1
|
García-López C, Gómez-Huertas C, Sánchez-González JM, Borroni D, Rodríguez-Calvo-de-Mora M, Romano V, Rachwani-Anil R, Ramos-López JF, Ortiz-Pérez S, Rocha-de-Lossada C. Opioids and Ocular Surface Pathology; A Literature Review of New Treatments Horizons. J Clin Med 2022; 11:jcm11051424. [PMID: 35268515 PMCID: PMC8911328 DOI: 10.3390/jcm11051424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/02/2022] [Accepted: 03/03/2022] [Indexed: 12/01/2022] Open
Abstract
This review discusses the role of opioids in the corneal surface and the different pathways and therapeutic methods of management. A literature review was performed using PubMed database. For the database search, the main searching words “opioid” and “topical opioid treatment” were used with the descriptors “cornea”, “ocular surface”, “neuropathic corneal pain”, “corneal sensitivity” and “naltrexone”; original scientific articles and reviews were included to achieve the purpose of the review. The endogenous opioid system has relevant functions in the organism, and in daily use, opioids are used as painkillers. However, these drugs may be employed for other indications as opioid pathways have a wide spectrum. The corneal surface for topical treatment is easily accessible, hence sparing the side effects of systemic opioids. Instillation of opioid antagonist substances, such as naltrexone, increases corneal healing rates and stimulates the division of corneal epithelium cells without deleterious effects. The natural modulation of endogenous opioids controls different forms of pain, including inflammatory and neuropathic pain, both in the ocular surface and in the central nervous system. There are diverse methods in controlling pain using opioids, especially in refractory forms. This review attempts to collect the literature about corneal surface and opioid pathways to provide an overview image and a possible direction of the news treatments.
Collapse
Affiliation(s)
- Celia García-López
- Department of Ophthalmology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (C.G.-L.); (C.G.-H.); (J.-F.R.-L.); (S.O.-P.); (C.R.-d.-L.)
| | - Carmen Gómez-Huertas
- Department of Ophthalmology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (C.G.-L.); (C.G.-H.); (J.-F.R.-L.); (S.O.-P.); (C.R.-d.-L.)
| | - José-María Sánchez-González
- Department of Physics of Condensed Matter, Optics Area, University of Seville, 41004 Seville, Spain
- Correspondence: ; Tel.: +34-955-42-08-61
| | - Davide Borroni
- Department of Doctoral Studies, Riga Stradins University, LV-1007 Riga, Latvia;
- Cornea Research Unit, ADVALIA Vision, 20145 Milan, Italy
| | - Marina Rodríguez-Calvo-de-Mora
- Department of Ophthalmology, Hospital Regional Universitario de Málaga, 29010 Málaga, Spain;
- Department of Ophthalmology (Qvision), Vithas Almería, 04120 Almería, Spain
| | - Vito Romano
- Department of Eye and Vision Science Ophthalmology, St Paul’s Eye Hospital, Liverpool L7 8XP, UK;
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L69 3BX, UK
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, Ophthalmology Clinic, University of Brescia, 25121 Brescia, Italy
| | | | - Juan-Francisco Ramos-López
- Department of Ophthalmology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (C.G.-L.); (C.G.-H.); (J.-F.R.-L.); (S.O.-P.); (C.R.-d.-L.)
| | - Santiago Ortiz-Pérez
- Department of Ophthalmology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (C.G.-L.); (C.G.-H.); (J.-F.R.-L.); (S.O.-P.); (C.R.-d.-L.)
- Department of Surgery, Faculty of Medicine, University of Granada, 18010 Granada, Spain
| | - Carlos Rocha-de-Lossada
- Department of Ophthalmology, Hospital Universitario Virgen de las Nieves, 18014 Granada, Spain; (C.G.-L.); (C.G.-H.); (J.-F.R.-L.); (S.O.-P.); (C.R.-d.-L.)
- Department of Ophthalmology (Qvision), Vithas Almería, 04120 Almería, Spain
- Department of Ophthalmology, Ceuta Medical Center, 51001 Ceuta, Spain
| |
Collapse
|
2
|
Weir K, Kim DW, Blackshaw S. A potential role for somatostatin signaling in regulating retinal neurogenesis. Sci Rep 2021; 11:10962. [PMID: 34040115 PMCID: PMC8155210 DOI: 10.1038/s41598-021-90554-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023] Open
Abstract
Neuropeptides have been reported to regulate progenitor proliferation and neurogenesis in the central nervous system. However, these studies have typically been conducted using pharmacological agents in ex vivo preparations, and in vivo evidence for their developmental function is generally lacking. Recent scRNA-Seq studies have identified multiple neuropeptides and their receptors as being selectively expressed in neurogenic progenitors of the embryonic mouse and human retina. This includes Sstr2, whose ligand somatostatin is transiently expressed by immature retinal ganglion cells. By analyzing retinal explants treated with selective ligands that target these receptors, we found that Sstr2-dependent somatostatin signaling induces a modest, dose-dependent inhibition of photoreceptor generation, while correspondingly increasing the relative fraction of primary progenitor cells. These effects were confirmed by scRNA-Seq analysis of retinal explants but abolished in Sstr2-deficient retinas. Although no changes in the relative fraction of primary progenitors or photoreceptor precursors were observed in Sstr2-deficient retinas in vivo, scRNA-Seq analysis demonstrated accelerated differentiation of neurogenic progenitors. We conclude that, while Sstr2 signaling may act to negatively regulate retinal neurogenesis in combination with other retinal ganglion cell-derived secreted factors such as Shh, it is dispensable for normal retinal development.
Collapse
Affiliation(s)
- Kurt Weir
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Dong Won Kim
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Seth Blackshaw
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. .,Kavli Neuroscience Discovery Institute, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
3
|
Liu Z, Zhou Z, Wang L, Zhang Y, Zong Y, Zheng Y, Li M, Wang W, Song L. A Signaling Pathway to Mediate the Combined Immunomodulation of Acetylcholine and Enkephalin in Oyster Crassostrea gigas. Front Immunol 2020; 11:616. [PMID: 32362893 PMCID: PMC7180215 DOI: 10.3389/fimmu.2020.00616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 03/18/2020] [Indexed: 11/17/2022] Open
Abstract
Molluscs have evolved a primitive but complete neuroendocrine-immune (NEI) system with a vast array of neurotransmitters to conduct both humoral and cellular immunomodulation. Previous studies have illustrated the immune functions of several key neurotransmitters. However, the combined effects of multiple neurotransmitters and the signaling pathway to mediate such immunomodulation have not been well-understood. In the present study, iTRAQ and LC-ESI-MS/MS approaches were employed to investigate the combined immunomodulation functions of two crucial neurotransmitters, acetylcholine (ACh), and [Met5]-enkephalin (ENK), in oyster Crassostrea gigas. A total number of 5,379 proteins were identified from hemocytes of oysters after the treatments with Ach and ENK separately or simultaneously, and 1,475 of them were found to be significantly up-regulated, while 1,115 of them were significantly down-regulated. The protein expression patterns in the groups treated by ACh and ENK separately were quite similar, which were dramatically different from that in the group treated by ACh+ENK. One hundred seventy-two proteins were found to be differentially expressed in all the three neurotransmitter treatment groups. Functional validation suggested that ACh and ENK possibly modulate the immune response in oyster hemocytes by enhancing pathogen recognition, cell apoptosis, and the enzyme activities of superoxide dismutase (SOD). Moreover, GO enrichment and co-expression network analyses implied that the combined immunomodulation of ACh and ENK might be mediated by p53, EGF-R–ErbB, and Fc gamma R (FcγR) signaling pathways. These results collectively indicated that multiple neurotransmitters executed a combined and ordered immune regulation through common signaling cascades in molluscs, which was under delicate control to maintain the homeostasis.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Zhi Zhou
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou, China
| | - Lingling Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Yukun Zhang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Yanan Zong
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Yan Zheng
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Meijia Li
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Weilin Wang
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| | - Linsheng Song
- Liaoning Key Laboratory of Marine Animal Immunology, Dalian Ocean University, Dalian, China.,Functional Laboratory of Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,Liaoning Key Laboratory of Marine Animal Immunology and Disease Control, Dalian Ocean University, Dalian, China.,Dalian Key Laboratory of Aquatic Animal Disease Prevention and Control Dalian Ocean University, Dalian, China
| |
Collapse
|
4
|
Someya E, Mori A, Sakamoto K, Ishii K, Nakahara T. Stimulation of μ-opioid receptors dilates retinal arterioles by neuronal nitric oxide synthase-derived nitric oxide in rats. Eur J Pharmacol 2017; 803:124-129. [DOI: 10.1016/j.ejphar.2017.03.043] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 03/09/2017] [Accepted: 03/20/2017] [Indexed: 01/31/2023]
|
5
|
Song L, Wang L, Zhang H, Wang M. The immune system and its modulation mechanism in scallop. FISH & SHELLFISH IMMUNOLOGY 2015; 46:65-78. [PMID: 25797696 DOI: 10.1016/j.fsi.2015.03.013] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Accepted: 03/07/2015] [Indexed: 06/04/2023]
Abstract
Scallops are a cosmopolitan family of bivalves, and some of them are highly prized as dominant aquaculture species. In the past decades, there have been increasing studies on the basic biology and immunology of scallops, and this review summarizes the research progresses of immune system and its modulation mechanism in scallop. As invertebrate, scallops lack adaptive immunity and they have evolved an array of sophisticated strategies to recognize and eliminate various invaders by employing a set of molecules and cells. It is evident that basic immune reactions such as immune recognition, signal transduction, and effector synthesis involved in immune response are accomplished in a variety of ways. They rely upon an extensive repertoire of phagocytosis, apoptosis and encapsulation of the circulating hemocytes for eliminating invasive pathogens, as well as the production of immune effectors that are active against a large range of pathogens or sensitive for the environmental stress. Furthermore, the molecular constitutions, metabolic pathways and immunomodulation mechanisms of the primitive catecholaminergic, cholinergic, enkephalinergic system and NO system in scallop are also discussed, which can be taken as an entrance to better understand the origin and evolution of the neuroendocrine-immune regulatory network in lower invertebrates.
Collapse
Affiliation(s)
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Huan Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
6
|
Algazo MA, Amiri-ghashlaghi S, Delfan B, Hassanzadeh G, Sabbagh-ziarani F, Jazaeri F, Dehpour AR. Cirrhosis-induced morphological changes in the retina: possible role of endogenous opioid. Int J Ophthalmol 2015; 8:681-684. [PMID: 26309861 PMCID: PMC4539641 DOI: 10.3980/j.issn.2222-3959.2015.04.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Accepted: 01/22/2015] [Indexed: 12/22/2022] Open
Abstract
AIM To investigate the impact of cirrhosis on retinal morphology and to evaluate the role of endogenous opioids as a mediator in cirrhosis induced retinal change. METHODS Thirty-six male rats were divided into 3 main groups; the common bile duct ligated (BDL) group, the sham-operated (Sham) group and the unoperated (Unop) group. Then each of these three main groups was divided into two subgroups; the first subgroup received daily injection of naltrexone hydrochloride (NTX) and the second group was injected with normal saline (Saline) daily. After 28d, rats were anesthetized and their right eyes were enucleated and assessed for histological changes. The thickness of the rod and cons layer, outer nuclear layer, outer plexiform layer, inner nuclear layer, inner plexiform layer and ganglion cell layer for each eye were measured in micrometers by light microscope. RESULTS Ganglion cell layer showed significant increase in thickness in the BDL group (P<0.05). This increase was eliminated in the group where BDL rats received daily intraperitoneal injection of naltrexone hydrochloride (20 mg/kg). No other histological changes were detected in the other 5 layers we measured. CONCLUSION The morphological change we detected in the retina of cirrhotic rats is probably due to opioids increased tone in cirrhosis since the increase in thickness in the ganglion cell layer was almost eliminated when naltrexone hydrochloride was injected. These results suggest a possible role for endogenous opioids in the morphological retinal changes detected in cirrhotic rats.
