1
|
Cure MC, Cure E. Prolonged NHE Activation may be both Cause and Outcome of Cytokine Release Syndrome in COVID-19. Curr Pharm Des 2022; 28:1815-1822. [PMID: 35838211 DOI: 10.2174/1381612828666220713121741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 06/27/2022] [Indexed: 02/06/2023]
Abstract
The release of cytokines and chemokines such as IL-1β, IL-2, IL-6, IL-7, IL-10, TNF-α, IFN-γ, CCL2, CCL3, and CXCL10 is increased in critically ill patients with COVID-19. Excessive cytokine release during COVID-19 is related to increased morbidity and mortality. Several mechanisms are put forward for cytokine release syndrome during COVID-19. Here we have mentioned novel pathways. SARS-CoV-2 increases angiotensin II levels by rendering ACE2 nonfunctional. Angiotensin II causes cytokine release via AT1 and AT2 receptors. Moreover, angiotensin II potently stimulates the Na+/H+ exchanger (NHE). It is a pump found in the membranes of many cells that pumps Na+ inward and H+ outward. NHE has nine isoforms. NHE1 is the most common isoform found in endothelial cells and many cells. NHE is involved in keeping the intracellular pH within physiological limits. When the intracellular pH is acidic, NHE is activated, bringing the intracellular pH to physiological levels, ending its activity. Sustained NHE activity is highly pathological and causes many problems. Prolonged NHE activation in COVID-19 may cause a decrease in intracellular pH through H+ ion accumulation in the extracellular area and subsequent redox reactions. The activation reduces the intracellular K+ concentration and leads to Na+ and Ca2+ overload. Increased ROS can cause intense cytokine release by stimulating NF-κB and NLRP3 inflammasomes. Cytokines also cause overstimulation of NHE. As the intracellular pH decreases, SARS-CoV-2 rapidly infects new cells, increasing the viral load. This vicious circle increases morbidity and mortality in patients with COVID-19. On the other hand, SARS-CoV-2 interaction with NHE3 in intestinal tissue is different from other tissues. SARS-CoV-2 can trigger CRS via NHE3 inhibition by disrupting the intestinal microbiota. This review aimed to help develop new treatment models against SARS-CoV-2- induced CRS by revealing the possible effects of SARS-CoV-2 on the NHE.
Collapse
Affiliation(s)
| | - Erkan Cure
- Department of Internal Medicine, Bagcilar Medilife Hospital, Istanbul, Turkey
| |
Collapse
|
2
|
Bryche B, Dewaele A, Saint-Albin A, Le Poupon Schlegel C, Congar P, Meunier N. IL-17c is involved in olfactory mucosa responses to Poly(I:C) mimicking virus presence. Brain Behav Immun 2019; 79:274-283. [PMID: 30776474 DOI: 10.1016/j.bbi.2019.02.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 01/21/2023] Open
Abstract
At the interface of the environment and the nervous system, the olfactory mucosa (OM) is a privileged pathway for environmental toxicants and pathogens towards the central nervous system. The OM is known to produce antimicrobial and immunological components but the mechanisms of action of the immune system on the OM remain poorly explored. IL-17c is a potent mediator of respiratory epithelial innate immune responses, whose receptors are highly expressed in the OM of mice. We first characterized the presence of the IL-17c and its receptors in the OM. While IL-17c was weakly expressed in the control condition, it was strongly expressed in vivo after intranasal administration of polyinosinic-polycytidylic (Poly I:C), a Toll Like Receptor 3 agonist, mimicking a viral infection. Using calcium imaging and electrophysiological recordings, we found that IL-17c can effectively activate OM cells through the release of ATP. In the longer term, intranasal chronic instillations of IL-17c increased the cellular dynamics of the epithelium and promoted immune cells infiltrations. Finally, IL-17c decreased cell death induced by Poly(I:C) in an OM primary culture. The OM is thus a tissue highly responsive to immune mediators, proving its central role as a barrier against airway pathogens.
Collapse
Affiliation(s)
| | | | | | | | - Patrice Congar
- NBO, INRA, Univ Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Nicolas Meunier
- NBO, INRA, Univ Paris-Saclay, 78350 Jouy-en-Josas, France; Université de Versailles Saint-Quentin en Yvelines, 78000 Versailles, France.
| |
Collapse
|
3
|
Mitochondrial Neuroglobin Is Necessary for Protection Induced by Conditioned Medium from Human Adipose-Derived Mesenchymal Stem Cells in Astrocytic Cells Subjected to Scratch and Metabolic Injury. Mol Neurobiol 2018; 56:5167-5187. [PMID: 30536184 DOI: 10.1007/s12035-018-1442-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/29/2018] [Indexed: 12/27/2022]
Abstract
Astrocytes are specialized cells capable of regulating inflammatory responses in neurodegenerative diseases or traumatic brain injury. In addition to playing an important role in neuroinflammation, these cells regulate essential functions for the preservation of brain tissue. Therefore, the search for therapeutic alternatives to preserve these cells and maintain their functions contributes in some way to counteract the progress of the injury and maintain neuronal survival in various brain pathologies. Among these strategies, the conditioned medium from human adipose-derived mesenchymal stem cells (CM-hMSCA) has been reported with a potential beneficial effect against several neuropathologies. In this study, we evaluated the potential effect of CM-hMSCA in a model of human astrocytes (T98G cells) subjected to scratch injury. Our findings demonstrated that CM-hMSCA regulates the cytokines IL-2, IL-6, IL-8, IL-10, GM-CSF, and TNF-α, downregulates calcium at the cytoplasmic level, and regulates mitochondrial dynamics and the respiratory chain. These actions are accompanied by modulation of the expression of different proteins involved in signaling pathways such as AKT/pAKT and ERK1/2/pERK, and may mediate the localization of neuroglobin (Ngb) at the cellular level. We also confirmed that Ngb mediated the protective effects of CM-hMSCA through regulation of proteins involved in survival pathways and oxidative stress. In conclusion, regulation of brain inflammation combined with the recovery of fundamental cellular aspects in the face of injury makes CM-hMSCA a promising candidate for the protection of astrocytes in brain pathologies.
