1
|
Qais FA, Parveen N, Afzal M, Furkan M, Khan RH. Preventing amyloid-β oligomerization and aggregation with berberine: Investigating the mechanism of action through computational methods. Int J Biol Macromol 2024; 258:128900. [PMID: 38128802 DOI: 10.1016/j.ijbiomac.2023.128900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Neurological disorders (NDs) have become a major cause of both cognitive and physical disabilities worldwide. In NDs, misfolded proteins tend to adopt a β-sheet-rich fibrillar structure called amyloid. Amyloid beta (Aβ) plays a crucial role in the nervous system. The misfolding and aggregation of Aβ are primary factors in the progression of Alzheimer's disease (AD). Inhibiting the oligomerization and aggregation of Aβ is considered as an effective strategy against NDs. While it is known that berberine analogs exhibit anti-Aβ aggregation properties, the precise mechanism of action remains unclear. In this study, we have employed computational approaches to unravel the possible mechanism by which berberine combats Aβ aggregation. The introduction of berberine was observed to delay the equilibrium of Aβ16-21 oligomerization. Initially, within the first 10 ns of simulation, β-sheets content was 12.89 % and gradually increased to 22.19 % within the first 20 ns. This upward trend continued, reaching 32.80 %. However, berberine substantially reduced the formation of β-sheets to 1.36 %. These findings decipher the potency of berberine against Aβ16-21 oligomerization, a crucial step for β-sheet formation. Additionally, a remarkable decrease in total number of hydrogen bonds was found in the presence of berberine. Berberine also led to a slight reduction in the flexibility of Aβ16-21, which may be due to the formation of a more stable structures. This study offers valuable insights at the mechanistic level, which could prove beneficial in the development of new drugs to combat NDs.
Collapse
Affiliation(s)
- Faizan Abul Qais
- Department of Agricultural Microbiology, Faculty of Agricultural Sciences, Aligarh Muslim University, Aligarh 202002, India
| | - Nagma Parveen
- Department of Zoology, Saifia College, Barkatullah University, Bhopal, Madhya Pradesh, India
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Furkan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, UP, India.
| |
Collapse
|
2
|
Chang YJ, Chien YH, Chang CC, Wang PN, Chen YR, Chang YC. Detection of Femtomolar Amyloid-β Peptides for Early-Stage Identification of Alzheimer's Amyloid-β Aggregation with Functionalized Gold Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:3819-3828. [PMID: 38214471 DOI: 10.1021/acsami.3c12750] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Progressive amyloid-β (Aβ) fibrillar aggregates have long been considered as the pathogenesis of Alzheimer's disease (AD). Biocompatible and stable cysteine-Aβ peptide-conjugated gold nanoparticles (Cys-Aβ@AuNP) are demonstrated as suitable materials for detecting subfemtomolar Aβ peptides in human plasma. Incubation with Aβ peptides causes the Cys-Aβ@AuNP to aggregate and changes its absorption spectra. The spectral change is especially apparent and noticeable when detecting subfemtomolar Aβ peptides, and the aggregates contain only two or three AuNPs. Cys-Aβ@AuNP can also be used to identify early-stage Aβ oligomerization, which is not possible using the conventional method, in which the fluorescence of thioflavin-T is measured. The ability to detect Aβ oligomerization can facilitate therapeutics for AD. In addition, the binding of Aβ peptides by Cys-Aβ@AuNP in combination with centrifugation redirects the conventional Aβ aggregation pathway and can effectively inhibit the formation of toxic Aβ oligomers or fibrils. Therefore, the proposed Cys-Aβ@AuNP can also be used to develop effective therapeutic agents to inhibit Aβ aggregation. The results obtained in this study are expected to open revolutionary ways to both detect and inhibit Aβ aggregation at an early stage.
Collapse
Affiliation(s)
- Yu-Jen Chang
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
| | - Yi-Hsin Chien
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
| | - Chieh-Chun Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, and National Taiwan University, Taipei 115, Taiwan
| | - Pei-Ning Wang
- Brain Research Center, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
- Division of General Neurology, Department of Neurological Institute, Taipei Veterans General Hospital, Taipei 112, Taiwan
| | - Yun-Ru Chen
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan
- Taiwan International Graduate Program in Interdisciplinary Neuroscience, National Taiwan University and Academia Sinica, Taipei 115, Taiwan
| | - Yun-Chorng Chang
- Research Center for Applied Sciences, Academia Sinica, Taipei 115, Taiwan
- Department of Physics, National Taiwan University, Taipei 106, Taiwan
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, and National Taiwan University, Taipei 115, Taiwan
| |
Collapse
|
3
|
Das BK, Singh O, Chakraborty D. Exploring the Barriers in the Aggregation of a Hexadecameric Human Prion Peptide through the Markov State Model. ACS Chem Neurosci 2023; 14:3622-3645. [PMID: 37705330 DOI: 10.1021/acschemneuro.3c00284] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2023] Open
Abstract
The prefibrillar aggregation kinetics of prion peptides are still an enigma. In this perspective, we employ atomistic molecular dynamics (MD) simulations of the shortest human prion peptide (HPP) (127GYMLGS132) at various temperatures and peptide concentrations and apply the Markov state model to determine the various intermediates and lag phases. Our results reveal that the natural mechanism of prion peptide self-assembly in the aqueous phase is impeded by two significant kinetic barriers with oligomer sizes of 6-9 and 12-13 peptides, respectively. The first one is the aggregation of unstructured lower-order oligomers, and the second is fibril nucleation, which impedes the further growth of prion aggregates. Among these two activation barriers, the second one is found to be dominant irrespective of the increase in temperature and peptide concentration. These lag phases are captured in all three different force-field parameters, namely, GROMOS-54a7, AMBER-99SB-ILDN, and CHARMMS 36m, at different concentrations. The GROMOS-54a7 and AMBER-99SB-ILDN force fields showed a comparatively higher percentage of β-sheet formation in the metastable aggregate that evolved during the aggregation process. In contrast, the CHARMM-36m force field showed mostly coil or turn conformations. The addition of a novel catecholamine derivative (naphthoquinone dopamine (NQDA)) arrests the aggregation process between the lag phases by increasing the activation barrier for the Lag1 and Lag2 phases in all of the force fields, which further validates the existence of these lag phases. The preferential binding of NQDA with the peptides increases the hydration of peptides and eventually disrupts the organized morphology of prefibrillar aggregates. It reduces the dimer dissociation energy by -24.34 kJ/mol.
Collapse
Affiliation(s)
- Bratin Kumar Das
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Omkar Singh
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| | - Debashree Chakraborty
- Biophysical and Computational Chemistry Laboratory, Department of Chemistry, National Institute of Technology Karnataka, Surathkal, Mangalore 575025, India
| |
Collapse
|
4
|
Khaled M, Rönnbäck I, Ilag LL, Gräslund A, Strodel B, Österlund N. A Hairpin Motif in the Amyloid-β Peptide Is Important for Formation of Disease-Related Oligomers. J Am Chem Soc 2023; 145:18340-18354. [PMID: 37555670 PMCID: PMC10450692 DOI: 10.1021/jacs.3c03980] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 08/10/2023]
Abstract
The amyloid-β (Aβ) peptide is associated with the development of Alzheimer's disease and is known to form highly neurotoxic prefibrillar oligomeric aggregates, which are difficult to study due to their transient, low-abundance, and heterogeneous nature. To obtain high-resolution information about oligomer structure and dynamics as well as relative populations of assembly states, we here employ a combination of native ion mobility mass spectrometry and molecular dynamics simulations. We find that the formation of Aβ oligomers is dependent on the presence of a specific β-hairpin motif in the peptide sequence. Oligomers initially grow spherically but start to form extended linear aggregates at oligomeric states larger than those of the tetramer. The population of the extended oligomers could be notably increased by introducing an intramolecular disulfide bond, which prearranges the peptide in the hairpin conformation, thereby promoting oligomeric structures but preventing conversion into mature fibrils. Conversely, truncating one of the β-strand-forming segments of Aβ decreased the hairpin propensity of the peptide and thus decreased the oligomer population, removed the formation of extended oligomers entirely, and decreased the aggregation propensity of the peptide. We thus propose that the observed extended oligomer state is related to the formation of an antiparallel sheet state, which then nucleates into the amyloid state. These studies provide increased mechanistic understanding of the earliest steps in Aβ aggregation and suggest that inhibition of Aβ folding into the hairpin conformation could be a viable strategy for reducing the amount of toxic oligomers.
Collapse
Affiliation(s)
- Mohammed Khaled
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
| | - Isabel Rönnbäck
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Leopold L. Ilag
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
| | - Astrid Gräslund
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
| | - Birgit Strodel
- Institute
of Biological Information Processing: Structural Biochemistry (IBI-7), Forschungszentrum Jülich, 52428 Jülich, Germany
- Institute
of Theoretical and Computational Chemistry, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Nicklas Österlund
- Department
of Biochemistry and Biophysics, Stockholm
University, 106 91 Stockholm, Sweden
- Department
of Materials and Environmental Chemistry, Stockholm University, 106 91 Stockholm, Sweden
- Department
of Microbiology, Tumor and Cell Biology, Karolinska Institutet − Biomedicum, 171 65 Solna, Sweden
| |
Collapse
|
5
|
Sinclair P, Kabbani N. Nicotinic receptor components of amyloid beta 42 proteome regulation in human neural cells. PLoS One 2022; 17:e0270479. [PMID: 35960729 PMCID: PMC9374227 DOI: 10.1371/journal.pone.0270479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/12/2022] [Indexed: 11/30/2022] Open
Abstract
Alzheimer’s disease (AD) is associated with chronic neurodegeneration often accompanied by elevated levels of the neurotoxic peptide amyloid-beta 1–42 (Aβ42) in the brain. Studies show that extracellular Aβ42 binds to various cell surface receptors including the human α7 nicotinic acetylcholine receptor (nAChR) and activates pathways of neurotoxicity leading to cell death. The α7 nAChR is thus considered a promising drug target for therapy against neurodegenerative disease such as AD. In this study, we use mass spectrometry-based label-free precursor ion quantification to identify proteins and pathways that are changed by a 72-hour treatment with Aβ42 or Aβ42 in the presence of the α7 nAChR blocker, α-bungarotoxin (Bgtx) in the human neuroblastoma SH-SY5Y cell line. Bioinformatic gene ontology enrichment analysis was used to identify and characterize proteins and pathways altered by Aβ42 presentation. The results support evidence on the involvement of mitochondrial proteins in Aβ42 responses and define potential mechanisms of α7 nAChR mediated amyloid toxicity. These findings can inform pharmacological strategies for drug design and treatment against amyloid disease.
Collapse
Affiliation(s)
- Patricia Sinclair
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
| | - Nadine Kabbani
- Interdisciplinary Program in Neuroscience, George Mason University, Fairfax, VA, United States of America
- School of System Biology, George Mason University, Fairfax, VA, United States of America
- * E-mail:
| |
Collapse
|
6
|
Zhu L, Lu F, Zhang X, Liu S, Mu P. SIRT1 Is Involved in the Neuroprotection of Pterostilbene Against Amyloid β 25-35-Induced Cognitive Deficits in Mice. Front Pharmacol 2022; 13:877098. [PMID: 35496289 PMCID: PMC9047953 DOI: 10.3389/fphar.2022.877098] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder characterized by amyloid-β (Aβ) deposits and neurofibrillary tangles. Pterostilbene (PTE), a bioactive component mainly in blueberries, is found to have neuroprotective properties. However, the specific underlying mechanisms of PTE in protecting AD remain unclear. Herein, we explored its effects on Aβ25-35-induced neuronal damage in vivo and in vitro and further compared the roles with its structural analog resveratrol (RES) in improving learning-memory deficits. We found that intragastric administration of PTE (40 mg/kg) displayed more effective neuroprotection on Aβ25-35-induced cognitive dysfunction assessed using the novel object test, Y-maze test, and Morris water maze test. Then, we found that PTE improved neuronal plasticity and alleviated neuronal loss both in vivo and in vitro. Additionally, PTE upregulated the expression of sirtuin-1 (SIRT1) and nuclear factor erythroid 2-related factor 2 (Nrf2) and the level of superoxide dismutase (SOD), and inhibited mitochondria-dependent apoptosis in the Aβ25-35-treated group. However, SIRT1 inhibitor EX527 reversed the neuroprotection and induced a drop in mitochondrial membrane potential in PTE-treated primary cortical neurons. Our data suggest that PTE's enhancing learning-memory ability and improving neuroplasticity might be related to inhibiting mitochondria-dependent apoptosis via the antioxidant effect regulated by SIRT1/Nrf2 in AD.
