] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Measuring the changes in neurotransmitter extracellular levels in discrete brain areas is considered a tool for identifying the neuronal systems involved in specific behavioral responses or cognitive processes. Acetylcholine (ACh) is the first neurotransmitter whose diffusion from the central nervous system was investigated and whose extracellular levels variations were correlated to changes in neuronal activity. This was done initially by means of the cup technique and then by the microdialysis technique. The latter, notwithstanding some technical limitations, makes it possible to detect variations in extracellular levels of ACh in unrestrained, behaving animals. This review summarizes and discusses the results obtained investigating the changes in ACh release during performance of operant tasks, exposition to novel stimuli, locomotor activity, and the performance of spatial memory tasks, working memory, and place preference memory tasks. Activation of the forebrain cholinergic system has been demonstrated in many tasks and conditions in which the environment requires the animal to analyze novel stimuli that may represent a threat or offer a reward. The sustained cholinergic activation, demonstrated by high levels of extracellular ACh observed during the behavioral paradigms, indicates that many behaviors occur within or require the facilitation provided by the cholinergic system to the operation of pertinent neuronal pathways.
Collapse
Affiliation(s)
- Giancarlo Pepeu
- Department of Pharmacology, University of Florence, 50139 Florence, Italy.
| | | |
Collapse
|
8
|
Lazaris A, Bertrand F, Lazarus C, Galani R, Stemmelin J, Poirier R, Kelche C, Cassel JC. Baseline and 8-OH-DPAT-induced release of acetylcholine in the hippocampus of aged rats with different levels of cognitive dysfunction. Brain Res 2003; 967:181-90. [PMID: 12650979 DOI: 10.1016/s0006-8993(02)04272-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
During aging, neurotransmission systems such as the cholinergic and serotonergic ones are altered. Using rats aged 3 or 24-26 months, this study investigated whether the well-described 8-OH-DPAT-induced increase of hippocampal acetylcholine release was altered in aged rats and whether it may vary according to the magnitude of age-related cognitive deficits. Long-Evans female rats aged 24-26 months were classified as good or bad performers on the basis of their reference-memory performance in a Morris water-maze task. Subsequently, the efficiency of 5-HT(1A) receptor agonist 8-OH-DPAT (0.5 mg/kg, s.c.) in triggering hippocampal acetylcholine release was evaluated by in vivo microdialysis and high performance liquid chromatography analysis. Besides a reduced baseline release in aged rats and a correlation between the baseline release and probe-trial performance in all rats, the results demonstrated that 8-OH-DPAT produced a significant increase of hippocampal acetylcholine release (peak value) in all rats, whether aged or young. While significant in bad performers (+56%), this increase did not reach significance in good performers (+32%). The results suggest that (i) some aspects of cognitive alterations related to aging might be linked to the baseline release of acetylcholine in the hippocampus, and (ii) the cholinergic innervation of the hippocampus of aged rats responds almost normally to systemic activation of 5-HT(1A) receptors, and (iii) differential alterations of cholinergic/serotonergic interactions assessed by determination of the 8-OH-DPAT-induced release of acetylcholine in the hippocampus could not be linked with clarity to the cognitive status of aged rats.
Collapse
Affiliation(s)
- Anelise Lazaris
- Laboratoire de Neurosciences Comportementales et Cognitives, U.M.R. 7521 Université Louis Pasteur/Centre National de la Recherche Scientifique, I.F.R. 37 de Neurosciences, 12 rue Goethe, 67000 Strasbourg, France
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Favrelière S, Perault MC, Huguet F, De Javel D, Bertrand N, Piriou A, Durand G. DHA-enriched phospholipid diets modulate age-related alterations in rat hippocampus. Neurobiol Aging 2003; 24:233-43. [PMID: 12498957 DOI: 10.1016/s0197-4580(02)00064-7] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Our previous work on rat hippocampus showed that a loss of docosahexaenoic acid (DHA) occurs in the fatty acid composition of phosphatidylethanolamine (PE), plasmenylethanolamine (PmE) and phosphatidylserine (PS) with increasing age. The present study investigated whether a DHA-enriched phospholipid dietary supplement could restore DHA levels and cholinergic activity. Male rats were fed a balanced diet containing both linoleic and alpha-linolenic acids until the age of 2, 18 and 21 months. From 18 to 21 months, one subgroup received a diet supplemented with DHA-enriched phospholipids from egg yolk (E-PL), and another a diet with DHA-enriched phospholipids from pig brain (B-PL). Compared to the control diet, the E-PL diet restored the proportion of polyunsaturated fatty acids (PUFAs: 22:6n-3 and 20:4n-6) in PE and PmE, while enhancing spontaneous and evoked-acetylcholine (Ach) release. The B-PL diet had no effect on PUFAs, but increased basal extracellular levels of Ach in 21-month-old rats as compared to the age-matched control. Our results show that supplementation with DHA-enriched egg PL can enhance Ach release and correct PUFA composition.
Collapse
Affiliation(s)
- S Favrelière
- EA 1223 G.E.M.C.I., Faculté de Médecine et Pharmacie, 86005 Poitiers, France.
| | | | | | | | | | | | | |
Collapse
|
10
|
Küçükatay V, Balkan S, Yaraş N, Yargiçoğlu P, Ağar A. The effect of pergolide on cognitive performance of young and middle-aged rats. Int J Neurosci 2002; 112:1027-36. [PMID: 12487092 DOI: 10.1080/00207450290026021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
In this study, we investigated the effect of pergolide, a dopaminergic agonist, on cognitive ability in young and middle-aged rats using the Morris Water Maze (MWM). Pergolide 0.5/mg/day i.p. was administered to young and middle-aged rats, whereas only vehicle was given to their age-matched controls. During the acquisition period of 6 days, young rats showed normal escape latency pattern, which was not affected by pergolide. Middle-aged rats, however, showed poor escape latency pattern, and this poor pattern was also not affected by pergolide. On the 7th day, pergolide decreased retention time of young rats compared to control values. Middle-aged rats also showed reduced retention time. In contrast to the findings of young rats, retention time was not affected by pergolide in middle-aged rats. We concluded that pergolide does not alter escape latency at any age. It has a negative effect on retention time of young rats, whereas it has no effect on middle-aged ones.
Collapse
Affiliation(s)
- Vural Küçükatay
- Faculty of Medicine, Department of Physiology, Arapsuyu, 07070 Antalya, Turkey.
| | | | | | | | | |
Collapse
|
11
|
Bernal F, Andrés N, Samuel D, Kerkerian-LeGoff L, Mahy N. Age-related resistance to alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid-induced hippocampal lesion. Hippocampus 2001; 10:296-304. [PMID: 10902899 DOI: 10.1002/1098-1063(2000)10:3<296::aid-hipo10>3.0.co;2-c] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
This study compares the effects of acute alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) administration in the hippocampus in adult (3 months) and middle-aged (15 months) rats at 15 days postinjection. Injection of 1 and 2.7 mM AMPA produced dose-dependent neurodegeneration, assessed by Nissl staining; a glial reaction shown by glial fibrillary acidic protein immunocytochemistry; and calcification, revealed by alizarin red staining. Furthermore, at both doses, these alterations were significantly greater in 3-month-old rats. Finally, at AMPA 2.7 mM, no significant changes in the density of hippocampal parvalbumin- or calbindin-immunoreactive neurons or in choline acetyltransferase, glutamate uptake, or GABA uptake activities were found in 15-month-old animals, whereas significant reductions in parvalbumin (-76%) and calbindin (-32%) immunostaining and in GABA uptake (-27%) were observed in 3-month-old animals compared to the respective sham-operated or control animals. In conclusion, this study clearly demonstrates that in rats the vulnerability of hippocampal neurons and the glial and calcification reactions to AMPA-induced injury decreased with age between 3 and 15 months. Our results also indicate that hippocampal cholinergic, glutamatergic, and GABAergic systems show an adaptive response to excitotoxic damage in both adult and middle-aged animals.