Collapse
|
4
|
Köller H, Fischer HG. Cytokines and Virus Proteins: Modulators of Glial Electrophysiological Properties. Neuroscientist 2016. [DOI: 10.1177/107385849900500310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Cytokines are released during acute and chronic inflammatory diseases of the CNS and activate receptors on glial cells, thereby inducing various effects such as proliferation, expression of major histocompatibility complex genes or secretion of growth factors. Here, we summarize current evidence indicating that K+ currents, Ca 2+ currents, and the activity of ion transporters on astrocytes, microglial cells, and oligodendrocytes are also affected by cytokines. In disease states with associated elevated cytokine titers, such alterations in electrophysiological properties of glial cells might contribute to the patho genesis of neurological symptoms. NEUROSCIENTIST 5:142-146, 1999
Collapse
|
5
|
Zeng C, Tian F, Xiao B. TRPC Channels: Prominent Candidates of Underlying Mechanism in Neuropsychiatric Diseases. Mol Neurobiol 2014; 53:631-647. [DOI: 10.1007/s12035-014-9004-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Accepted: 11/13/2014] [Indexed: 10/24/2022]
|
6
|
Sama DM, Norris CM. Calcium dysregulation and neuroinflammation: discrete and integrated mechanisms for age-related synaptic dysfunction. Ageing Res Rev 2013; 12:982-95. [PMID: 23751484 PMCID: PMC3834216 DOI: 10.1016/j.arr.2013.05.008] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Revised: 05/27/2013] [Accepted: 05/30/2013] [Indexed: 12/30/2022]
Abstract
Some of the best biomarkers of age-related cognitive decline are closely linked to synaptic function and plasticity. This review highlights several age-related synaptic alterations as they relate to Ca(2+) dyshomeostasis, through elevation of intracellular Ca(2+), and neuroinflammation, through production of pro-inflammatory cytokines including interleukin-1 beta (IL-1β) and tumor necrosis factor-alpha (TNF-α). Though distinct in many ways, Ca(2+) and neuroinflammatory signaling mechanisms exhibit extensive cross-talk and bidirectional interactions. For instance, cytokine production in glial cells is strongly dependent on the Ca(2+) dependent protein phosphatase calcineurin, which shows elevated activity in animal models of aging and disease. In turn, pro-inflammatory cytokines, such as TNF, can augment the expression/activity of L-type voltage sensitive Ca(2+) channels in neurons, leading to Ca(2+) dysregulation, hyperactive calcineurin activity, and synaptic depression. Thus, in addition to discussing unique contributions of Ca(2+) dyshomeostasis and neuroinflammation, this review emphasizes how these processes interact to hasten age-related synaptic changes.
Collapse
Affiliation(s)
- Diana M Sama
- Department of Physiology, University of Kentucky College of Medicine, Lexington, KY 40536, USA; Spinal Cord and Brain Injury Research Center, University of Kentucky College of Medicine, Lexington, KY 40536, USA.
| | | |
Collapse
|
7
|
Wu C, Leong SY, Moore CS, Cui QL, Gris P, Bernier LP, Johnson TA, Séguéla P, Kennedy TE, Bar-Or A, Antel JP. Dual effects of daily FTY720 on human astrocytes in vitro: relevance for neuroinflammation. J Neuroinflammation 2013; 10:41. [PMID: 23509960 PMCID: PMC3621211 DOI: 10.1186/1742-2094-10-41] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Accepted: 02/13/2013] [Indexed: 12/03/2022] Open
Abstract
Background FTY720 (fingolimod, Gilenya™) is a daily oral therapy for multiple sclerosis that readily accesses the central nervous system (CNS). FTY720 is a structural analog to the sphingolipid sphingosine-1-phosphate (S1P) and is a cognate ligand for the S1P G-protein coupled receptors (S1PR). Studies in experimental autoimmune encephalomyelitis using mice with conditionally deleted S1P1R from astrocytes indicate that one beneficial effect of FTY720 in this model is via downregulating external receptors, which inhibits responses induced by the natural ligand. Another proposed effect of FTY720 on neuroinflammation is its ability to maintain persistent signaling in cells via internalized S1P1R resulting in functional responses that include suppressing intracellular calcium release. We used human fetal astrocytes to investigate potential dual inhibitory- and function-inducing effects of daily FTY720 on responses relevant to neuroinflammation. For the inhibitory effects, we used signaling and proliferation induced by the natural ligand S1P. For the function-inducing responses, we measured inhibition of intracellular calcium release stimulated by the proinflammatory cytokine, interleukin (IL)-1β. Methods Astrocytes derived from human fetal CNS specimens and maintained in dissociated cultures were exposed to 100 nM of the biologically active form of FTY720 over a dosing regimen that ranged from a single exposure (with or without washout after 1 h) to daily exposures up to 5 days. Responses measured include: phosphorylation of extracellular-signal-regulated kinases (pERK1/2) by Western blotting, Ki-67 immunolabeling for cell proliferation, IL-1β-induced calcium release by ratiometric fluorescence, and cytokine/chemokine (IL-6, CXCL10) secretions by ELISA. Results We observed that a single addition of FTY720 inhibited subsequent S1PR ligand-induced pERK1/2 signaling for >24 h. Daily FTY720 treatments (3-5 days) maintained this effect together with a loss of proliferative responses to the natural ligand S1P. Repeated FTY720 dosing concurrently maintained a functional cell response as measured by the inhibition of intracellular calcium release when stimulated by the cytokine IL-1β. Recurrent FTY720 treatments did not inhibit serum- or IL-1β-induced pERK1/2. The secretions of IL-6 and CXCL10 in response to IL-1β were unaffected by FTY720 treatment(s). Conclusion Our results indicate that daily FTY720 exposures may regulate specific neuroinflammatory responses by desensitizing astrocytes to external S1PR stimuli while sustaining cellular influences that are independent of new surface S1PR activation.