Collapse
Affiliation(s)
- Lin Zhu
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, China
| | - Fangjin Lu
- Department of Pharmacology, Shenyang Medical College, Shenyang, China
| | - Xiaoran Zhang
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, China
| | - Siyuan Liu
- Department of Biochemistry and Molecular Biology, Shenyang Medical College, Shenyang, China
| | - Ping Mu
- Department of Physiology, Shenyang Medical College, Shenyang, China
| |
Collapse
|
7
|
Haque MA, Hossain MS, Bilkis T, Islam MI, Park IS. Evidence for a Strong Relationship between the Cytotoxicity and Intracellular Location of β-Amyloid. Life (Basel) 2022; 12:life12040577. [PMID: 35455068 PMCID: PMC9025630 DOI: 10.3390/life12040577] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/16/2022] [Accepted: 04/12/2022] [Indexed: 11/18/2022] Open
Abstract
β-Amyloid (Aβ) is a hallmark peptide of Alzheimer’s disease (AD). Herein, we explored the mechanism underlying the cytotoxicity of this peptide. Double treatment with oligomeric 42-amino-acid Aβ (Aβ42) species, which are more cytotoxic than other conformers such as monomers and fibrils, resulted in increased cytotoxicity. Under this treatment condition, an increase in intracellular localization of the peptide was observed, which indicated that the peptide administered extracellularly entered the cells. The cell-permeable peptide TAT-tagged Aβ42 (tAβ42), which was newly prepared for the study and found to be highly cell-permeable and soluble, induced Aβ-specific lamin protein cleavage, caspase-3/7-like DEVDase activation, and high cytotoxicity (5–10-fold higher than that induced by the wild-type oligomeric preparations). Oligomeric species enrichment and double treatment were not necessary for enhancing the cytotoxicity and intracellular location of the fusion peptide. Taiwaniaflavone, an inhibitor of the cytotoxicity of wild-type Aβ42 and tAβ42, strongly blocked the internalization of the peptides into the cells. These data imply a strong relationship between the cytotoxicity and intracellular location of the Aβ peptide. Based on these results, we suggest that agents that can reduce the cell permeability of Aβ42 are potential AD therapeutics.
Collapse
Affiliation(s)
- Md. Aminul Haque
- Department of Biomedical Sciences, Chosun University, Gwangju 61452, Korea; (M.A.H.); (M.S.H.); (T.B.); (M.I.I.)
| | - Md. Selim Hossain
- Department of Biomedical Sciences, Chosun University, Gwangju 61452, Korea; (M.A.H.); (M.S.H.); (T.B.); (M.I.I.)
| | - Tahmina Bilkis
- Department of Biomedical Sciences, Chosun University, Gwangju 61452, Korea; (M.A.H.); (M.S.H.); (T.B.); (M.I.I.)
| | - Md. Imamul Islam
- Department of Biomedical Sciences, Chosun University, Gwangju 61452, Korea; (M.A.H.); (M.S.H.); (T.B.); (M.I.I.)
| | - Il-Seon Park
- Department of Biomedical Sciences, Chosun University, Gwangju 61452, Korea; (M.A.H.); (M.S.H.); (T.B.); (M.I.I.)
- Department of Cellular and Molecular Medicine, Chosun University, Gwangju 61452, Korea
- Correspondence: ; Tel.: +82-062-230-6753
| |
Collapse
|
8
|
Wu L, Zhao N, Jiang W, Wang F. Effects of heparan sulfate from porcine mucosa on Aβ 1-42-induced neurotoxicity in vitro and in vivo. Int J Biol Macromol 2022; 206:823-836. [PMID: 35307462 DOI: 10.1016/j.ijbiomac.2022.03.079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 03/02/2022] [Accepted: 03/13/2022] [Indexed: 11/29/2022]
Abstract
Amyloid-β (Aβ) deposition and neurotoxicity play an important role in Alzheimer's disease (AD). Notably, the nonnegligible role of endogenous heparan sulfate (HS) in the release, uptake and misfolding of Aβ sheds light on the discovery of HS as an effective drug for AD. In this work, the effects of HS from porcine mucosa (PMHS) on Aβ1-42-induced neurotoxicity were investigated both in vitro and in vivo. The in vitro AD model was established in SH-SY5Y via treatment with oligomeric Aβ1-42, and the in vivo AD model was established by intracerebroventricular injection of Aβ1-42 to KM mice. The results showed that in vitro, PMHS could ameliorate the inflammation and apoptosis response of SH-SY5Y cells induced by Aβ1-42; in vivo, PMHS could not only improve the cognitive impairment induced by Aβ1-42 but also inhibit neuroinflammation and apoptosis in the brain. Furthermore, PMHS lowered the levels of Aβ1-42 in the peripheral circulation and brain by improving the phagocytosis function of neutrophils. This is the first report that PMHS enhances the phagocytosis function of neutrophils to alleviate Aβ-induced neurotoxicity. Moreover, our work verified the feasibility of peripheral Aβ clearance for improving neurotoxicity. Conclusively, we believe that PMHS could be developed into neuroprotective drugs for AD.
Collapse
Affiliation(s)
- Lidan Wu
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Na Zhao
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China
| | - Wenjie Jiang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China.
| | - Fengshan Wang
- Key Laboratory of Chemical Biology (Ministry of Education), Institute of Biochemical and Biotechnological Drugs, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong, China; NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-based Medicine, National Glycoengineering Research Center, Shandong University, Jinan 250012, Shandong, China; Shandong Provincial Key Laboratory of Carbohydrate Chemistry and Glycobiology, Shandong University, Jinan 250012, China.
| |
Collapse
|
9
|
Silvestro S, Valeri A, Mazzon E. Aducanumab and Its Effects on Tau Pathology: Is This the Turning Point of Amyloid Hypothesis? Int J Mol Sci 2022; 23:ijms23042011. [PMID: 35216126 PMCID: PMC8880389 DOI: 10.3390/ijms23042011] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/07/2022] [Accepted: 02/10/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder affecting millions of people around the world. The two main pathological mechanisms underlying the disease are beta-amyloid (Aβ) plaques and intracellular neurofibrillary tangles (NFTs) of Tau proteins in the brain. Their reduction has been associated with slowing of cognitive decline and disease progression. Several antibodies aimed to target Aβ or Tau in order to represent hope for millions of patients, but only a small number managed to be selected to participate in clinical trials. Aducanumab is a monoclonal antibody recently approved by the Food and Drug Administration (FDA), which, targeting (Aβ) oligomers and fibrils, was able to reduce Aβ accumulation and slow the progression of cognitive impairment. It was also claimed to have an effect on the second hallmark of AD, decreasing the level of phospho-Tau evaluated in cerebrospinal fluid (CSF) and by positron emission tomography (PET). This evidence may represent a turning point in the development of AD-efficient drugs.
Collapse
|
10
|
Elevated soluble amyloid beta protofibrils in Down syndrome and Alzheimer's disease. Mol Cell Neurosci 2021; 114:103641. [PMID: 34091073 DOI: 10.1016/j.mcn.2021.103641] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/27/2021] [Accepted: 05/31/2021] [Indexed: 01/31/2023] Open
Abstract
Down syndrome (DS) is caused by trisomy of chromosome 21, which leads to a propensity to develop amyloid β (Aβ) brain pathology in early adulthood followed later by cognitive and behavioral deterioration. Characterization of the Aβ pathology is important to better understand the clinical deterioration of DS individuals and to identify interventive strategies. Brain samples from people with DS and Alzheimer's disease (AD), as well as non-demented controls (NDC), were analyzed with respect to different Aβ species. Immunohistochemical staining using antibodies towards Aβ was also performed. Elevated levels of soluble Aβ protofibrils and insoluble Aβx-40 and Aβx-42 in formic acid brain extracts, and elevated immunohistochemical staining of Aβ deposits were demonstrated with the antibody BAN2401 (lecanemab) in DS and AD compared with NDC. These data and the promising data in a large phase 2 CE clinical trial with lecanemab suggest that lecanemab may have the potential to preserve cognitive capacity in DS. Lecanemab is currently in a phase 3 CE clinical trial.
Collapse
|
11
|
Paul S, Kumari K, Paul S. Molecular Insight into the Effects of Enhanced Hydrophobicity on Amyloid-like Aggregation. J Phys Chem B 2020; 124:10048-10061. [PMID: 33115237 DOI: 10.1021/acs.jpcb.0c06000] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Generally, hydrophobic amino acids provide hydrophobic interactions during peptide aggregation. However, besides the hydrophobic amino acids, some hydrophilic amino acids, such as glutamine, are also considered to be essential elements in many self-aggregating peptides. For example, huntingtin contains polyglutamine at its N-terminus and the yeast prion Sup35 protein has the GNNQQNY sequence, a peptide well-known for its ability for amyloid fibril formation. However, despite the frequent emergence of glutamine in self-assembling systems, the molecular mechanism of amyloid formation involving this unique amino acid has not been well documented. It is still not clear how this hydrophilic amino acid is responsible for the hydrophobic interaction in the self-association process. Therefore, in this study, we have carried out classical molecular dynamics simulations of the GNNQQNY peptide and its derivatives in pure water. We quantify the propensity for the formation of β-sheet conformation with an increasing glutamine number in the peptide sequence. In addition, we assess the importance of the hydrophobicity of the dimethanediyl group present in glutamine (as well as in glutamic acid) for the self-association of the peptides through nonpolar solvent medium simulations.
Collapse
Affiliation(s)
- Srijita Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Komal Kumari
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| |
Collapse
|
12
|
Chen B, Zhao J, Zhang R, Zhang L, Zhang Q, Yang H, An J. Neuroprotective effects of natural compounds on neurotoxin-induced oxidative stress and cell apoptosis. Nutr Neurosci 2020; 25:1078-1099. [PMID: 33164705 DOI: 10.1080/1028415x.2020.1840035] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Overproduction of reactive species, notably reactive oxygen (ROS) and nitrogen (RNS) species, along with the failure of balancing effects of endogenous antioxidant defenses result in destruction of cellular structures, lipids, proteins, and genetic material, which lead to oxidative stress. Oxidative stress-induced neuronal apoptosis plays a pivotal role in pathogenesis of neurodegeneration. Antioxidants represent one of the medical choice strategies for protecting against this unbalanced oxidation-antioxidation status. Recently, natural compounds with neuroprotective potential that can scavenge free radicals and protect cells from oxidative damage have received extensive attention. METHODS In this review, we summarized the detailed research progress on the medicinal plants-derived natural compounds with potential anti-oxidation effects and their molecular mechanisms on modulating the neurotoxin (6-OHDA, H2O2, glutamate, Aβ)-induced oxidative stress and cell apoptosis. RESULTS The natural compounds that efficacious in modulating reactive species production and mitochondrial function include flavonoids, glucosides, alkaloids, polyphenols, lignans, coumarins, terpenoids, quinones and others. They decreased the neurotoxin-induced oxidative damage and apoptosis by (1) decreasing ROS/RNS generation, lipid peroxidation, caspase-3 and caspase-9 activities, LDH release, the ratio of Bax/Bcl-2, Ca2+ influx and cytochrome c release, (2) elevating MMP, and (3) restoring endogenous antioxidant enzymatic activities (CAT, GSH-Px, GSR, SOD). And they exerted neuroprotective effects against cell damages and apoptosis by modulating the oxidative cascades of different signaling pathways (Nrf2/HO-1, NF-κB, MAPKs, PI3K/Akt, GSK-3β) and preventing mitochondria-dependent apoptosis pathways. DISCUSSION The present work reviews the role of oxidative stress in neurodegeneration, highlighting the potential anti-oxidation effects of natural compounds as a promising approach to develop innovative neuroprotective strategy.