Collapse
Affiliation(s)
- F Bernal
- Unitat de Bioquímica, IDIBAPS, Facultat de Medicina, Universitat de Barcelona, Spain
| | | | | | | | | |
Collapse
|
12
|
Day JC, Kornecook TJ, Quirion R. Application of in vivo microdialysis to the study of cholinergic systems. Methods 2001; 23:21-39. [PMID: 11162147 DOI: 10.1006/meth.2000.1103] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The application of in vivo microdialysis to the study of acetylcholine (ACh) release has contributed greatly to our understanding of cholinergic brain systems. This article reviews standard experimental procedures for dialysis probe selection and implantation, perfusion parameters, neurochemical detection, and data analysis as they relate to microdialysis assessments of cholinergic function. Particular attention is focused on the unique methodological considerations that arise when in vivo microdialysis is dedicated expressly to the recovery and measurement of ACh as opposed to other neurotransmitters. Limitations of the microdialysis technique are discussed, as well as methodological adaptations that may prove useful in overcoming these limitations. This is followed by an overview of recent studies in which the application of in vivo microdialysis has been used to characterize the basic pharmacology and physiology of cholinergic neurons. Finally, the usefulness of the microdialysis approach for testing hypotheses regarding the cholinergic systems' involvement in cognitive processes is examined. It can be concluded that, in addition to being a versatile and practical method for studying the neurochemistry of cholinergic brain systems, in vivo microdialysis represents a valuable tool in our efforts to better comprehend ACh's underlying role in a variety of behavioral processes.
Collapse
Affiliation(s)
- J C Day
- Douglas Hospital Research Centre & Department of Psychiatry, McGill University, Verdun, Quebec, H4H 1R3, Canada
| | | | | |
Collapse
|
13
|
Van de Berg WD, Blokland A, Cuello AC, Schmitz C, Vreuls W, Steinbusch HW, Blanco CE. Perinatal asphyxia results in changes in presynaptic bouton number in striatum and cerebral cortex-a stereological and behavioral analysis. J Chem Neuroanat 2000; 20:71-82. [PMID: 11074345 DOI: 10.1016/s0891-0618(00)00078-8] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Deficits in cognitive function have been related to quantitative changes in synaptic population, particularly in the cerebral cortex. Here, we used an established model of perinatal asphyxia that induces morphological changes, i.e. neuron loss in the cerebral cortex and striatum, as well as behavioural deficits. We hypothesized that perinatal asphyxia may lead to a neurodegenerative process resulting in cognitive impairment and altered presynaptic bouton numbers in adult rats. We studied cognitive performance at 18 months and presynaptic bouton numbers at 22 months following perinatal asphyxia. Data of the spatial Morris water escape task did not reveal clear memory or learning deficits in aged asphyctic rats compared to aged control rats. However, a memory impairment in aged rats versus young rats was observed, which was more pronounced in asphyctic rats. We found an increase in presynaptic bouton density in the parietal cortex, whereas no changes were found in striatum and frontal cortex in asphyctic rats. An increase of striatal volume was observed in asphyctic rats, leading to an increase in presynaptic bouton numbers in this area. These findings stress the issue that volume measurements have to be taken into account when determining presynaptic bouton density. Furthermore, perinatal asphyxia led to region-specific changes in presynaptic bouton numbers and it worsened the age-related cognitive impairment. These results suggest that perinatal asphyxia induced neuronal loss, which is compensated for by an increase in presynaptic bouton numbers.
Collapse
Affiliation(s)
- W D Van de Berg
- Department of Pediatrics, Maastricht University, P. Debyelaan 25, PO Box 5800, 6212 AZ, Maastricht, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
14
|
Fujii T, Harada H, Koyama T, Nakajima Y, Kawashima K. Effects of physostigmine and calcium on acetylcholine efflux from the hippocampus of freely moving rats as determined by in vivo microdialysis and a radioimmunoassay. Neurosci Lett 2000; 289:181-4. [PMID: 10961659 DOI: 10.1016/s0304-3940(00)01308-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effects varying the concentration of Ca2+ in perfused artificial cerebrospinal fluid ([Ca2+]csf) on basal acetylcholine (ACh) efflux from the hippocampus of freely moving rats, in the presence and absence of the cholinesterase (ChE) inhibitor physostigmine, were investigated using in vivo microdialysis and a highly specific radioimmunoassay for ACh. In the absence of physostigmine, basal ACh efflux was 3.4+/-0.7 pg/30 min (mean +/- SEM) at [Ca2+]csf = 1.26 mM. Stepwise increases in [Ca2+]csf elicited a gradual increase in ACh efflux that was significant at [Ca2+]csf = 5.04 mM. Inhibition of ChE by addition of 10 microM physostigmine to the perfusate increased the efflux of ACh to 103.2+/-21.1 pg/30 min ([Ca2+]csf = 1.26 mM), and the efflux was augmented still further by increasing [Ca2+]csf, a change that became significant at [Ca2+]csf = 3.78. These results illustrate the sensitivity of basal ACh efflux from the hippocampus to changes in the extracellular Ca2+ concentration, and suggest that a more accurate picture of hippocampal cholinergic activity is obtained by microdialysis using normal artificial cerebrospinal fluid, under physiological conditions, rather than in the presence of a ChE inhibitor.
Collapse
Affiliation(s)
- T Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, Tokyo, Japan
| | | | | | | | | |
Collapse
|
15
|
Evidence that brain-derived neurotrophic factor from presynaptic nerve terminals regulates the phenotype of calbindin-containing neurons in the lateral septum. J Neurosci 2000. [PMID: 10627605 DOI: 10.1523/jneurosci.20-01-00274.2000] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) is transported anterogradely in neurons of the CNS and can be released by activity-dependent mechanisms to regulate synaptic plasticity. However, few neural networks have been identified in which the production, transport, and effects of BDNF on postsynaptic neurons can be analyzed in detail. In this study, we have identified such a network. BDNF has been colocalized by immunocytochemistry with tyrosine hydroxylase (TH) in nerve fibers and nerve terminals within the lateral septum of rats. BDNF-containing nerve fibers terminate on a population of calbindin-containing neurons in lateral septum that contain TrkB, the high-affinity receptor for BDNF. Overexpression of BDNF in noradrenergic neurons increased levels of calbindin in septum, as well as in whole-brain lysates. Septal levels of calbindin and BDNF partially decreased after unilateral lesions of the medial forebrain bundle (MFB), induced with 6-hydroxydopamine, a treatment that abolished TH staining. These data suggest that BDNF is anterogradely transported within the MFB in catecholaminergic neurons arising from brainstem nuclei. To determine whether BDNF affects the production of calbindin in lateral septal neurons directly, we tested the effects of BDNF on cultures of septal neurons from embryonic day 16-17 rats. BDNF promoted the expression of calbindin, as well as the arborization of calbindin-containing neurons, but BDNF had no effect on cell division or survival. Together, these results suggest that BDNF, anterogradely transported in catecholaminergic neurons, regulates calbindin expression within the lateral septum.
Collapse
|
16
|
Wang Y, Kikuchi T, Sakai M, Wu JL, Sato K, Okumura F. Age-related modifications of effects of ketamine and propofol on rat hippocampal acetylcholine release studied by in vivo brain microdialysis. Acta Anaesthesiol Scand 2000; 44:112-7. [PMID: 10669282 DOI: 10.1034/j.1399-6576.2000.440120.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
BACKGROUND We sometimes encounter impairment of learning and memory after general anesthesia in elderly patients. The aim of this study was to examine age-related modifications of the effects of ketamine and propofol on rat hippocampal acetylcholine (ACh) release because hippocampal cholinergic neurons are supposed to be involved in learning and memory. METHODS The experiments were performed on male Wistar young rats (2 months old) and old rats (18 months old), using in vivo brain microdialysis technique under freely moving condition. After initial sampling of three collections, test drugs were administered. The ACh release was determined by the HPLC-ECD method. RESULTS In old rats, the hippocampal basal ACh release was significantly lower than in young rats. Ketamine (25 and 50 mg kg(-1) i.p.) increased and propofol (25 and 50 mg kg(-1) i.p.) decreased the hippocampal ACh release in both young and old rats. Furthermore, ketamine 50 mg kg(-1) i.p. (anesthetic dose) produced facilitatory effects on the hippocampal ACh release in young rats (193% of the basal release), while in old rats the same dose of ketamine i.p. produced more pronounced facilitatory effects on the hippocampal ACh release (317% of the basal release). On the other hand, propofol 50 mg kg(-1) i.p. (anesthetic dose) produced inhibitory effects on the hippocampal ACh release in young rats (56% of control) and in old rats (77% of control). Although the maximal inhibitory peak effects of propofol 50 mg kg(-1) i.p. did not differ significantly between young rats and old rats, decrease of the hippocampal ACh release in old rats persisted longer than in young rats. CONCLUSION Ketamine produced more pronounced facilitatory effects on the hippocampal ACh release in old rats, as compared with young rats. On the other hand, propofol has inhibitory effects on the hippocampal ACh release in young and old rats. The aging process may suppress the ability to recover from the inhibitory anesthetic state induced by propofol.