Collapse
Affiliation(s)
- Celina Wu
- Montreal Neurological Institute, McGill University, 3801 University St., Montreal QC H3A 2B4, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Alvarez VM, Rama Rao KV, Brahmbhatt M, Norenberg MD. Interaction between cytokines and ammonia in the mitochondrial permeability transition in cultured astrocytes. J Neurosci Res 2011; 89:2028-40. [PMID: 21748779 DOI: 10.1002/jnr.22708] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Revised: 05/10/2011] [Accepted: 05/13/2011] [Indexed: 01/23/2023]
Abstract
Hepatic encephalopathy (HE) is the major neurological complication occurring in patients with acute and chronic liver failure. Elevated levels of blood and brain ammonia are characteristic of HE, and astrocytes are the primary target of ammonia toxicity. In addition to ammonia, recent studies suggest that inflammation and associated cytokines (CKs) also contribute to the pathogenesis of HE. It was previously established that ammonia induces the mitochondrial permeability transition (mPT) in cultured astrocytes. As CKs have been shown to cause mitochondrial dysfunction in other conditions, we examined whether CKs induce the mPT in cultured astrocytes. Cultures treated with tumor necrosis factor-α, interleukin-1β, interleukin-6, and interferon-γ, individually or in a mixture, resulted in the induction of the mPT in a time-dependent manner. Simultaneous treatment of cultures with a mixture of CKs and ammonia showed a marked additive effect on the mPT. As oxidative stress (OS) is known to induce the mPT, so we examined the effect of CKs and ammonia on hemeoxygenase-1 (HO-1) protein expression, a marker of OS. Such treatment displayed a synergistic effect in the upregulation of HO-1. Antioxidants significantly blocked the additive effects on the mPT by CKs and ammonia, suggesting that OS represents a major mechanism in the induction of the mPT. Treatment of cultures with minocycline, an antiinflammatory agent, which is known to inhibit OS, also diminished the additive effects on the mPT caused by CKs and ammonia. Induction of the mPT in astrocytes appears to represent a major pathogenetic factor in HE, in which CKs and ammonia are critically involved.
Collapse
Affiliation(s)
- Veronica M Alvarez
- Department of Pathology, University of Miami Miller School of Medicine, Miami, Florida 33101, USA.
| | | | | | | |
Collapse
|
9
|
Ben Menachem-Zidon O, Avital A, Ben-Menahem Y, Goshen I, Kreisel T, Shmueli EM, Segal M, Ben Hur T, Yirmiya R. Astrocytes support hippocampal-dependent memory and long-term potentiation via interleukin-1 signaling. Brain Behav Immun 2011; 25:1008-16. [PMID: 21093580 DOI: 10.1016/j.bbi.2010.11.007] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2010] [Revised: 11/10/2010] [Accepted: 11/11/2010] [Indexed: 02/04/2023] Open
Abstract
Recent studies indicate that astrocytes play an integral role in neural and synaptic functioning. To examine the implications of these findings for neurobehavioral plasticity we investigated the involvement of astrocytes in memory and long-term potentiation (LTP), using a mouse model of impaired learning and synaptic plasticity caused by genetic deletion of the interleukin-1 receptor type I (IL-1RI). Neural precursor cells (NPCs), derived from either wild type (WT) or IL-1 receptor knockout (IL-1rKO) neonatal mice, were labeled with bromodeoxyuridine (BrdU) and transplanted into the hippocampus of either IL-1rKO or WT adult host mice. Transplanted NPCs survived and differentiated into astrocytes (expressing GFAP and S100β), but not to neurons or oligodendrocytes. The NPCs-derived astrocytes from WT but not IL-1rKO mice displayed co-localization of GFAP with the IL-1RI. Four to twelve weeks post-transplantation, memory functioning was examined in the fear-conditioning and the water maze paradigms and LTP of perforant path-dentate gyrus synapses was assessed in anesthetized mice. As expected, IL-1rKO mice transplanted with IL-1rKO cells or sham operated displayed severe memory disturbances in both paradigms as well as a marked impairment in LTP. In contrast, IL-1rKO mice transplanted with WT NPCs displayed a complete rescue of the impaired memory functioning as well as partial restoration of LTP. These findings indicate that astrocytes play a critical role in memory functioning and LTP, and specifically implicate astrocytic IL-1 signaling in these processes. The results suggest novel conceptualization and therapeutic targets for neuropsychiatric disorders characterized by impaired astrocytic functioning concomitantly with disturbed memory and synaptic plasticity.
Collapse
|
10
|
Wu CY, Hsieh HL, Sun CC, Yang CM. IL-1beta induces MMP-9 expression via a Ca2+-dependent CaMKII/JNK/c-JUN cascade in rat brain astrocytes. Glia 2010; 57:1775-89. [PMID: 19455716 DOI: 10.1002/glia.20890] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Interleukin (IL)-1beta has been shown to induce matrix metalloproteinase (MMP)-9 expression through mitogen-activated protein kinases, including JNK, in rat brain astrocyte-1 (RBA-1) cells. However, little is known about whether JNK activated by Ca(2+)-dependent CaMKII is associated with MMP-9 expression induced by IL-1beta. Here, we report that the Ca(2+)/CaMKII/JNK/c-Jun participates in the MMP-9 expression induced by IL-1beta. Zymographic, Western blotting, and RT-PCR analyses showed that IL-1beta-induced expression of MMP-9 mRNA and protein was attenuated by Ca(2+) chelator (BAPTA), and the inhibitors of ER Ca(2+)-ATPase (thapsigargin), CaMKII (KN-62), and JNK1/2 (SP600125). IL-1beta also stimulated phosphorylation of CaMKII and JNK1/2, and increase in intracellular Ca(2+) ([Ca(2+)](i)), which were inhibited by pretreatment with BAPTA, thapsigargin (TG), KN-62, or SP600125. Furthermore, the upregulation of MMP-9 protein was blocked by transfection with c-Jun or CaMKII short hairpin RNA (shRNA). We further confirmed that IL-1beta stimulated c-Jun associated with AP-1-binding sites within MMP-9 promoter (-87 to -80 bp and -511 to -497 bp) by immunoprecipitation and chromatin immunoprecipitation (ChIP)-PCR assays. The activation and recruitment of c-Jun to MMP-9 promoter were inhibited by pretreatment with BAPTA, TG, KN-62, or SP600125. Moreover, IL-1beta-induced MMP-9 gene transcription by AP-1 was confirmed by transfection with a MMP-9 promoter-luciferase reporter plasmid with a distal AP-1-binding site (-511 to -497 bp) adjacent to an Ets-binding site-mutation (mt-AP1/Ets-MMP-9). These results demonstrated that in RBA-1 cells, JNK/c-Jun activation was mediated through a Ca(2+)-dependent CaMKII pathway that promoted transcription factor c-Jun/AP-1 recruitment and eventually led to increase in MMP-9 expression by IL-1beta.