Collapse
Affiliation(s)
- Bo Chen
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Jingjing Zhao
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Rui Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Lingling Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Qian Zhang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Hao Yang
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| | - Jing An
- Translational Medicine Centre, Honghui Hospital, Xi'an Jiaotong University, Xi'an, Shannxi, People's Republic of China
| |
Collapse
|
13
|
Rivera-Marrero S, Bencomo-Martínez A, Orta Salazar E, Sablón-Carrazana M, García-Pupo L, Zoppolo F, Arredondo F, Dapueto R, Daniela Santi M, Kreimerman I, Pardo T, Reyes L, Galán L, León-Chaviano S, Espinosa-Rodríguez LA, Menéndez-Soto Del Valle R, Savio E, Díaz Cintra S, Rodríguez-Tanty C. A new naphthalene derivative with anti-amyloidogenic activity as potential therapeutic agent for Alzheimer's disease. Bioorg Med Chem 2020; 28:115700. [PMID: 33069076 DOI: 10.1016/j.bmc.2020.115700] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 08/04/2020] [Indexed: 11/24/2022]
Abstract
The aggregation of β-amyloid peptides is associated to neurodegeneration in Alzheimer's disease (AD) patients. Consequently, the inhibition of both oligomerization and fibrillation of β-amyloid peptides is considered a plausible therapeutic approach for AD. Herein, the synthesis of new naphthalene derivatives and their evaluation as anti-β-amyloidogenic agents are presented. Molecular dynamic simulations predicted the formation of thermodynamically stable complexes between the compounds, the Aβ1-42 peptide and fibrils. In human microglia cells, these compounds inhibited the aggregation of Aβ1-42 peptide. The lead compound 8 showed a high affinity to amyloid plaques in mice brain ex vivo assays and an adequate log Poct/PBS value. Compound 8 also improved the cognitive function and decreased hippocampal β-amyloid burden in the brain of 3xTg-AD female mice. Altogether, our results suggest that 8 could be a novel therapeutic agent for AD.
Collapse
Affiliation(s)
- Suchitil Rivera-Marrero
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Alberto Bencomo-Martínez
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Erika Orta Salazar
- Institute of Neurobiology (INB), Developmental Neurobiology and Neurophysiology, UNAM Juriquilla Querétaro, Mexico
| | - Marquiza Sablón-Carrazana
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Laura García-Pupo
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Florencia Zoppolo
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Florencia Arredondo
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Rosina Dapueto
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - María Daniela Santi
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Ingrid Kreimerman
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Tania Pardo
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Laura Reyes
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Lídice Galán
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Samila León-Chaviano
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Luis A Espinosa-Rodríguez
- Center of Genetic Engineering and Biotechnology (CIGB), Ave 31 e/ 158 and 190, Havana, CP10600, Cuba
| | - Roberto Menéndez-Soto Del Valle
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba
| | - Eduardo Savio
- Biomedical and Pharmaceutical Chemistry, Uruguayan Centre of Molecular Imaging (CUDIM), Montevideo, Uruguay
| | - Sofía Díaz Cintra
- Institute of Neurobiology (INB), Developmental Neurobiology and Neurophysiology, UNAM Juriquilla Querétaro, Mexico.
| | - Chryslaine Rodríguez-Tanty
- Department of Neurochemistry, Cuban Center for Neurosciences, Street. 190 e/ 25 and 27, Cubanacan, Playa, Havana, CP 11600, Cuba.
| |
Collapse
|
14
|
Vadukul DM, Maina M, Franklin H, Nardecchia A, Serpell LC, Marshall KE. Internalisation and toxicity of amyloid-β 1-42 are influenced by its conformation and assembly state rather than size. FEBS Lett 2020; 594:3490-3503. [PMID: 32871611 DOI: 10.1002/1873-3468.13919] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/30/2020] [Accepted: 08/19/2020] [Indexed: 01/18/2023]
Abstract
Amyloid fibrils found in plaques in Alzheimer's disease (AD) brains are composed of amyloid-β peptides. Oligomeric amyloid-β 1-42 (Aβ42) is thought to play a critical role in neurodegeneration in AD. Here, we determine how size and conformation affect neurotoxicity and internalisation of Aβ42 assemblies using biophysical methods, immunoblotting, toxicity assays and live-cell imaging. We report significant cytotoxicity of Aβ42 oligomers and their internalisation into neurons. In contrast, Aβ42 fibrils show reduced internalisation and no toxicity. Sonicating Aβ42 fibrils generates species similar in size to oligomers but remains nontoxic. The results suggest that Aβ42 oligomers have unique properties that underlie their neurotoxic potential. Furthermore, we show that incubating cells with Aβ42 oligomers for 24 h is sufficient to trigger irreversible neurotoxicity.
Collapse
Affiliation(s)
- Devkee M Vadukul
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK.,CEMO-Alzheimer Dementia group, Institute of Neuroscience, Université catholique de Louvain, Brussels, Belgium
| | - Mahmoud Maina
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK.,College of Medical Sciences, Yobe State University, Nigeria
| | - Hannah Franklin
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK
| | - Astrid Nardecchia
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK
| | - Louise C Serpell
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK
| | - Karen E Marshall
- Dementia Research group, Sussex Neuroscience, School of Life Sciences, University of Sussex, Falmer, E Sussex, UK
| |
Collapse
|
15
|
Lee AY, Choi JM, Lee YA, Shin SH, Cho EJ. Beneficial effect of black rice ( Oryza sativa L. var. japonica ) extract on amyloid β-induced cognitive dysfunction in a mouse model. Exp Ther Med 2020; 20:64. [PMID: 32963594 DOI: 10.3892/etm.2020.9192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/29/2020] [Indexed: 12/29/2022] Open
Abstract
Alzheimer's disease (AD) is an age-dependent progressive neurodegenerative disease, resulting in memory loss and cognitive dysfunction. The accumulation of amyloid β (Aβ) has been identified as the most important risk factor for AD. Black rice (BR; Oryza sativa L. var. japonica), which is widely consumed in Asia, is a good source of bioactive compounds including anthocyanins. Therefore, the aim of the present study was to evaluate the protective effect of BR extracts against Aβ25-35-induced memory impairment in an in vivo AD mouse model. After intracerebroventricular injection of Aβ25-35, mice were treated with BR extract supplementation for 14 days. Memory and cognition function were evaluated over this period in both treated and untreated animals using T-maze, novel object recognition and Morris water maze tests. After behavioral tests, malondialdehyde (MDA) and nitric oxide (NO) concentrations in brain, liver and kidney tissues were analyzed. Mice treated with Aβ25-35 had impaired memory and cognitive function; however, mice administered BR extract (100 mg/kg/day) demonstrated an improvement in cognition and memory function compared with the Aβ25-35-injected control group. Furthermore, injection of Aβ25-35 significantly increased MDA and NO generation in the brain, liver and kidney of mice. However, the group administered with BR extract had significantly inhibited lipid peroxidation and NO generation in the brain, liver and kidney. In addition, the protective effect of BR on lipid peroxidation and NO production by Aβ25-35 was stronger in the brain compared with other tissues. Collectively, these findings suggested that BR supplementation may prevent memory and cognition deficits caused by Aβ25-35-induced oxidative stress.
Collapse
Affiliation(s)
- Ah Young Lee
- Department of Food Science, Gyeongnam National University of Science and Technology, Jinju 52725, Republic of Korea
| | - Ji Myung Choi
- Department of Food Science and Nutrition, Research Institute of Ecology, Pusan National University, Busan 46241, Republic of Korea
| | - Young A Lee
- Department of Food Science and Nutrition, Catholic University of Daegu, Gyeongsan 38430, Republic of Korea
| | - Seon Hwa Shin
- Department of Food Science and Nutrition, Research Institute of Ecology, Pusan National University, Busan 46241, Republic of Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition, Research Institute of Ecology, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
16
|
Foley AR, Raskatov JA. Assessing Reproducibility in Amyloid β Research: Impact of Aβ Sources on Experimental Outcomes. Chembiochem 2020; 21:2425-2430. [PMID: 32249510 PMCID: PMC7647053 DOI: 10.1002/cbic.202000125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/04/2020] [Indexed: 12/16/2022]
Abstract
The difficulty of synthesizing and purifying the amyloid β (Aβ) peptide, combined with its high aggregation propensity and low solubility under physiological conditions, leads to a wide variety of experimental results from kinetic assays to biological activity. Thus, it becomes challenging to reproduce outcomes, and this limits our ability to rely on reported results as the foundation for new research. This article examines variability of the Aβ peptide from different sources, comparing purity, and oligomer and fibril formation propensity side by side. The results highlight the importance of performing rigorous controls so that meaningful biophysical, biochemical, and neurobiological results can be obtained to improve our understanding on Aβ.
Collapse
Affiliation(s)
- Alejandro R Foley
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| | - Jevgenij A Raskatov
- Department of Chemistry and Biochemistry, University of California Santa Cruz, 1156 High Street, Santa Cruz, CA, 95064, USA
| |
Collapse
|
17
|
Bera S, Gayen N, Mohid SA, Bhattacharyya D, Krishnamoorthy J, Sarkar D, Choi J, Sahoo N, Mandal AK, Lee D, Bhunia A. Comparison of Synthetic Neuronal Model Membrane Mimics in Amyloid Aggregation at Atomic Resolution. ACS Chem Neurosci 2020; 11:1965-1977. [PMID: 32492332 DOI: 10.1021/acschemneuro.0c00166] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Alzheimer's disease (AD) is a severe neurodegenerative disorder caused by abnormal accumulation of toxic amyloid plaques of the amyloid-beta (Aβ) or the tau proteins in the brain. The plaque deposition leading to the collapse of the cellular integrity is responsible for a myriad of surface phenomena acting at the neuronal lipid interface. Recent years have witnessed dysfunction of the blood-brain barriers (BBB) associated with AD. Several studies support the idea that BBB acts as a platform for the formation of misfolded Aβ peptide, promoting oligomerization and fibrillation, compromising the overall integrity of the central nervous system. While the amyloid plaque deposition has been known to be responsible for the collapse of the BBB membrane integrity, the causal effect relationship between BBB and Aβ amyloidogenesis remains unclear. In this study, we have used physiologically relevant synthetic model membrane systems to gain atomic insight into the functional aspects of the lipid interface. Here, we have used a minimalist BBB mimic, POPC/POPG/cholesterol/GM1, to compare with the native BBB (total lipid brain extract (TLBE)), to understand the molecular events occurring in the membrane-induced Aβ40 amyloid aggregation. Our study showed that the two membrane models accelerated the Aβ40 aggregation kinetics with differential secondary structural transitions of the peptide. The observed structural transitions are defined by the lipid compositions, which in turn undermines the differences in lipid surface phenomena, leading to peptide induced cellular toxicity in the neuronal membrane.