Collapse
Affiliation(s)
- Mohammad Abdullah Algazo
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Saeed Amiri-ghashlaghi
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran
| | - Bahram Delfan
- Department of Pharmacology, School of Medicine, Lorestan University of Medical Sciences, Khorram Abad 6813833946, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 644714155, Iran
| | - Fatemeh Sabbagh-ziarani
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran 644714155, Iran
| | - Farahnaz Jazaeri
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145784, Iran
| | - Ahmad Reza Dehpour
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran 1417613151, Iran
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran 13145784, Iran
| |
Collapse
|
7
|
Liu Z, Zhou Z, Wang L, Song X, Chen H, Wang W, Liu R, Wang M, Wang H, Song L. The enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2015; 45:250-259. [PMID: 25907641 DOI: 10.1016/j.fsi.2015.03.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/25/2015] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
Enkephalinergic neuroendocrine-immune regulatory system is one of the most important neuroendocrine-immune systems in both vertebrates and invertebrates for its significant role in the immune regulation. In the present study, the early onset of enkephalinergic nervous system and its immunomodulation on the developing immune system during the ontogenesis of oyster Crassostrea gigas were investigated to illustrate the function of neural regulation on the innate immune system in oyster larvae. [Met(5)]-enkephalin (Met-ENK) was firstly observed on the marginal of the dorsal half of D-hinged larvae. Six immune-related molecules, including four PRRs (CgCTL-1, CgCTL-2, CgCTL-4, CgNatterin-3) and two immune effectors (CgTNF-1 and CgEcSOD) were detected in the early developmental stages of trochophore, D-hinged and umbo larvae of oyster. After incubated with [Met(5)]-enkephalin, the mRNA expression level of all the PRRs changed significantly (p < 0.05). In trochophore larvae, the expression level of CgNatterin-3 decreased dramatically (p < 0.05) at 6 h, and the expression level of CgCTL-4 was significantly down-regulated at 3 h and 6 h (p < 0.05), respectively. In D-hinged and umbo larvae, only CgCTL-1 was significantly down-regulated and the differences were significant at 3 h and 6 h (p < 0.05), while the expression level of CgCTL-2 and CgCTL-4 increased significantly at 3 h after treatment (p < 0.05). Moreover, the expression levels of immune effectors were up-regulated significantly at 3 h and 6 h in trochophore larvae (p < 0.05). The expression level of CgTNF-1 in both blank and experiment groups was up-regulated but there was no significant difference in D-hinged larvae stage. On the contrary, the expression level of CgEcSOD in D-hinged larvae decreased dramatically at 3 h and 6 h after [Met(5)]-enkephalin incubation (p < 0.05). In umbo larvae, the expression level of CgTNF-1 and CgEcSOD in the experiment group increased significantly at 6 h after [Met(5)]-enkephalin treatment (p < 0.05), while no significant difference was found in the blank group. In addition, the anti-bacterial activities of the total protein extract from trochophore, D-hinged and umbo larvae increased significantly (p < 0.05) at both 3 h and 6 h after [Met(5)]-enkephalin incubation compared to that in the blank group, and PO activities of both D-hinged and umbo larvae total protein extract increased significantly (p < 0.05) while no significant difference was observed in trochophore larvae. The PO activities of the total protein extract in all the experiment groups decreased after the treatment with [Met(5)]-enkephalin for 6 h, but no significant difference was observed when compared to the blank group. Furthermore, after incubation for 6 h, the concentration of both CgTNF-1 and CgIL17-5 increased dramatically compared to that in the blank group (p < 0.05). These results together indicated that the enkephalinergic nervous system of oyster was firstly appeared in D-hinged larvae, while the primitive immune defense system existed in the region of prototroch in trochophore larvae and developed maturely after D-hinged larvae. The developing immune system could be regulated by the neurotransmitter [Met(5)]-enkephalin released by the neuroendocrine system in oyster C. gigas.
Collapse
Affiliation(s)
- Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Xiaorui Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hao Chen
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rui Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Mengqiang Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Hao Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
8
|
Liu Z, Zhou Z, Wang L, Jiang S, Wang W, Zhang R, Song L. The immunomodulation mediated by a delta-opioid receptor for [Met(5)]-enkephalin in oyster Crassostrea gigas. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:217-224. [PMID: 25475959 DOI: 10.1016/j.dci.2014.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Revised: 11/25/2014] [Accepted: 11/25/2014] [Indexed: 06/04/2023]
Abstract
Opioid receptors (OR) are a group of G protein-coupled receptors with opioids as ligands, which play an important role in triggering the second messengers to modulate immune response in vertebrate immunocytes. In the present study, the full length cDNA of a homologue of δ-opioid receptor (DOR) for [Met(5)]-enkaphalin was cloned from oyster Crassostrea gigas (designated as CgDOR), which was 1104 bp encoding a peptide of 367 amino acids containing a conserved 7tm_1 domain. After the stimulation of [Met(5)]-enkephalin, the concentration of second messengers Ca(2+) and cAMP in the HEK293T cells decreased significantly (p <0.05) with the expression of CgDOR. However, this trend was reverted with the addition of DOR antagonist BNTX. The CgDOR transcripts were ubiquitously detected in the tested tissues including haemocytes, gonad, mantle, kidney, gill, adductor muscle and hepatopancreas, with the highest expression level in the hepatopancreas. After LPS stimulation, the expression level of CgDOR mRNA began to increase (4.05-fold, p <0.05) at 6 h, and reached the highest level (5.00-fold, p <0.05) at 12 h. Haemocyte phagocytic and antibacterial activities increased significantly after [Met(5)]-enkephalin stimulation, whereas the increase was repressed with the addition of DOR antagonist BNTX. These results collectively suggested that CgDOR for [Met(5)]-enkephalin could modulate the haemocyte phagocytic and antibacterial functions through the second messengers Ca(2+) and cAMP, which might be requisite for pathogen elimination and homeostasis maintenance in oyster.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Benzylidene Compounds/pharmacology
- Calcium/metabolism
- Cell Line
- Cloning, Molecular
- Crassostrea/immunology
- Cyclic AMP/metabolism
- DNA, Complementary/genetics
- Enkephalin, Methionine/immunology
- HEK293 Cells
- Hepatopancreas/metabolism
- Humans
- Lipopolysaccharides
- Molecular Sequence Data
- Naltrexone/analogs & derivatives
- Naltrexone/pharmacology
- Phagocytosis/immunology
- RNA, Messenger/biosynthesis
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/immunology
- Sequence Alignment
- Signal Transduction/immunology
- Vibrio/immunology
Collapse
Affiliation(s)
- Zhaoqun Liu
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingling Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| | - Shuai Jiang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Weilin Wang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Zhang
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; School of Marine Sciences, Ningbo University, Ningbo 315211, China
| | - Linsheng Song
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
| |
Collapse
|
9
|
Mizerska-Dudka M, Kandefer-Szerszeń M. Opioids, Neutral Endopeptidase, its Inhibitors and Cancer: Is There a Relationship among them? Arch Immunol Ther Exp (Warsz) 2014; 63:197-205. [PMID: 25193979 PMCID: PMC4429139 DOI: 10.1007/s00005-014-0311-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/18/2014] [Indexed: 11/24/2022]
Abstract
The role of endogenous animal opioids in the biology of cancer is widely recognized but poorly understood. This is, among others, because of the short half-life of these peptides, which are quickly inactivated by endopeptidases, e.g., neutral endopeptidase (NEP, CD10). It has been established that NEP is engaged in the modulation of the tumor microenvironment, among others that of colon cancer, by exerting influence on cell growth factors, the extracellular matrix and other biologically active substances. Although there are some discrepancies among the findings on the role of both opioids and NEP in cancer development, authors agree that their role seems to depend on the origin, stage and grade of tumor, and even on the method of examination. Moreover, recently, natural inhibitors of NEP, such as sialorphin, opiorphin and spinorphin have been detected. Their analgesic activity has been established. It is interesting to ask whether there is a relationship among opioid peptides, tumor-associated NEP and its inhibitors.