Collapse
Affiliation(s)
- Cheng-Ying Wu
- Department of Physiology and Pharmacology, Chang Gung University, Kwei-San, Tao-Yuan, Taiwan
| | | | | | | |
Collapse
|
11
|
Pinteaux E, Trotter P, Simi A. Cell-specific and concentration-dependent actions of interleukin-1 in acute brain inflammation. Cytokine 2008; 45:1-7. [PMID: 19026559 DOI: 10.1016/j.cyto.2008.10.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2008] [Revised: 09/15/2008] [Accepted: 10/10/2008] [Indexed: 01/03/2023]
Abstract
Interleukin (IL)-1 is a pivotal pro-inflammatory cytokine and an important mediator of both acute and chronic central nervous system (CNS) injuries. Despite intense research in CNS IL-1 biology over the past two decades, its precise mechanism of action in inflammatory responses to acute brain disorders remains largely unknown. In particular, much effort has been focussed on using in vitro approaches to better understand the cellular and signalling mechanisms of actions of IL-1, yet some discrepancies in the literature regarding the effects produced by IL-1beta in in vitro paradigms of injury still exist, particularly as to whether IL-1 exerts neurotoxic or neuroprotective effects. Here we aim to review the cell-specific and concentration-dependent actions of IL-1 in brain cells, to depict the mechanism by which this cytokine induces neurotoxicity or neuroprotection in acute brain injury.
Collapse
Affiliation(s)
- Emmanuel Pinteaux
- Faculty of Life Sciences, Michael Smith Building, University of Manchester, Oxford Road, Manchester M13 9PT, United Kingdom.
| | | | | |
Collapse
|
12
|
Beskina O, Miller A, Mazzocco-Spezzia A, Pulina MV, Golovina VA. Mechanisms of interleukin-1beta-induced Ca2+ signals in mouse cortical astrocytes: roles of store- and receptor-operated Ca2+ entry. Am J Physiol Cell Physiol 2007; 293:C1103-11. [PMID: 17670890 DOI: 10.1152/ajpcell.00249.2007] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many neurodegenerative disorders are accompanied by chronic glial activation, which is characterized by the abundant production of proinflammatory cytokines, such as IL-1beta. IL-1beta disrupts Ca(2+) homeostasis and stimulates astrocyte reactivity. The mechanisms by which IL-1beta induces Ca(2+) dysregulation are not completely defined. Here, we examined how acute and chronic (24-48 h) treatment with IL-1beta affect Ca(2+) homeostasis in freshly dissociated and primary cultured mouse cortical astrocytes. Cytosolic free Ca(2+) concentration ([Ca(2+)](cyt)) was measured with fura-2 using digital imaging. An acute application of 10 ng/ml IL-1beta induced Ca(2+) mobilization from intracellular stores and activated store-operated Ca(2+) entry (SOCE) and receptor-operated Ca(2+) entry (ROCE) in both freshly dissociated and cultured actrocytes. Treatment of cultured astrocytes with IL-1beta for 24 and 48 h elevated resting [Ca(2+)](cyt), decreased Ca(2+) store content [associated with sarco(endo)plasmic reticulum Ca(2+)-ATPase 2b downregulation], and augmented ROCE. Based on evidence that receptor-operated, but not store-operated Ca(2+) channels are Ba(2+) permeable, Ba(2+) entry was used to distinguish receptor-operated Ca(2+) channels from store-operated Ca(2+) channels. ROCE was activated by the diacylglycerol analog, 1-oleoyl-2-acetyl-sn-glycerol (OAG). In the presence of extracellular Ba(2+), OAG-induced elevations of cytosolic Ba(2+) (fura-2 340-to-380-nm ratio) were significantly larger in astrocytes treated with IL-1beta. These changes in IL-1beta-treated astrocytes correlate with augmented expression of transient receptor potential cation channel (TRPC)6 protein, which likely mediates ROCE. Knockdown of the TRPC6 gene markedly reduced ROCE. The data suggest that IL-1beta-induced dysregulation of Ca(2+) homeostasis is the result of enhanced ROCE and TRPC6 expression. The disruption of Ca(2+) homeostasis appears to be an upstream component in the cascade of IL-1beta-activated pathways leading to neurodegeneration.