Collapse
Affiliation(s)
- Y Wang
- Department of Anesthesiology, Yokohama City University School of Medicine, Yokohama, Japan
| | | | | | | | | | | |
Collapse
|
17
|
Fujii T, Ohba S, Nakai K, Fujimoto K, Suzuki T, Kawashima K. Enhancement of the serotonin-mediated acetylcholine release by repeated desmethylimipramine treatment in the hippocampus of freely moving rats. JAPANESE JOURNAL OF PHARMACOLOGY 1999; 80:303-9. [PMID: 10496330 DOI: 10.1254/jjp.80.303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A possible involvement of serotonin-mediated cholinergic activation in the antidepressant effect of desmethylimipramine (DMI) was investigated by determination of the effects of a single or repeated DMI administration on acetylcholine (ACh) release in the hippocampus using an in vivo microdialysis technique and a radioimmunoassay for ACh. Rats were administered DMI (10 mg/kg, i.p.) acutely or repeatedly for 21 days. A single or repeated DMI administration did not cause any significant effects on the basal ACh release compared with the respective controls. Atropine perfusion in the acutely DMI-treated or control rats increased the ACh release to the same degree. In repeatedly DMI-treated rats, serotonin (5-HT) (1 to 10 microM) perfusion enhanced significantly the ACh release. However, 5-HT in acutely DMI-treated rats enhanced significantly the ACh release only at 10 microM. 5-HT did not cause any changes in ACh release in control rats. Hippocampal 5-HT content of acutely DMI-treated rats was significantly higher than that of saline-treated control rats, while no difference was observed between the repeatedly DMI- and saline-treated rats. These findings suggest, for the first time, that DMI induced a facilitation of cholinergic neurotransmission in the rat hippocampus through the activation of 5-HT-receptor function.
Collapse
Affiliation(s)
- T Fujii
- Department of Pharmacology, Kyoritsu College of Pharmacy, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
18
|
Myers RD, Adell A, Lankford MF. Simultaneous comparison of cerebral dialysis and push-pull perfusion in the brain of rats: a critical review. Neurosci Biobehav Rev 1998; 22:371-87. [PMID: 9579326 DOI: 10.1016/s0149-7634(97)00025-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the last 30 years, studies of the in vivo activity of neurotransmitters and other endogenous factors in the brain have comprised a major effort in the neurosciences. Historically, the technology of push-pull perfusion was utilized as a major approach to investigations in this field. In the last 10 years, cerebral dialysis has been used as an alternative method essentially for the same scientific purpose, since the perfusion technique was viewed as difficult and excessively damaging to tissue. This review considers the representative literature in which both systems have been used to study local neurochemical responses to a drug or other chemical factor, a physiological condition or other situation. In addition, new experiments have been undertaken to compare, in the same animal and at the same time, the utility and properties inherent in the techniques of push-pull perfusion and cerebral dialysis in terms of the profile of a neurotransmitter activity and their local histopathological effects. A miniaturized 33/26 ga push-pull needle and a 24 ga dialysis probe were implanted simultaneously in the left and right caudate nuclei, respectively, in the anesthetized rat. An artificial cerebrospinal fluid (CSF) was perfused simultaneously through both devices at a rate of 10 microliters/min in the push-pull cannula and at 1.0 or 2.0 microliters/min in the dialysis probe. Within a series of 8-10 successive perfusions, excess K+ ions in a concentration of either 30 or 60 mM were incorporated in the CSF and delivered simultaneously to both the push-pull cannula and dialysis probe. Samples of perfusate and dialysate were assayed chromatographically by coulometric HPLC detector and quantitated in terms of the pg/min efflux of dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC), homovanillic acid (HVA) and 5-hydroxyindoleacetic acid (5-HIAA). The results showed that the resting level of DA was almost undetectable in dialysate samples from either structure; in push-pull perfusates the recovery of DA ranged between 7.0 to 10.0 pg/min, which was increased threefold by excess K+ ions. The recovery of DA and the three metabolites in samples of push-pull perfusate was two to four times that in samples of dialysate during the condition of excess K+ ions. Post-mortem histological analysis of the sites of perfusion and dialysis revealed little or no differences in the cytological damage induced by either the perfusion needle or dialysis probe. Finally, the advantages and limitations of each of these two experimental approaches to in vivo analysis of neurotransmitter efflux are reviewed in relation to the selection of an open or closed system for the on-line study of in vivo neurochemical events.
Collapse
Affiliation(s)
- R D Myers
- Department of Pharmacology, School of Medicine, East Carolina University, Greenville, NC 27858, USA
| | | | | |
Collapse
|
19
|
Gotoh M, Tajima T, Suzuki Y, Ikari H, Iguchi A, Kakumu S, Hirooka Y. Swimming stress that causes hyperglycemia increases in vivo release of noradrenaline, but not acetylcholine, from the hypothalamus of conscious rats. Brain Res 1998; 780:74-9. [PMID: 9473595 DOI: 10.1016/s0006-8993(97)01131-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The effects of acute swimming stress (10 min) on noradrenaline release from the medial basal hypothalamus (MBH; consisting of the ventromedial and dorsomedial hypothalamus) and acetylcholine release from the lateral hypothalamic area (LHA) were investigated in freely moving rats by using in vivo microdialysis techniques. Serum glucose, noradrenaline and adrenaline concentrations were also determined. Acute swimming stress produced significant hyperglycemia, with increases in serum noradrenaline and adrenaline concentrations. The release of noradrenaline from the MBH was significantly stimulated during the swimming stress. On the other hand, the swimming stress has no significant effect on the release of acetylcholine from the LHA. These findings support the idea that hypothalamic noradrenergic neurons play an important role in the sympathoadrenal hyperglycemic response to stressful stimuli. Moreover, it is suggested that hypothalamic cholinergic neurons are not involved in the responses of serum glucose, noradrenaline and adrenaline concentrations to swimming stress.
Collapse
Affiliation(s)
- M Gotoh
- Department of Laboratory Medicine, Aichi Medical University, Nagakute, Japan.
| | | | | | | | | | | | | |
Collapse
|
20
|
Lindner MD. Reliability, distribution, and validity of age-related cognitive deficits in the Morris water maze. Neurobiol Learn Mem 1997; 68:203-20. [PMID: 9398584 DOI: 10.1006/nlme.1997.3782] [Citation(s) in RCA: 137] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
In the present study, F-344 rats throughout 1.5 to 26 months of age were tested in the reference memory version, a moving-platform repeated acquisition version, and in a cued platform version of the Morris water maze. The results suggest that: (1) performance in the water maze declines continuously, beginning at the earliest age, and very closely fits a linear function; (2) there are robust, reliable differences between individuals in terms of their performance in the Morris water maze, but chronological age accounts for only a fraction of the variance between individuals; (3) there is no evidence of a bimodal distribution among aged rats--there is no distinct subgroup of individuals that performs so poorly that they are qualitatively different from the majority of the population, and distinctions between "impaired" and "unimpaired" subjects must be based on arbitrary criteria that may not be consistent from one study to the next; (4) age-related deficits in the Morris water maze may not be restricted to learning and memory, but may also include deficits in attention, the ability to process spatial information, and/or the ability to develop efficient spatial search strategies; and (5) swim distance is the most appropriate measure of cognitive function in the Morris water maze, but the relationship between this measure and other measures of noncognitive function make it clear that swim distance may not be a pure measure of cognitive function. Although the Morris water maze remains a valuable preclinical test with better validity and specificity than many other behavioral tests, measures of performance in the Morris water maze should not be considered synonymous with cognitive function.