Collapse
Affiliation(s)
- Magdalena Mizerska-Dudka
- Division of Biology and Biotechnology, Department of Virology and Immunology, Institute of Microbiology and Biotechnology, Maria Curie-Sklodowska University, Lublin, Poland,
| | | |
Collapse
|
10
|
Guo Y, Wang L, Zhou Z, Wang M, Liu R, Wang L, Jiang Q, Song L. An opioid growth factor receptor (OGFR) for [Met5]-enkephalin in Chlamys farreri. FISH & SHELLFISH IMMUNOLOGY 2013; 34:1228-1235. [PMID: 23462147 DOI: 10.1016/j.fsi.2013.02.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Revised: 02/04/2013] [Accepted: 02/04/2013] [Indexed: 06/01/2023]
Abstract
Opioid growth factor receptor (OGFR) is a receptor for [Met(5)]-enkephalin and plays important roles in the regulation of cell growth and embryonic development. In the present study, a cDNA of 2381 bp for the scallop Chlamys farreri OGFR (designated as CfOGFR) was identified by rapid amplification of cDNA ends (RACE) approach and expression sequence tag (EST) analysis. The complete cDNA sequence of CfOGFR contained an open reading frame (ORF) of 1200 bp, which encoded a protein of 399 amino acids. The amino acid sequence of CfOGFR shared 33-64% similarity with other OGFRs. There was a low complexity domain and a conserved OGFR_N domain at the N-terminal of CfOGFR. The mRNA transcripts of CfOGFR were constitutively expressed in the tested tissues with the highest expression level in hepatopancreas. During the early embryonic development, the mRNA transcripts of CfOGFR could be detected in different development stages, where the expression level presented a downward trend as a whole. The stimulations of LPS, Glu and poly (I:C) significantly induced the expression of CfOGFR mRNA in hemocytes (P < 0.05), while PGN stimulation exerted no influence. Co-IP and western blot results revealed that the CfOGFR in hemocytes displayed high affinity and specificity to [Met(5)]-enkephalin. Exogenous [Met(5)]-enkephalin was observed to inhibit the proliferation of HEK293T cells transfected with pcDNA3.1(+)-CfOGFR in a time and dosage dependent manner. These results collectively indicated that CfOGFR, as a homolog of OGFRs in C. farreri, played an important role in cells proliferation, and might be involved in the immune response of scallops.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Blotting, Western
- Cell Proliferation
- Cloning, Molecular
- DNA, Complementary/genetics
- DNA, Complementary/metabolism
- Electrophoresis, Polyacrylamide Gel
- Hemocytes/immunology
- Hemocytes/metabolism
- Immunity, Innate
- Molecular Sequence Data
- Organ Specificity
- Pectinidae/chemistry
- Pectinidae/genetics
- Pectinidae/immunology
- Pectinidae/metabolism
- Phylogeny
- Poly I-C/administration & dosage
- Polymerase Chain Reaction
- Polysaccharides, Bacterial/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Receptors, Opioid/chemistry
- Receptors, Opioid/genetics
- Receptors, Opioid/immunology
- Receptors, Opioid/metabolism
- Sequence Alignment
- beta-Glucans/administration & dosage
Collapse
Affiliation(s)
- Ying Guo
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Rd., Qingdao 266071, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Abdul Y, Akhter N, Husain S. Delta-opioid agonist SNC-121 protects retinal ganglion cell function in a chronic ocular hypertensive rat model. Invest Ophthalmol Vis Sci 2013; 54:1816-28. [PMID: 23404122 DOI: 10.1167/iovs.12-10741] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
PURPOSE This study examined if the delta-opioid (δ-opioid) receptor agonist, SNC-121, can improve retinal function and retinal ganglion cell (RGC) survival during glaucomatous injury in a chronic ocular hypertensive rat model. METHODS IOP was raised in brown Norway rats by injecting hypertonic saline into the limbal venous system. Rats were treated with 1 mg/kg SNC-121 (intraperitoneally [IP]) once daily for 7 days. Pattern-electroretinograms (PERGs) were obtained in response to contrast reversal of patterned visual stimuli. RGCs were visualized by fluorogold retrograde labeling. Expression of TNF-α and p38 mitogen-activated protein (MAP) kinase was measured by immunohistochemistry and Western blotting. RESULTS PERG amplitudes in ocular hypertensive eyes were significantly reduced (14.3 ± 0.60 μvolts) when compared with healthy eyes (18.0 ± 0.62 μvolts). PERG loss in hypertensive eyes was inhibited by SNC-121 treatment (17.20 ± 0.1.3 μvolts; P < 0.05). There was a 29% loss of RGCs in the ocular hypertensive eye, which was inhibited in the presence of SNC-121. TNF-α production and activation of p38 MAP kinase in retinal sections and optic nerve samples were upregulated in ocular hypertensive eyes and inhibited in the presence of SNC-121. Furthermore, TNF-α induced increase in p38 MAP kinase activation in astrocytes was inhibited in the presence of SNC-121. CONCLUSIONS These data provide evidence that activation of δ-opioid receptors inhibited the loss of PERG amplitudes and rate of RGC loss during glaucomatous injury. Mechanistic data provided clues that TNF-α is mainly produced from glial cells and activates p38 MAP kinase, which was significantly inhibited by SNC-121 treatment. Overall, data indicate that enhancement of δ-opioidergic activity in the eye may provide retina neuroprotection against glaucoma.
Collapse
Affiliation(s)
- Yasir Abdul
- Hewitt Laboratory of the Ola B. Williams Glaucoma Center, Department of Ophthalmology, Storm Eye Institute, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
12
|
Sanchez-Simon F, Ledo A, Arevalo R, Rodriguez R. New insights into opioid regulatory pathways: influence of opioids on Wnt1 expression in zebrafish embryos. Neuroscience 2012; 200:237-47. [DOI: 10.1016/j.neuroscience.2011.10.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 10/14/2011] [Accepted: 10/15/2011] [Indexed: 01/24/2023]
|
13
|
McLaughlin PJ, Sassani JW, Klocek MS, Zagon IS. Diabetic keratopathy and treatment by modulation of the opioid growth factor (OGF)-OGF receptor (OGFr) axis with naltrexone: a review. Brain Res Bull 2010; 81:236-47. [PMID: 19683562 PMCID: PMC2852609 DOI: 10.1016/j.brainresbull.2009.08.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2009] [Revised: 08/06/2009] [Accepted: 08/06/2009] [Indexed: 01/27/2023]
Abstract
The opioid growth factor (OGF)-OGF receptors (OGFr) axis plays an important role in the homeostasis and re-epithelialization of the mammalian cornea. This tonically active growth regulatory inhibitory pathway is involved in cell replication, and the endogenous neuropeptide OGF targets cyclin-dependent kinase inhibitors, p16 and/or p21. Blockade of OGF-OGFr interfacing by systemic or topical administration of opioid antagonists such as naltrexone (NTX) results in accelerated DNA synthesis, cell replication, and tissue repair. Molecular manipulation of OGFr using sense constructs delayed corneal re-epithelialization, whereas antisense constructs accelerated repair of the corneal surface. Corneal keratopathy, a significant complication of diabetes mellitus, is manifested by delays in corneal re-epithelialization following surgery, injury, or disease. Tissue culture studies have shown that addition of NTX stimulates DNA synthesis and explant outgrowth of rabbit corneal epithelium, whereas OGF depresses DNA synthesis and explant outgrowth in a receptor-mediated manner. NTX accelerated corneal re-epithelialization in organ cultures of human and rabbit cornea. Systemic application of NTX to the abraded corneas of rats, and topical administration of NTX to the injured rabbit ocular surface, increased re-epithelialization. Systemic injections or topical administration of NTX facilitates re-epithelialization of the cornea in diabetic rats. Given the vital role of the corneal epithelium in maintaining vision, the frequency of corneal complications related to diabetes (diabetic keratopathy), and the problems occurring in diabetic individuals postoperatively (e.g., vitrectomy), and that conventional therapies such as artificial tears and bandage contact lenses often fail, topical application of NTX merits clinical consideration.
Collapse
Affiliation(s)
- Patricia J. McLaughlin
- Department of Neural & Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Joseph W. Sassani
- Department of Ophthalmology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Matthew S. Klocek
- Department of Neural & Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Ian S. Zagon
- Department of Neural & Behavioral Sciences, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
14
|
Macho Sanchez-Simon F, Rodriguez RE. Expression of the nociceptin receptor during zebrafish development: influence of morphine and nociceptin. Int J Dev Neurosci 2009; 27:315-20. [PMID: 19460625 DOI: 10.1016/j.ijdevneu.2009.03.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2008] [Revised: 01/30/2009] [Accepted: 03/26/2009] [Indexed: 11/17/2022] Open
Abstract
The NOP system is considered to be part of the opioid system, although it exerts antiopioid actions depending on the anatomical region where it is localized. This apparent controversy has lead to the hypothesis that the NOP system interacts with the classical opioid systems (mu, delta, kappa) and regulates/modulates their activity in relation to analgesia and the development of addiction to drugs. In order to shed light into the importance of the NOP system, we have analyzed the expression of NOP during zebrafish development, and the effect of its endogenous agonist nociceptin and the opioid agonist morphine on NOP expression. Our qPCR study show that the number of NOP transcripts is different at each developmental stage studied (0.5 hpf, 2.75 hpf, 3 hpf, 8 hpf, 16 hpf, 19 hpf, 22 hpf, 24 hpf, 30 hpf, 48 hpf, 60 hpf and 72 hpf). Nociceptin enhances NOP expression at 24 hpf but decreases the number of NOP copies at 48 hpf, whereas NOP expression decreases after morphine exposure at 24 hpf and 48 hpf. Also, our ISH analysis demonstrates that nociceptin causes a change in the distribution of NOP towards rostral areas at both developmental stages. Morphine produces similar changes to those of nociceptin although only at 48 hpf. The present work leads to the conclusion that the NOP system is important during embryogenesis. Exposure to drugs changes the expression level and localization of NOP, suggesting that also during development, NOP plays a role in the apparition of dependence and addiction to drugs.
Collapse
Affiliation(s)
- F Macho Sanchez-Simon
- University of Salamanca, Institute of Neuroscience of Castilla y León, Dept. Biochemistry and Molecular Biology, Laboratory of Neuroreceptors, Pain and Drug Addiction, Spain
| | | |
Collapse
|
15
|
Cheng F, McLaughlin PJ, Verderame MF, Zagon IS. The OGF-OGFr axis utilizes the p16INK4a and p21WAF1/CIP1 pathways to restrict normal cell proliferation. Mol Biol Cell 2008; 20:319-27. [PMID: 18923142 DOI: 10.1091/mbc.e08-07-0681] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Opioid growth factor (OGF) is an endogenous opioid peptide ([Met(5)]enkephalin) that interacts with the OGF receptor (OGFr) and serves as a tonically active negative growth factor in cell proliferation of normal cells. To clarify the mechanism by which OGF inhibits cell replication in normal cells, we investigated the effect of the OGF-OGFr axis on cell cycle activity in human umbilical vein endothelial cells (HUVECs) and human epidermal keratinocytes (NHEKs). OGF markedly depressed cell proliferation of both cell lines by up to 40% of sterile water controls. Peptide treatment induced cyclin-dependent kinase inhibitor (CKI) p16(INK4a) protein expression and p21(WAF1/CIP1) protein expression in HUVECs and NHEKs, but had no effect on p15, p18, p19, or p27 protein expression in either cell type. Inhibition of either p16(INK4a) or p21(WAF1/CIP1) activation by specific siRNAs blocked OGF inhibitory action. Human dermal fibroblasts and mesenchymal stem cells also showed a similar dependence of OGF action on p16(INK4a) and p21(WAF1/CIP1). Collectively, these results indicate that both p16(INK4a) and p21(WAF1/CIP1) are required for the OGF-OGFr axis to inhibit cell proliferation in normal cells.
Collapse
Affiliation(s)
- Fan Cheng
- Department of Neural and Behavioral Sciences, and Department of Medicine, The Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
16
|
Husain S, Potter DE. The opioidergic system: potential roles and therapeutic indications in the eye. J Ocul Pharmacol Ther 2008; 24:117-40. [PMID: 18355128 DOI: 10.1089/jop.2007.0112] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shahid Husain
- Department of Ophthalmology, Storm Eye Institute, Hewitt Laboratory of the Ola B Williams Glaucoma Center, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | |
Collapse
|
17
|
Carneiro ACD, Fragel-Madeira L, Silva-Neto MA, Linden R. A role for CK2 upon interkinetic nuclear migration in the cell cycle of retinal progenitor cells. Dev Neurobiol 2008; 68:620-31. [PMID: 18278803 DOI: 10.1002/dneu.20613] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
In developing retina, the nucleus of the elongated neuroepithelial cells undergoes interkinetic nuclear migration (INM), that is it migrates back and forth across the proliferative layer during the cell cycle. S-phase occurs at the basal side, while M-phase occurs at the apical margin of the retinal progenitors. G1 and G2-phases occur along the nuclear migration pathway. We tested whether this feature of the retinal cell cycle is controlled by CK2, which, among its many substrates, phosphorylates both molecular motors and cytoskeletal components. Double immunolabeling showed that CK2 is contained in BrdU-labeled retinal progenitors. INM was examined after pulse labeling the retina of newborn rats with BrdU, by plotting nuclear movement from basal to apical sides of the retinal progenitors during G2. The CK2 specific inhibitor 4,5,6,7-tetrabromobenzotriazole inhibited the activity of rat retinal CK2, and blocked nuclear movement proper in a dose-dependent way. No apoptosis was detected, and total numbers of BrdU-labeled nuclei remained constant following treatment. Immunohistochemistry showed that, following inhibition of CK2, the tubulin cytoskeleton is disorganized, with reduced acetylated and increased tyrosinated tubulin. This indicates a reduction in stable microtubules, with accumulation of free tubulin dimers. The results show that CK2 activity is required for INM in retinal progenitor cells.