Collapse
Affiliation(s)
- Olga Beskina
- Dept. of Physiology, Univ. of Maryland School of Medicine, 685 W. Baltimore St., HSF1, Rm. 565, Baltimore, MD 21201, USA
| | | | | | | | | |
Collapse
|
13
|
Pabello N, Lawrence D. Neuroimmunotoxicology: Modulation of neuroimmune networks by toxicants. ACTA ACUST UNITED AC 2006. [DOI: 10.1016/j.cnr.2006.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Dal Pra I, Chiarini A, Nemeth EF, Armato U, Whitfield JF. Roles of Ca2+ and the Ca2+-sensing receptor (CASR) in the expression of inducible NOS (nitric oxide synthase)-2 and its BH4 (tetrahydrobiopterin)-dependent activation in cytokine-stimulated adult human astrocytes. J Cell Biochem 2005; 96:428-38. [PMID: 16052472 DOI: 10.1002/jcb.20511] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Since NO production by NOS-2 made by astrocytes activated by proinflammatory cytokines contributes to the killing of neurons in variously damaged human brains, knowing the mechanisms responsible for NOS-2 expression should contribute to developing effective therapeutics. The expression and activation of NOS-2 in normal adult human cerebral cortical astrocytes treated with three proinflammatory cytokines, IL-1beta, TNF-alpha, and IFN-gamma, are driven by two separable mechanisms. NOS-2 expression requires a burst of p38 MAPK activity, while the activation of the resulting enzyme protein requires MEK/ERK-dependent BH4 (tetrahydrobiopterin) synthesis between 24 and 24.5 h after adding the cytokines to the culture medium. Here we show that NOS-2 expression in the activated astrocytes requires that the culture medium contain 1.8 mM Ca2+, but it is unaffected by inhibiting calcium-sensing receptors (CASRs) with NPS 89636. However, NOS-2 activation is inhibited by NPS 89626 during the MEK/ERK-dependent stage between 24 and 24.5 h after adding the cytokines, and this inhibition can be overridden by exogenous BH4. Therefore, NOS-2 expression and the subsequent BH4-dependent NOS-2-activation in human astrocytes need 1.8 mM Ca2+ to be in the culture medium, while NOS-2 activation also needs functional CASRs between 24 and 24.5 h after cytokine addition. These findings raise the possibility that calcilytic drugs prevent NO-induced damage and death of human neurons.
Collapse
Affiliation(s)
- Ilaria Dal Pra
- Histology & Embryology Unit, Department of Biomedical & Surgical Sciences, University of Verona Medical School, Verona, Italy
| | | | | | | | | |
Collapse
|
15
|
De A, Churchill L, Obal F, Simasko SM, Krueger JM. GHRH and IL1beta increase cytoplasmic Ca(2+) levels in cultured hypothalamic GABAergic neurons. Brain Res 2002; 949:209-12. [PMID: 12213318 DOI: 10.1016/s0006-8993(02)03157-8] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
GHRH and IL1beta regulate sleep via the hypothalamus. However, actions of these substances on neurons are poorly understood. In this study, we found both GHRH (100 nM) and IL1beta (1.2 pM) acutely increased cytosolic Ca(2+) in 7.6 and 4.0% of cultured hypothalamic neurons tested, respectively, and 1.2% of neurons responded to both. The neurons that responded were mostly GABAergic (96, 81, and 100% for GHRH, IL1beta, and dual-responsive neurons, respectively).
Collapse
Affiliation(s)
- Alok De
- Department of VCAPP, Program in Neuroscience, Washington State University, PO Box 646520, Pullman, WA 99164-6520, USA
| | | | | | | | | |
Collapse
|
16
|
Verderio C, Matteoli M. ATP mediates calcium signaling between astrocytes and microglial cells: modulation by IFN-gamma. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:6383-91. [PMID: 11342663 DOI: 10.4049/jimmunol.166.10.6383] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Calcium-mediated intercellular communication is a mechanism by which astrocytes communicate with each other and modulate the activity of adjacent cells, including neurons and oligodendrocytes. We have investigated whether microglia, the immune effector cells involved in several diseases of the CNS, are actively involved in this communication network. To address this issue, we analyzed calcium dynamics in fura-2-loaded cocultures of astrocytes and microglia under physiological conditions and in the presence of the inflammatory cytokine IFN-gamma. The intracellular calcium increases in astrocytes, occurring spontaneously or as a result of mechanical or bradykinin stimulation, induced the release of ATP, which, in turn, was responsible for triggering a delayed calcium response in microglial cells. Repeated stimulations of microglial cells by astrocyte-released ATP activated P2X(7) purinergic receptor on microglial cells and greatly increased membrane permeability, eventually leading to microglial apoptosis. IFN-gamma increased ATP release and potentiated the P2X(7)-mediated cytolytic effect. This is the first study showing that ATP mediates a form of calcium signaling between astrocytes and microglia. This mechanism of intercellular communication may be involved in controlling the number and function of microglial cells under pathophysiologic CNS conditions.
Collapse
Affiliation(s)
- C Verderio
- Consiglio Nazionale delle Ricerche Cellular and Molecular Pharmacology and "B. Ceccarelli" Centers, Department of Medical Pharmacology, Milan, Italy.
| | | |
Collapse
|
17
|
Pita I, Jelaso AM, Ide CF. IL-1beta increases intracellular calcium through an IL-1 type 1 receptor mediated mechanism in C6 astrocytic cells. Int J Dev Neurosci 1999; 17:813-20. [PMID: 10593617 DOI: 10.1016/s0736-5748(99)00063-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Interleukin-1beta (IL-1beta) is a cytokine that regulates a variety of biological processes. In addition to its traditional role in the immune system, IL-1beta plays an integral role in neural-immune and developmental processes in the nervous system. The pleiotropic ability of IL-1beta may be due to the activation of different signal transduction mechanisms in specific cell types or under certain cellular conditions. We have previously demonstrated that IL- regulates healing and repair in the developing, mammalian nervous system. In the damaged perinatal mouse brain, IL-1beta is expressed in astrocytes that change from a stellate to a spindle-shaped morphology. The spindle-shaped astrocytes enclose the wound, separating the healthy from damaged neural tissue. The shape change and subsequent repair processes are IL-1beta activity-dependent, acting through the IL-1 type 1 receptor (IL-1R1), as co-application of the IL-1type 1 receptor antagonist protein (IL-1ra) blocks IL-1beta induced effects. In the C6 astrocytic cell line, IL-1beta induced similar shape changes and upregulated expression of the cytoskeletal protein, glial fibrillary acidic protein (GFAP). Since cytoskeletal changes, as well as specific signal transduction mechanisms, are associated with increases in intracellular calcium ([Ca2+]i), studies were carried out to determine if increases in [Ca2+]i induced by IL-1beta occurred through activation of the IL-1R1 in C6 cells. Cells were treated with IL-1beta and/or IL-1ra, followed by measurement of relative changes in [Ca2+]i using fura-2 fluorescence imaging methods. IL-1beta increased [Ca2+]i levels in a dose and time dependent manner. Treatment with IL-1ra blocked IL-1beta induced increases in [Ca2+]i, indicating that IL-1beta acts through the IL-1R1. Immunocytochemistry experiments showed that untreated C6 cells normally express IL-1beta, IL-1ra, and IL-1RI. Thus, IL-1 system molecules may play a role in normal C6 astrocyte physiology.