Collapse
Affiliation(s)
- M D Lindner
- Department of CNS Biology, Bristol-Myers Squibb Pharmaceutical Research Institute, Wallingford, Connecticut 06492, USA.
| |
Collapse
|
21
|
Scali C, Giovannini MG, Bartolini L, Prosperi C, Hinz V, Schmidt B, Pepeu G. Effect of metrifonate on extracellular brain acetylcholine and object recognition in aged rats. Eur J Pharmacol 1997; 325:173-80. [PMID: 9163564 DOI: 10.1016/s0014-2999(97)00128-3] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of metrifonate were investigated in 4-6- and 22-24-month-old rats. Extracellular acetylcholine levels were measured by transversal microdialysis in vivo. Baseline extracellular acetylcholine levels in the cerebral cortex and hippocampus were 42% and 60% lower, respectively, in old than in young rats. Old rats did not discriminate between familiar and novel objects. In old rats, metrifonate (80 mg/kg p.o.) brought about 85% inhibition of cholinesterase activity in the cortex and hippocampus, a 4-fold increase in extracellular acetylcholine levels in the cortex only, and restored object recognition. In young rats, metrifonate caused 75% cholinesterase inhibition in the cerebral cortex and hippocampus, a 2-fold increase in cortical and hippocampal extracellular acetylcholine levels, and no effect on object recognition. The slight cholinesterase inhibition following metrifonate (30 mg/kg) in aged rats had no effect on cortical acetylcholine levels and object recognition. In conclusion, metrifonate may improve the age-associated cholinergic hypofunction and cognitive impairment.
Collapse
Affiliation(s)
- C Scali
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | | | | | | | | | |
Collapse
|
22
|
Fong TG, Neff NH, Hadjiconstantinou M. GM1 ganglioside improves spatial learning and memory of aged rats. Behav Brain Res 1997; 85:203-11. [PMID: 9105576 DOI: 10.1016/s0166-4328(97)87584-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
GM1 ganglioside, 30 mg/kg, i.p., was administered to cognitively impaired aged rats for 30 days, and spatial learning and memory evaluated in a Morris water maze paradigm. During treatment with GM1, aged animals improved both the acquisition and retention of place navigation, as reflected by reduced escape latencies and swim distances to a hidden platform, and persistently performed better than the aged control animals. Furthermore, the GM1-treated animals showed improved spatial acuity in a spatial probe test when the hidden platform was removed. The improved performance in place navigation was not lost if GM1 treatment was discontinued and the animals tested up to 15 days later. GM1 treatment had no effect on the performance of young rats in the water maze. These results indicate that memory deficits associated with aging can be attenuated by treatment with GM1 ganglioside.
Collapse
Affiliation(s)
- T G Fong
- Department of Pharmacology, Ohio State University College of Medicine, Columbus 43210, USA
| | | | | |
Collapse
|
23
|
Song C, Earley B, Leonard BE. Effect of chronic treatment with piracetam and tacrine on some changes caused by thymectomy in the rat brain. Pharmacol Biochem Behav 1997; 56:697-704. [PMID: 9130296 DOI: 10.1016/s0091-3057(96)00410-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Thymectomized rats, 5 weeks after surgery, showed a significant impairment in learning and memory as shown by deficits in passive avoidance and in the Morris water maze test. The behaviour of the thymectomized rats in the "open field" apparatus was largely unchanged. Following treatment for 20 days with either piracetam (500 mg/kg) or tacrine (3.0 mg/kg), the deficit in passive avoidance learning was largely reversed. Chronic treatment with tacrine also reversed the deficit in the behaviour of the thymectomized rats in the Morris water maze. The effects of thymectomy on the biogenic amines and some of their metabolites in the amygdaloid cortex, hypothalamus, striatum and olfactory bulbs were also determined. Relative to the sham-operated controls, thymectomy resulted in a reduction in the noradrenaline concentration in the amygdala, hypothalamus, and olfactory bulbs. This effect was reversed by chronic piracetam and tacrine treatments. The concentration of dopamine was also reduced in the olfactory bulbs after thymectomy whereas in the striatum the concentration of 5-hydroxytryptamine (5-HT; serotonin) was increased. The concentration of gamma amino butyric acid (GABA) was determined in amygdaloid cortex and hippocampus only. The only significant change occurred following chronic treatment of thymectomized rats with tacrine, when a significant elevation of GABA was found. Neither piracetam nor tacrine produced any change in the amines of their metabolites in the sham-operated controls. Tacrine, however, elevated the dopamine and reduced the 5-HT content of the hypothalamus and increased the 3,4-dihydroxylphenylacetic acid concentration of the striatum of thymectomized rats. Examination of the differential white blood cell count of the thymectomized rats showed that the percentage of lymphocytes was decreased, and the percentage of neutrophils increased, relative to the sham-operated controls. Chronic lacrine, but not piracetam, treatment reversed the lesion-induced changes.
Collapse
Affiliation(s)
- C Song
- Department of Pharmacology, University College Galway, Ireland
| | | | | |
Collapse
|
24
|
Mizuno T, Kimura F. Attenuated stress response of hippocampal acetylcholine release and adrenocortical secretion in aged rats. Neurosci Lett 1997; 222:49-52. [PMID: 9121720 DOI: 10.1016/s0304-3940(97)13340-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of aging on the stress response of the septo-hippocampal cholinergic neurons was assessed by monitoring hippocampal acetylcholine (ACh) release. Young (3-4 month old) and aged (23-24 month old) male rats were subjected to restraint stress for 1 h. ACh was elevated within 15 min of the onset of restraint stress (177.5% of basal level) in young rats but not in aged rats. Corticosterone concentration was significantly elevated by restraint stress in young rats but not in aged rats. The present results suggest that stress response of the septo-hippocampal cholinergic neurons and the hypothalamic-pituitary-adrenocortical axis is attenuated during aging.
Collapse
Affiliation(s)
- T Mizuno
- Department of Physiology, Yokohama City University School of Medicine, Japan
| | | |
Collapse
|
25
|
Ohara T, Fukaya H, Itanaka K, Seno N. Ameliorating effects of SDZ ENA 713 on age-associated decreases in learning performance and brain choline acetyltransferase activity in rats. Brain Res Bull 1997; 43:39-42. [PMID: 9205792 DOI: 10.1016/s0361-9230(96)00349-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In the present study, we have investigated the effects of SDZ ENA 713 on spatial learning deficits in aged rats. Using the same animals, the effect of SDZ ENA 713 on choline acetyltransferase was simultaneously studied to obtain a basis for the behavioral study. In the aged rats, the spatial learning and choline acetyltransferase activity in the frontal cortex were significantly deteriorated compared with young adult rats. SDZ ENA 713 (0.2 mg/kg) significantly shortened the time to reach a hidden platform without affecting swim rates in the water maze task. SDZ ENA 713 (0.1 and 0.2 mg/kg) inhibited aging-induced decreases in choline acetyltransferase activity in the frontal cortex. These results suggest that SDZ ENA 713 ameliorates aging-induced learning deficits and cholinergic dysfunction in rats.
Collapse
Affiliation(s)
- T Ohara
- Sandoz Tsukuba Research Institute, Department of Pharmacology, Japan
| | | | | | | |
Collapse
|
26
|
Moore H, Stuckman S, Sarter M, Bruno JP. Potassium, but not atropine-stimulated cortical acetylcholine efflux, is reduced in aged rats. Neurobiol Aging 1996; 17:565-71. [PMID: 8832631 DOI: 10.1016/0197-4580(96)00075-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Using in vivo microdialysis, cortical acetylcholine (ACh) efflux was measured in freely moving Brown Norway/Fischer 344 F1 rats, aged 4 or 22 months. The effects of local, intracortical perfusion of atropine (1.0 or 100.0 microM) via the dialysis probe were compared to local K+ (100.0 mM) stimulation in the presence of elevated extracellular Ca2+ (2.5 mM). Basal cortical ACh efflux in aged rats was similar to that of young animals. Administration of atropine (1.0 or 100.0 microM) via the cortical dialysis probe substantially increased cortical ACh efflux, but did not differentially stimulate ACh efflux in young and aged rats. In contrast, ACh efflux stimulated locally with K+ and Ca2+ was significantly reduced in aged rats relative to young adults. The implications of the dissociable effects of K(+)-depolarization and muscarinic blockade for local regulation of cortical ACh efflux in aged animals are discussed.
