1
|
You B, Wen H, Jackson T. Resting-state brain activity as a biomarker of chronic pain impairment and a mediator of its association with pain resilience. Hum Brain Mapp 2024; 45:e26780. [PMID: 38984446 PMCID: PMC11234141 DOI: 10.1002/hbm.26780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 06/02/2024] [Accepted: 06/26/2024] [Indexed: 07/11/2024] Open
Abstract
Past cross-sectional chronic pain studies have revealed aberrant resting-state brain activity in regions involved in pain processing and affect regulation. However, there is a paucity of longitudinal research examining links of resting-state activity and pain resilience with changes in chronic pain outcomes over time. In this prospective study, we assessed the status of baseline (T1) resting-state brain activity as a biomarker of later impairment from chronic pain and a mediator of the relation between pain resilience and impairment at follow-up. One hundred forty-two adults with chronic musculoskeletal pain completed a T1 assessment comprising a resting-state functional magnetic resonance imaging scan based on regional homogeneity (ReHo) and self-report measures of demographics, pain characteristics, psychological status, pain resilience, pain severity, and pain impairment. Subsequently, pain impairment was reassessed at a 6-month follow-up (T2). Hierarchical multiple regression and mediation analyses assessed relations of T1 ReHo and pain resilience scores with changes in pain impairment. Higher T1 ReHo values in the right caudate nucleus were associated with increased pain impairment at T2, after controlling for all other statistically significant self-report measures. ReHo also partially mediated associations of T1 pain resilience dimensions with T2 pain impairment. T1 right caudate nucleus ReHo emerged as a possible biomarker of later impairment from chronic musculoskeletal pain and a neural mechanism that may help to explain why pain resilience is related to lower levels of later chronic pain impairment. Findings provide empirical foundations for prospective extensions that assess the status of ReHo activity and self-reported pain resilience as markers for later impairment from chronic pain and targets for interventions to reduce impairment. PRACTITIONER POINTS: Resting-state markers of impairment: Higher baseline (T1) regional homogeneity (ReHo) values, localized in the right caudate nucleus, were associated with exacerbations in impairment from chronic musculoskeletal pain at a 6-month follow-up, independent of T1 demographics, pain experiences, and psychological factors. Mediating role of ReHo values: ReHo values in the right caudate nucleus also mediated the relationship between baseline pain resilience levels and later pain impairment among participants. Therapeutic implications: Findings provide empirical foundations for research extensions that evaluate (1) the use of resting-state activity in assessment to identify people at risk for later impairment from pain and (2) changes in resting-state activity as biomarkers for the efficacy of treatments designed to improve resilience and reduce impairment among those in need.
Collapse
Affiliation(s)
- Beibei You
- School of NursingGuizhou Medical UniversityGuian New DistrictChina
| | - Hongwei Wen
- Key Laboratory of Cognition and Personality (Ministry of Education), Faculty of PsychologySouthwest UniversityChongqingChina
| | - Todd Jackson
- Department of PsychologyUniversity of MacauTaipaMacau, SARChina
| |
Collapse
|
2
|
Allen MT. Weaker situations: Uncertainty reveals individual differences in learning: Implications for PTSD. COGNITIVE, AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2023:10.3758/s13415-023-01077-5. [PMID: 36944865 DOI: 10.3758/s13415-023-01077-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/07/2023] [Indexed: 03/23/2023]
Abstract
Few individuals who experience trauma develop posttraumatic stress disorder (PTSD). Therefore, the identification of individual differences that signal increased risk for PTSD is important. Lissek et al. (2006) proposed using a weak rather than a strong situation to identify individual differences. A weak situation involves less-salient cues as well as some degree of uncertainty, which reveal individual differences. A strong situation involves salient cues with little uncertainty, which produce consistently strong responses. Results from fear conditioning studies that support this hypothesis are discussed briefly. This review focuses on recent findings from three learning tasks: classical eyeblink conditioning, avoidance learning, and a computer-based task. These tasks are interpreted as weaker learning situations in that they involve some degree of uncertainty. Individual differences in learning based on behavioral inhibition, which is a risk factor for PTSD, are explored. Specifically, behaviorally inhibited individuals and rodents (i.e., Wistar Kyoto rats), as well as individuals expressing PTSD symptoms, exhibit enhanced eyeblink conditioning. Behaviorally inhibited rodents also demonstrate enhanced avoidance responding (i.e., lever pressing). Both enhanced eyeblink conditioning and avoidance are most evident with schedules of partial reinforcement. Behaviorally inhibited individuals also performed better on reward and punishment trials than noninhibited controls in a probabilistic category learning task. Overall, the use of weaker situations with uncertain relationships may be more ecologically valid than learning tasks in which the aversive event occurs on every trial and may provide more sensitivity for identifying individual differences in learning for those at risk for, or expressing, PTSD symptoms.
Collapse
Affiliation(s)
- M Todd Allen
- School of Psychological Sciences, University of Northern Colorado, Greeley, CO, USA.
| |
Collapse
|
3
|
Blanchet PJ, Brefel-Courbon C. Chronic pain and pain processing in Parkinson's disease. Prog Neuropsychopharmacol Biol Psychiatry 2018; 87:200-206. [PMID: 29031913 DOI: 10.1016/j.pnpbp.2017.10.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/26/2017] [Accepted: 10/07/2017] [Indexed: 12/24/2022]
Abstract
Pain is experienced by the vast majority of patients living with Parkinson's disease. It is most often of nociceptive origin, but may also be ascribed to neuropathic (radicular or central) or miscellaneous sources. The recently validated King's Parkinson's Disease Pain Scale is based on 7 domains including musculoskeletal pain, chronic body pain (central or visceral), fluctuation-related pain, nocturnal pain, oro-facial pain, pain with discolouration/oedema/swelling, and radicular pain. The basal ganglia integrate incoming nociceptive information and contribute to coordinated motor responses in pain avoidance and nocifensive behaviors. In Parkinson's disease, nigral and extra-nigral pathology, involving cortical areas, brainstem nuclei, and spinal cord, may contribute to abnormal central nociceptive processing in patients experiencing pain or not. The dopamine deficit lowers multimodal pain thresholds that are amenable to correction following levodopa dosing. Functional brain imaging with positron emission tomography following administration of H215O revealed abnormalities in the sensory discriminative processing of pain (insula/SII), as well as in the affective motivational processing of pain (anterior cingulate cortex, prefrontal cortex). Pain management is dependent on efforts invested in diagnostic accuracy to distinguish nociceptive from neuropathic pain. Treatment requires an integrated approach including strategies to lessen levodopa-related response fluctuations, in addition to other pharmacological and non-pharmacological options such as deep brain stimulation and rehabilitation.