Collapse
Affiliation(s)
- I Pita
- Environmental Research Center, Western Michigan University, Kalamazoo 49008, USA
| | | | | |
Collapse
|
18
|
Gahtan E, Overmier JB. Inflammatory pathogenesis in Alzheimer's disease: biological mechanisms and cognitive sequeli. Neurosci Biobehav Rev 1999; 23:615-33. [PMID: 10392655 DOI: 10.1016/s0149-7634(98)00058-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Experimental evidence from molecular biology, biochemistry, epidemiology and behavioral research support the conclusion that brain inflammation contributes to the pathogenesis of Alzheimer's disease and other types of human dementias. Aspects of neuroimmunology relating to the pathogenesis of Alzheimer's disease are briefly reviewed. The effects of brain inflammation, mediated through cytokines and other secretory products of activated glial cells, on neurotransmission (specifically, nitric oxide, glutamate, and acetylcholine), amyloidogenesis, proteolysis, and oxidative stress are discussed within the context of the pathogenesis of learning and memory dysfunction in Alzheimer's disease. Alzheimer's disease is proposed to be an etiologically heterogeneous syndrome with the common elements of amyloid deposition and inflammatory neuronal damage.
Collapse
Affiliation(s)
- E Gahtan
- Department of Psychology, University of Minnesota, Minneapolis 55455, USA.
| | | |
Collapse
|
19
|
Guillemin G, Boussin FD, Croitoru J, Franck-Duchenne M, Le Grand R, Lazarini F, Dormont D. Obtention and characterization of primary astrocyte and microglial cultures from adult monkey brains. J Neurosci Res 1997; 49:576-91. [PMID: 9302079 DOI: 10.1002/(sici)1097-4547(19970901)49:5<576::aid-jnr8>3.0.co;2-8] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Simple methods for obtention of primary cultures of isolated astrocytes and microglia from adult simian brain have been developed. Characterization of these two glial cell populations were performed by morphological observations and by immunocytochemistry. The astroglial cultures were obtained by an indirect method. After L-leucine methyl-ester treatment and trypsinizations, more than 99% of cells expressed glial fibrillary acidic protein (GFAP), whereas no macrophages or microglia could be detected. Likely, the 1% remaining cells were immature astrocytes or cells that lost their GFAP expression. Cultured simian astrocytes expressed vimentin, laminin, and fibronectin. We also found a constitutively low expression of major histocompatibility complex (MHC) class II by cultured astrocytes which was significantly enhanced by lipopolysaccharide (LPS), interferon gamma (IFN-gamma), or tumor necrosis factor alpha (TNF-alpha) treatments. Microglial cultures were obtained by a direct method of isolation using Percoll gradient separations and compared to simian monocyte-derived macrophages or alveolar macrophages. Microglial cells differed from macrophages by their proliferation upon granulocyte-macrophage colony stimulating factor (GM-CSF) treatment and by their typical morphology when observed by scanning electron microscopy. As macrophages, they expressed in vitro CD68, CD64, CD14, CD11b, MHC class II, and fibronectin. However, contrary to macrophages, simian cultured microglia expressed laminin. This observation suggests that microglia represent a new potential source of this extracellular matrix protein in the brain.
Collapse
Affiliation(s)
- G Guillemin
- Service de Neurovirologie, CEA, DSV/DRM/SSA/IPSC, Fontenay-aux-Roses, France
| | | | | | | | | | | | | |
Collapse
|
20
|
Köller H, Siebler M, Hartung HP. Immunologically induced electrophysiological dysfunction: implications for inflammatory diseases of the CNS and PNS. Prog Neurobiol 1997; 52:1-26. [PMID: 9185232 DOI: 10.1016/s0301-0082(96)00065-2] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
During inflammation of the central or peripheral nervous system, a high number of immunologically active molecules, including bacterial or viral products as well as host-derived cytokines, are released. Patients suffering from inflammatory CNS or PNS diseases often develop transient symptoms with a rapid recovery, which obviously cannot be accounted for by immunologically induced tissue damage. These observations led to the hypothesis that immunologically active molecules can affect directly the electrophysiological functions of neurons and glial cells. Evidence for this hypothesis came from in vitro studies showing that cytokines, such as interleukins or tumor necrosis factors, arachidonic acid and its metabolites, interfere with electrophysiological properties of neurons or glial cells. These molecules affect ion currents, intracellular Ca2+ homeostasis, membrane potentials, and suppress or enhance the induction and maintenance of long-term potentiation. Similarly, virus proteins from human immunodeficiency virus type I were found to alter intracellular Ca2+ concentrations of neurons and astrocytes by modulating either transmitter receptors and channels or membrane transporters. Cerebrospinal fluid from MS patients contains factors which increase Na+ current inactivation and thereby reduce neuronal excitability. Immunoglobulins in sera of patients suffering from multifocal motor neuropathy and from acquired neuromyotonia interfere with nerve fibers, inducing alterations of conduction. Increased knowledge of these mechanisms will help to explain the pathogenesis of neurological symptoms and may provide a rationale for new therapeutic strategies.