Collapse
Affiliation(s)
- H Moore
- Department of Psychology, Ohio State University, Columbus 43210 USA
| | | | | | | |
Collapse
|
27
|
Mitsushima D, Mizuno T, Kimura F. Age-related changes in diurnal acetylcholine release in the prefrontal cortex of male rats as measured by microdialysis. Neuroscience 1996; 72:429-34. [PMID: 8737413 DOI: 10.1016/0306-4522(95)00572-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Extracellular levels of acetylcholine in the prefrontal cortex were measured using the micro-dialysis method in freely moving young (three to four months old) and old (23 to 24 months old) male rats over a period of 24 h to examine the effect of aging on prefrontal acetylcholine release. Prefrontal acetylcholine release during a 24 h period exhibited a diurnal variation with higher levels during the dark cycle than during the light cycle in young rats but not in old rats. In addition, prefrontal acetylcholine release was closely associated with spontaneous activity in young rats but not in old rats. The present study suggests that aging reduces diurnal changes in the prefrontal acetylcholine release and that there is a cross-correlation between the prefrontal acetylcholine release and spontaneous locomotor activity in male rats.
Collapse
Affiliation(s)
- D Mitsushima
- Department of Physiology, Yokohama City University School of Medicine, Japan
| | | | | |
Collapse
|
28
|
Bannon AW, Curzon P, Gunther KL, Decker MW. Effects of intraseptal injection of 192-IgG-saporin in mature and aged Long-Evans rats. Brain Res 1996; 718:25-36. [PMID: 8773763 DOI: 10.1016/0006-8993(95)01568-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In this study, the effects intraseptal injections of the selective cholinergic immunotoxin, 192-IgG-saporin, were investigated in mature (6-month-old) and aged (24-26-month-old) male Long-Evans rats. Ten days following intraseptal injection of either 192-IgG-saporin or saline, testing began in a battery of behavioral tests modulated by the septohippocampal system including two versions of the Morris water maze (i.e. submerged platform task, and 2-platform spatial discrimination), inhibitory avoidance, and pre-pulse inhibition of acoustic startle. In both mature and aged rats, intraseptal injection of 192-IgG-saporin selectively reduced ChAT activity in the hippocampus and posterior cingulate cortex, without affecting ChAT activity of amygdala or parietal cortex. In general, in all of the behavioral tests analyzed, intraseptal 192-IgG-saporin treatment had no effect in mature animals. Age-related deficits were observed in the spatial memory tasks, however this impairment was largely a function of the poor performance of aged rats treated with the toxin. In addition, an increase in the response to an acoustic startle was found in aged rats treated with 192-IgG-saporin. Thus, although intraseptal injection of 192-IgG-saporin produced similar reductions of ChAT activity, performance of mature and aged rats in tasks believed to be modulated by the septohippocampal pathway tended to be differentially affected in mature and aged rats.
Collapse
Affiliation(s)
- A W Bannon
- Dept. 47W, Abbott Laboratories, Abbott Park, IL 60064-3500, USA
| | | | | | | |
Collapse
|
29
|
Thai L, Hong JS, Wiley RG, Gallagher M. The regulation of hippocampal dynorphin by neural/neuroendocrine pathways: models for effects of aging on an opioid peptide system. Neuroscience 1996; 70:661-71. [PMID: 9045079 DOI: 10.1016/s0306-4522(96)83005-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Previous research has demonstrated increased messenger RNA expression and peptide content in an opioid system localized to hippocampal dentate granule cells in aged rats. This altered regulation of dynorphin was correlated with the emergence of an age-related impairment in spatial learning. Considerable evidence exists for additional effects of aging on systems that provide input to the dynorphin-containing dentate granule cells. Such changes have been well documented for loss of perforant path innervation from entorhinal cortex, deterioration in septohippocampal cholinergic neurons, and high amounts of glucocorticoids that have, among their targets, receptors located in the dentate gyrus. Similar to the effects of aging on hippocampal dynorphin, age-related changes in each of these systems correlate with the severity of spatial learning impairment in aged rats. This raises the possibility that dysregulation of dynorphin in the aged brain is a reactive response to antecedant change(s) in this circuitry, a hypothesis that was examined by separately manipulating in young rats the three neural/neuroendocrine systems identified above. Of the three models examined only removal of the perforant path reproduced the effect of aging on dynorphin in the hippocampal formation. An immunotoxin was used in Experiment 1 to selectively remove septo-hippocampal cholinergic neurons in young rats. No alteration in hippocampal opioid peptides was produced by this treatment. Experiment 2 examined effects of exposure to excess corticosterone. Adrenalectomized rats exhibited a significant decrease in hippocampal dynorphin-A (1-8) content, which was reversed by corticosterone replacement at a concentration approximating normal basal levels. Dynorphin-A (1-8) content, however, was not reliably increased by exposure to excess corticosterone. In contrast, perforant path removal was found to reproduce the effect of aging on dynorphin content; either aspiration of the entorhinal cortex or knife-cut transections of the perforant path reliably increased hippocampal dynorphin content. These results support the conclusion that age-related deterioration in the septohippocampal cholinergic system and evaluated exposure to corticosterone are not sufficient to induce an elevation in hippocampal dynorphin content. Only removal of the perforant path innervation was found to reproduce the elevation in hippocampal dynorphin content observed in aged rats with hippocampal-dependent learning impairment.
Collapse
Affiliation(s)
- L Thai
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill 27599, USA
| | | | | | | |
Collapse
|
30
|
Smith RD, Kistler MK, Cohen-Williams M, Coffin VL. Cholinergic improvement of a naturally-occurring memory deficit in the young rat. Brain Res 1996; 707:13-21. [PMID: 8866709 DOI: 10.1016/0006-8993(95)01207-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In a single-trial, passive-avoidance response (PAR) paradigm, young rats at post-natal day (PND) 16 were found to exhibit a performance deficit that diminished progressively with age. When administered prior to training, single peripheral injections of cholinomimetic drugs, either a muscarinic agonist (arecoline, pilocarpine or oxotremorine), an acetylcholinesterase inhibitor (tacrine or E2020), or nicotine, increased the response latencies for young rats to that of adult levels in a dose-dependent manner (overall dose range = 0.003 microgram/kg-10 mg/kg). Neither the cholinergic antagonists scopolamine, atropine or mecamylamine, nor a series of non-cholinergic drugs, diazepam, haloperidol, phenobarbital, pargyline, D-amphetamine, imipramine, piracetam or N-methyl-D-aspartate (NMDA) increased PAR latencies. When 0.1 mg/kg scopolamine was given to young rats prior to arecoline, the dose-effect curve for enhanced latency times was shifted to the right. Higher doses of scopolamine completely blocked the effects of arecoline. Scopolamine (0.001-1.0 mg/kg) administered subsequent to, rather than before PAR training, blocked the usual arecoline-induced enhancement of response latencies. Alternatively, consolidation could be facilitated with different doses of tacrine (0.0003-10 mg/kg). These results demonstrate that young rats fail to remember the PAR but that retention for this task can be specifically enhanced with cholinomimetic drugs.
Collapse
Affiliation(s)
- R D Smith
- Schering-Plough Research Institute, Kenilworth, NJ 07033-0539, USA
| | | | | | | |
Collapse
|
31
|
Fong TG, Vogelsberg V, Neff NH, Hadjiconstantinou M. GM1 and NGF synergism on choline acetyltransferase and choline uptake in aged brain. Neurobiol Aging 1995; 16:917-23. [PMID: 8622782 DOI: 10.1016/0197-4580(95)00088-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In the brain of aged rats high affinity choline uptake (HAChU) of the striatum, hippocampus, and frontal cortex is lower than in young rats, while choline acetyltransferase (ChAT) activity is lower in striatum and frontal cortex. Infusion into the lateral cerebral ventricle with nerve growth factor (NGF) enhances the low values of these cholinergic markers in a dose- and region-dependent manner. GM1 ganglioside infused into the lateral ventricle, at a dose that is ineffective alone, together with NGF synergistically enhances the effect of NGF on ChAT and HAChU activities in the brain of aged animals. The pharmacology of this GM1/NGF synergism suggests potentiation of response.