Collapse
Affiliation(s)
- Pierre J Blanchet
- Department of Stomatology, Faculty of Dental Medicine, Université de Montréal; Montréal, QC, Canada; Service de neurologie, CHU Montréal, Montréal, QC, Canada.
| | - Christine Brefel-Courbon
- Service de Pharmacologie Clinique, Faculty of Medicine, University Hospital, Toulouse, France; Service de neurologie B8, Pierre Paul Riquet Hospital, University Hospital, Toulouse, France.
| |
Collapse
|
4
|
Klanker M, Fellinger L, Feenstra M, Willuhn I, Denys D. Regionally distinct phasic dopamine release patterns in the striatum during reversal learning. Neuroscience 2016; 345:110-123. [PMID: 27185487 DOI: 10.1016/j.neuroscience.2016.05.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 05/04/2016] [Accepted: 05/06/2016] [Indexed: 12/28/2022]
Abstract
Striatal dopamine (DA) plays a central role in reward-related learning and behavioral adaptation to changing environments. Recent studies suggest that rather than being broadcast as a uniform signal throughout the entire region, DA release dynamics diverge between different striatal regions. In a previous study, we showed that phasic DA release patterns in the ventromedial striatum (VMS) rapidly adapt during reversal learning. However, it is unknown how DA dynamics in the dorsolateral striatum (DLS) are modulated during such adaptive behavior. Here, we used fast-scan cyclic voltammetry to measure phasic DA release in the DLS during spatial reversal learning. In the DLS, we observed minor DA release after the onset of a visual cue signaling reward availability, followed by more pronounced DA release during more proximal reward cues (e.g., lever extension) and execution of the operant response (i.e., lever press), both in rewarded and non-rewarded trials. These release dynamics (minor DA after onset of the predictive visual cue, prominent DA during the operant response) did not change significantly during or following a reversal of response-reward contingencies. Notably, the DA increase to the lever press did not reflect a general signal related to the initiation of any motivated motor response, as we did not observe DA release when rats initiated nose pokes into the food receptacle during inter-trial intervals. This suggests that DA release in the DLS occurs selectively during the initiation and execution of a learned operant response. Together with our previous results obtained in the VMS, these findings reveal distinct phasic DA release patterns during adaptation of established behavior in DLS and VMS. The VMS DA signal, which is highly sensitive to reversal of response-reward contingences, may provide a teaching signal to guide reward-related learning and facilitate behavioral adaptation, whereas DLS DA may reflect a 'response execution signal' largely independent of outcome, that may be involved in initiation and energizing of operant behavior.
Collapse
Affiliation(s)
- Marianne Klanker
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands.
| | - Lisanne Fellinger
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands
| | - Matthijs Feenstra
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Ingo Willuhn
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| | - Damiaan Denys
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA Amsterdam, The Netherlands; Department of Psychiatry, Academic Medical Center, University of Amsterdam, Postbus 22660, 1100 DD Amsterdam, The Netherlands
| |
Collapse
|
5
|
Devan BD, Chaban N, Piscopello J, Deibel SH, McDonald RJ. Cognitive and Stimulus–Response Habit Functions of the Neo-(Dorsal) Striatum. INNOVATIONS IN COGNITIVE NEUROSCIENCE 2016. [DOI: 10.1007/978-3-319-42743-0_18] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
6
|
Fanelli RR, Robinson DL. Dopamine D1 receptor blockade impairs alcohol seeking without reducing dorsal striatal activation to cues of alcohol availability. Brain Behav 2015; 5:e00305. [PMID: 25642390 PMCID: PMC4309894 DOI: 10.1002/brb3.305] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 10/17/2014] [Accepted: 11/12/2014] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION Alcohol-associated cues activate both ventral and dorsal striatum in functional brain imaging studies of heavy drinkers. In rodents, alcohol-associated cues induce changes in neuronal firing frequencies and increase dopamine release in ventral striatum, but the impact of alcohol-associated cues on neuronal activity in dorsal striatum is unclear. We previously reported phasic changes in action potential frequency in the dorsomedial and dorsolateral striatum after cues that signaled alcohol availability, prompting approach behavior. METHODS We investigated the hypothesis that dopamine transmission modulates these phasic firing changes. Rats were trained to self-administer alcohol, and neuronal activity was monitored with extracellular electrophysiology during "anticipatory" cues that signaled the start of the operant session. Sessions were preceded by systemic administration of the D1-type dopamine receptor antagonist SCH23390 (0, 10, and 20 μg/kg). RESULTS SCH23390 significantly decreased firing rates during the 60 s prior to cue onset without reducing phasic excitations immediately following the cues. While neuronal activation to cues might be expected to initiate behavioral responses, in this study alcohol seeking was reduced despite the presence of dorsal striatal excitations to alcohol cues. CONCLUSIONS These data suggest that D1 receptor antagonism reduces basal firing rates in the dorsal striatum and modulates the ability of neuronal activation to "anticipatory" cues to initiate alcohol seeking in rats with an extensive history of alcohol self-administration.