Collapse
Affiliation(s)
- H Köller
- Department of Neurology, Heinrich-Heine University Düsseldorf, Germany
| | | | | |
Collapse
|
21
|
Alvarez XA, Franco A, Fernández-Novoa L, Cacabelos R. Blood levels of histamine, IL-1 beta, and TNF-alpha in patients with mild to moderate Alzheimer disease. MOLECULAR AND CHEMICAL NEUROPATHOLOGY 1996; 29:237-52. [PMID: 8971699 DOI: 10.1007/bf02815005] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this study, we have evaluated the levels of blood histamine, serum interleukin-1 beta (IL-1 beta), and plasma tumor necrosis factor-alpha (TNF-alpha) in 20 patients with mild to moderate Alzheimer disease (AD; 13 early onset and 7 late-onset AD subjects) and in 20 age-matched control subjects (C). AD patients showed higher concentrations of histamine (AD = 452.9 +/- 237.9 pmol/mL; C = 275.3 +/- 151.5 pmol/mL; p < 0.05) and IL-1 beta (AD = 211.2 +/- 31.1 pg/mL; C = 183.4 +/- 24.4 pg/mL; p < 0.01), and lower values of TNF-alpha (AD = 3.59 +/- 2.02 pg/mL; C = 9.47 +/- 2.64 pg/mL; p < 0.001) than elderly controls. Increased levels of histamine and decreased levels of TNF-alpha were observed in both early onset AD (EOAD) and late-onset AD (LOAD) patients, but only EOAD subjects had elevated serum IL-1 beta values compared with age-matched controls. Age negatively correlated with histamine (r = -0.57; p < 0.05) and positively with IL-1 beta levels (r = 0.48; p < 0.05) in healthy subjects, but not in AD, whereas a positive correlation between TNF-alpha scores and age was only found in AD patients (r = 0.46; p < 0.05). Furthermore, histamine and TNF-alpha values correlated negatively in AD (r = -0.50, p < 0.05). In addition, cognitive impairment increased in patients with lower TNF-alpha and higher histamine and IL-1 beta levels, as indicated by the correlations between mental performance scores and histamine (r = -0.37, ns), IL-1 beta (r = -0.33, ns) and TNF-alpha levels (r = 0.42, p < 0.05). Finally, histamine concentrations decreased as depression scores increased in AD (r = -0.63, p < 0.01). These data suggest a dysfunction in cytokine and histamine regulation in AD, probably indicating changes associated with inflammatory processes.
Collapse
Affiliation(s)
- X A Alvarez
- EuroEspes Research Center, Santa Marta de Babío, A Coruña, Spain.
| | | | | | | |
Collapse
|
22
|
Guillemin G, Boussin FD, Le Grand R, Croitoru J, Coffigny H, Dormont D. Granulocyte macrophage colony stimulating factor stimulates in vitro proliferation of astrocytes derived from simian mature brains. Glia 1996; 16:71-80. [PMID: 8787775 DOI: 10.1002/(sici)1098-1136(199601)16:1<71::aid-glia8>3.0.co;2-e] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
In the brain, granulocyte-macrophage colony stimulating factor (GM-CSF) may be released by infiltrated cells of the immune system including T and B lymphocytes and mononuclear phagocytes, but also by nervous system resident cells such as microglia and astrocytes. Astrocyte-secreted GM-CSF may play an important role in enhancing the local inflammatory response to central nervous system (CNS) injury and in recruting microglia and activated macrophages. In this study, we demonstrated that GM-CSF, as TNF alpha and IL 6, stimulates in vitro proliferation of simian astrocytes in primary cultures. Results were confirmed by blocking experiments performed with a specific neutralizing mAb directed against GM-CSF. Furthermore, we demonstrated that GM-CSF mediates its effect on these cells through the alpha subunit of the GM-CSF receptor which is constitutively expressed at the membrane of the cultured simian astrocytes as assessed by immunofluorescence. GM-CSF effects on astrocytes could be involved in astrocytosis, a hallmark of various neurological injuries and in inflammatory processes in an autocrine manner.
Collapse
Affiliation(s)
- G Guillemin
- Service de Neurovirologie, CEA, DSV/DRM/SSA/IPSC, Fontenay-aux-Roses, France
| | | | | | | | | | | |
Collapse
|
23
|
Holden RJ, Pakula IS. Immunological influences in attention-deficit disorder and schizophrenia; is there a link between these two conditions? Med Hypotheses 1995; 45:575-87. [PMID: 8771053 DOI: 10.1016/0306-9877(95)90242-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
This paper aims to explore the influence of the immune system on the pathobiochemistry of movement disorders (Tourette syndrome, obsessive compulsive disorders and attention-deficit disorder, with and without hyperactivity) and schizophrenia. In children, a temporal relationship has been observed between contraction of a group A beta-hemolytic streptococcal infection and subsequent presentation with one of the movement disorders. Pathology investigations reveal that elevated antineuronal antibodies are associated with movement disorders. Similarly, elevations in interleukin-1 beta and interleukin-6 have been reported in schizophrenia. It is now known that the immune system can be activated by conditions other than a viral or bacterial infection, such as: neurological insult, neurotoxicity--endogenous and environmental, neurotransmitter and cholesterol dysregulation. These latter avenues of immune system activation will be explored with respect to schizophrenia.
Collapse
Affiliation(s)
- R J Holden
- Medical Research Unit, University of Wollongong, NSW, Australia
| | | |
Collapse
|
24
|
Holden RJ, Mooney PA. Interleukin-1 beta: a common cause of Alzheimer's disease and diabetes mellitus. Med Hypotheses 1995; 45:559-71. [PMID: 8771051 DOI: 10.1016/0306-9877(95)90240-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Alzheimer disease is characterized by the presence of beta-amyloid protein deposits, neurofibrillary tangles and cholinergic dysfunction throughout the hippocampal region. In addition, the hippocampus, hypothalamus and olfactory bulb--the three areas where the insulin receptors are most dense--are also subject to neurodegeneration. The exact cause of the beta-amyloid deposits and NFTs is unknown. However, it is our intention to explicate the various pathogenic pathways through which Alzheimer disease arises. Fundamentally, the structural and metabolic damage found in Alzheimer disease is due to sustained elevation of interleukin-1 beta, a feature which is also found in insulin-dependent diabetes mellitus. Similarly, the beta-AP deposits found in the Alzheimer brain share the same molecular structure as the amylin deposits found in the pancreatic beta-cells in non-insulin-dependent diabetes mellitus (NIDDM), and are equally neurotoxic. These, and other pathophysiological parallels, afford some insight into the probably cause of Alzheimer disease and, as such, forms the basis of the causal hypothesis advanced in this paper.