Collapse
Affiliation(s)
- T G Fong
- Department of Pharmacology, Ohio State University College of Medicine, Columbus 43210, USA
| | | | | | | |
Collapse
|
32
|
Abstract
The concept that memory loss in ageing might be attributable to deficiencies in cholinergic function was first proposed two decades ago. This proposal gained additional definition when pathology was found in the basal forebrain cholinergic system of patients with Alzheimer's disease, and substantial deterioration of these neurons was detected in several animal models of ageing. A recently developed method for selectively removing basal forebrain cholinergic neurons using an immunotoxin provides a powerful tool for examining the function of the basal forebrain cholinergic system. This review will address new information that has come from this approach, with an emphasis on understanding the contribution of basal forebrain cholinergic neurons to age-related cognitive impairment.
Collapse
Affiliation(s)
- M Gallagher
- Department of Psychology, University of North Carolina, Chapel Hill 27599, USA
| | | |
Collapse
|
33
|
Fong TG, Neff NH, Hadjiconstantinou M. Systemic administration of GM1 ganglioside increases choline acetyltransferase activity in the brain of aged rats. Exp Neurol 1995; 132:157-61. [PMID: 7789456 DOI: 10.1016/0014-4886(95)90020-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the brain of aged rats (22-24 months old) choline acetyltransferase (ChAT) activity in striatum and frontal cortex is lower than in young rats (4-5 months old). In contrast, ChAT activity in the hippocampus is similar in the two groups. Treating old animals with GM1 ganglioside, 30 mg/kg ip, for 30 or 45 days enhances ChAT activity in the striatum and frontal cortex, but has no effect on activity in the hippocampus. ChAT activity remains elevated in the striatum and frontal cortex for 15 days after discontinuing treatment with GM1.
Collapse
Affiliation(s)
- T G Fong
- Department of Pharmacology, Ohio State University, College of Medicine, Columbus 43210, USA
| | | | | |
Collapse
|
34
|
Smith TD, Gallagher M, Leslie FM. Cholinergic binding sites in rat brain: analysis by age and cognitive status. Neurobiol Aging 1995; 16:161-73. [PMID: 7777134 DOI: 10.1016/0197-4580(94)00156-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Age-related alterations in the density of cholinergic receptor binding and reuptake sites were examined in discrete forebrain regions of behaviorally tested rats using quantitative autoradiography. Neurochemical changes associated with chronological age alone were distinguished from memory-dependent alterations by correlating density of binding sites with performance in the Morris water maze task. An initial analysis of tritium quenching indicated no reliable differential quenching in the study population. Modest age-related reductions in selected subtypes of cholinergic binding sites in basal forebrain, basal ganglia, and thalamus were observed. However, these reductions were not correlated with a spatial memory deficit. In contrast, no significant changes in the analysis by chronological age were detected for the density of [3H]hemicholinium binding to high affinity choline uptake sites or [3H]pirenzepine binding to M1 receptors in any brain region but strong correlations were found between behavioral performance of aged rats and density of these sites in dorsal hippocampal subfield CA3 and dentate gyrus. These findings indicate the value of combined neurobiological/behavioral assessment.
Collapse
Affiliation(s)
- T D Smith
- Department of Pharmacology, California College of Medicine, University of California, Irvine 92717, USA
| | | | | |
Collapse
|
35
|
Abstract
Neuromodulators including acetylcholine, norepinephrine, serotonin, dopamine and a range of peptides alter the processing characteristics of cortical networks through effects on excitatory and inhibitory synaptic transmission, on the adaptation of cortical pyramidal cells, on membrane potential, on the rate of synaptic modification, and on other cortical parameters. Computational models of self-organization and associative memory function in cortical structures such as the hippocampus, piriform cortex and neocortex provide a theoretical framework in which the role of these neuromodulatory effects can be analyzed. Neuromodulators such as acetylcholine and norepinephrine appear to enhance the influence of synapses from afferent fibers arising outside the cortex relative to the synapses of intrinsic and association fibers arising from other cortical pyramidal cells. This provides a continuum between a predominant influence of external stimulation to a predominant influence of internal recall (extrinsic vs. intrinsic). Modulatory influence along this continuum may underlie effects described in terms of learning and memory, signal to noise ratio, and attention.
Collapse
Affiliation(s)
- M E Hasselmo
- Department of Psychology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
36
|
McGaughy J, Sarter M. Behavioral vigilance in rats: task validation and effects of age, amphetamine, and benzodiazepine receptor ligands. Psychopharmacology (Berl) 1995; 117:340-57. [PMID: 7770610 DOI: 10.1007/bf02246109] [Citation(s) in RCA: 233] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
An operant task for the measurement of sustained attention or vigilance in rats was characterized. The task requires the animals to respond to the presentation of visual signals (presented for 25, 50, or 500 ms) by operating one lever ("hits") and to the absence of a signal by operating the opposite lever ("correct rejection"). Incorrect responses ("misses" and "false alarms", respectively) were not rewarded. Performance in this task is a function of signal length, i.e., the shorter the signals the higher the number of misses. An increase in "background noise" by flashing the chamber houselight (at 0.5 Hz) impaired the animals' ability to discriminate between signal and non-signal events. Also flashing the houselight augmented the vigilance decrement observed for shortest signals. An increase in the event-rate also resulted in a vigilance decrement. Finally, the inability of the animals to time signals was examined by testing the effects of an increase in event asynchrony. In a second experiment, the performance of differently aged rats (6- and 20 month-old male BNNia/F344 rats) was studied. Compared to young animals, 20-month-old rats showed a decrease in their ability to discriminate between shortest signals (25 ms) and non-signal events but did not differ in their ability to correctly reject non-signal trials. Administration of the benzodiazepine receptor (BZR) agonist chlordiazepoxide (CDP; 3, 5, 8 mg/kg) resulted in an impairment of the animals' ability to discriminate between signal and non-signal events and, similar to the effects of age, this effect was exclusively due to an increase in the number of misses. CDP generally produced potent effects while affecting the aged animals to a greater degree. BZR-ligands with weak or "selective" inverse agonist properties (ZK 93426; beta-CCtB) did not affect vigilance performance. The BZR partial inverse agonist RU 33965 (0.1, 0.5 mg/kg) dose-dependently impaired vigilance performance. The administration of amphetamine (0.4, 0.8 mg/kg) also impaired performance, but these impairments were possibly based on effects unrelated to attentional mechanisms. The finding that performance in this task revealed the interactions between the effects of age and BZR agonists on attentional abilities further supports the validity of measures of performance generated by this task.
Collapse
Affiliation(s)
- J McGaughy
- Department of Psychology, Ohio State University, Columbus 43210, USA
| | | |
Collapse
|
37
|
Wellman CL, Sengelaub DR. Alterations in dendritic morphology of frontal cortical neurons after basal forebrain lesions in adult and aged rats. Brain Res 1995; 669:48-58. [PMID: 7712164 DOI: 10.1016/0006-8993(94)01231-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The nucleus basalis magnocellularis (NBM) is the major cholinergic projection to neocortex in the rat and plays a role in the modulation of cortical activity. Lesions of the NBM decrease thickness of lamina II-III of frontal cortex and decrease soma size of lamina II-III neurons. Additionally, aging produces changes in neuron size and numbers in the basal forebrain and frontal cortex of rats. We assessed dendritic changes in neurons from lamina II-III of frontal cortex in adult, middle-aged, and aged rats three months after unilateral lesions of the NBM. While lesions did not affect dendritic morphology in young adult rats, they decreased total dendritic length in middle-aged and aged rats, with dendritic alterations most pronounced in middle-aged rats. In middle-aged rats, lesion-induced changes in basilar arbor were apparently due to decreased dendritic branching: lesions markedly decreased the number of first-, second-, and third-order branches, but did not affect higher-order branching. In aged rats, lesions resulted in a small decrease in dendritic material proximal to the soma and a pronounced decrease in dendritic material distal to the soma, apparently due to a decrease in the length of terminal branches. These results suggest that the plasticity of neocortical neurons in the basalocortical system changes with age, and that early in aging this system may be particularly vulnerable to neural damage.