Collapse
Affiliation(s)
- Rebecca R Fanelli
- Neurobiology Curriculum, University of North Carolina Chapel Hill, North Carolina ; Bowles Center for Alcohol Studies, University of North Carolina Chapel Hill, North Carolina
| | - Donita L Robinson
- Neurobiology Curriculum, University of North Carolina Chapel Hill, North Carolina ; Bowles Center for Alcohol Studies, University of North Carolina Chapel Hill, North Carolina ; Department of Psychiatry, University of North Carolina Chapel Hill, North Carolina
| |
Collapse
|
7
|
Functional relationships between the hippocampus and dorsomedial striatum in learning a visual scene-based memory task in rats. J Neurosci 2015; 34:15534-47. [PMID: 25411483 DOI: 10.1523/jneurosci.0622-14.2014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hippocampus is important for contextual behavior, and the striatum plays key roles in decision making. When studying the functional relationships with the hippocampus, prior studies have focused mostly on the dorsolateral striatum (DLS), emphasizing the antagonistic relationships between the hippocampus and DLS in spatial versus response learning. By contrast, the functional relationships between the dorsomedial striatum (DMS) and hippocampus are relatively unknown. The current study reports that lesions to both the hippocampus and DMS profoundly impaired performance of rats in a visual scene-based memory task in which the animals were required to make a choice response by using visual scenes displayed in the background. Analysis of simultaneous recordings of local field potentials revealed that the gamma oscillatory power was higher in the DMS, but not in CA1, when the rat performed the task using familiar scenes than novel ones. In addition, the CA1-DMS networks increased coherence at γ, but not at θ, rhythm as the rat mastered the task. At the single-unit level, the neuronal populations in CA1 and DMS showed differential firing patterns when responses were made using familiar visual scenes than novel ones. Such learning-dependent firing patterns were observed earlier in the DMS than in CA1 before the rat made choice responses. The present findings suggest that both the hippocampus and DMS process memory representations for visual scenes in parallel with different time courses and that flexible choice action using background visual scenes requires coordinated operations of the hippocampus and DMS at γ frequencies.
Collapse
|
8
|
Long-term impacts of adolescent risperidone treatment on behavioral responsiveness to olanzapine and clozapine in adulthood. Prog Neuropsychopharmacol Biol Psychiatry 2014; 48:177-85. [PMID: 24140929 PMCID: PMC3859461 DOI: 10.1016/j.pnpbp.2013.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 01/09/2023]
Abstract
This preclinical study investigated how a short-term risperidone treatment in adolescence impacts antipsychotic response to olanzapine and clozapine in adulthood. Antipsychotic effect was indexed by a drug's suppressive effect on avoidance responding in a rat conditioned avoidance response (CAR) model. Male adolescent Sprague-Dawley rats were first treated with risperidone (1.0mg/kg, sc) or sterile water and tested in the CAR model for 5 consecutive days from postnatal days P 40 to 44. After they became adults (~P 80-84), they were switched to olanzapine (0.5mg/kg, sc), clozapine (5.0mg/kg, sc) or vehicle treatment and tested for avoidance for 5days. During the adolescent period, repeated risperidone treatment produced a persistent inhibition of avoidance response. Throughout the 5days of adulthood drug testing, rats previously treated with risperidone in adolescence made significantly fewer avoidance responses than the vehicle ones when they all were switched to olanzapine, indicating a risperidone-induced enhancement of behavioral sensitivity to olanzapine. In contrast, when switched to clozapine, rats previously treated with risperidone made significantly more avoidance responses than the vehicle rats, indicating a risperidone-induced decrease of behavioral sensitivity to clozapine. Performance in the prepulse inhibition of acoustic startle response in adulthood was not altered by adolescent risperidone treatment. Collectively, adolescent risperidone exposure induced a long-term change in behavioral sensitivity to other atypical antipsychotic drugs, with the specific direction of change (i.e., increase or decrease) dependent on the drug to be switched to. These long-lasting changes are likely mediated by drug-induced neuroplastic changes and may also have significant clinical implications for antipsychotic treatment of chronic patients with an early onset of psychotic symptoms.
Collapse
|
9
|
Complementary Roles of the Hippocampus and the Dorsomedial Striatum during Spatial and Sequence-Based Navigation Behavior. PLoS One 2013; 8:e67232. [PMID: 23826243 PMCID: PMC3695082 DOI: 10.1371/journal.pone.0067232] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 05/15/2013] [Indexed: 11/19/2022] Open
Abstract
We investigated the neural bases of navigation based on spatial or sequential egocentric representation during the completion of the starmaze, a complex goal-directed navigation task. In this maze, mice had to swim along a path composed of three choice points to find a hidden platform. As reported previously, this task can be solved by using two hippocampal-dependent strategies encoded in parallel i) the allocentric strategy requiring encoding of the contextual information, and ii) the sequential egocentric strategy requiring temporal encoding of a sequence of successive body movements associated to specific choice points. Mice were trained during one day and tested the following day in a single probe trial to reveal which of the two strategies was spontaneously preferred by each animal. Imaging of the activity-dependent gene c-fos revealed that both strategies are supported by an overlapping network involving the dorsal hippocampus, the dorsomedial striatum (DMS) and the medial prefrontal cortex. A significant higher activation of the ventral CA1 subregion was observed when mice used the sequential egocentric strategy. To investigate the potential different roles of the dorsal hippocampus and the DMS in both types of navigation, we performed region-specific excitotoxic lesions of each of these two structures. Dorsal hippocampus lesioned mice were unable to optimally learn the sequence but improved their performances by developing a serial strategy instead. DMS lesioned mice were severely impaired, failing to learn the task. Our data support the view that the hippocampus organizes information into a spatio-temporal representation, which can then be used by the DMS to perform goal-directed navigation.