Collapse
|
18
|
Farid W, Dunlop S, Tait R, Hulse G. The effects of maternally administered methadone, buprenorphine and naltrexone on offspring: review of human and animal data. Curr Neuropharmacol 2008; 6:125-50. [PMID: 19305793 PMCID: PMC2647150 DOI: 10.2174/157015908784533842] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2007] [Revised: 11/20/2007] [Accepted: 12/11/2007] [Indexed: 11/22/2022] Open
Abstract
Most women using heroin are of reproductive age with major risks for their infants. We review clinical and experimental data on fetal, neonatal and postnatal complications associated with methadone, the current "gold standard", and compare these with more recent, but limited, data on developmental effects of buprenorphine, and naltrexone. Methadone is a micro-opioid receptor agonist and is commonly recommended for treatment of opioid dependence during pregnancy. However, it has undesired outcomes including neonatal abstinence syndrome (NAS). Animal studies also indicate detrimental effects on growth, behaviour, neuroanatomy and biochemistry, and increased perinatal mortality. Buprenorphine is a partial micro-opioid receptor agonist and a kappa-opioid receptor antagonist. Clinical observations suggest that buprenorphine during pregnancy is similar to methadone on developmental measures but is potentially superior in reducing the incidence and prognosis of NAS. However, small animal studies demonstrate that low doses of buprenorphine during pregnancy and lactation lead to changes in offspring behaviour, neuroanatomy and biochemistry. Naltrexone is a non-selective opioid receptor antagonist. Although data are limited, humans treated with oral or sustained-release implantable naltrexone suggest outcomes potentially superior to those with methadone or buprenorphine. However, animal studies using oral or injectable naltrexone have shown developmental changes following exposure during pregnancy and lactation, raising concerns about its use in humans. Animal studies using chronic exposure, equivalent to clinical depot formulations, are required to evaluate safety. While each treatment is likely to have maternal advantages and disadvantages, studies are urgently required to determine which is optimal for offspring in the short and long term.
Collapse
Affiliation(s)
- W.O Farid
- School of Animal Biology, The University of Western Australia, Nedlands, WA 6009, Australia
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, WA 6009, Australia
| | - S.A Dunlop
- School of Animal Biology, The University of Western Australia, Nedlands, WA 6009, Australia
- Western Australian Institute for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - R.J Tait
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, WA 6009, Australia
| | - G.K Hulse
- School of Psychiatry and Clinical Neurosciences, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
19
|
Developmental expression and distribution of opioid receptors in zebrafish. Neuroscience 2007; 151:129-37. [PMID: 18082336 DOI: 10.1016/j.neuroscience.2007.09.086] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2007] [Revised: 09/24/2007] [Accepted: 10/27/2007] [Indexed: 11/22/2022]
Abstract
Zebrafish is a novel experimental model that has been used in developmental studies as well as in the study of pathological processes involved in human diseases. It has been demonstrated that the endogenous opioid system is involved in developmental mechanisms. We have studied the relationship between the different embryonic stages and opioid receptor expression for the four known opioid receptors in zebrafish (mu, delta 1, delta 2 and kappa). The mu opioid receptor is detected at higher levels than the other opioid receptors before the midblastula transition and during the segmentation period. The delta duplicate 2 exhibits only one peak of expression at 21 h postfertilization (hpf), when the motor nervous system is forming. The kappa receptor is expressed at very low levels. In situ hybridization studies at 24 hpf show that the opioid receptors are widely distributed in zebrafish CNS and at 48 hpf their localization is detected in more defined structures. Our results support specific implications of the opioid receptors in developmental processes such as morphogenesis of the CNS, neurogenesis, neuroprotection and development of neuromuscular and digestive system. Pain-related alterations can be a consequence of changes in the endogenous opioid system during development, hence we provide important information that might help to solve pain-related pathological situations.
Collapse
|
20
|
Fonseca ESM, Sakai M, Carvalho-Freitas MIR, Palermo Neto J. Naloxone treatment prevents prenatal stress effects on peritoneal macrophage activity in mice offspring. Neuroendocrinology 2005; 81:322-8. [PMID: 16210866 DOI: 10.1159/000088759] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2005] [Accepted: 08/04/2005] [Indexed: 11/19/2022]
Abstract
The present study analyzed the effects of maternal stress (PS) and/or naloxone treatment on the activity of peritoneal macrophage in male and female Swiss mice offspring. Pregnant female rats received a daily footshock (0.2 mA) and/or a naloxone injection from gestational day 15 to 19. Experiments were performed on postnatal day 30 on male and female pups. The following results were obtained in male offspring: (1) PS decreased both the index and the percentage of phagocytosis, this decrement being reversed by naloxone treatment, and (2) naloxone alone decreased the percentage of phagocytosis. The following results were obtained in female offspring: (1) PS decreased spontaneous and phorbol myristate acetate-induced macrophage oxidative burst, this decrement being reversed by naloxone pretreatment, and (2) PS decreased both the index and percentage of the phagocytosis, this effect was prevented by naloxone treatment. These data are discussed focussing on a putative neuroimmune interaction involving opioidergic systems during the ontogeny of the central nervous and immune systems.
Collapse
Affiliation(s)
- Evelise S M Fonseca
- Pharmacology and Toxicology Laboratory, School of Veterinary Medicine, University of São Paulo, São Paulo, Brazil.
| | | | | | | |
Collapse
|
21
|
Linden R, Martins RAP, Silveira MS. Control of programmed cell death by neurotransmitters and neuropeptides in the developing mammalian retina. Prog Retin Eye Res 2004; 24:457-91. [PMID: 15845345 DOI: 10.1016/j.preteyeres.2004.10.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
It has long been known that a barrage of signals from neighboring and connecting cells, as well as components of the extracellular matrix, control cell survival. Given the extensive repertoire of retinal neurotransmitters, neuromodulators and neurotrophic factors, and the exhuberant interconnectivity of retinal interneurons, it is likely that various classes of released neuroactive substances may be involved in the control of sensitivity to retinal cell death. The aim of this article is to review evidence that neurotransmitters and neuropeptides control the sensitivity to programmed cell death in the developing retina. Whereas the best understood mechanism of execution of cell death is that of caspase-mediated apoptosis, current evidence shows that not only there are many parallel pathways to apoptotic cell death, but non-apoptotic programs of execution of cell death are also available, and may be triggered either in isolation or combined with apoptosis. The experimental data show that many upstream signaling pathways can modulate cell death, including those dependent on the second messengers cAMP-PKA, calcium and nitric oxide. Evidence for anterograde neurotrophic control is provided by a variety of models of the central nervous system, and the data reviewed here indicate that an early function of certain neurotransmitters, such as glutamate and dopamine, as well as neuropeptides such as pituitary adenylyl cyclase-activating polypeptide and vasoactive intestinal peptide is the trophic support of cell populations in the developing retina. This may have implications both regarding the mechanisms of retinal organogenesis, as well as pathological conditions leading to retinal dystrophies and to dysfunctional cellular behavior.
Collapse
Affiliation(s)
- Rafael Linden
- Centro de Ciencias da Saude, Instituto de Biofísica da UFRJ, Cidade Universitária, bloco G, Rio de Janeiro 21949-900, Brazil.
| | | | | |
Collapse
|
22
|
Bozanić D, Saraga-Babić M. Cell proliferation during the early stages of human eye development. ACTA ACUST UNITED AC 2004; 208:381-8. [PMID: 15252731 DOI: 10.1007/s00429-004-0410-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/18/2004] [Indexed: 11/26/2022]
Abstract
The distribution as well as the ultrastructural and biochemical characteristics of proliferating cells in the human eye were investigated in five conceptuses of 5-9 postovulatory weeks, using morphological techniques and Ki-67 immunostaining. The Ki-67 nuclear protein was used as a proliferation marker because of its expression in all phases of the cell cycle except the resting phase (G0). The labelling indices of Ki-67-positive cells were analysed by means of the Kruskal-Wallis ANOVA test and the Wilcoxon matched-pairs test. In the 5th week, mitotic cells were the most numerous between the two layers of the optic cup, the optic cup and stalk, and between the lens pit and the surface ectoderm. During the 6th week, cells were observed in the lens epithelium covering the whole cavity of the lens vesicle as well as in the neuroblast zone and the pigmented epithelium of the retina. At later stages (7th-9th weeks), Ki-67-positive cells were restricted to the anterior lens epithelium, the outer neuroblast zone, and the pigmented retina. Throughout all stages examined, mitotic figures were found lying exclusively adjacent to the intraretinal space. Early in the lens pit, they were confined to the free epithelial surface, and later were facing the cavity of the lens vesicle. The proliferative activity was the most intensive in the 6th week, whereas it decreased significantly in the later stages. Additionally, when proliferative activities were compared, the peripheral retina appeared to be less mature than the central before the 9th week. In the earliest analysed stage, cell proliferation might be associated with the sculpturing of the optic cup and stalk, the cornea, and the lens. In the 6th week, the most intensive proliferation seems to be involved not only in the further morphogenesis of the optic cup and the lens vesicle but also in the retinal neurogenesis. At later stages, the decreased proliferation might participate in the neurogenesis of the outer neuroblast zone and the secondary lens fibre formation.
Collapse
Affiliation(s)
- Darka Bozanić
- Department of Anatomy, Histology and Embryology, Medical School, University of Split, PAK, KB Split, Spincićeva 1, Split, Croatia.
| | | |
Collapse
|
23
|
Winzer-Serhan UH, Chen Y, Leslie FM. Expression of opioid peptides and receptors in striatum and substantia nigra during rat brain development. J Chem Neuroanat 2003; 26:17-36. [PMID: 12954528 DOI: 10.1016/s0891-0618(03)00031-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We have used highly sensitive in situ hybridization to determine opioid receptor and peptide expression in embryonic and postnatal rat striatum, to follow the compartmentalization into patch and matrix structures, and have examined their developmental expression in the dopaminergic cell group of the substantia nigra (SN). Furthermore, opioid receptor binding sites were characterized in adjacent sections using highly selective ligands for the opioid receptor subtypes. The major findings of the study are: (1) striatal patches were first delineated by prodynorphin mRNA followed by mu opioid receptor mRNA expression at embryonic days 19 and 21, respectively; (2) in neonates, prodynorphin, mu and kappa opioid receptor mRNAs were transiently co-distributed within patches; (3) prodynorphin mRNA was co-expressed with mu but not kappa, receptor mRNA in neonatal patch neurons; (4) in the SN, kappa receptor and prodynorphin mRNAs were detected as early as embryonic days 15 and 19, respectively; (5) kappa receptor, but not prodynorphin, mRNA was expressed in dopaminergic neurons in the SN. The anatomical results are in agreement with the hypothesis that the endogenous opioid system has a trophic role during the development of striatal patch and matrix compartments and suggest the early regulation of dopamine release by kappa opioid receptors.