Collapse
Affiliation(s)
- C L Wellman
- Department of Psychology, Indiana University, Bloomington
| | | |
Collapse
|
38
|
Ikegami S. Behavioral impairment in radial-arm maze learning and acetylcholine content of the hippocampus and cerebral cortex in aged mice. Behav Brain Res 1994; 65:103-11. [PMID: 7880448 DOI: 10.1016/0166-4328(94)90078-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Age-related changes in spatial learning performance were studied in relation to acetylcholine (ACh) content of brain regions in male aged (28-month-old) and young (5-month-old) mice of BDF1 strain. As there were large individual differences in the spatial performance of aged mice, the aged mice were divided into two subgroups, old A and old B. The old A group included the six best performers out of the 12 aged mice and the old B group included the remaining 6 worst performers. In a radial-arm maze task with 8 baited arms, aged mice in the old B group showed a marked deficit in acquisition performance and habituation to the apparatus. In the more difficult maze task with only 4 baited arms, the aged mice in the old B group exhibited marked impairment both in working memory and reference memory throughout training, whereas the aged mice in the old A group showed deficits in reference memory during the first 20 days of training and working memory during the last 20 days relative to young mice. Neurochemical analysis revealed significant decreases in the ACh content of the hippocampus and striatum in both aged groups, and in the frontal cortex and posterior cortex of the old B group as compared to the young group. Correlational analysis showed significant correlations between learning performance in the spatial task and ACh levels in the hippocampus, frontal cortex, and posterior cortex.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- S Ikegami
- Department of Neuroscience, Mitsubishi Kasei Institute of Life Sciences, Tokyo, Japan
| |
Collapse
|
39
|
Sercombe R, Lacombe P, Springhetti V, MacKenzie ET, Seylaz J. Basal forebrain control of cortical blood flow and tissue gases in conscious aged rats. Brain Res 1994; 662:155-64. [PMID: 7859069 DOI: 10.1016/0006-8993(94)90808-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cholinergic projections from the basal forebrain are capable of influencing local cortical blood flow (CoBF). The effect of age on this influence was investigated by measuring CoBF and tissue gas partial pressures (PtO2, PtCO2) by mass spectrometry in conscious young adult (2-4 months) and aged (22-28 months) Fischer 344 rats. Electrical stimulation (50 microA) of the substantia innominata (SI) increased frontal (+100.9%) and parietal (+28.4%) CoBF in young rats, but the effects were less in aged rats (frontal, +48.6%, P < 0.05; parietal, +18.9%, difference N.S.). Frontal PtO2 was increased in young but not aged rats (P < 0.01.). During standard hypercapnia, changes in CoBF, PtO2 and PtCO2 did not differ between young and aged rats. Under physostigmine infusion (0.15 mg/kg/h, i.v.), the CoBF increases to SI stimulation were approximately doubled in both cortices, in young and aged rats, and PtO2 increases were also significantly greater. However, frontal PtO2 increases were significantly smaller in aged (+7.6%) than in young (32.7%) rats, as were frontal PtCO2 reductions. We conclude: (i) the influence of the SI on frontal CoBF and PtO2 is substantially reduced with age; (ii) although physostigmine treatment potentiates this influence in both groups, the beneficial effects are relatively limited for aged rats.
Collapse
Affiliation(s)
- R Sercombe
- Laboratoire de Recherches Cérébrovasculaires, CNRS UA 641, Université Paris VII, France
| | | | | | | | | |
Collapse
|
40
|
Mizuno T, Arita J, Kimura F. Spontaneous acetylcholine release in the hippocampus exhibits a diurnal variation in both young and old rats. Neurosci Lett 1994; 178:271-4. [PMID: 7824209 DOI: 10.1016/0304-3940(94)90776-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Extracellular levels of acetylcholine (ACh) in the hippocampus were measured by the microdialysis method in freely moving young (3-4 months old) and old (18-24 months old) female rats over a period of 24 h to examine the effect of aging on hippocampal ACh release. Hippocampal ACh release during a 24-h period exhibited a diurnal variation with higher levels during the dark cycle than during the light cycle in old rats as well as young rats. The present study suggests that a diurnal variation in ACh release is maintained fairly well until the rats are at least 24 months old.
Collapse
Affiliation(s)
- T Mizuno
- Department of Physiology, Yokohama City University School of Medicine, Japan
| | | | | |
Collapse
|
41
|
Scali C, Casamenti F, Pazzagli M, Bartolini L, Pepeu G. Nerve growth factor increases extracellular acetylcholine levels in the parietal cortex and hippocampus of aged rats and restores object recognition. Neurosci Lett 1994; 170:117-20. [PMID: 8041485 DOI: 10.1016/0304-3940(94)90253-4] [Citation(s) in RCA: 69] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Male Wistar rats (3- and 20-month-old) were perfused i.c.v. with 1.5 micrograms of either nerve growth factor (NGF) or cytochrome C daily for 14 days. At the end of the infusion, the object-recognition test was carried out and extracellular acetylcholine levels (ACh) were measured in the cortex and hippocampus by transversal microdialysis technique. In 20-month-old control rats, the cortical and hippocampal ACh levels were 35 and 45% lower, respectively, than in 3-month-old rats and the ability to discriminate between a familiar and new object was impared. In the old rats treated with NGF, the ACh release as well as the behavioral performance showed no difference from those of young rats. These findings indicate that both ACh levels and memory impairment are improved in aged rats by NGF treatment and suggest that there is a relationship between object recognition and the activity of the forebrain cholinergic system.
Collapse
Affiliation(s)
- C Scali
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | | | | | | | |
Collapse
|
42
|
Noguès X, Micheau J, Jaffard R. Protein kinase C activity in the hippocampus following spatial learning tasks in mice. Hippocampus 1994; 4:71-7. [PMID: 8061753 DOI: 10.1002/hipo.450040109] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Protein kinase C (PKC) is highly concentrated in the hippocampus and is thus a possible neural substrate of learning and memory. This study was designed to determine whether partial acquisition (i.e., the minimal amount of training leading to above-chance performance) of a spatial discrimination in an eight-arm radial maze alters hippocampal PKC activity. Mice were sacrificed at different times (5 minutes, 1 hour, 24 hours) after the second learning session, and PKC activity was measured in both cytosolic and membrane fractions of the hippocampus. In order to determine which component of the task was involved in the alterations in enzymatic activity, hippocampal PKC activity was also measured in a group of mice that was allowed to explore the maze freely. Significantly less PKC activity was found in the cytosolic fraction from the trained animals than from the quiet or active control groups. No differences were observed between the quiet and active controls. In contrast, there were no significant between-groups differences in membrane-bound PKC activity, although a negative correlation between the membrane-bound PKC activity and learning scores (accuracy) was noted. These results suggest that hippocampal PKC activity is involved essentially in the associative component of the task. The lack of learning-induced alterations in membrane-bound PKC activity and the negative correlation between this enzymatic activity and learning accuracy are discussed.
Collapse
Affiliation(s)
- X Noguès
- Laboratoire de Neurosciences Comportementales et Cognitives, URA CNRS 339, Université de Bordeaux I, Talence, France
| | | | | |
Collapse
|
43
|
Kadar T, Arbel I, Silbermann M, Levy A. Morphological hippocampal changes during normal aging and their relation to cognitive deterioration. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 1994; 44:133-43. [PMID: 7897386 DOI: 10.1007/978-3-7091-9350-1_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Cognitive and memory capacities were assessed in two strains of rats of various age groups prior to histological evaluation of their brains. Male Wistar rats, at the age of 3, 12, 17 and 24 months, were tested using the 8-arm radial maze and male Fischer 344 rats, aged 3, 12 and 16 months, were tested in the Morris water maze. Significant memory impairments were found in both strains already at the age of 12 months in about 50% of the population. Morphological analysis of the brains revealed age-related structural changes in the hippocampal formation starting with the middle-age group. Degenerative CA1 and CA3 pyramidal cells characterized the hippocampus of cognitive-impaired rats, while non-impaired animals exhibited intact hippocampus irrespective of age. This characteristic was supported by quantitative morpho-analysis. The best correlation between the decrease of area or number of cells and working memory impairment was found for CA3 region in both strains. Age-related decline in the density of muscarinic receptors in Wistar rats' brain corresponded with the pattern of cognitive deficit. The results of the present study support the hypothesis which associates hippocampal integrity with normal memory function. It is concluded that chronological age by itself is not an adequate indicator of age-related brain alterations and individual evaluation of performance, based on behavioral scores, is recommended.