Collapse
|
10
|
Fanelli RR, Klein JT, Reese RM, Robinson DL. Dorsomedial and dorsolateral striatum exhibit distinct phasic neuronal activity during alcohol self-administration in rats. Eur J Neurosci 2013; 38:2637-48. [PMID: 23763702 DOI: 10.1111/ejn.12271] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/26/2013] [Accepted: 04/30/2013] [Indexed: 12/01/2022]
Abstract
The development of alcoholism may involve a shift from goal-directed to habitual drinking. These action control systems are distinct in the dorsal striatum, with the dorsomedial striatum (DMS) important for goal-directed behavior and the dorsolateral striatum (DLS) required for habit formation. Goal-directed behavior can be modeled in rats with a fixed ratio (FR) reinforcement schedule, while a variable interval (VI) schedule promotes habitual behavior (e.g. insensitivity to contingency degradation). Using extracellular recordings from chronically implanted electrodes, we investigated how DMS and DLS neurons encoded lever-press responses and conditioned cues during operant alcohol self-administration in these two models. In rats self-administering 10% alcohol on an FR schedule, the DMS neuronal population showed increased firing at the onset of start-of-session stimuli. During self-administration, the most prominent phasic firing patterns in the DMS occurred at the time of reinforcement and reinforcement-associated cues, while the most prominent phasic activity in the DLS surrounded the lever response. Neural recordings from an additional cohort of rats trained on a VI schedule revealed a similar pattern of results; however, phasic changes in firing were smaller and differences between the medial and lateral dorsal striatum were less marked. In summary, the DMS and DLS exhibited overlapping but specialized phasic firing patterns: DMS excitations were typically time-locked to reinforcement, while DLS excitations were generally associated with lever responses. Furthermore, the regional specificities and magnitudes of phasic firing differed between reinforcement schedules, which may reflect differences in behavioral flexibility, reward expectancy and the action sequences required to procure reinforcement.
Collapse
Affiliation(s)
- Rebecca R Fanelli
- Neurobiology Curriculum, University of North Carolina, Chapel Hill, NC, USA
| | | | | | | |
Collapse
|
11
|
Gruber AJ, McDonald RJ. Context, emotion, and the strategic pursuit of goals: interactions among multiple brain systems controlling motivated behavior. Front Behav Neurosci 2012; 6:50. [PMID: 22876225 PMCID: PMC3411069 DOI: 10.3389/fnbeh.2012.00050] [Citation(s) in RCA: 112] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Accepted: 07/19/2012] [Indexed: 11/16/2022] Open
Abstract
Motivated behavior exhibits properties that change with experience and partially dissociate among a number of brain structures. Here, we review evidence from rodent experiments demonstrating that multiple brain systems acquire information in parallel and either cooperate or compete for behavioral control. We propose a conceptual model of systems interaction wherein a ventral emotional memory network involving ventral striatum (VS), amygdala, ventral hippocampus, and ventromedial prefrontal cortex triages behavioral responding to stimuli according to their associated affective outcomes. This system engages autonomic and postural responding (avoiding, ignoring, approaching) in accordance with associated stimulus valence (negative, neutral, positive), but does not engage particular operant responses. Rather, this emotional system suppresses or invigorates actions that are selected through competition between goal-directed control involving dorsomedial striatum (DMS) and habitual control involving dorsolateral striatum (DLS). The hippocampus provides contextual specificity to the emotional system, and provides an information rich input to the goal-directed system for navigation and discriminations involving ambiguous contexts, complex sensory configurations, or temporal ordering. The rapid acquisition and high capacity for episodic associations in the emotional system may unburden the more complex goal-directed system and reduce interference in the habit system from processing contingencies of neutral stimuli. Interactions among these systems likely involve inhibitory mechanisms and neuromodulation in the striatum to form a dominant response strategy. Innate traits, training methods, and task demands contribute to the nature of these interactions, which can include incidental learning in non-dominant systems. Addition of these features to reinforcement learning models of decision-making may better align theoretical predictions with behavioral and neural correlates in animals.
Collapse
Affiliation(s)
- Aaron J Gruber
- Canadian Centre for Behavioural Neuroscience, Department of Neuroscience, University of Lethbridge, Lethbridge AB, Canada
| | | |
Collapse
|
12
|
Penner MR, Mizumori SJY. Neural systems analysis of decision making during goal-directed navigation. Prog Neurobiol 2011; 96:96-135. [PMID: 21964237 DOI: 10.1016/j.pneurobio.2011.08.010] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2011] [Revised: 08/06/2011] [Accepted: 08/29/2011] [Indexed: 10/17/2022]
Abstract
The ability to make adaptive decisions during goal-directed navigation is a fundamental and highly evolved behavior that requires continual coordination of perceptions, learning and memory processes, and the planning of behaviors. Here, a neurobiological account for such coordination is provided by integrating current literatures on spatial context analysis and decision-making. This integration includes discussions of our current understanding of the role of the hippocampal system in experience-dependent navigation, how hippocampal information comes to impact midbrain and striatal decision making systems, and finally the role of the striatum in the implementation of behaviors based on recent decisions. These discussions extend across cellular to neural systems levels of analysis. Not only are key findings described, but also fundamental organizing principles within and across neural systems, as well as between neural systems functions and behavior, are emphasized. It is suggested that studying decision making during goal-directed navigation is a powerful model for studying interactive brain systems and their mediation of complex behaviors.
Collapse
Affiliation(s)
- Marsha R Penner
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, United States
| | | |
Collapse
|
13
|
Parallel associative processing in the dorsal striatum: segregation of stimulus-response and cognitive control subregions. Neurobiol Learn Mem 2011; 96:95-120. [PMID: 21704718 DOI: 10.1016/j.nlm.2011.06.002] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2009] [Revised: 05/25/2011] [Accepted: 06/06/2011] [Indexed: 11/21/2022]
Abstract
Although evidence suggests that the dorsal striatum contributes to multiple learning and memory functions, there nevertheless remains considerable disagreement on the specific associative roles of different neuroanatomical subregions. We review evidence indicating that the dorsolateral striatum (DLS) is a substrate for stimulus-response habit formation - incremental strengthening of simple S-R bonds - via input from sensorimotor neocortex while the dorsomedial striatum (DMS) contributes to behavioral flexibility - the cognitive control of behavior - via prefrontal and limbic circuits engaged in relational and spatial information processing. The parallel circuits through dorsal striatum interact with incentive/affective motivational processing in the ventral striatum and portions of the prefrontal cortex leading to overt responding under specific testing conditions. Converging evidence obtained through a detailed task analysis and neurobehavioral assessment is beginning to illuminate striatal subregional interactions and relations to the rest of the mammalian brain.