Collapse
Affiliation(s)
- Ursula H Winzer-Serhan
- Department of Medical Pharmacology and Toxicology, Texas A&M University System, Health Science Center, College Station, TX 77843-1114, USA.
| | | | | |
Collapse
|
24
|
McLaughlin PJ, Wylie JD, Bloom G, Griffith JW, Zagon IS. Chronic exposure to the opioid growth factor, [Met5]-enkephalin, during pregnancy: maternal and preweaning effects. Pharmacol Biochem Behav 2002; 71:171-81. [PMID: 11812520 DOI: 10.1016/s0091-3057(01)00649-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The opioid peptide, [Met(5)]-enkephalin (termed opioid growth factor, OGF), is an autocrine growth factor that serves as a constitutively active inhibitory agent. OGF crosses the placenta and depresses DNA synthesis in the fetus. The role of OGF in pregnancy and parturition, and the influence exerted on prenatal and neonatal features of the offspring, were studied in rats. Females received daily injections of 10 mg/kg OGF throughout gestation; all offspring were cross-fostered to lactating noninjected dams at birth. No effects on the length of gestation, course of pregnancy, behavior of the pregnant dam, maternal weight gain, or food and water intake throughout gestation were recorded in OGF-treated mothers. Moreover, nociceptive response in these females was not altered by chronic OGF exposure, and no signs of physical dependence or withdrawal could be observed following a challenge by the opioid antagonist naloxone. Litter size and the number of live births per litter of OGF-treated mothers were reduced by 25% from control subjects and a fourfold increase in stillborns was noted for mothers receiving OGF compared to control levels. Histopathologic analysis confirmed the stillborns to have died in utero. OGF-exposed neonates were normal in body weight and crown-to-rump length, but these pups were observed to be lethargic and cyanotic, and had subnormal weights of many organs. Body weights of 10-, 15-, and 21-day-old OGF-exposed rats were reduced 11-27% from control levels. Wet and dry organ weights of the rats maternally subjected to OGF were decreased from control values in six of the eight organs evaluated at 10 days. At weaning, some organs were subnormal in weight. These data lead us to hypothesize that a native opioid peptide-OGF-is integral to certain aspects of maternal, neonatal, and postnatal well-being, and that disruptions in this opioid peptide have serious repercussions on the course of pregnancy and fetal outcome.
Collapse
Affiliation(s)
- Patricia J McLaughlin
- Department of Neuroscience and Anatomy, The Milton S. Hershey Medical Center, The Pennsylvania State University, H-109, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | | | |
Collapse
|
25
|
Zagon IS, Wylie JD, Hurst WJ, McLaughlin PJ. Transplacental transfer of the opioid growth factor, [Met(5)]-enkephalin, in rats. Brain Res Bull 2001; 55:341-6. [PMID: 11489341 DOI: 10.1016/s0361-9230(01)00518-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Placental transfer of the pentapeptide [Met5]-enkephalin, known to function as a growth regulating factor and neuromodulatory agent, was studied in pregnant Sprague-Dawley rats. Using separation by reversed phase high-performance liquid chromatography, and analysis by derivative spectroscopy, [Met5]-enkephalin was detected in 20-day-old fetal tissue including brain, heart, lung, and kidney. Fetal tissues from pregnant rats given an injection of 40 mg/kg [Met5]-enkephalin on gestation day 20 had markedly elevated levels of peptide within 1 h, indicating the transplacental transfer of this opioid. [Met5]-enkephalin levels were increased from control samples at 1, 2, 4, and 14 h post-injection of peptide, but not at 24 h. Evaluation of breakdown products of [Met5]-enkephalin, along with the related peptide [Leu5]-enkephalin, revealed that elution times differed substantially from [Met5]-enkephalin. These data indicate that [Met5]-enkephalin is present in fetal organs, crosses the placenta, does not appear to be restrictive in organ specificity, and is sustained in fetal tissues at detectable levels for at least 14 h. Given that [Met5]-enkephalin tonically inhibits DNA synthesis in the fetus, these results raise the question of whether an elevated level of this peptide (either maternally or from the fetus) may be detrimental to cellular ontogeny in the fetus, and perhaps have long-term implications for postnatal development.
Collapse
Affiliation(s)
- I S Zagon
- Department of Neuroscience and Anatomy, The Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
26
|
Zagon IS, Verderame MF, Zimmer WE, McLaughlin PJ. Molecular characterization and distribution of the opioid growth factor receptor (OGFr) in mouse. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 2000; 84:106-14. [PMID: 11113537 DOI: 10.1016/s0169-328x(00)00232-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The native opioid growth factor (OGF), [Met(5)]-enkephalin, is a tonic inhibitory peptide that modulates cell proliferation and tissue organization during development, cancer, cellular renewal, wound healing, and angiogenesis. OGF action is mediated by a receptor mechanism. The receptor for OGF, OGFr, has been cloned and sequenced in humans and rats. Using primers based on the rat OGFr cDNA, and a mouse embryo expressed sequence tag, the full-length 2.1 kb mouse OGFr cDNA was sequenced. The open reading frame was found to encode a protein of 634 amino acids, and 14 imperfect repeats of 9 amino acids each were a prominent feature. The molecular weight of OGFr was calculated as 70679, and the isoelectric point was 4.5. Northern blot analysis revealed a 2.1 kb OGFr mRNA transcript in adult mouse brain, heart, lung, liver, kidney, and triceps surae muscle. The amino acids for mouse and rat OGFr were 93% similar and 91% identical, but the mouse and human shared only a 70% similarity and a 58% identity. These results emphasize the molecular validity of OGFr, and explain the interaction of OGF with respect to normal and abnormal growth in mouse cells and tissues.
Collapse
Affiliation(s)
- I S Zagon
- Department of Neuroscience and Anatomy, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| | | | | | | |
Collapse
|
27
|
Zagon IS, Verderame MF, Allen SS, McLaughlin PJ. Cloning, sequencing, chromosomal location, and function of cDNAs encoding an opioid growth factor receptor (OGFr) in humans. Brain Res 2000; 856:75-83. [PMID: 10677613 DOI: 10.1016/s0006-8993(99)02330-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The native opioid growth factor (OGF), [Met(5)]-enkephalin, is a tonic inhibitory peptide that modulates cell proliferation and tissue organization during development, cancer, cellular renewal, wound healing, and angiogenesis. OGF action is mediated by a receptor mechanism. We have cloned and sequenced cDNAs encoding multiple spliced forms of a human OGF receptor. The open reading frame in the longest cDNA was found to encode a protein of 697 amino acids, and 8 imperfect repeats of 20 amino acids each were a prominent feature. Altogether, five alternatively spliced forms were observed. The cDNA hybridized to mRNA from a variety of normal and neoplastic cells and tissues. Functional studies using antisense oligonucleotides to OGFr demonstrated an enhancement in cell growth. Fluorescent in situ hybridization (FISH) experiments showed the chromosomal location to be 20q13.3. This OGF receptor has no homology to classical opioid receptors. These results provide molecular validity for the interaction of OGF and OGF receptor in the regulation of growth processes in humans.
Collapse
MESH Headings
- Adult
- Alternative Splicing
- Amino Acid Sequence
- Animals
- Brain/metabolism
- Chromosome Mapping
- Chromosomes, Human, Pair 20
- Cloning, Molecular
- DNA, Complementary
- Female
- Fetus
- Humans
- Male
- Molecular Sequence Data
- Neuroblastoma
- Oligodeoxyribonucleotides, Antisense/pharmacology
- Open Reading Frames
- Placenta/metabolism
- Pregnancy
- Protein Isoforms/chemistry
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- Rats
- Receptors, Opioid/chemistry
- Receptors, Opioid/genetics
- Receptors, Opioid/metabolism
- Recombinant Proteins/biosynthesis
- Recombinant Proteins/chemistry
- Recombinant Proteins/metabolism
- Repetitive Sequences, Amino Acid
- Sequence Alignment
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- I S Zagon
- Department of Neuroscience, H-109, The Milton S. Hershey Medical Center, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey PA, USA.
| | | | | | | |
Collapse
|
28
|
Zagon IS, Verderame MF, Allen SS, McLaughlin PJ. Cloning, sequencing, expression and function of a cDNA encoding a receptor for the opioid growth factor, [Met(5)]enkephalin. Brain Res 1999; 849:147-54. [PMID: 10592296 DOI: 10.1016/s0006-8993(99)02046-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The native opioid growth factor (OGF), [Met(5)]enkephalin, is a tonic inhibitory peptide that modulates cell proliferation and tissue organization during development, cancer, cellular renewal, wound healing and angiogenesis. OGF action is mediated by a receptor mechanism. We have cloned and sequenced a 2.1-kilobase (kb) cDNA for a receptor to OGF (OGFr). The open reading frame was found to encode a protein of 580 amino acids, and eight imperfect repeats of nine amino acids each were a prominent feature. The protein encoded by this cDNA exhibited the pharmacological, temporal and spatial characteristics of the OGFr. Functional studies using antisense technology demonstrated an enhancement in cell growth. The molecular organization of the OGFr has no homology to classical opioid receptors. These results provide molecular validity for the interaction of OGF and OGFr in the regulation of growth processes.
Collapse
Affiliation(s)
- I S Zagon
- Department of Neuroscience, The Pennsylvania State University, College of Medicine, 500 University Drive, Hershey, PA, USA.
| | | | | | | |
Collapse
|
29
|
Abstract
In addition to neurotransmission, the native opioid peptide, [Met5]enkephalin, is a tonically active inhibitory growth molecule that is termed opioid growth factor (OGF). OGF interacts with the zeta (zeta) opioid receptor to influence cell proliferation and tissue organization. We now identify OGF and the zeta receptor in embryonic derivatives including ectoderm, mesoderm, and endoderm of the rat on gestation day 20. Messenger RNA for preproenkephalin (PPE), the precursor of OGF, was detected in the developing cells, suggesting an autocrine production of this peptide. Acute exposure of the pregnant female to OGF resulted in a decrease in DNA synthesis in cells of organs representing all three germ layers, and did so in a receptor-mediated fashion. The influence of OGF was direct, as evidenced in organ culture studies. Blockade of endogenous opioid interaction using naltrexone (NTX) produced an increase in DNA synthesis, indicating the constitutive and functional nature of opioid activity on growth during prenatal life. Human fetal cells contained OGF and the zeta receptor. These data support the hypothesis that endogenous opioid modulation of organ development is a fundamental principle of mammalian embryogenesis, and that OGF has a profound influence on ontogeny. Irregularities in the role of opioids as growth regulators in relationship to the more than 500,000 newborns suffering from birth defects each year in the US needs to be examined.