Collapse
Affiliation(s)
- Swapna Bera
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Nilanjan Gayen
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - Sk. Abdul Mohid
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | | | | | - Dibakar Sarkar
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| | - Jihye Choi
- Department of Fine Chemistry & Convergence Institute of Biomedical and Biomaterials, Seoul National University of Science and Technology, Seoul 139-743, Korea
| | - Nirakar Sahoo
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, Texas 78539, United States
| | - Atin K. Mandal
- Division of Molecular Medicine, Bose Institute, Kolkata 700054, India
| | - DongKuk Lee
- Department of Fine Chemistry & Convergence Institute of Biomedical and Biomaterials, Seoul National University of Science and Technology, Seoul 139-743, Korea
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Kolkata 700054, India
| |
Collapse
|
18
|
Fontana IC, Zimmer AR, Rocha AS, Gosmann G, Souza DO, Lourenco MV, Ferreira ST, Zimmer ER. Amyloid-β oligomers in cellular models of Alzheimer's disease. J Neurochem 2020; 155:348-369. [PMID: 32320074 DOI: 10.1111/jnc.15030] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 03/21/2020] [Accepted: 04/17/2020] [Indexed: 12/22/2022]
Abstract
Amyloid-β (Aβ) dysmetabolism is tightly associated with pathological processes in Alzheimer's disease (AD). Currently, it is thought that, in addition to Aβ fibrils that give rise to plaque formation, Aβ aggregates into non-fibrillar soluble oligomers (AβOs). Soluble AβOs have been extensively studied for their synaptotoxic and neurotoxic properties. In this review, we discuss physicochemical properties of AβOs and their impact on different brain cell types in AD. Additionally, we summarize three decades of studies with AβOs, providing a compelling bulk of evidence regarding cell-specific mechanisms of toxicity. Cellular models may lead us to a deeper understanding of the detrimental effects of AβOs in neurons and glial cells, putatively shedding light on the development of innovative therapies for AD.
Collapse
Affiliation(s)
- Igor C Fontana
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Biochemistry, UFRGS, Porto Alegre, Brazil
| | - Aline R Zimmer
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Andreia S Rocha
- Graduate Program in Biological Sciences: Biochemistry, UFRGS, Porto Alegre, Brazil
| | - Grace Gosmann
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
| | - Diogo O Souza
- Graduate Program in Biological Sciences: Biochemistry, UFRGS, Porto Alegre, Brazil.,Department of Biochemistry, UFRGS, Porto Alegre, Brazil
| | - Mychael V Lourenco
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Sergio T Ferreira
- Institute of Medical Biochemistry Leopoldo de Meis, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.,Institute of Biophysics Carlos Chagas Filho, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Eduardo R Zimmer
- Graduate Program in Biological Sciences: Biochemistry, UFRGS, Porto Alegre, Brazil.,Department of Pharmacology, UFRGS, Porto Alegre, Brazil.,Graduate Program in Biological Sciences: Pharmacology and Therapeutics,, UFRGS, Porto Alegre, Brazil
| |
Collapse
|
19
|
Kravenska Y, Nieznanska H, Nieznanski K, Lukyanetz E, Szewczyk A, Koprowski P. The monomers, oligomers, and fibrils of amyloid-β inhibit the activity of mitoBK Ca channels by a membrane-mediated mechanism. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183337. [PMID: 32380169 DOI: 10.1016/j.bbamem.2020.183337] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/25/2020] [Accepted: 04/28/2020] [Indexed: 02/08/2023]
Abstract
A causative agent of Alzheimer's disease (AD) is a short amphipathic peptide called amyloid beta (Aβ). Aβ monomers undergo structural changes leading to their oligomerization or fibrillization. The monomers as well as all aggregated forms of Aβ, i.e., oligomers, and fibrils, can bind to biological membranes, thereby modulating membrane mechanical properties. It is also known that some isoforms of the large-conductance calcium-activated potassium (BKCa) channel, including the mitochondrial BKCa (mitoBKCa) channel, respond to mechanical changes in the membrane. Here, using the patch-clamp technique, we investigated the impact of full-length Aβ (Aβ1-42) and its fragment, Aβ25-35, on the activity of mitoBKCa channels. We found that all forms of Aβ inhibited the activity of the mitoBKCa channel in a concentration-dependent manner. Since monomers, oligomers, and fibrils of Aβ exhibit different molecular characteristics and structures, we hypothesized that the inhibition was not due to direct peptide-protein interactions but rather to membrane-binding of the Aβ peptides. Our findings supported this hypothesis by showing that Aβ peptides block mitoBKCa channels irrespective of the side of the membrane to which they are applied. In addition, we found that the enantiomeric peptide, D-Aβ1-42, demonstrated similar inhibitory activity towards mitoBKCa channels. As a result, we proposed a general model in which all Aβ forms i.e., monomers, oligomers, and amyloid fibrils, contribute to the progression of AD by exerting a modulatory effect on mechanosensitive membrane components.
Collapse
Affiliation(s)
- Yevheniia Kravenska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland; Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology NASU, Bogomoletz str. 4, Kyiv 01-024, Ukraine.
| | - Hanna Nieznanska
- Laboratory of Electron Microscopy, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Krzysztof Nieznanski
- Laboratory of Molecular Basis of Cell Motility, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Elena Lukyanetz
- Department of Biophysics of Ion Channels, Bogomoletz Institute of Physiology NASU, Bogomoletz str. 4, Kyiv 01-024, Ukraine
| | - Adam Szewczyk
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| | - Piotr Koprowski
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology PAS, Pasteura str. 3, Warsaw 02-093, Poland
| |
Collapse
|
20
|
Xie Q, Liang G, Lin T, Chen F, Wang D, Yang B. Selective chelating precipitation of palladium metal from electroplating wastewater using chitosan and its derivative. ADSORPT SCI TECHNOL 2020. [DOI: 10.1177/0263617420918729] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
A study on selective chelating precipitation of palladium metal from real electroplating wastewater using chitosan and its water-soluble derivative was conducted. The pH parameter, the concentrations of chitosan and its water-soluble derivative and the chelating precipitation time were experimentally investigated, and the optimum conditions were determined. The results revealed that both chitosan and its water-soluble derivative acted as chelating precipitation agents. Rapid chelating precipitation occurred when chitosan was added to real electroplating wastewater containing the chitosan derivative, thereby improving removal efficiency of palladium in different forms up to 95% under the optimum condition of 0.2 g/L chitosan and 0.16 mg/L derivative at pH 2.5. Then, dissolution experiments showed that chelating precipitation products could be dissolved in aqua regia. Additionally, selective chelating precipitation of palladium by chitosan and its derivative was characterized using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. Thus, it can be concluded that the combined utilization of chitosan and its water-soluble derivative is a promising approach method for the removal of different forms of palladium from real electroplating wastewater.
Collapse
Affiliation(s)
| | - Gaojie Liang
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, China; Shenzhen Key Laboratory of Separation Technology, Shenzhen, China
| | - Tao Lin
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| | | | - Dandan Wang
- Research Institute of Tsinghua University in Shenzhen, Shenzhen, China; Shenzhen Key Laboratory of Separation Technology, Shenzhen, China
| | - Bo Yang
- Department of Environmental Engineering, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, China
| |
Collapse
|
21
|
Kawahara M, Kato-Negishi M, Tanaka KI. Amyloids: Regulators of Metal Homeostasis in the Synapse. Molecules 2020; 25:molecules25061441. [PMID: 32210005 PMCID: PMC7145306 DOI: 10.3390/molecules25061441] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/17/2020] [Accepted: 03/20/2020] [Indexed: 12/11/2022] Open
Abstract
Conformational changes in amyloidogenic proteins, such as β-amyloid protein, prion proteins, and α-synuclein, play a critical role in the pathogenesis of numerous neurodegenerative diseases, including Alzheimer’s disease, prion disease, and Lewy body disease. The disease-associated proteins possess several common characteristics, including the ability to form amyloid oligomers with β-pleated sheet structure, as well as cytotoxicity, although they differ in amino acid sequence. Interestingly, these amyloidogenic proteins all possess the ability to bind trace metals, can regulate metal homeostasis, and are co-localized at the synapse, where metals are abundantly present. In this review, we discuss the physiological roles of these amyloidogenic proteins in metal homeostasis, and we propose hypothetical models of their pathogenetic role in the neurodegenerative process as the loss of normal metal regulatory functions of amyloidogenic proteins. Notably, these amyloidogenic proteins have the capacity to form Ca2+-permeable pores in membranes, suggestive of a toxic gain of function. Therefore, we focus on their potential role in the disruption of Ca2+ homeostasis in amyloid-associated neurodegenerative diseases.
Collapse
|
22
|
McAllister BB, Lacoursiere SG, Sutherland RJ, Mohajerani MH. Intracerebral seeding of amyloid-β and tau pathology in mice: Factors underlying prion-like spreading and comparisons with α-synuclein. Neurosci Biobehav Rev 2020; 112:1-27. [PMID: 31996301 DOI: 10.1016/j.neubiorev.2020.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 01/15/2020] [Accepted: 01/21/2020] [Indexed: 01/08/2023]
Abstract
Alzheimer's disease (AD) is characterized neuropathologically by progressive neurodegeneration and by the presence of amyloid plaques and neurofibrillary tangles. These plaques and tangles are composed, respectively, of amyloid-beta (Aβ) and tau proteins. While long recognized as hallmarks of AD, it remains unclear what causes the formation of these insoluble deposits. One theory holds that prion-like templated misfolding of Aβ and tau induces these proteins to form pathological aggregates, and propagation of this misfolding causes the stereotyped progression of pathology commonly seen in AD. Supporting this theory, numerous studies have been conducted in which aggregated Aβ, tau, or α-synuclein is injected intracerebrally into pathology-free host animals, resulting in robust formation of pathology. Here, we review this literature, focusing on in vivo intracerebral seeding of Aβ and tau in mice. We compare the results of these experiments to what is known about the seeding and spread of α-synuclein pathology, and we discuss how this research informs our understanding of the factors underlying the onset, progression, and outcomes of proteinaceous pathologies.
Collapse
Affiliation(s)
- Brendan B McAllister
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Sean G Lacoursiere
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada
| | - Robert J Sutherland
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, T1K 3M4, Canada.
| |
Collapse
|
23
|
Kosenko E, Tikhonova L, Alilova G, Urios A, Montoliu C. The Erythrocytic Hypothesis of Brain Energy Crisis in Sporadic Alzheimer Disease: Possible Consequences and Supporting Evidence. J Clin Med 2020; 9:jcm9010206. [PMID: 31940879 PMCID: PMC7019250 DOI: 10.3390/jcm9010206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/24/2022] Open
Abstract
Alzheimer’s disease (AD) is a fatal form of dementia of unknown etiology. Although amyloid plaque accumulation in the brain has been the subject of intensive research in disease pathogenesis and anti-amyloid drug development; the continued failures of the clinical trials suggest that amyloids are not a key cause of AD and new approaches to AD investigation and treatment are needed. We propose a new hypothesis of AD development based on metabolic abnormalities in circulating red blood cells (RBCs) that slow down oxygen release from RBCs into brain tissue which in turn leads to hypoxia-induced brain energy crisis; loss of neurons; and progressive atrophy preceding cognitive dysfunction. This review summarizes current evidence for the erythrocytic hypothesis of AD development and provides new insights into the causes of neurodegeneration offering an innovative way to diagnose and treat this systemic disease.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia; (L.T.); (G.A.)
- Correspondence: or ; Tel.: +7-4967-73-91-68
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia; (L.T.); (G.A.)
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, Pushchino 142290, Russia; (L.T.); (G.A.)
| | - Amparo Urios
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain; (A.U.); (C.M.)