Collapse
|
14
|
Kimchi EY, Laubach M. The dorsomedial striatum reflects response bias during learning. J Neurosci 2009; 29:14891-902. [PMID: 19940185 PMCID: PMC6666004 DOI: 10.1523/jneurosci.4060-09.2009] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Revised: 09/29/2009] [Accepted: 10/14/2009] [Indexed: 11/21/2022] Open
Abstract
Previous studies have established that neurons in the dorsomedial striatum track the behavioral significance of external stimuli, are sensitive to contingencies between actions and outcomes, and show rapid flexibility in representing task-related information. Here, we describe how neural activity in the dorsomedial striatum changes during the initial acquisition of a Go/NoGo task and during an initial reversal of stimulus-response contingencies. Rats made nosepoke responses over delay periods and then received one of two acoustic stimuli. Liquid rewards were delivered after one stimulus (S+) if the rats made a Go response (entering a reward port on the opposite wall of the chamber). If a Go response was made to other stimulus (S-), rats experienced a timeout. On 10% of trials, no stimulus was presented. These trials were used to assess response bias, the animals' tendency to collect reward independent of the stimulus. Response bias increased during the reversal, corresponding to the animals' uncertainty about the stimulus-response contingencies. Most task-modulated neurons fired during the response at the end of the delay period. The fraction of response-modulated neurons was correlated with response bias and neural activity was sensitive to the behavioral response made on the previous trial. During initial task acquisition and initial reversal learning, there was a remarkable change in the percentages of neurons that fired in relation to the task events, especially during withdrawal from the nosepoke aperture. These results suggest that changes in task-related activity in the dorsomedial striatum during learning are driven by the animal's bias to collect rewards.
Collapse
Affiliation(s)
- Eyal Y. Kimchi
- The John B. Pierce Laboratory, New Haven, Connecticut 06519, and
- Interdepartmental Neuroscience Program and
| | - Mark Laubach
- The John B. Pierce Laboratory, New Haven, Connecticut 06519, and
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
15
|
Kimchi EY, Laubach M. Dynamic encoding of action selection by the medial striatum. J Neurosci 2009; 29:3148-59. [PMID: 19279252 PMCID: PMC3415331 DOI: 10.1523/jneurosci.5206-08.2009] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2008] [Revised: 01/25/2009] [Accepted: 01/26/2009] [Indexed: 11/21/2022] Open
Abstract
Successful foragers respond flexibly to environmental stimuli. Behavioral flexibility depends on a number of brain areas that send convergent projections to the medial striatum, such as the medial prefrontal cortex, orbital frontal cortex, and amygdala. Here, we tested the hypothesis that neurons in the medial striatum are involved in flexible action selection, by representing changes in stimulus-reward contingencies. Using a novel Go/No-go reaction-time task, we changed the reward value of individual stimuli within single experimental sessions. We simultaneously recorded neuronal activity in the medial and ventral parts of the striatum of rats. The rats modified their actions in the task after the changes in stimulus-reward contingencies. This was preceded by dynamic modulations of spike activity in the medial, but not the ventral, striatum. Our results suggest that the medial striatum biases animals to collect rewards to potentially valuable stimuli and can rapidly influence flexible behavior.
Collapse
Affiliation(s)
- Eyal Yaacov Kimchi
- The John B. Pierce Laboratory, New Haven, Connecticut 06519, and
- Interdepartmental Neuroscience Program and
| | - Mark Laubach
- The John B. Pierce Laboratory, New Haven, Connecticut 06519, and
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06520
| |
Collapse
|
16
|
Schmitzer-Torbert NC, Redish AD. Task-dependent encoding of space and events by striatal neurons is dependent on neural subtype. Neuroscience 2008; 153:349-60. [PMID: 18406064 DOI: 10.1016/j.neuroscience.2008.01.081] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2007] [Revised: 01/30/2008] [Accepted: 01/31/2008] [Indexed: 11/19/2022]
Abstract
The dorsal striatum plays a critical role in procedural learning and memory. Current models of basal ganglia assume that striatal neurons and circuitry are critical for the execution of overlearned, habitual sequences of action. However, less is known about how the striatum encodes task information that guides the performance of actions in procedural tasks. To explore the striatal encoding of task information, we compared the behavioral correlates of striatal neurons tested in two tasks: a multiple T-maze task in which reward delivery was entirely predictable based on spatial cues (the Multiple-T task), and a task in which rats ran on a rectangular track, but food delivery depended on the distance traveled on the track and was not dependent solely on spatial location (the Take-5 task). Striatal cells recorded on these tasks were divisible into three cell types: phasic-firing neurons (PFNs), tonically firing neurons (TFNs), and high-firing neurons (HFNs) and similar proportions of each cell type were found in each task. However, the behavioral correlates of each cell type were differentially sensitive to the type of task rats were performing. PFNs were responsive to specific task-parameters on each task. TFNs showed reliable burst-and-pause responses following food delivery and other events that were consistent with tonically active neurons (TANs) on the Take-5 (non-spatial) task but not on the Multiple-T (spatial) task. HFNs showed spatial oscillations on the Multiple-T (spatial) task but not the Take-5 (non-spatial) task. Reconstruction of the rats' position on the maze was highly accurate when using striatal ensembles recorded on the Multiple-T (spatial) task, but not when using ensembles recorded on the Take-5 (non-spatial) task. In contrast, reconstruction of time following food delivery was successful in both tasks. The results indicated a strong task dependency of the quality of the spatial, but not the reward-related, striatal representations on these tasks. These results suggest that striatal spatial representations depend on the degree to which spatial task-parameters can be unambiguously associated with goals.