Collapse
Affiliation(s)
- T Kadar
- Department of Pharmacology, Israel Institute for Biological Research, Ness Ziona
| | | | | | | |
Collapse
|
44
|
Sánchez-Prieto J, Herrero I, Miras-Portugal MT, Mora F. Unchanged exocytotic release of glutamic acid in cortex and neostriatum of the rat during aging. Brain Res Bull 1994; 33:357-9. [PMID: 7904891 DOI: 10.1016/0361-9230(94)90206-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The Ca(2+)-dependent release of glutamate induced by 4-aminopyridine in synaptosomes prepared both from the cerebral cortex and basal ganglia was unchanged in aged rats (27-30 months) when compared to adults rats (3 months). Consistent with the absence of changes in glutamate exocytosis during aging, the rise in the cytosolic free Ca2+ concentration, [Ca2+]c, induced by depolarization in synaptosomes from aged rats was similar to that found in control adult rats. The results suggest that during aging the nerve terminals from the cerebral cortex and basal ganglia maintain an intact ability to release glutamate by exocytosis.
Collapse
Affiliation(s)
- J Sánchez-Prieto
- Departamento de Bioquímica, Facultad de Veterinaria, Universidad Complutense, Madrid, Spain
| | | | | | | |
Collapse
|
45
|
Pepeu G, Giovannelli L. The central cholinergic system during aging. PROGRESS IN BRAIN RESEARCH 1994; 100:67-71. [PMID: 7938536 DOI: 10.1016/s0079-6123(08)60770-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- G Pepeu
- Department of Preclinical and Clinical Pharmacology, University of Florence, Italy
| | | |
Collapse
|
46
|
Gallagher M, Nicolle MM. Animal models of normal aging: relationship between cognitive decline and markers in hippocampal circuitry. Behav Brain Res 1993; 57:155-62. [PMID: 7906946 DOI: 10.1016/0166-4328(93)90131-9] [Citation(s) in RCA: 154] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Alzheimer's disease (AD) occurs against a background of cognitive and neurobiological aging. Animal models of normal aging may be used to study the neurobiological structures that are most involved in AD pathology, i.e. hippocampal/cortical systems. For example, spatial learning is dependent upon the integrity of the hippocampus, a structure that is much affected in humans with AD. Spatial learning tasks, such as the Morris water maze, have been used to screen aged rats for cognitive status prior to neurobiological assessment of hippocampal circuitry. Manifestations of the aging process, which are often minimal or entirely obscured in studies comparing young and aged brains, become apparent when the cognitive status of aged animals is taken into account. For example, studies examining the septohippocampal cholinergic system in behaviorally-characterized rodents have shown that there is a decline in many markers for these cholinergic neurons that coincides with severity of spatial learning impairment. Another advantage of cognitive assessment in animal models used to study aging is that it may help to distinguish between those neurobiological changes that are functionally detrimental and those that may represent compensatory adaptations to maintain cognitive function. Age-related changes in two neurobiological measures in the hippocampus are discussed in this report. Alterations in the opioid peptide dynorphin (increased peptide content and prodynorphin mRNA) in hippocampus may contribute to impairment in that the greatest changes occur in those aged rats with severe spatial learning deficits.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- M Gallagher
- Department of Psychology, University of North Carolina at Chapel Hill 27599
| | | |
Collapse
|
47
|
Gallagher M. Issues in the development of models for cognitive aging across primate and nonprimate species. Neurobiol Aging 1993; 14:631-3. [PMID: 8295668 DOI: 10.1016/0197-4580(93)90051-c] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- M Gallagher
- Department of Psychology, University of North Carolina, Chapel Hill 27599
| |
Collapse
|
48
|
Huidobro A, Blanco P, Villalba M, Gómez-Puertas P, Villa A, Pereira R, Bogónez E, Martínez-Serrano A, Aparicio JJ, Satrústegui J. Age-related changes in calcium homeostatic mechanisms in synaptosomes in relation with working memory deficiency. Neurobiol Aging 1993; 14:479-86. [PMID: 8247230 DOI: 10.1016/0197-4580(93)90106-l] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Aging is associated with alterations in different systems that govern neuronal calcium homeostasis. This study was designed to determine whether any of these alterations may contribute to the decline in spatial working memory that is observed in old rats. Several parameters [initial (5 s) and steady state (15 min) 45Ca2+ uptake, FCCP-releaseable 45Ca2+, [Ca2+]i levels, depolarization-induced phosphoprotein (P97, PP65, P42) dephosphorylation and acetylcholine levels and release) involved in calcium homeostasis/signaling were determined in whole brain synaptosomes derived from adult (9-month-old) and old (24-month-old) rats that were evaluated for spatial memory performance in the eight-arm radial maze. The neurochemical analysis indicated that both the 9- and 24-month-old rats were impaired with respect to 3-month-old animals. When learners (animals reaching criterion; RC) were compared to memory impaired rats (MI), it was found that the FCCP-releaseable 45Ca2+ of synaptosomes, that reflects mitochondrial calcium, was lower in the MI than the RC rats and was correlated with the behavioral performance of the rats in their first testing sessions. The results suggest that the loss of calcium uptake capacity in synaptic mitochondria during aging may be associated with impaired working memory in old animals.
Collapse
Affiliation(s)
- A Huidobro
- Department of Animal Learning Psychology, Faculty of Psychology, Complutense University of Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Nilsson OG, Gage FH. Anticholinergic sensitivity in the aging rat septohippocampal system as assessed in a spatial memory task. Neurobiol Aging 1993; 14:487-97. [PMID: 8247231 DOI: 10.1016/0197-4580(93)90107-m] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The effects of central cholinergic blockade on spatial memory were tested in aged and basal forebrain-lesioned rats using the Morris Water Maze. In Experiment 1, aged rats (18-21 months old) were characterized as behaviorally impaired or nonimpaired based on water maze performance prior to an atropine sulfate challenge. In the atropine test (50 mg/kg, IP), both the impaired and the nonimpaired rats showed a severe disruption of their search behavior compared to young subjects. This effect was due to blockade of central receptors since peripheral cholinergic blockade using atropine methylbromide did not produce any impairments. Experiment 2 investigated effects of atropine on rats with septal lesions (SL), nucleus basalis lesions (NBL), and rats with both lesions combined (SL + NBL). Before drug treatment, the groups with septal lesions (SL and SL + NBL groups) displayed a moderate impairment in locating the platform site. However, similar to the aged rats, the septal-lesioned rats exhibited severe impairments in the water maze during atropine treatment. This effect was not seen in the normal controls or in the NBL rats. Aged rats, either impaired or nonimpaired in a spatial memory task, showed a pronounced sensitivity to pharmacological blockade of central cholinergic neurotransmission which resulted in severe deficits in spatial navigation in the water maze. Since the same behavioral deficit was produced by cholinergic blockade in young rats with septal lesions, we concluded that the impaired water maze performance seen in the aged rats during cholinergic blockade resulted from impaired function in the septohippocampal system.
Collapse
Affiliation(s)
- O G Nilsson
- Department of Medical Cell Research, University of Lund, Sweden
| | | |
Collapse
|
50
|
Abstract
Age-dependent changes in central nervous system (CNS) cholinergic synaptic transmission were studied in three age groups of Sprague-Dawley and Fischer 344 rats: 1- to 2-month-old, 8- to 10-month-old, and 18- to 23-month-old. Utilizing intracellular recording techniques and the in vitro hippocampal slice preparation, we report an age-related decline in central cholinergic transmission as a function of age. Slow excitatory postsynaptic potentials (slow EPSPs) were reduced approximately 60% in aged (18- to 23-month-old) compared to younger (1- to 2-month-old) animals. The response of the postsynaptic membrane to the muscarinic agonist, carbachol (0.3 microM), was also reduced with age. These changes were not accompanied by a global decline in muscarinic receptor function since two additional measures of cholinergic function were not changed with age. Both presynaptic inhibition of fast excitatory synaptic transmission and postsynaptic inhibition of the afterhyperpolarization (AHP) following a train of spikes were not changed during aging. Our results suggest that a primary functional decline in central cholinergic mechanisms during aging may be a specific reduction in central cholinergic synaptic transmission.
Collapse
Affiliation(s)
- L Taylor
- Department of Medical Pharmacology & Toxicology, College of Medicine, Texas A & M University, College Station 77843
| | | |
Collapse
|