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain; (A.U.); (C.M.)
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
24
|
Role of Catalase in Oxidative Stress- and Age-Associated Degenerative Diseases. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9613090. [PMID: 31827713 PMCID: PMC6885225 DOI: 10.1155/2019/9613090] [Citation(s) in RCA: 546] [Impact Index Per Article: 91.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 06/18/2019] [Accepted: 08/14/2019] [Indexed: 12/22/2022]
Abstract
Reactive species produced in the cell during normal cellular metabolism can chemically react with cellular biomolecules such as nucleic acids, proteins, and lipids, thereby causing their oxidative modifications leading to alterations in their compositions and potential damage to their cellular activities. Fortunately, cells have evolved several antioxidant defense mechanisms (as metabolites, vitamins, and enzymes) to neutralize or mitigate the harmful effect of reactive species and/or their byproducts. Any perturbation in the balance in the level of antioxidants and the reactive species results in a physiological condition called “oxidative stress.” A catalase is one of the crucial antioxidant enzymes that mitigates oxidative stress to a considerable extent by destroying cellular hydrogen peroxide to produce water and oxygen. Deficiency or malfunction of catalase is postulated to be related to the pathogenesis of many age-associated degenerative diseases like diabetes mellitus, hypertension, anemia, vitiligo, Alzheimer's disease, Parkinson's disease, bipolar disorder, cancer, and schizophrenia. Therefore, efforts are being undertaken in many laboratories to explore its use as a potential drug for the treatment of such diseases. This paper describes the direct and indirect involvement of deficiency and/or modification of catalase in the pathogenesis of some important diseases such as diabetes mellitus, Alzheimer's disease, Parkinson's disease, vitiligo, and acatalasemia. Details on the efforts exploring the potential treatment of these diseases using a catalase as a protein therapeutic agent have also been described.
Collapse
|
25
|
Doens D, Valdés-Tresanco ME, Vasquez V, Carreira MB, De La Guardia Y, Stephens DE, Nguyen VD, Nguyen VT, Gu J, Hegde ML, Larionov OV, Valiente PA, Lleonart R, Fernández PL. Hexahydropyrrolo[2,3- b]indole Compounds as Potential Therapeutics for Alzheimer's Disease. ACS Chem Neurosci 2019; 10:4250-4263. [PMID: 31545596 DOI: 10.1021/acschemneuro.9b00297] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia among the elderly and has become a leading public health concern worldwide. It represents a huge economic and psychological burden to caregivers and families. The presence of extracellular amyloid beta (Aβ) plaques is one of the hallmarks of this neurodegenerative disorder. Amyloid plaques are comprised of aggregates of Aβ peptides, mainly Aβ42, originated by the cleavage of the amyloid precursor protein (APP). Aβ is a crucial target for the treatment of AD, but to date, no effective treatment for the clearance of Aβ has been found. We have identified four new hexahydropyrroloindoles (HPI) synthetic compounds that are able to inhibit the aggregation of Aβ42 and/or disaggregate the fibril. Docking experiments suggest that the nonpolar component of the interaction of compounds with Aβ42 contributes favorably to the binding free energy of each complex. Molecular dynamics simulations suggested fibril disaggregating activity of compounds 1 via interaction with hydrophobic moieties of the fibril. Consistently, compounds 1 and 2 were able to mitigate Aβ42 fibrils induced death in rat pheochromocytoma cells (PC 12). One of the compounds reduces the formation of Aβ aggregates in vivo and the paralysis associated with Aβ toxicity in Caenorhabditis elegans. Our study thus augments efforts for the identification and characterization of new agents that may help stop or delay the progression of AD.
Collapse
Affiliation(s)
- Deborah Doens
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge Edif #208, Panama 0843-01103, Panama
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh 522510, India
| | - Mario E. Valdés-Tresanco
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 No. 455, Vedado, La Habana, Cuba
| | - Velmarini Vasquez
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur, Andhra Pradesh 522510, India
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Maria Beatriz Carreira
- Centro de Neurociencias, INDICASAT-AIP, City of Knowledge Edif #208, Panama, 0843-01103, Panama
| | - Yila De La Guardia
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge Edif #208, Panama 0843-01103, Panama
| | - David E. Stephens
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Viet D. Nguyen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Vu T. Nguyen
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Jianhua Gu
- AFM SEM Core, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Muralidhar L. Hegde
- Department of Radiation Oncology, Houston Methodist Research Institute, Houston, Texas 77030, United States
| | - Oleg V. Larionov
- Department of Chemistry, University of Texas at San Antonio, One UTSA Circle, San Antonio, Texas 78249, United States
| | - Pedro A. Valiente
- Centro de Estudios de Proteínas, Facultad de Biología, Universidad de La Habana, Calle 25 No. 455, Vedado, La Habana, Cuba
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge Edif #208, Panama 0843-01103, Panama
| | - Patricia L. Fernández
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT-AIP), City of Knowledge Edif #208, Panama 0843-01103, Panama
| |
Collapse
|
26
|
Tian X, Xie B, Zou Z, Jiao Y, Lin LE, Chen CL, Hsu CC, Peng J, Yang Z. Multimodal Imaging of Amyloid Plaques: Fusion of the Single-Probe Mass Spectrometry Image and Fluorescence Microscopy Image. Anal Chem 2019; 91:12882-12889. [PMID: 31536324 PMCID: PMC6885010 DOI: 10.1021/acs.analchem.9b02792] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alzheimer's disease (AD) is one of the most common neurodegenerative diseases. The formation of amyloid plaques by aggregated amyloid beta (Aβ) peptides is a primary event in AD pathology. Understanding the metabolomic features and related pathways is critical for studying plaque-related pathological events (e.g., cell death and neuron dysfunction). Mass spectrometry imaging (MSI), due to its high sensitivity and ability to obtain the spatial distribution of metabolites, has been applied to AD studies. However, limited studies of metabolites in amyloid plaques have been performed due to the drawbacks of the commonly used techniques such as matrix-assisted laser desorption/ionization MSI. In the current study, we obtained high spatial resolution (∼17 μm) MS images of the AD mouse brain using the Single-probe, a microscale sampling and ionization device, coupled to a mass spectrometer under ambient conditions. The adjacent slices were used to obtain fluorescence microscopy images to locate amyloid plaques. The MS image and the fluorescence microscopy image were fused to spatially correlate histological protein hallmarks with metabolomic features. The fused images produced significantly improved spatial resolution (∼5 μm), allowing for the determination of fine structures in MS images and metabolomic biomarkers representing amyloid plaques.
Collapse
Affiliation(s)
- Xiang Tian
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Boer Xie
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Zhu Zou
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yun Jiao
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Li-En Lin
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Chih-Lin Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Cheng-Chih Hsu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, Tennessee 38105, United States
| | - Zhibo Yang
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
27
|
Flavanone glycosides inhibit β-site amyloid precursor protein cleaving enzyme 1 and cholinesterase and reduce Aβ aggregation in the amyloidogenic pathway. Chem Biol Interact 2019; 309:108707. [DOI: 10.1016/j.cbi.2019.06.020] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 05/24/2019] [Accepted: 06/10/2019] [Indexed: 12/16/2022]
|
28
|
Singh SK, Srivastav S, Castellani RJ, Plascencia-Villa G, Perry G. Neuroprotective and Antioxidant Effect of Ginkgo biloba Extract Against AD and Other Neurological Disorders. Neurotherapeutics 2019; 16:666-674. [PMID: 31376068 PMCID: PMC6694352 DOI: 10.1007/s13311-019-00767-8] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Alzheimer's disease (AD) is the most common progressive human neurodegenerative disorder affecting elderly population worldwide. Hence, prevention of AD has been a priority of AD research worldwide. Based on understanding of disease mechanism, different therapeutic strategies involving synthetic and herbal approaches are being used against AD. Among the herbal extract, Ginkgo biloba extract (GBE) is one of the most investigated herbal remedy for cognitive disorders and Alzheimer's disease (AD). Standardized extract of Ginkgo biloba is a popular dietary supplement taken by the elderly population to improve memory and age-related loss of cognitive function. Nevertheless, its efficacy in the prevention and treatment of dementia remains controversial. Specifically, the added effects of GBE in subjects already receiving "conventional" anti-dementia treatments have been to date very scarcely investigated. This review summarizes recent advancements in our understanding of the potential use of Ginkgo biloba extract in the prevention of AD including its antioxidant property. A better understanding of the mechanisms of action of GBE against AD will be important for designing therapeutic strategies, for basic understanding of the underlying neurodegenerative processes, and for a better understanding of the effectiveness and complexity of this herbal medicine.
Collapse
Affiliation(s)
- Sandeep Kumar Singh
- Indian Scientific Education and Technology Foundation, Lucknow, 226002, India.
| | - Saurabh Srivastav
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | - George Perry
- College of Sciences, The University of Texas at San Antonio, San Antonio, TX, USA.
| |
Collapse
|
29
|
Paul S, Paul S. Molecular dynamics simulation study on the inhibitory effects of choline-O-sulfate on hIAPP protofibrilation. J Comput Chem 2019; 40:1957-1968. [PMID: 31062393 DOI: 10.1002/jcc.25851] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 04/10/2019] [Accepted: 04/16/2019] [Indexed: 11/06/2022]
Abstract
Type 2 diabetes mellitus (T2Dm) is a neurodegenerative disease, which occurs due to the self-association of human islet amyloid polypeptide (hIAPP), also known as human amylin. It was reported experimentally that choline-O-sulfate (COS), a small organic molecule having a tertiary amino group and sulfate group, can prevent the aggregation of human amylin without providing the mechanism of the action of COS in the inhibition process. In this work, we investigate the influence of COS on the full-length hIAPP peptide by performing 500 ns classical molecular dynamics simulations. From pure water simulation (without COS), we have identified the residues 11-20 and 23-36 that mainly participate in the fibril formation, but in the presence of 1.07 M COS these residues become totally free of β-sheet conformation. Our results also show that the sulfate oxygen of COS directly interacts with the peptide backbone, which leads to the local disruption of peptide-peptide interaction. Moreover, the presence of favorable peptide-COS vdW interaction energy and high coordination number of COS molecules in the first solvation shell of the peptide indicates the hydrophobic solvation of the peptide residues by COS molecules, which also play a crucial role in the prevention of β-sheet formation. Finally, from the potential of mean force (PMFs) calculations, we observe that the free energy between two peptides is more negative in the absence of COS and with increasing concentration of COS, it becomes unfavorable significantly indicating that the peptide dimer formation is most stable in pure water, which becomes less favorable in the presence of COS. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Srijita Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| | - Sandip Paul
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India 781039
| |
Collapse
|
30
|
Tywoniuk B, Yuan Y, McCartan S, Szydłowska BM, Tofoleanu F, Brooks BR, Buchete NV. Amyloid Fibril Design: Limiting Structural Polymorphism in Alzheimer's Aβ Protofilaments. J Phys Chem B 2018; 122:11535-11545. [PMID: 30335383 DOI: 10.1021/acs.jpcb.8b07423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nanoscale fibrils formed by amyloid peptides have a polymorphic character, adopting several types of molecular structures in similar growth conditions. As shown by experimental (e.g., solid-state NMR) and computational studies, amyloid fibril polymorphism hinders both the structural characterization of Alzheimer's Aβ amyloid protofilaments and fibrils at a molecular level, as well as the possible applications (e.g., development of drugs or biomarkers) that rely on similar, controlled molecular arrangements of the Aβ peptides in amyloid fibril structures. We have explored the use of several contact potentials for the efficient identification of minimal sequence mutations that could enhance the stability of specific fibril structures while simultaneously destabilizing competing topologies, controlling thus the amount of structural polymorphism in a rational way. We found that different types of contact potentials, while having only partial accuracy on their own, lead to similar results regarding ranking the compatibility of wild-type (WT) and mutated amyloid sequences with different fibril morphologies. This approach allows exhaustive screening and assessment of possible mutations and the identification of minimal consensus mutations that could stabilize fibrils with the desired topology at the expense of other topology types, a prediction that is further validated using atomistic molecular dynamics with explicit water molecules. We apply this two-step multiscale (i.e., residue and atomistic-level) approach to predict and validate mutations that could bias either parallel or antiparallel packing in the core Alzheimer's Aβ9-40 amyloid fibril models based on solid-state NMR experiments. Besides shedding new light on the molecular origins of structural polymorphism in WT Aβ fibrils, our study could also lead to efficient tools for assisting future experimental approaches for amyloid fibril determination, and for the development of biomarkers or drugs aimed at interfering with the stability of amyloid fibrils, as well as for the future design of amyloid fibrils with a controlled (e.g., reduced) level of structural polymorphism.