Collapse
|
17
|
Abstract
Animals, in particular humans, frequently punish other individuals who behave negatively or uncooperatively towards them. In animals, this usually serves to protect the personal interests of the individual concerned, and its kin. However, humans also punish altruistically, in which the act of punishing is personally costly. The propensity to do so has been proposed to reflect the cultural acquisition of norms of behaviour, which incorporates the desire to uphold equity and fairness, and promotes cooperation. Here, we review the proximate neurobiological basis of punishment, considering the motivational processes that underlie punishing actions.
Collapse
Affiliation(s)
- Ben Seymour
- The Wellcome Trust Centre for Neuroimaging, Institute of Neurology, UCL, 12 Queen Square, London WC1X 3BG, UK.
| | | | | |
Collapse
|
18
|
Parr-Brownlie LC, Hyland BI. Bradykinesia induced by dopamine D2 receptor blockade is associated with reduced motor cortex activity in the rat. J Neurosci 2006; 25:5700-9. [PMID: 15958736 PMCID: PMC6724886 DOI: 10.1523/jneurosci.0523-05.2005] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Disruption of motor cortex activity is hypothesized to play a major role in the slowed movement (bradykinesia) associated with reduced dopaminergic function. We recorded single neurons in the motor cortex of free-moving rats performing a forelimb-reaching task. The same neurons were examined before and after induction of bradykinesia with the D2 dopamine receptor antagonist haloperidol. Within-cell changes in the firing rate and firing pattern of individual cells and the correlation between simultaneously recorded cells after injection of haloperidol were statistically compared with vehicle-only control experiments. During haloperidol-induced bradykinesia (mean movement time increase, +231%), there was an average 11% decrease in baseline firing rate. Movement-related peaks in firing rate were more dramatically affected, with an overall reduction in peak amplitudes of 40%. Bradykinesia was also associated with decreased intensity of bursting and amplitude of cross-correlation peaks at rest. The results show for the first time that significant reductions can be detected in motor cortex activity at rest in animals with impaired ability to generate movements induced by reduced dopamine action and confirm that impaired movements are associated with reduced cortical activation. Together, these changes in neural activity may reduce recruitment and rate modulation of motor units in the spinal cord.
Collapse
Affiliation(s)
- Louise C Parr-Brownlie
- Department of Physiology, School of Medical Sciences, University of Otago, Dunedin 9001, New Zealand
| | | |
Collapse
|
19
|
Yin HH, Ostlund SB, Knowlton BJ, Balleine BW. The role of the dorsomedial striatum in instrumental conditioning. Eur J Neurosci 2005; 22:513-23. [PMID: 16045504 DOI: 10.1111/j.1460-9568.2005.04218.x] [Citation(s) in RCA: 745] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Considerable evidence suggests that, in instrumental conditioning, rats learn the relationship between actions and their specific consequences or outcomes. The present study examined the role of the dorsomedial striatum (DMS) in this type of learning after excitotoxic lesions and reversible, muscimol-induced inactivation. In three experiments, rats were first trained to press two levers for distinct outcomes, and then tested after training using a variety of behavioural assays that have been established to detect action-outcome learning. In Experiment 1, pre-training lesions of the posterior DMS abolished the sensitivity of rats' instrumental performance to both outcome devaluation and contingency degradation when tested in extinction, whereas lesions of the anterior DMS had no effect. In Experiment 2, both pre-training and post-training lesions of the posterior DMS were equally effective in reducing the sensitivity of performance both to devaluation and degradation treatments. In Experiment 3, the infusion of muscimol into the posterior DMS selectively abolished sensitivity of performance to devaluation and contingency degradation without impairing the ability of rats to discriminate either the instrumental actions performed or the identity of the earned outcomes. Taken together, these results suggest that the posterior region of the DMS is a crucial neural substrate for the acquisition and expression of action-outcome associations in instrumental conditioning.
Collapse
Affiliation(s)
- Henry H Yin
- Department of Psychology and Brain Research Institute, University of California, Los Angeles, Box 951563, Los Angeles, CA 90095-1563, USA
| | | | | | | |
Collapse
|
20
|
Yin HH, Knowlton BJ, Balleine BW. Lesions of dorsolateral striatum preserve outcome expectancy but disrupt habit formation in instrumental learning. Eur J Neurosci 2004; 19:181-9. [PMID: 14750976 DOI: 10.1111/j.1460-9568.2004.03095.x] [Citation(s) in RCA: 841] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Habits are controlled by antecedent stimuli rather than by goal expectancy. Interval schedules of feedback have been shown to generate habits, as revealed by the insensitivity of behaviour acquired under this schedule to outcome devaluation treatments. Two experiments were conducted to assess the role of the dorsolateral striatum in habit learning. In Experiment 1, sham operated controls and rats with dorsolateral striatum lesions were trained to press a lever for sucrose under interval schedules. After training, the sucrose was devalued by inducing taste aversion to it using lithium chloride, whereas saline injections were given to the controls. Only rats given the devaluation treatment reduced their consumption of sucrose and this reduction was similar in both the sham and the lesioned groups. All rats were then returned to the instrumental chamber for an extinction test, in which the lever was extended but no sucrose was delivered. In contrast to sham operated controls, rats with dorsolateral striatum lesions refrained from pressing the lever if the outcome was devalued. To assess the specificity of the role of dorsolateral striatum in this effect a second experiment was conducted in which a group with lesions of dorsomedial striatum was added. In relation now to both the sham and the dorsomedial lesioned groups, only rats with lesions of dorsolateral striatum significantly reduced responding after outcome devaluation. In conclusion, this study provides direct evidence that the dorsolateral striatum is necessary for habit formation. Furthermore, it suggests that, when the habit system is disrupted, control over instrumental performance reverts to the system controlling the performance of goal-directed instrumental actions.