Collapse
Affiliation(s)
- I S Zagon
- Department of Neuroscience and Anatomy, Milton S. Hershey Medical Center, Pennsylvania State University College of Medicine, Hershey 17033, USA.
| | | | | |
Collapse
|
30
|
Panagiotou S, Hatzoglou A, Calvo F, Martin PM, Castanas E. Modulation of the estrogen-regulated proteins cathepsin D and pS2 by opioid agonists in hormone-sensitive breast cancer cell lines (MCF7 and T47D): evidence for an interaction between the two systems. J Cell Biochem 1998; 71:416-28. [PMID: 9831078 DOI: 10.1002/(sici)1097-4644(19981201)71:3<416::aid-jcb10>3.0.co;2-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In many cancer cell lines, including breast, prostate, lung, brain, head and neck, retina, and the gastrointestinal tract, opioids decrease cell proliferation in a dose-dependent and reversible manner. Opioid and/or other neuropeptide receptors mediate this decrease. We report that only the steroid-hormone-sensitive cell lines MCF7 and T47D respond to opioid growth inhibition in a dose-dependent manner. Therefore, an interaction of the opioid and steroid receptor system might exist, as is the case with insulin. To investigate this interaction, we have assayed two estrogen-inducible proteins (pS2 and the lysosomal enzyme cathepsin D) in MCF7 and T47D cells. When cells were grown in the presence of FBS (in which case a minimal quantity of estrogens and/or opioids is provided by the serum), we observed either no effect of etorphine or ethylketocyclazocine (EKC) or an increase of secretion and/or production of pS2 and cathepsin D. However, when cells were cultured in charcoal-stripped serum and in the absence of phenol red, the effect of the two opioids is different: EKC decreased the production and/or secretion of pS2 and cathepsin D, whereas etorphine increased their synthesis and/or secretion. The differential effect of the two general opioids was attributed to their different receptor selectivity. Furthermore, the variations of the ratio of secreted/produced protein and the use of cycloheximide indicate that opioids selectively modify the regulatory pathway of each protein discretely. In conclusion, through the interaction with opioid and perhaps other membrane-receptor sites, opioid agonists modify in a dose-dependent manner the production and the secretion of two estrogen-regulated proteins. Opioids may therefore disturb hormonal signals mediated by the estrogen receptors. Hence, these chemicals may have potential endocrine disrupting activities.
Collapse
Affiliation(s)
- S Panagiotou
- Laboratoire de Cancerologie Expérimentale, CJF-INSERM 93-11, Marseille, France
| | | | | | | | | |
Collapse
|
31
|
Georges F, Normand E, Bloch B, Le Moine C. Opioid receptor gene expression in the rat brain during ontogeny, with special reference to the mesostriatal system: an in situ hybridization study. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1998; 109:187-99. [PMID: 9729374 DOI: 10.1016/s0165-3806(98)00082-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The three main types of opioid receptors micro, delta and kappa are found in the central nervous system and periphery. In situ hybridization study was undertaken to determine the expression of mu, delta, kappa-opioid receptors mRNAs in the brain during pre- and postnatal development, especially in the mesostriatal system. By G13, mu and kappa-opioid receptor mRNA were detectable in the telencephalon; mu-opioid receptor mRNA was found in the striatal neuroepithelium and cortical plate and kappa-opioid receptor mRNA in the corroidal fissure. By G15, kappa-opioid receptor mRNA was detectable in the nucleus accumbens and dorsal striatum, and in the substantia nigra and ventral tegmental area, suggesting an early expression of the corresponding receptor on dopaminergic terminal fibers. For the mu-opioid receptor mRNA in the striatum, patches appeared at G20. Delta-opioid receptor mRNA was first detected at G21, in many areas including the accumbens nucleus and the dorsal striatum. At P8, delta-opioid receptor mRNA was detected in large-sized cells of the striatum, possibly cholinergic, suggesting a possible modulation by opioids of the striatal cholinergic neurons. Our results demonstrate the early appearance of mu and kappa-opioid receptor mRNA (G13) and the relatively late development of delta-opioid receptor mRNA (G21) in the brain. We also show a distinct pattern of expression for mu, delta and kappa-opioid receptor mRNAs in the mesostriatal system during the development.
Collapse
MESH Headings
- Animals
- Brain/growth & development
- Brain Chemistry/genetics
- Female
- In Situ Hybridization
- Neostriatum/growth & development
- Pregnancy
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Receptors, Opioid/biosynthesis
- Receptors, Opioid/genetics
- Receptors, Opioid, delta/biosynthesis
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, kappa/biosynthesis
- Receptors, Opioid, kappa/genetics
- Receptors, Opioid, mu/biosynthesis
- Receptors, Opioid, mu/genetics
Collapse
Affiliation(s)
- F Georges
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5541, Laboratoire d'Histologie Embryologie, 33076 Bordeaux Cedex, France
| | | | | | | |
Collapse
|
32
|
Zagon IS, Sassani JW, Wu Y, McLaughlin PJ. The autocrine derivation of the opioid growth factor, [Met5]-enkephalin, in ocular surface epithelium. Brain Res 1998; 792:72-8. [PMID: 9593829 DOI: 10.1016/s0006-8993(98)00123-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Endogenous opioid peptides serve as growth factors in developing, renewing, healing, and neoplastic cells and tissues. A native opioid peptide, [Met5]-enkephalin, termed opioid growth factor (OGF), has been discovered to regulate DNA synthesis in the epithelium of the ocular surface. OGF and its receptor zeta have been localized in both the basal and suprabasal cells of the epithelium. This study examined the hypothesis that OGF is an autocrine growth factor. Using probe for preproenkephalin (PPE) mRNA that encodes OGF, and in situ hybridization techniques, silver grains related to PPE mRNA were detected in both basal and suprabasal cells of the central and peripheral cornea, limbus, and conjunctiva. No distinct regional differences in the presence or location of message, as reflected by the density and distribution of PPE mRNA signal, were noted. These results demonstrate that a growth factor known to serve as a tonic, inhibitory, and receptor-mediated influence on the epithelium of the ocular surface is derived in an autocrine manner, thereby permitting local control of homeostatic cellular replication.
Collapse
Affiliation(s)
- I S Zagon
- Department of Neuroscience and Anatomy, The Pennsylvania State University, The Milton S. Hershey Medical Center, 500 University Drive, Hershey, PA 17033, USA
| | | | | | | |
Collapse
|
33
|
Wu Y, McLaughlin PJ, Zagon IS. Ontogeny of the opioid growth factor, [Met5]-enkephalin, preproenkephalin gene expression, and the zeta opioid receptor in the developing and adult aorta of rat. Dev Dyn 1998; 211:327-37. [PMID: 9566952 DOI: 10.1002/(sici)1097-0177(199804)211:4<327::aid-aja4>3.0.co;2-j] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Opioid peptides are known to play a role in the function of the mammalian cardiovascular system in the newborn. To learn about mechanisms underlying the morphogenesis of the developing vasculature and the principles contributing to the organization and maintenance of adult blood vessels, we have investigated the expression of the opioid growth factor (OGF), [Met5]-enkephalin, and its receptor, zeta. Moreover, gene expression for preproenkephalin mRNA, which encodes OGF, was studied to determine the source(s) of this inhibitory growth factor. By using immunocytochemistry, both OGF and the zeta opioid receptor were detected at embryonic day (E) 16 in the mesenchymal cells of the aortic wall. Staining appeared to be abundant in endothelial cells, smooth muscle cells, and fibroblasts at E20 and in the neonate. Immunoreactivity was noted to decrease progressively from day 5 to 10, but by weaning (day 21) and continuing into adulthood intense staining for both the peptide and receptor were observed. Preproenkephalin mRNA was detected throughout the aortic wall at E16, and the number of silver grains increased up today. Message was progressively reduced at days 5, 10, and 21, but signal in the adult aorta was comparable to that observed at day 5. These results indicate that components related to an endogenous opioid system regulating growth are present in the embryo, display a distinct spatial and temporal pattern of ontogeny, and persist into adulthood. In addition, these data indicate that OGF is an autocrine produced growth factor that is related to the emergence of vascular architecture and the maintenance of homeostasis in blood vessels.
Collapse
Affiliation(s)
- Y Wu
- Department of Neuroscience and Anatomy, The Milton S. Hershey Medical Center, The Pennsylvania State University, Hershey 17033-0850, USA
| | | | | |
Collapse
|
34
|
Zagon IS, Hurst WJ, McLaughlin PJ. Naltrexone is not detected in preweaning rats following transplacental exposure: implications for growth modulation. Life Sci 1998; 62:221-8. [PMID: 9488100 DOI: 10.1016/s0024-3205(97)01090-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Extracts of brain and heart from rats at birth and postnatal days 2 and 10 were evaluated for naltrexone following maternal injection of 50 mg/kg opioid antagonist throughout gestation. Samples were prepared by ultrafiltration, lyophilized, reconstituted in mobile phase, and separated by reversed-phase high performance liquid chromatography with ultraviolet detection. Qualitative analysis revealed the presence of naltrexone in tissues from neonates, but not in rats of 2 and 10 days, that were transplacentally exposed to drug. These results confirm earlier reports showing that naltrexone, maternally administered, passes through the placenta and enters the fetus. Moreover, the data suggest that the somatic and neurobiological acceleration observed in offspring exposed to naltrexone during gestation is not due to opioid receptor blockade during the postnatal period.
Collapse
Affiliation(s)
- I S Zagon
- Department of Neuroscience and Anatomy, The Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | |
Collapse
|
35
|
Leslie FM, Chen Y, Winzer-Serhan UH. Opioid receptor and peptide mRNA expression in proliferative zones of fetal rat central nervous system. Can J Physiol Pharmacol 1998. [DOI: 10.1139/y98-028] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
There is increasing evidence to suggest that opioid peptides may have widespread effects as regulators of growth. To evaluate the hypothesis that endogenous opioids control cellular proliferation during neural development, we have used in situ hybridization to examine opioid peptide and receptor mRNA expression in neuroepithelial zones of fetal rat brain and spinal cord. Our data show that proenkephalin mRNA is widely expressed in forebrain germinal zones and choroid plexus during the second half of gestation. In contrast, prodynorphin mRNA expression is restricted to the periventricular region of the ventral spinal cord. Little µ or delta receptor mRNA expression was detected in any regions of neuronal proliferation prior to birth. However, kappa receptor mRNA is widely expressed in hindbrain germinal zones during the 3rd week of gestation. Our present findings support the hypothesis that endogenous opioids may regulate proliferation of both neuronal and non-neuronal cells during central nervous system development. Given the segregated expression of proenkephalin mRNA in forebrain neuroepithelium and kappa receptor mRNA within hindbrain, different opioid mechanisms may regulate cell division in rostral and caudal brain regions.Key words: enkephalin, dynorphin, ontogeny, neurogenesis.