Collapse
Affiliation(s)
- Bartłomiej Tywoniuk
- School of Physics , University College Dublin , Dublin D04 V1W8 , Ireland.,Institute for Discovery , University College Dublin , Dublin D04 V1W8 , Ireland
| | - Ye Yuan
- School of Physics , University College Dublin , Dublin D04 V1W8 , Ireland.,Institute for Discovery , University College Dublin , Dublin D04 V1W8 , Ireland
| | - Sarah McCartan
- School of Physics , University College Dublin , Dublin D04 V1W8 , Ireland.,Institute for Discovery , University College Dublin , Dublin D04 V1W8 , Ireland
| | - Beata Maria Szydłowska
- Applied Physical Chemistry , Ruprecht-Karls University Heidelberg , Heidelberg 69120 , Germany.,Institute of Physics, EIT 2 , Universität der Bundeswehr München , Werner-Heisenberg-Weg 39 , 85577 Neubiberg , Germany
| | - Florentina Tofoleanu
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States.,Department of Chemistry , Yale University , New Haven , Connecticut 06520 , United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung, and Blood Institute , National Institutes of Health , Bethesda , Maryland 20892 , United States
| | - Nicolae-Viorel Buchete
- School of Physics , University College Dublin , Dublin D04 V1W8 , Ireland.,Institute for Discovery , University College Dublin , Dublin D04 V1W8 , Ireland
| |
Collapse
|
31
|
Abstract
BACKGROUND Ageing can be classified in two different ways, chronological ageing and biological ageing. While chronological age is a measure of the time that has passed since birth, biological (also known as transcriptomic) ageing is defined by how time and the environment affect an individual in comparison to other individuals of the same chronological age. Recent research studies have shown that transcriptomic age is associated with certain genes, and that each of those genes has an effect size. Using these effect sizes we can calculate the transcriptomic age of an individual from their age-associated gene expression levels. The limitation of this approach is that it does not consider how these changes in gene expression affect the metabolism of individuals and hence their observable cellular phenotype. RESULTS We propose a method based on poly-omic constraint-based models and machine learning in order to further the understanding of transcriptomic ageing. We use normalised CD4 T-cell gene expression data from peripheral blood mononuclear cells in 499 healthy individuals to create individual metabolic models. These models are then combined with a transcriptomic age predictor and chronological age to provide new insights into the differences between transcriptomic and chronological ageing. As a result, we propose a novel metabolic age predictor. CONCLUSIONS We show that our poly-omic predictors provide a more detailed analysis of transcriptomic ageing compared to gene-based approaches, and represent a basis for furthering our knowledge of the ageing mechanisms in human cells.
Collapse
Affiliation(s)
- Elisabeth Yaneske
- Department of Computer Science and Information Systems, Teesside University, Borough Road, Middlesbrough, UK
| | - Claudio Angione
- Department of Computer Science and Information Systems, Teesside University, Borough Road, Middlesbrough, UK
| |
Collapse
|
32
|
Gan SY, Wong LZ, Wong JW, Tan EL. Fucosterol exerts protection against amyloid β-induced neurotoxicity, reduces intracellular levels of amyloid β and enhances the mRNA expression of neuroglobin in amyloid β-induced SH-SY5Y cells. Int J Biol Macromol 2018; 121:207-213. [PMID: 30300695 DOI: 10.1016/j.ijbiomac.2018.10.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/01/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease that leads to progressive loss of neurons which often results in deterioration of memory and cognitive function. The development of AD is highly associated with the formation of senile plaques and neurofibrillary tangles. Amyloid β (Aβ) induces neurotoxicity and contributes to the development of AD. Recent evidences also highlighted the importance of neuroglobin (Ngb) in ameliorating AD. This study assessed the ability of fucosterol, a phytosterol found in brown alga, in protecting SH-SY5Y cells against Aβ-induced neurotoxicity. Its effects on the mRNA levels of APP and Ngb as well as the intracellular Aβ levels were also determined in Aβ-induced SH-SY5Y cells. SH-SY5Y cells were exposed to fucosterol prior to Aβ treatment. The effect on apoptosis was determined using Annexin V FITC staining and mRNA expression was studied using RT-PCR. Flow cytometry confirmed the protective effects of fucosterol on SH-SY5Y cells against Aβ-induced apoptosis. Pretreatment with fucosterol increased the Ngb mRNA levels but reduced the levels of APP mRNA and intracellular Aβ in Aβ-induced SH-SY5Y cells. These observations demonstrated the protective properties of fucosterol against Aβ-induced neurotoxicity in neuronal cells.
Collapse
Affiliation(s)
- Sook Yee Gan
- Department of Life Science, School of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia.
| | - Li Zhe Wong
- School of Postgraduate Studies, International Medical University, Jalan Jalil Perkasa 19, 57000 Kuala Lumpur, Malaysia
| | - Jia Wun Wong
- BPharm, School of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| | - Eng Lai Tan
- Department of Life Science, School of Pharmacy, International Medical University, 126 Jalan Jalil Perkasa 19, Bukit Jalil, 57000 Kuala Lumpur, Malaysia
| |
Collapse
|
33
|
Sadakane Y, Kawahara M. Implications of Metal Binding and Asparagine Deamidation for Amyloid Formation. Int J Mol Sci 2018; 19:ijms19082449. [PMID: 30126231 PMCID: PMC6121660 DOI: 10.3390/ijms19082449] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/10/2018] [Accepted: 08/14/2018] [Indexed: 12/17/2022] Open
Abstract
Increasing evidence suggests that amyloid formation, i.e., self-assembly of proteins and the resulting conformational changes, is linked with the pathogenesis of various neurodegenerative disorders such as Alzheimer’s disease, prion diseases, and Lewy body diseases. Among the factors that accelerate or inhibit oligomerization, we focus here on two non-genetic and common characteristics of many amyloidogenic proteins: metal binding and asparagine deamidation. Both reflect the aging process and occur in most amyloidogenic proteins. All of the amyloidogenic proteins, such as Alzheimer’s β-amyloid protein, prion protein, and α-synuclein, are metal-binding proteins and are involved in the regulation of metal homeostasis. It is widely accepted that these proteins are susceptible to non-enzymatic posttranslational modifications, and many asparagine residues of these proteins are deamidated. Moreover, these two factors can combine because asparagine residues can bind metals. We review the current understanding of these two common properties and their implications in the pathogenesis of these neurodegenerative diseases.
Collapse
Affiliation(s)
- Yutaka Sadakane
- Graduate School of Pharmaceutical Sciences, Suzuka University of Medical Science, Suzuka 513-8670, Japan.
| | - Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo, Tokyo 202-8585, Japan.
| |
Collapse
|
34
|
Li GZ, Liu F, Xu C, Li JY, Xu YJ. Selenium and Zinc against Aβ 25-35-Induced Cytotoxicity and Tau Phosphorylation in PC12 Cells and Inhibits γ-cleavage of APP. Biol Trace Elem Res 2018; 184:442-449. [PMID: 29081063 DOI: 10.1007/s12011-017-1162-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/20/2017] [Indexed: 12/31/2022]
Abstract
Amyloid beta (Aβ) is the main component of the amyloid plaques that accumulate in the brains of Alzheimer patients. The present study was conducted to investigate whether the combined treatment with selenium (Se) and zinc (Zn) offers more beneficial effects than that provided by either of them alone in reversing Aβ25-35-induced neurotoxicity in PC12 cells. Cells were pretreated with 0.1 μmol/L of Se and Zn for 4 h, after treated with 10 mmol/L Aβ25-35 for 24 h. Cells were divided into control and five treated groups, and received either 10 mmol/L Aβ25-35,10 mmol/L Aβ25-35 + 0.1 μmol/L Se, 10 mmol/L Aβ25-35 + 0.1 μmol/L Zn, 10 mmol/LAβ25-35 + 0.1 μmol/L Se + 0.1 μmol/L Zn, or 0.1 μmol/L Se + 0.1 μmol/L Zn. The result showed that cell viability was decreased in MTT metabolic rate; LDH release and MDA, H2O2, and NO levels were increased and the GSK-3β and phosphorylated tau protein level were increased in Aβ25-35-treated group (P < 0.05 or P < 0.01), which whole changes were attenuated by Se and Zn and Se combined Zn. In order to evaluate whether the Se and Zn have an effect on processing pathway of amyloid precursor protein (APP), we examined the activity of γ-secretase in primary cultured cortical neuron cells. ELISA analysis showed that Se and Zn could inhibit the activity of γ-secretase. Then we also investigated the effect of Se and Zn on the Aβ1-40 concentration and APP-N-terminal fragment expression from APP695 stably transfected Chinese hamster ovary (CHO) cells. APP695 stably transfected CHO cells were treated with 0.1 μmol/L Se and Zn; cells were divided into control and four treated groups, which received either 0.5 M DAPT, 0.1 μmol/L Se, 0.1 μmol/L Zn, or 0.1 μmol/L Se + 0.1 μmol/L Zn. Se and Zn could decrease Aβ1-40 production and increase the APP-N-terminal fragment protein expression. These experiments indicate that Se and Zn have a protective effect on AD pathology that a possible mechanism is inhibiting the activity of γ-secretase to decreasing Aβ1-40 production further influencing the APP processing. Altogether, our findings may provide a novel therapeutic target to treat AD sufferers.
Collapse
Affiliation(s)
- Guang-Zhe Li
- Department of Psychiatry, Yanbian Brain Hospital, Yanji, Jilin, 133000, China
| | - Fang Liu
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin, 133002, China
| | - Cui Xu
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin, 133002, China
| | - Jing-Yang Li
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin, 133002, China
| | - Yan-Ji Xu
- Department of Preventive Medicine, Medical College, Yanbian University, Yanji, Jilin, 133002, China.
| |
Collapse
|
35
|
Newfound effect of N-acetylaspartate in preventing and reversing aggregation of amyloid-beta in vitro. Neurobiol Dis 2018; 117:161-169. [PMID: 29859874 DOI: 10.1016/j.nbd.2018.05.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/11/2018] [Accepted: 05/30/2018] [Indexed: 12/23/2022] Open
Abstract
Although N-acetylaspartate (NAA) has long been recognized as the most abundant amino acid in neurons by far, its primary role has remained a mystery. Based on its unique tertiary structure, we explored the potential of NAA to modulate aggregation of amyloid-beta (Aβ) peptide 1-42 via multiple corroborating aggregation assays along with electron microscopy. Thioflavin-T fluorescence assay demonstrated that at physiological concentrations, NAA substantially inhibited the initiation of Aβ fibril formation. In addition, NAA added after 25 min of Aβ aggregation was shown to break up preformed fibrils. Electron microscopy analysis confirmed the absence of mature fibrils following NAA treatment. Furthermore, fluorescence correlation spectroscopy and dynamic light scattering measurements confirmed significant reductions in Aβ fibril hydrodynamic radius following treatment with NAA. These results suggest that physiological levels of NAA could play an important role in controlling Aβ aggregation in vivo where they are both found in the same neuronal compartments.