Collapse
Affiliation(s)
- Henry H Yin
- Department of Psychology, and Brain Research Institute, University of California, Los Angeles, 1285 Franz Hall, Los Angeles, CA 90095-1563, USA.
| | | | | |
Collapse
|
21
|
Horvitz JC. Dopamine gating of glutamatergic sensorimotor and incentive motivational input signals to the striatum. Behav Brain Res 2002; 137:65-74. [PMID: 12445716 DOI: 10.1016/s0166-4328(02)00285-1] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dopamine (DA) neurons of the substantia nigra (SN) and ventral tegmental area (VTA) respond to a wide category of salient stimuli. Activation of SN and VTA DA neurons, and consequent release of nigrostriatal and mesolimbic DA, modulates the processing of concurrent glutamate inputs to dorsal and ventral striatal target regions. According to the view described here, this occurs under conditions of unexpected environmental change regardless of whether that change is rewarding or aversive. Nigrostriatal and mesolimbic DA activity gates the input of sensory, motor, and incentive motivational (e.g. reward) signals to the striatum. In light of recent single-unit and brain imaging data, it is suggested that the striatal reward signals originate in the orbitofrontal cortex and basolateral amygdala (BLA), regions that project strongly to the striatum. A DA signal of salient unexpected event occurrence, from this framework, gates the throughput of the orbitofrontal glutamate reward input to the striatum just as it gates the throughput of corticostriatal sensory and motor signals needed for normal response execution. Processing of these incoming signals is enhanced when synaptic DA levels are high, because DA enhances the synaptic efficacy of strong concurrent glutamate inputs while reducing the efficacy of weak glutamate inputs. The impairments in motor performance and incentive motivational processes that follow from nigrostriatal and mesolimbic DA loss can be understood in terms of a single mechanism: abnormal processing of sensorimotor and incentive motivation-related glutamate input signals to the striatum.
Collapse
Affiliation(s)
- Jon C Horvitz
- Department of Psychology, Columbia University, 1190 Amsterdam Ave, Rm 406, New York, NY 10027, USA.
| |
Collapse
|
22
|
Abstract
A theory of multiple parallel memory systems in the brain of the rat is described. Each system consists of a series of interconnected neural structures. The "central structures" of the three systems described are the hippocampus, the matrix compartment of the dorsal striatum (caudate-putamen), and the amygdala. Information, coded as neural signals, flows independently through each system. All systems have access to the same information from situations in which learning occurs, but each system is specialized to represent a different kind of relationship among the elements (stimulus events, responses, reinforcers) of the information that flows through it. The speed and accuracy with which a system forms a coherent representation of a learning situation depend on the correspondence between the specialization of the system and the relationship among the elements of the situation. The coherence of these stored representations determines the degree of control exerted by each system on behavior in the situation. Although they process information independently the systems interact in at least two ways: by simultaneous parallel influence on behavioral output and by directly influencing each other. These interactions can be cooperative (leading to similar behaviors) or competitive (leading to different behaviors). Experimental findings consistent with these ideas, mostly from experiments with rats, are reviewed.
Collapse
Affiliation(s)
- Norman M White
- Department of Psychology, McGill University, Montreal, Canada.
| | | |
Collapse
|
23
|
Martin PD, Ono T. Effects of reward anticipation, reward presentation, and spatial parameters on the firing of single neurons recorded in the subiculum and nucleus accumbens of freely moving rats. Behav Brain Res 2000; 116:23-38. [PMID: 11090883 DOI: 10.1016/s0166-4328(00)00249-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The subiculum is the major output of the hippocampal formation (involved in spatial processing). Subicular afferents innervate the nucleus accumbens, which is thought to integrate limbic reward information with motor output. Rats were chronically implanted with extra-cellular recording electrodes aimed at both structures to investigate the functional relationship between them. Animals were then trained on a spatial task in which they searched for random locations where they would receive rewarding medial forebrain bundle stimulation. At random times a cue tone was sounded, indicating that the reward location was in the center of the environment. Rats quickly learned to run to the center upon hearing the tone in order to receive a reward. Simultaneously recorded groups of up to eight subicular and accumbens neurons were found to display alterations in firing rate after rewarding medial forebrain bundle stimulation. Moreover, neurons in both subiculum and accumbens displayed alterations in firing rate prior to arrival at the center during cued runs, i.e. they anticipated predictable rewards. Subicular and accumbens firing was also correlated with spatial location. However, neurons in accumbens were more likely to respond to task events, and these responses were more varied, than those seen in subiculum. Thus, while convergence of spatial and reward information occurs at the level of single cells in both subiculum and nucleus accumbens, these structures also display functional localization.
Collapse
Affiliation(s)
- P D Martin
- CNRS-College de France LPPA, 11 Place Marcelin Berthelot, 75231 Cedex 05, Paris, France.
| | | |
Collapse
|
24
|
Koyama T, Kato K, Mikami A. During pain-avoidance neurons activated in the macaque anterior cingulate and caudate. Neurosci Lett 2000; 283:17-20. [PMID: 10729623 DOI: 10.1016/s0304-3940(00)00894-6] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Lesions in either the anterior cingulate cortex (ACC) or the caudate nucleus (CN) impair avoidance behavior from noxious somatic stimuli, so these two areas may play a similar role in pain-avoidance behavior. To test this hypothesis, we recorded single neuronal activities in the ACC and in the CN of a monkey while it was performing a pain-avoidance task. Ten of 136 ACC and eleven of 160 CN neurons responded selectively during pain-avoidance behavior. We found little difference in the population distribution or in the response latency and duration. Our present findings are in accordance with previous lesion and anatomical studies which suggest that these two regions could function as one module in pain-avoidance behavior.