Collapse
Affiliation(s)
- R J Holden
- Medical Research Unit, University of Wollongong, NWS, Australia
| | | |
Collapse
|
25
|
Soliven B, Szuchet S. Signal transduction pathways in oligodendrocytes: role of tumor necrosis factor-alpha. Int J Dev Neurosci 1995; 13:351-67. [PMID: 7572287 DOI: 10.1016/0736-5748(95)00019-d] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
We have used a combination of electrophysiological and biochemical approaches to investigate the effects and the mechanisms of action of tumor necrosis factor-alpha (TNF-alpha) on cultured oligodendrocytes (OLGs). Our studies have led to the following conclusions: (1) prolonged exposure of mature ovine OLGs to TNF-alpha leads to inhibition of process extension, membrane depolarization and a decrease in the amplitudes of both inwardly rectifying and outward K+ currents; (2) brief exposure of OLGs to TNF-alpha does not elicit membrane depolarization or consistent changes in cytosolic Ca2+ levels; (3) incubation of OLGs with TNF-alpha for 1 hr results in inhibition of phosphorylation of myelin basic protein and 2',3'-cyclic nucleotide phosphohydrolase. Ceramides, which have been shown to be effectors of TNF-alpha, are ineffective in inhibiting phosphorylation, whereas sphingomyelinase mimics TNF-alpha in this action. These observations suggest that other products of sphingomyelin hydrolysis may be the mediator(s) of TNF-alpha effect on protein phosphorylation. We have thus demonstrated that TNF-alpha can perturb the functions of OLGs via modulation of ion channels and of protein phosphorylation without necessarily inducing cell death. It is conceivable that modulation of ion channels and protein phosphorylation constitutes effective mechanisms for the participation of cytokines in signal transduction during myelination, demyelination and remyelination.
Collapse
Affiliation(s)
- B Soliven
- Department of Neurology, University of Chicago, Illinois 60637, USA
| | | |
Collapse
|
26
|
Holliday J, Parsons K, Curry J, Lee SY, Gruol DL. Cerebellar granule neurons develop elevated calcium responses when treated with interleukin-6 in culture. Brain Res 1995; 673:141-8. [PMID: 7757467 DOI: 10.1016/0006-8993(94)01417-g] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In humans, elevated levels of cytokines are associated with several diseases (including HIV infection and Down Syndrome) that result in developmental abnormalities. Overexpression of interleukin-6 (IL-6) in the central nervous system has been shown to cause extensive neuronal abnormality in mice that becomes more evident with maturation. However, it is difficult to separate direct effects of IL-6 on the developing neurons of an intact animal from indirect effects involving effects on other cell types that possess cytokine receptors, such as microglia and astrocytes. We have found that IL-6 treatment of rat cerebellar granule neurons developing in the absence of other cell types in culture results in the persistence of large, depolarization or neurotransmitter-induced calcium transients, that are normally observed only in immature neurons. The cause of this appears to be the persistence of a calcium-induced calcium release (CICR) component of the calcium response to stimulation. This basic abnormality in neuronal development may contribute to the developmental abnormalities associated with human syndromes that involve elevated cytokine levels.
Collapse
Affiliation(s)
- J Holliday
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | | | |
Collapse
|
27
|
Gruol DL, Curry JG. Calcium signals elicited by quisqualate in cultured Purkinje neurons show developmental changes in sensitivity to acute alcohol. Brain Res 1995; 673:1-12. [PMID: 7757461 DOI: 10.1016/0006-8993(94)01324-b] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The effect of acute alcohol (33 mM ethanol) on calcium signaling evoked by glutamate receptor activation was studied in cultured cerebellar Purkinje and granule neurons at different stages of development. Calcium signals were measured by microscopic imaging using the calcium sensitive dye fura-2. At an early stage in development (10 days in vitro), acute alcohol enhanced the calcium signals evoked in Purkinje neurons by exogenous application of quisqualate, an agonist at ionotropic and metabotropic glutamate receptors. In contrast, in mature cultured Purkinje neurons (21-24 days in vitro) the calcium signals produced by quisqualate were reduced by alcohol. At an intermediate stage of development (14 days in vitro) reflecting the main period of morphological and physiological maturation, alcohol had no significant effect on the response to quisqualate. Alcohol's actions were significantly altered by manipulation of the intracellular stores with caffeine, implicating intracellular stores in alcohol's actions. Calcium signals produced by quisqualate in the cultured granule neurons were also altered by acute alcohol, in a manner similar to that observed in the Purkinje neurons. These data demonstrate that calcium signaling pathways are a site of alcohol action in developing CNS neurons and that the cellular consequences of alcohol exposure can change with development. Such actions of alcohol could have significant effects on the immature nervous system, where the precise timing of appropriate signaling levels are important aspects of the maturation process.
Collapse
Affiliation(s)
- D L Gruol
- Department of Neuropharmacology, Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
28
|
Cadman ED, Naugles DD, Lee CM. cAMP is not involved in interleukin-1-induced interleukin-6 release from human astrocytoma cells. Neurosci Lett 1994; 178:251-4. [PMID: 7529912 DOI: 10.1016/0304-3940(94)90771-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have previously shown that activation of the phosphatidyl-inositol/phospholipase C pathway could induce interleukin 6 (IL-6) release from U373MG human astrocytomes cells. We also found that, although interleukin 1 beta (IL-1 beta) did not activate phosphatidy-linositol turnover, it induced, a robust release of IL-6. In the present study, we examined the role of adenylate cyclase/cyclic 3',5'-adenosine monophosphate (cAMP) pathway in IL-6 release. Agents which mimicked (dibutyryl cAMP) or stimulated (isoproterenol and forskolin) cAMP formation were found to induce IL-6 release and their effects could be potentiated by 3-isobutyl-1-methylxanthine (IBMX), a phosphodiesterase inhibitor. On the other hand, in spite of its robust action on IL-6 release, IL-1 beta did not stimulate cAMP formation. Other possible signal transduction mechanisms involved in IL-1 beta-induced IL-6 release are discussed.
Collapse
Affiliation(s)
- E D Cadman
- Pharmaceutical Products Division, Abbott Laboratories, Abbott Park, IL 60064
| | | | | |
Collapse
|