Collapse
|
36
|
Ng J, Kamm RD, Wohland T, Kraut RS. Evidence from ITIR-FCS Diffusion Studies that the Amyloid-Beta (Aβ) Peptide Does Not Perturb Plasma Membrane Fluidity in Neuronal Cells. J Mol Biol 2018; 430:3439-3453. [PMID: 29746852 DOI: 10.1016/j.jmb.2018.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 04/27/2018] [Accepted: 04/29/2018] [Indexed: 10/17/2022]
Abstract
The amyloid-beta (Aβ) peptide, commonly found in elevated levels in the brains of patients with Alzheimer's disease (AD) and in the cerebrospinal fluid of individuals presenting mild cognitive impairment, is thought to be one of the major factors resulting in the onset of AD. Although observed and studied at the molecular level for several decades, the exact disease pathology of AD is still not totally clear. One way in which Aβ is thought to affect neurons is by influencing cell membrane fluidity, which could result in abnormal synaptic or signaling function. The effects of Aβ on the fluidity of biological membranes have been studied using numerous membrane models such as artificial lipid bilayers and vesicles, living cells and membranes extracted from animal models of AD, yet there is still no consensus as to what effects Aβ has, if any, on membrane fluidity. As one of the most precise and accurate means of assaying membrane dynamics, we have thus chosen fluorescence correlation spectroscopy to investigate the issue, using fluorescent membrane-targeted probes on living cells treated with Aβ(1-42) oligomers and observing possible changes in membrane diffusion. Effects of Aβ on viability in different cell types varied from no detectable effect to extensive cell death by 72 h post-exposure. However, there was no change in the fluidity of either ordered membrane domains or the bulk membrane in any of these cells within this period. Our conclusion from these results is that perturbation of membrane fluidity is not likely to be a factor in acute Aβ-induced cytotoxicity.
Collapse
Affiliation(s)
- Justin Ng
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore; Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, S138602, Singapore
| | - Roger D Kamm
- Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, S138602, Singapore
| | - Thorsten Wohland
- Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, S138602, Singapore; Department of Biological Sciences and Chemistry, National University of Singapore, 14 Science Drive 4, S117543, Singapore
| | - Rachel S Kraut
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, S637551, Singapore; Singapore-MIT Alliance for Research and Technology, BioSyM IRG, 1 Create Way, S138602, Singapore.
| |
Collapse
|
37
|
Macêdo PT, Aquino ACQ, Meurer YSR, Brandão LEM, Campêlo CLC, Lima RH, Costa MR, Ribeiro AM, Silva RH. Subtle Alterations in Spatial Memory Induced by Amyloid Peptides Infusion in Rats. Front Aging Neurosci 2018; 10:18. [PMID: 29441014 PMCID: PMC5797637 DOI: 10.3389/fnagi.2018.00018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 01/15/2018] [Indexed: 12/20/2022] Open
Abstract
The cause of Alzheimer's disease (AD) remains uncertain. The accumulation of amyloid peptides (Aβ) is the main pathophysiological hallmark of the disease. Spatial deficit is an important initial sign of AD, while other types of memory impairments that appear in later stages. The Barnes maze allows the detection of subtle alterations in spatial search by the analysis of use of different strategies. Previous findings showed a general performance deficit in this task following long-term (35 days) infusion of Aβ, which corresponds to the moderate or severe impairments of the disease. In the present study, we evaluated the effects of a low-dose 15-day long treatment with Aβ peptides on spatial and non-spatial strategies of rats tested in the Barnes maze. Aβ peptides (0.5 μL/site/day; 30 pmoL solution of Aβ1-40:Aβ1-42 10:1) or saline were bilaterally infused into the CA1 (on the first treatment day) and intraventricularly (on the following 15 days) in 6-month-old Wistar male rats. Aβ infusion induced a deficit in the performance (increased latency and distance traveled to reach the target compared to saline group). In addition, a significant association between treatment and search strategy in the retrieval trial was found: Aβ group preferred the non-spatial search strategy, while saline group preferred the spatial search. In conclusion, the protocol of Aβ infusion used here induced a subtle cognitive deficit that was specific to spatial aspects. Indeed, animals under Aβ treatment still showed retrieval, but using non-spatial strategies. We suggest that this approach is potentially useful to the study of the initial memory deficits in early AD.
Collapse
Affiliation(s)
- Priscila Tavares Macêdo
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Antônio C Q Aquino
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ywlliane S R Meurer
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil.,Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Luiz E M Brandão
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Clarissa L C Campêlo
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Ramon H Lima
- Memory Studies Laboratory, Physiology Department, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Marcos R Costa
- Brain Institute, Universidade Federal do Rio Grande do Norte, Natal, Brazil
| | - Alessandra M Ribeiro
- Laboratory of Neuroscience and Bioprospecting of Natural Products, Department of Biosciences, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Regina H Silva
- Behavioral Neuroscience Laboratory, Pharmacology Department, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
38
|
Katyal N, Deep S. Inhibition of GNNQQNY prion peptide aggregation by trehalose: a mechanistic view. Phys Chem Chem Phys 2018; 19:19120-19138. [PMID: 28702592 DOI: 10.1039/c7cp02912h] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Deposition of amyloid fibrils is the seminal event in the pathogenesis of numerous neurodegenerative diseases. The formation of this amyloid assembly is the manifestation of a cascade of structural transitions including toxic oligomer formation in the early stages of aggregation. Thus a viable therapeutic strategy involves the use of small molecular ligands to interfere with this assembly. In this perspective, we have explored the kinetics of aggregate formation of the fibril forming GNNQQNY peptide fragment from the yeast prion protein SUP35 using multiple all atom MD simulations with explicit solvent and provided mechanistic insights into the way trehalose, an experimentally known aggregation inhibitor, modulates the aggregation pathway. The results suggest that the assimilation process is impeded by different barriers at smaller and larger oligomeric sizes: the initial one being easily surpassed at higher temperatures and peptide concentrations. The kinetic profile demonstrates that trehalose delays the aggregation process by increasing both these activation barriers, specifically the latter one. It increases the sampling of small-sized aggregates that lack the beta sheet conformation. Analysis reveals that the barrier in the growth of larger stable oligomers causes the formation of multiple stable small oligomers which then fuse together bimolecularly. The PCA of 26 properties was carried out to deconvolute the events within the temporary lag phases, which suggested dynamism in lags involving an increase in interchain contacts and burial of SASA. The predominant growth route is monomer addition, which changes to condensation on account of a large number of depolymerisation events in the presence of trehalose. The favourable interaction of trehalose specifically with the sidechain of the peptide promotes crowding of trehalose molecules in its vicinity - the combination of both these factors imparts the observed behaviour. Furthermore, increasing trehalose concentration leads to faster expulsion of water molecules than interpeptide interactions. These expelled water molecules have larger translational movement, suggesting an entropy factor to favor the assembly process. Different conformations observed under this condition suggest the role of water molecules in guiding the morphology of the aggregates as well. A similar scenario exists on increasing peptide concentration.
Collapse
Affiliation(s)
- Nidhi Katyal
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauzkhas, New Delhi, India.
| | - Shashank Deep
- Department of Chemistry, Indian Institute of Technology, Delhi, Hauzkhas, New Delhi, India.
| |
Collapse
|
39
|
Wang L, Cao J, Shi Z, Fan W, Liu H, Deng J, Deng J. Experimental study on the neurotoxic effect of β-amyloid on the cytoskeleton of PC12 cells. Int J Mol Med 2018; 41:2764-2770. [PMID: 29436599 PMCID: PMC5846656 DOI: 10.3892/ijmm.2018.3467] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Accepted: 01/31/2018] [Indexed: 12/26/2022] Open
Abstract
The aim of the present study was to establish a cell model of Alzheimer's disease (AD) and investigate the neurotoxic effects of β-amyloid (Aβ) on the cytoskeleton. PC12 cells were cultured and treated with Aβ25-35, and cell survival was analyzed with the MTT assay. Cell apoptosis was visualized using 4′,6-diamidino-2-phenylindole staining and the terminal deoxynucleotidyl transferase dUTP nick-end labeling assay. Immunocytochemistry and phalloidin staining were used to label the cytoskeleton of PC12 cells. Aβ25-35 was found to induce PC12 cell apoptosis in a dose-dependent manner (P<0.05). Moreover, Aβ25-35 also caused dose-dependent disintegration of the cytoskeleton (P<0.05). Therefore, the PC12 cell cytoskeleton was found to be sensitive to Aβ25-35 neurotoxicity. The disintegration of the cytoskeleton is likely an important pathological alteration in AD, and Aβ is a key molecule involved in AD pathogenesis.
Collapse
Affiliation(s)
- Lai Wang
- Institute of Neurobiology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jingjing Cao
- Institute of Neurobiology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Zhenyu Shi
- Institute of Neurobiology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Wenjuan Fan
- Institute of Neurobiology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Hongliang Liu
- Institute of Neurobiology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jinbo Deng
- Institute of Neurobiology, College of Life Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jiexin Deng
- College of Nursing, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
40
|
Early Alzheimer-type lesions in cognitively normal subjects. Neurobiol Aging 2018; 62:34-44. [PMID: 29107845 PMCID: PMC5743763 DOI: 10.1016/j.neurobiolaging.2017.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Revised: 10/01/2017] [Accepted: 10/01/2017] [Indexed: 01/01/2023]
Abstract
Amyloid deposits and tau-immunoreactive neurofibrillary tangles, together with neuronal and synaptic loss, are the neuropathological hallmarks of Alzheimer's disease (AD). Both proteins are present in the normal brain during aging. However, the temporal sequence of their involvement in the onset of AD pathology remains controversial. To define whether amyloid β protein deposits or tau protein lesions appear first during normal brain aging, we performed an immunohistological study on serial sections from 105 autopsy brains (age range: 40-104 years) from patients free of clinical signs of cognitive decline, using anti-tau (AT8) and anti-amyloid (4G8) antibodies in the hippocampus, entorhinal cortex, inferior temporal cortex (Brodmann area 20), prefrontal cortex (Brodmann area 9), occipital cortex (Brodmann areas 17 and 18), and in the brainstem. All cases older than 48 years displayed at least a few neurofibrillary tangles, which appeared more frequently in the entorhinal than in the transentorhinal cortex. Tau pathology in these areas preceded tau inclusions in the brainstem. Furthermore, the first site of the apparition of tau pathology is inconsistent, being the entorhinal cortex in most cases, and in fewer cases, the transentorhinal region. There was no case presenting with amyloid deposition in the absence of neurofibrillary tangles, lending evidence to the fact that neurofibrillary tangles appear earlier than amyloid plaques during normal brain aging. However, the role of amyloid in promoting tau deposition cannot be excluded in some cases but may not represent the sole mechanism of disease induction and progression.
Collapse
|
41
|
Kawahara M, Tanaka KI, Kato-Negishi M. Zinc, Carnosine, and Neurodegenerative Diseases. Nutrients 2018; 10:E147. [PMID: 29382141 PMCID: PMC5852723 DOI: 10.3390/nu10020147] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 01/02/2023] Open
Abstract
Zinc (Zn) is abundantly present in the brain, and accumulates in the synaptic vesicles. Synaptic Zn is released with neuronal excitation, and plays essential roles in learning and memory. Increasing evidence suggests that the disruption of Zn homeostasis is involved in various neurodegenerative diseases including Alzheimer's disease, a vascular type of dementia, and prion diseases. Our and other numerous studies suggest that carnosine (β-alanyl histidine) is protective against these neurodegenerative diseases. Carnosine is an endogenous dipeptide abundantly present in the skeletal muscles and in the brain, and has numerous beneficial effects such as antioxidant, metal chelating, anti-crosslinking, and anti-glycation activities. The complex of carnosine and Zn, termed polaprezinc, is widely used for Zn supplementation therapy and for the treatment of ulcers. Here, we review the link between Zn and these neurodegenerative diseases, and focus on the neuroprotective effects of carnosine. We also discuss the carnosine level in various foodstuffs and beneficial effects of dietary supplementation of carnosine.