Collapse
|
36
|
Abstract
Extracts of fetal (20 days gestation) brain, heart, and liver were evaluated for naltrexone in rats 1 hour following maternal injection of 50 mg/kg opioid antagonist; adult plasma from the pregnant rats was analyzed. Samples were prepared by ultrafiltration, lyophilized, reconstituted in mobile phase, and separated by reversed phase high-performance liquid chromatography with ultraviolet detection. This qualitative analysis revealed the presence of naltrexone in all fetal tissues, as well as in adult plasma. These results indicate naltrexone, maternally administered, passes through the placenta and enters the fetus. The data would suggest that reports concerning somatic and neurobiological acceleration in offspring exposed to naltrexone during gestation may be the result of a direct opioid antagonist action in the fetus.
Collapse
Affiliation(s)
- I S Zagon
- Department of Neuroscience and Anatomy, The Pennsylvania State University College of Medicine, Hershey 17033, USA
| | | | | |
Collapse
|
37
|
Yang DS, Boelen MK, Morgan IG. Development of the enkephalin-, neurotensin- and somatostatin-like (ENSLI) amacrine cells in the chicken retina. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1997; 101:57-65. [PMID: 9263580 DOI: 10.1016/s0165-3806(97)00034-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The development of the enkephalin-, neurotensin- and somatostatin-like immunoreactive (ENSLI) amacrine cells in the chicken retina has been investigated by radioimmunoassay (RIA) and immunocytochemistry (ICC). By RIA, enkephalin-like immunoreactivity (ENK-LI) was detected at embryonic day (E) 5 at only very low levels, which gradually increased until E17. From E18 to E21, there was a relatively rapid increase in ENK-LI levels, and just after hatching, there was a very steep rise. By ICC, the cell bodies of the ENSLI amacrine cells were first detected in the inner nuclear layer on E18, with no immunostaining in the inner plexiform layer (IPL). On E21, more cells were detected and processes in the IPL were visible, but detailed arborisations were not clear. On postnatal day (P) 1, the ENSLI amacrine cells showed a morphology similar to that in mature retina in both the density of cell bodies and the ramification pattern of processes. Antibodies to neurotensin and somatostatin revealed a similar developmental pattern. Thus, the three peptides appear to follow a similar developmental pattern in the ENSLI amacrine cells, suggesting that the three peptides respond similarly to developmental stimuli, just as they are released in parallel in response to physiological stimulation from mature ENSLI amacrine cells. After hatching, higher levels of ENK-LI were detected by RIA and more ENSLI amacrine cell bodies and processes were detected by ICC in animals kept in the light than in those kept in the dark. In retinas kept in the light for 12 h, it was found that immunoreactive processes in the IPL formed strongly stained patches, but this was not observed in retinas kept in the dark for 12 h.
Collapse
Affiliation(s)
- D S Yang
- Centre for Visual Science, Australian National University, Canberra City, ACT, Australia
| | | | | |
Collapse
|
38
|
Boraníc M, Krizanac-Bengez L, Gabrilovac J, Marotti T, Breljak D. Enkephalins in hematopoiesis. Biomed Pharmacother 1997; 51:29-37. [PMID: 9084727 DOI: 10.1016/s0753-3322(97)87076-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Recent data support the view that neuropeptide mediators, in particular opioid peptides, participate in the control of hematopoiesis. The main arguments are: neuropeptides modulate the functions of lymphoid cells, macrophages and mature granulocytes; they control cell proliferation and differentiation in many tissues, particularly during embryogenesis; lymphoid cells, macrophages, polymorphonuclear granulocytes and bone marrow stromal elements express neuropeptide receptors; bone marrow cells produce opioid-like neuropeptides; the CD10/CALLA marker of lymphoid, myeloid and marrow stromal cells is an enzyme, endopeptidase, which cleaves- and thus activates/inactivates-opioid and other neuropeptides. We have shown that opioid peptides enkephalins, opioid antagonist naloxone, and the inhibitor of enkephalin-degrading endopeptidase, thiorphan, modulate the proliferation and differentiation of hematopoietic cells in clonal and long-term cultures of mouse bone marrow. The effects partly depended on the presence of the accessory hematopoietic elements, and followed a circadian pattern. The dose-responses were irregular, showed strain-dependent and individual variations, and apparently reflected the state of the activity of target cells, cellular interactions and simultaneous signals by other mediators. The enkephalins were shown to bind to specific (opioid) receptors on the target cells, and their signals to be transmitted to the cell interior by a cascade of secondary messengers including diacyl-glycerol (DAG), protein-kinase C (PKC) and Ca++ ions. Neuropeptide regulation of hematopoiesis might belong to a complex immuno-neuroendocrine network including melatonin.
Collapse
Affiliation(s)
- M Boraníc
- Department of Experimental Biology and Medicine, Rugjer Boskovíc Institute, POB 1016, Zagreb, Croatia
| | | | | | | | | |
Collapse
|
39
|
Vértes Z, Környei JL, Kovács S, Vértes M. Opioids regulate cell proliferation in the developing rat uterus: effects during the period of sexual maturation. J Steroid Biochem Mol Biol 1996; 59:173-8. [PMID: 9010332 DOI: 10.1016/s0960-0760(96)00101-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The present studies demonstrate, for the first time, that the rate of DNA synthesis in rat uterus of 21-32 days of age is inhibited by opioid peptides [D-Met2, Pro5]enkephalinamide. At around the time of vaginal opening (approximately 33 days) the opioids failed to act. High-affinity nuclear [3H]naloxone binding sites with linear Scatchard plots were detected in the uteri during the opioid-sensitive periods of DNA synthesis. Characteristics of these binding sites and the opioid sensitivity of uterine DNA synthesis are dependent on the age of the animals, the level of circulatory oestradiol and/or the maturity of the nuclear oestrogen receptor system.
Collapse
Affiliation(s)
- Z Vértes
- Institute of Physiology, University Medical School, Pécs, Hungary
| | | | | | | |
Collapse
|
40
|
|
41
|
Gorio A, Malosio ML, Vergani L, Di Giulio AM. Exposure to perinatal morphine promotes developmental changes in rat striatum. Int J Dev Neurosci 1996; 14:471-9. [PMID: 8884380 DOI: 10.1016/0736-5748(95)00106-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
This study shows that perinatal exposure to morphine promotes developmental changes (up to 8 months of life) in the striatum by up-regulating concentrations of substance P and met-enkephalin with changes of prometenkephalin A mRNA expression at the day of birth only. Dopamine metabolism (up to 60 days) is also increased as suggested by the reduced concentrations of dopamine and increased content of 3,4-dihydroxyphenylacetic acid. Tyrosine hydroxylase mRNA expression is selectively reduced only in the substantia nigra by perinatal morphine. Serotonin content is reduced only during the early postnatal days and is unaffected thereafter. Supplementation of naltrexone to morphine-exposed rats prevents monoaminergic and neuropeptidergic changes in the striatum, which directly implicates opioid receptors in the developmental changes caused by morphine. The data suggest that perinatal morphine may inhibit met-enkephalin release, causing accumulation of the peptide without corresponding changes in specific mRNA. Dopamine release may also be increased as indicated by a higher metabolism and consequent reduction of tyrosine hydroxylase mRNA expression in the substantia nigra.
Collapse
Affiliation(s)
- A Gorio
- Laboratory for Research on Pharmacology of Neurodegenerative Disorders, Department of Medical Pharmacology, Milano, Italy
| | | | | | | |
Collapse
|
42
|
Isayama T, McLaughlin PJ, Zagon IS. Ontogeny of preproenkephalin mRNA expression in the rat retina. Vis Neurosci 1996; 13:695-704. [PMID: 8870226 DOI: 10.1017/s0952523800008580] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Endogenous opioid systems (i.e. opioid peptides and opioid receptors) modulate developmental events in the neonatal mammalian retina. In the present study, the mRNA encoding preproenkephalin A (PPE), the prohormone for the opioid growth factor (OGF), [Met5]-enkephalin, was studied in the developing and the adult retinas of rats. Northern analysis indicated the presence of a 1.4-kb message in the developing and adult retinas corresponding to rat PPE mRNA. Quantitation showed that PPE message was present on postnatal day 1 at 5% of the adult level, and increased during development until the adult quantity was reached by postnatal day 27. In situ hybridization experiments first detected the presence of PPE mRNA in retinal tissues during late gestation. In late prenatal and neonatal retinas, PPE message was associated with areas of the developing retina containing proliferating neuroblasts and postmitotic cells. Later in development, message appeared to be located primarily within the inner retina, with abundant PPE mRNA associated with putative horizontal cells of the inner nuclear layer (INL). The adult retina showed a similar pattern of PPE gene expression in the cells of the INL. These findings document that the gene expression in the retina for PPE begins in the fetus, continues during retinal development, and coincides with the presence of a PPE mRNA derivative ([Met5]-enkephalin) that regulates DNA synthesis during retinal ontogeny. Our results are also the first to show the presence of PPE message in the adult mammalian retina, suggesting transcription of an opioid gene in the mature visual system.
Collapse
Affiliation(s)
- T Isayama
- Department of Neuroscience and Anatomy, Milton S. Hershey Medical Center, Pennsylvania State University, College of Medicine, Hershey 17033, USA
| | | | | |
Collapse
|
43
|
Gorio A, Vergani L, Malosio ML, Lesma E, Di Giulio AM. Perinatal exposure to morphine: reactive changes in the brain after 6-hydroxydopamine. Eur J Pharmacol 1996; 303:21-6. [PMID: 8804907 DOI: 10.1016/0014-2999(96)00054-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The effects of neonatal 6-hydroxydopamine treatment on the brain of control rats and of rats perinatally exposed to morphine were examined. Noradrenaline levels were increased in the pons-medulla, mesencephalon and caudate of 8-week-old control rats lesioned with neonatal 6-hydroxydopamine; perinatal morphine treatment prevented such an increase. In the caudate, there was a loss of dopamine and an increase of serotonin following the neurotoxic lesion; exposure to perinatal morphine prevented the serotonin increase. Brain expression of synapsin I mRNA was particularly abundant in cerebral cortex, hippocampus, dentate gyrus and olfactory bulb. In perinatal morphine-treated rats, the expression of synapsin I mRNA was significantly reduced; interestingly, the neonatal treatment with 6-hydroxydopamine normalized its expression. Therefore, brain-reactive neurochemical changes triggered by 6-hydroxydopamine were suppressed by perinatal morphine exposure whereas the association of morphine exposure and 6-hydroxydopamine lesion promoted the normal mRNA expression of the synaptic marker synapsin I.
Collapse
Affiliation(s)
- A Gorio
- Department of Medical Pharmacology, University of Milano, Italy
| | | | | | | | | |
Collapse
|
44
|
Venihaki M, Gravanis A, Margioris AN. Kappa opioids exert a strong antiproliferative effect on PC12 rat pheochromocytoma cells. Peptides 1996; 17:413-9. [PMID: 8735967 DOI: 10.1016/0196-9781(96)00023-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Pheochromocytomas synthesize several types of opioids and their receptors. Opioids affect the proliferation rate of normal and tumoral cells. We have previously shown that the PC12 rat pheochromocytoma cells synthesize multiple opioids. The aim of the present work was to study the effect of opioids on the proliferation of these pheochromocytoma cells. Thus, the effect of several opioid agonists and antagonists was examined on basal and EGF-induced PC12 cell proliferation. The kappa opioid agonists dynorphin A, U-69593, and U-50488 suppressed basal proliferation in a dose-dependent manner. The effect of kappa opioids was blocked by the general opioid antagonist naloxone and the selective kappa antagonist nor-binaltorphimine. Furthermore, both opioid antagonists given alone had a strong stimulatory effect, a findings suggesting that the proliferation of PC12 cells is under tonic inhibition by locally produced kappa opioids. Finally, the mu-opioid agonist DAGO and the delta and mu agonists DADLE and DSLET were ineffective.