Collapse
Affiliation(s)
- Masahiro Kawahara
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Ken-Ichiro Tanaka
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| | - Midori Kato-Negishi
- Department of Bio-Analytical Chemistry, Faculty of Pharmacy, Musashino University, 1-1-20 Shinmachi, Nishitokyo-shi, Tokyo 202-8585, Japan.
| |
Collapse
|
42
|
Fontana BD, Mezzomo NJ, Kalueff AV, Rosemberg DB. The developing utility of zebrafish models of neurological and neuropsychiatric disorders: A critical review. Exp Neurol 2018; 299:157-171. [DOI: 10.1016/j.expneurol.2017.10.004] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 09/15/2017] [Accepted: 10/04/2017] [Indexed: 12/30/2022]
|
43
|
Alzheimer's disease as oligomeropathy. Neurochem Int 2017; 119:57-70. [PMID: 28821400 DOI: 10.1016/j.neuint.2017.08.010] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/30/2017] [Accepted: 08/13/2017] [Indexed: 12/21/2022]
Abstract
Alzheimer's disease (AD) is the most common age-related neurodegenerative disorder and is characterized by pathological aggregates of amyloid β-protein (Aβ) and tau protein. On the basis of genetic evidence, biochemical data, and animal models, Aβ has been suggested to be responsible for the pathogenesis of AD (the amyloid hypothesis). Aβ molecules tend to aggregate to form oligomers, protofibrils, and mature fibrils. Although mature fibrils in the final stage have been thought to be the cause of AD pathogenesis, recent studies using synthetic Aβ peptides, a cell culture model, Aβ precursor protein transgenic mice models, and human samples, such as cerebrospinal fluids and postmortem brains of AD patients, suggest that pre-fibrillar forms (oligomers of Aβ) are more deleterious than are extracellular fibril forms. Based on this recent evidence showing that oligomers have a central role in the pathogenesis of AD, the term "oligomeropathy" could be used to define AD and other protein-misfolding diseases. In this review, I discuss recent developments in the "oligomer hypothesis" including our research findings regarding the pathogenesis of AD.
Collapse
|
44
|
Kim DJ, Kim MS, Kim S, Hwang KW, Park SY. Anti-amyloidogenic effects of Perilla frutescens
var. acuta
on beta-amyloid aggregation and disaggregation. J Food Biochem 2017. [DOI: 10.1111/jfbc.12393] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Da-Jeong Kim
- World Class University, Department of Nanobiomedicine; Dankook University; Cheonan 330-714, Korea
| | - Min-Suk Kim
- Laboratory of Pharmacognosy; College of Pharmacy, Dankook University; Cheonan 330-714, Korea
| | - Sunggun Kim
- Laboratory of Pharmacognosy; College of Pharmacy, Dankook University; Cheonan 330-714, Korea
| | - Kwang-Woo Hwang
- Host Defense Modulation Laboratory; College of Pharmacy, Chung-Ang University; Seoul 156-756, Korea
| | - So-Young Park
- World Class University, Department of Nanobiomedicine; Dankook University; Cheonan 330-714, Korea
- Laboratory of Pharmacognosy; College of Pharmacy, Dankook University; Cheonan 330-714, Korea
| |
Collapse
|
45
|
Chandra B, Halder S, Adler J, Korn A, Huster D, Maiti S. Emerging structural details of transient amyloid-β oligomers suggest designs for effective small molecule modulators. Chem Phys Lett 2017. [DOI: 10.1016/j.cplett.2017.02.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
46
|
MultiTEP platform-based DNA epitope vaccine targeting N-terminus of tau induces strong immune responses and reduces tau pathology in THY-Tau22 mice. Vaccine 2017; 35:2015-2024. [PMID: 28320590 DOI: 10.1016/j.vaccine.2017.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 01/31/2017] [Accepted: 03/08/2017] [Indexed: 12/22/2022]
Abstract
BACKGROUND By the time clinical symptoms of Alzheimer's disease (AD) manifest in patients there is already substantial tau pathology in the brain. Recent evidence also suggests that tau pathology can become self-propagating, further accelerating disease progression. Over the last decade several groups have tested the efficacy of protein-based anti-tau immunotherapeutics in various animal models of tauopathy. Here we report on the immunological and therapeutic potency of the first anti-tau DNA vaccine based on the MultiTEP platform, AV-1980D, in THY-Tau22 transgenic mice. METHODS Starting at 3months of age, mice were immunized intramuscularly with AV-1980D vaccine targeting a tau B cell epitope spanning aa2-18 followed by electroporation (EP). Humoral and cellular immune responses in vaccinated animals were analyzed by ELISA and ELISpot, respectively. Neuropathological changes in the brains of experimental and control mice were then analyzed by biochemical (WB and ELISA) and immunohistochemical (IHC) methods at 9months of age. RESULTS EP-mediated AV-1980D vaccinations of THY-Tau22 mice induced activation of Th cells specific to the MultiTEP vaccine platform and triggered robust humoral immunity response specific to tau. Importantly, no activation of potentially harmful autoreactive Th cell responses specific to endogenous tau species was detected. The maximum titers of anti-tau antibodies were reached after two immunizations and remained slightly lower, but steady during five subsequent monthly immunizations. Vaccinations with AV-1980D followed by EP significantly reduced total tau and pS199 and AT180 phosphorylated tau levels in the brains extracts of vaccinated mice, but produced on subtle non-significant effects on other phosphorylated tau species. CONCLUSIONS These data demonstrate that MultiTEP-based DNA epitope vaccination targeting the N-terminus of tau is highly immunogenic and therapeutically potent in the THY-Tau22 mouse model of tauopathy and indicate that EP-mediated DNA immunization is an attractive alternative to protein-based adjuvanted vaccines for inducing high concentrations of anti-tau antibodies.
Collapse
|
47
|
Harada R, Takano Y, Shigeta Y. Common folding processes of mini-proteins: Partial formations of secondary structures initiate the immediate protein folding. J Comput Chem 2017; 38:790-797. [DOI: 10.1002/jcc.24748] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Revised: 12/20/2016] [Accepted: 01/12/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Ryuhei Harada
- Center for Computational Sciences, University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| | - Yu Takano
- Department of Biomedical Information Sciences; Graduate School of Information Sciences, Hiroshima City University; 3-4-1 Ozuka-Higashi, Asa-Minami-Ku Hiroshima 731-3194 Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba; 1-1-1 Tennodai Tsukuba Ibaraki 305-8577 Japan
| |
Collapse
|
48
|
Gupta A, Goyal R. Amyloid beta plaque: a culprit for neurodegeneration. Acta Neurol Belg 2016; 116:445-450. [PMID: 27118573 DOI: 10.1007/s13760-016-0639-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 04/04/2016] [Indexed: 01/08/2023]
Abstract
Increasing life expectancy has resulted in an increase in neurodegenerative disorders like Alzheimer's disease. None of the hypothesis proposed till date explains the exact pathobiology of the disease. It is therefore imperative to understand the underlying mechanisms. Amyloid beta (Aβ) is regarded as the main culprit and maximum therapeutic efforts are centered towards Aβ. This review will discuss about the biosynthesis, the physiological role of Aβ including the pathogenic aggregation of Aβ resulting neurodegenerative cognitive disabilities. Most studies of Alzheimer's disease have focused on the biochemical mechanisms involved in the neurodegenerative processes triggered by Aβ aggregates. Aβ is generated from mature amyloid precursor protein being metabolized by two competing pathways, α-secretase pathway (non-amyloidogenic pathway) and β-secretase (amyloidogenic pathway). The physiological roles of Aβ reported in neurotrophic properties, neurogenesis, synaptic plasticity, metal ion sequestration and specificity of blood brain barrier. The neuronal injury is the result of Aβ oligomerization and it is reported that oligomerization of Aβ contributes to neurodegeneration in Alzheimer's disease. The physiological role of Aβ must be considered in the development of medications that intended to decrease its oligomerization forming plaques in a disease like Alzheimer's disease. The biosynthetic pathways for transport and accumulation of Aβ need to be ascertained as an attempt to develop future strategies for prevention of neurodegenerative disorders.
Collapse
Affiliation(s)
- Ankita Gupta
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India
| | - Rohit Goyal
- School of Pharmaceutical Sciences, Shoolini University, Solan, Himachal Pradesh, 173212, India.
| |
Collapse
|
49
|
Das S, Das S, Roy A, Pal U, Maiti NC. Orientation of tyrosine side chain in neurotoxic Aβ differs in two different secondary structures of the peptide. ROYAL SOCIETY OPEN SCIENCE 2016; 3:160112. [PMID: 27853536 PMCID: PMC5098961 DOI: 10.1098/rsos.160112] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 09/02/2016] [Indexed: 06/06/2023]
Abstract
Amyloid β (Aβ) peptide is present as a major component in amyloid plaque that is one of the hallmarks of Alzheimer's disease. The peptide contains a single tyrosine residue and Aβ has a major implication in the pathology of the disease progression. Current investigation revealed that the tyrosine side chain attained two different critical stereo orientations in two dissimilar conformational states of the peptide. The extended α-helical structure of the peptide observed in an apolar solvent or methanol/water mixture became disordered in aqueous medium and the radius of gyration decreased. In aqueous medium, the torsional angle around Cα-Cβ of tyrosine group became -60°. However, in its α-helical conformation in an apolar system, the measured angle was 180° and this rotameric state may be reasoned behind stronger tyrosine fluorescence compared with the disordered state of the peptide. Molecular dynamics simulation analyses and spectroscopic studies have helped us to understand the major structural changes in the secondary structure of the peptide in the two conformational states. A conformational clustering indicated that the compact state is more stable with tyrosine residue attaining the torsion angle value of -60°, whereas the native state (in HFIP/water mixture) is prevalent at a torsion angle value of -180°. High solvent accessibility has possibly stabilized the particular rotameric state (-60°) of the tyrosine residue and could be the reason behind decrease in fluorescence of the sole tyrosine residue in an aqueous buffer solution (pH 7.4) compared with its fluorescence in the α-helical structure in the micellar environment.
Collapse
Affiliation(s)
- Swagata Das
- Structural Biology and Bioinformatics Division , Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S.c. Mullick Road, Kolkata 700032 , India
| | - Supriya Das
- Structural Biology and Bioinformatics Division , Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S.c. Mullick Road, Kolkata 700032 , India
| | - Anupam Roy
- Structural Biology and Bioinformatics Division , Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S.c. Mullick Road, Kolkata 700032 , India
| | - Uttam Pal
- Structural Biology and Bioinformatics Division , Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S.c. Mullick Road, Kolkata 700032 , India
| | - Nakul C Maiti
- Structural Biology and Bioinformatics Division , Indian Institute of Chemical Biology, Council of Scientific and Industrial Research , 4, Raja S.c. Mullick Road, Kolkata 700032 , India
| |
Collapse
|
50
|
Multi-target screening mines hesperidin as a multi-potent inhibitor: Implication in Alzheimer's disease therapeutics. Eur J Med Chem 2016; 121:810-822. [DOI: 10.1016/j.ejmech.2016.03.057] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 03/09/2016] [Accepted: 03/20/2016] [Indexed: 01/09/2023]
|