Collapse
MESH Headings
- Animals
- Cell Division/drug effects
- Dose-Response Relationship, Drug
- Drug Interactions
- Epidermal Growth Factor/pharmacology
- Narcotics/metabolism
- Narcotics/pharmacology
- PC12 Cells
- Rats
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/antagonists & inhibitors
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, kappa/agonists
- Receptors, Opioid, kappa/antagonists & inhibitors
- Receptors, Opioid, kappa/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/antagonists & inhibitors
- Receptors, Opioid, mu/metabolism
Collapse
Affiliation(s)
- M Venihaki
- Department of Clinical Chemistry, School of Medicine, University of Crete, Iraklio, Greece
| | | | | |
Collapse
|
45
|
Germani E, Lesma E, De Biasi S, Di Giulio AM, Bertelli A, Gorio A. Perinatal morphine II: changes in cortical plasticity. J Neurosci Res 1995; 42:829-34. [PMID: 8847744 DOI: 10.1002/jnr.490420611] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have previously shown that perinatal exposure to morphine impairs reactive plasticity of serotonin (5-HT) neurons following selective neonatal lesion (Gorio et al., J Neurosci Res 34:462-471, 1993). This study shows that morphine inhibits also that the compensatory sprouting of intact axons after partial denervation. Neonatal 6-OHDA injection causes norepinephrine (NE) depletion in the frontal cortex, which triggers a compensatory increase of dopamine, serotonin (5-HT), and met-enkephalin content correlated by the increased density of tyrosine hydroxylase- and 5-HT-positive axons. In perinatal morphine-treated rats, no compensatory changes are observed after neonatal 6-OHDA depletion of NE in the frontal cortex.
Collapse
Affiliation(s)
- E Germani
- Department of Medical Pharmacology, University of Milan, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Di Giulio AM, Tenconi B, Malosio ML, Vergani L, Bertelli A, Gorio A. Perinatal morphine. I: Effects on synapsin and neurotransmitter systems in the brain. J Neurosci Res 1995; 42:479-85. [PMID: 8568934 DOI: 10.1002/jnr.490420406] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We have previously shown that rat perinatal exposure to morphine causes dopaminergic and met-enkephalin (ME) and substance P (SP) changes in the striatum during the early postnatal period (Tenconi et al.: Int J Dev Neurosci 10: 517 - 526, 1992); in addition it increases the susceptibility to neurotoxic lesions and impairs regenerative capacity of the serotoninergic system (Gorio et al.: J Neurosci Res 34: 462 - 471, 1993). Our study shows that ME and SP levels increase postnatally in several areas of the rat brain, reaching the highest values between 30 and 60 days, after which the peptide content subsides to lower levels. Perinatal exposure to morphine increases such ME and SP levels during the early stages of postnatal life. No effect of morphine on 5-HT and NE is observed, while the dopaminergic system is mainly affected in the mesencephalon. The pre- and postnatal brain expression of synapsin I mRNA is gradually and progressively localized in discrete areas of the brain. In the brain of rats perinatally exposed to morphine, the abundance of synapsin I mRNA expression is markedly reduced. Therefore, perinatal exposure to morphine affects early postnatal synaptic development in the brain as shown by the altered peptidergic and monoaminergic content and by the reduced synapsin I mRNA expression.
Collapse
Affiliation(s)
- A M Di Giulio
- Department of Medical Pharmacol, Faculty of Medicine, University of Milan, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Vértes Z, Környei JL, Kovács S, Vértes M. Role of opioid peptides in the regulation of DNA synthesis in immature rat uterus. Eur J Pharmacol 1995; 291:115-20. [PMID: 8566160 DOI: 10.1016/0922-4106(95)90132-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The effects of a single dose of naloxone and of [D-Met2,Pro5]enkephalinamide on the DNA synthesis in the uterus of 7, 14 and 21-day-old rat were studied. After [D-Met2,Pro5]enkephalinamide treatment, an age-dependent decrease in in vitro [3H]thymidine incorporation into DNA was observed in all studied age groups. In the 21-day-old age group a reduced rate of DNA synthesis was detected for 12 h after [D-Met2,Pro5]enkephalinamide treatment followed by the return to control values at 24 h. The rate of inhibition was more marked in the younger age groups. The effect was also more pronounced in younger animals. Specific [3H]naloxone binding was detected both in membrane and nuclear fractions of uterine homogenates. While no age-related changes in binding affinities were found, the number of binding sites varied characteristically during development. Our data suggest the novel involvement of opioid peptides and their receptors in the regulation of uterine development.
Collapse
Affiliation(s)
- Z Vértes
- Institute of Physiology, University Medical School, Pécs, Hungary
| | | | | | | |
Collapse
|
48
|
Zagon IS, McLaughlin PJ. Gene-peptide relationships in the developing rat brain: the response of preproenkephalin mRNA and [Met5]-enkephalin to acute opioid antagonist (naltrexone) exposure. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1995; 33:111-20. [PMID: 8774952 DOI: 10.1016/0169-328x(95)00119-d] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
[Met5]-enkephalin, encoded by the preproenkephalin (PPE) gene, serves as a growth factor during brain development in addition to its role as a neurotransmitter. This study examined the relationship of gene and peptide expression in the developing (postnatal day 6) rat brain by disrupting peptide-receptor interaction with either a brief (4-6 h) or continuous opioid receptor blockade using a single injection of 1 or 50 mg/kg naltrexone (NTX), respectively; such perturbations result in growth inhibition or acceleration, respectively. In the caudate putamen, an area that has completed neurogenesis by postnatal day 6 and has an abundance of PPE mRNA and enkephalins in adulthood, NTX did not influence PPE mRNA in either NTX group, or the enkephalin levels in the 1 mg/kg NTX group. [Met5]-enkephalin values in the neostriatum, however, were 67-183% greater than controls in rats given 50 mg/kg NTX, beginning 5 min after drug injection. In the cerebellum, PPE mRNA expression was depressed from 5 min to 4 h in the 1 mg/kg NTX group, and was normal thereafter; mRNA levels in the 50 mg/kg NTX group were markedly subnormal for 24 h. Enkephalin levels were significantly depressed within 5 min of drug injection and remained so for 4 h in the 1 mg/kg NTX group, but were elevated to approximately 135% of control values at 8, 16, and 24 h. Enkephalin levels were not changed in the cerebellum of the 50 mg/kg NTX group, or in the plasma of either NTX group. These data suggest that a single exposure to NTX can affect transcriptional and translational mechanisms related to PPE mRNA and opioid peptide expression in a rapid and sustained manner, and that this treatment elicits a specific pattern of alterations dependent upon the brain region sampled, drug dosage, and/or the duration of opioid receptor blockade. Additionally, our results indicate that the decreased DNA synthesis in external germinal cells occurring after opioid receptor blockade as recorded earlier may be related to an increase in the potent opioid growth factor, [Met5]-enkephalin.
Collapse
Affiliation(s)
- I S Zagon
- Department of Neuroscience and Anatomy, Pennsylvania State University, Hershey 17033, USA
| | | |
Collapse
|
49
|
Isayama T, Hurst WJ, McLaughlin PJ, Zagon IS. Ontogeny of the opioid growth factor, [Met5]-enkephalin, and its binding activity in the rat retina. Vis Neurosci 1995; 12:939-50. [PMID: 8924417 DOI: 10.1017/s0952523800009494] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The endogenous opioid peptide [Met5]-enkephalin is a tonically active opioid growth factor (OGF) with an inhibitory action on DNA synthesis in the developing rat retina. In this study, the ontogeny of the spatial and temporal expression of OGF and its binding activity was examined. OGF-like immunoreactivity was detected in the retina at gestation day (E) 20, but not at E18, and was localized to ganglion cell and neuroblast layers; immunochemical reaction was no longer seen in the retina by postnatal day 6. Native OGF was further identified and characterized by high-performance liquid chromatography (HPLC) studies and immunodot assays, which revealed that [Met5]-enkephalin was present in the neonatal, but not adult, rat retina. OGF binding activity was detected as early as E18 using [125I]-[Met5]-enkephalin and in vitro receptor autoradiography. Little OGF binding activity was noted for prenatal retinas, but appreciable activity was observed from birth to postnatal day 4; no OGF binding could be detected after postnatal day 5 or in the adult. These results reveal the transient appearance of the OGF, [Met5]-enkephalin, and its receptor binding activity in the developing mammalian retina, and show that their ontogeny coincides with the timetable of DNA synthesis of retinal neuroblasts.
Collapse
Affiliation(s)
- T Isayama
- Department of Neuroscience and Anatomy, Pennsylvania State University, Milton S. Hershey Medical Center, Hershey 17033, USA
| | | | | | | |
Collapse
|
50
|
Mitchell V, Mazzuca M, Beauvillain JC. The fetal expression of proenkephalin mRNAs and Met-enkephalin immunoreactivity in the hypothalamoseptal tract and adjacent hypothalamic areas of the guinea pig brain. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 1995; 86:67-80. [PMID: 7656433 DOI: 10.1016/0165-3806(95)00010-b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The development of the enkephalinergic hypothalamoseptal tract in the guinea pig brain was studied from embryonic day 30 until birth. Proenkephalin (PE) mRNAs were detected in the hypothalamic magnocellular dorsal nucleus (MDN) by in situ hybridization with a synthetic 35S-labeled oligonucleotide. The Met-enkephalin-like immunoreactivity (Met-enk-LI) in the MDN and the lateral septum (LS) was detected with antibodies against Met-enkephalin, on adjacent cryostat sections. At the same time, an immunohistochemical study of the arrangement of enkephalinergic axon terminals in the LS at birth was performed at the electron microscopic level. PE mRNAs were first found to be expressed in the MDN at embryonic day 32 (E32) and increased to reach a maximal level at E48. Met-enk-LI was consistently detectable from E38 in numerous perikarya of the MDN as well as in nerve terminals of the LS. The number of Met-enk-LI cells of the MDN decreased after this stage until birth, whereas positive nerve endings in the LS increased. At the electron microscopic level, numerous cell bodies of the LS at birth were consistently surrounded by Met-enk immunoreactive nerve terminals. Cells expressing the PE gene and Met-enk-LI were also observed from E38 to E44 in the periventricular area. Some of these cells were found double-labeled with Met-enkephalin and Somatostatin antisera. The enkephalinergic system of the hypothalamoseptal tract appears at early embryonic stages and may be essential in regulating septal neuronal functions early in gestation. Differing ontogenic onsets of the enkephalinergic hypothalamoseptal and periventricular-median eminence tracts suggest possible developmental and functional differences.
Collapse
|