Collapse
Affiliation(s)
- T Koyama
- Department of Behavioral and Brain Sciences, Primate Research Institute, Kyoto University, Kanrin, Inuyama, Aichi, Japan.
| | | | | |
Collapse
|
25
|
Blokland A, Honig W. Intra-striatal haloperidol and scopolamine injections: effects on choice reaction time performance in rats. Eur Neuropsychopharmacol 1999; 9:523-31. [PMID: 10625121 DOI: 10.1016/s0924-977x(99)00036-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
In this study the behavioral consequences of intra-striatal haloperidol and scopolamine injections were examined using a reaction time task. Haloperidol was found to increase the response time of the rats and had a modest effect on the motor components of the task. The manner in which haloperidol affected the response time distribution suggested that this drug affected attentional functions. Scopolamine did not affect the reaction time or motor performance in the reaction time task. However, a clear decrease in the number of completed trials and an increase in anticipatory responses was observed. At present no ready explanation could be given for the behavioral effects of scopolamine. The present data suggest that although dopamine and acetylcholine are intimately related in the striatal network and have been supposed to have antagonistic functions, the behavioral consequences of blockade of dopamine and acetylcholine receptors are dissimilar.
Collapse
Affiliation(s)
- A Blokland
- Faculty of Psychology, Section of Biological Psychology, Maastricht, The Netherlands.
| | | |
Collapse
|
26
|
Gulley JM, Rebec GV. Modulatory effects of ascorbate, alone or with haloperidol, on a lever-release conditioned avoidance response task. Pharmacol Biochem Behav 1999; 63:125-9. [PMID: 10340532 DOI: 10.1016/s0091-3057(98)00249-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pretreatment with ascorbate, a modulator of dopamine transmission in the striatum, enhances the ability of haloperidol, a dopamine antagonist, to induce catalepsy and block the motor-activating effects of amphetamine. The present study extended this line of work to a lever-release version of the conditioned avoidance response (CAR) task, which is highly sensitive to changes in striatal dopamine. Adult male rats were trained to avoid footshock by releasing a lever within 500 ms of tone onset. Ascorbate (100 and 1000 mg/kg, IP) or vehicle was tested either alone or in conjunction with haloperidol (0.01 and 0.05 mg/kg, SC). Compared to vehicle pretreatment, 1000 mg/kg ascorbate alone or in combination with haloperidol impaired CAR performance by increasing avoidance latency. Latency to escape footshock was not impaired, ruling out a generalized motor deficit. In contrast, 100 mg/kg ascorbate alone or in combination with haloperidol had no consistent effects on CAR performance, even at a haloperidol dose (0.005 mg/kg, SC) known to potentiate dopamine transmission by preferentially blocking autoreceptors. Collectively, these results support an antidopaminergic action of ascorbate on striatal function, but suggest that this effect requires relatively high systemic doses.
Collapse
Affiliation(s)
- J M Gulley
- Department of Psychology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
27
|
Abstract
The use of reaction time has a great tradition in the field of human information processing research. In animal research the use of reaction time test paradigms is mainly limited to two research fields: the role of the striatum in movement initiation; and aging. It was discussed that reaction time responding can be regarded as "single behavior", this term was used to indicate that only one behavioral category is measured, allowing a better analysis of brain-behavior relationships. Reaction time studies investigating the role of the striatum in motor functions revealed that the initiation of a behavioral response is dependent on the interaction of different neurotransmitters (viz. dopamine, glutamate, GABA). Studies in which lesions were made in different brain structures suggested that motor initiation is dependent on defined brain structures (e.g. medialldorsal striatum, prefrontal cortex). It was concluded that the use of reaction time measures can indeed be a powerful tool in studying brain-behavior relationships. However, there are some methodological constraints with respect to the assessment of reaction time in rats, as was tried to exemplify by the experiments described in the present paper. On the one hand one should try to control for behavioral characteristics of rats that may affect the validity of the parameter reaction time. On the other hand, the mean value of reaction time should be in the range of what has been reported in man. Although these criteria were not always met in several studies, it was concluded that reaction time can be validly assessed in rats. Finally, it was discussed that the use of reaction time may go beyond studies that investigate the role of the basal ganglia in motor output. Since response latency is a direct measure of information processing this parameter may provide insight into basic elements of cognition. Based on the significance of reaction times in human studies the use of this dependent variable in rats may provide a fruitful approach in studying brain-behavior relationships in cognitive functions.
Collapse
Affiliation(s)
- A Blokland
- Department of Psychology, University of Maastricht, The Netherlands
| |
Collapse
|
28
|
Wang Z, Rebec GV. Amygdaloid neurons respond to clozapine rather than haloperidol in behaving rats pretreated with intra-amygdaloid amphetamine. Brain Res 1996; 711:64-72. [PMID: 8680876 DOI: 10.1016/0006-8993(95)01401-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Single-unit activity was recorded from the amygdaloid complex in freely moving rats during an infusion of amphetamine directly into the recording site. Relative to the quiet resting period prior to the infusion, amphetamine routinely increased neuronal activity within 5-15 min after infusion onset, and this response continued for at least another 30 min. It was generally accompanied by marked increases in sniffing, rearing, locomotion, and grooming as well as by a tendency to turn to the ipsilateral side. Haloperidol and clozapine, typical and atypical antipsychotic drugs, respectively, were then tested in their ability to reverse these neuronal and behavioral effects. Both antipsychotics were administered subcutaneously at behaviorally effective doses within 10 min after termination of the amphetamine infusion. Haloperidol (1.0 mg/kg) failed to reverse the amphetamine-induced increase in amygdaloid neuronal activity and required more than 20 min to exert a partial blockade of the accompanying behavioral activation. Clozapine (10.0 mg/kg), in contrast, blocked the excitatory effects of amphetamine on all tested neurons and also blocked most amphetamine-induced behaviors within 10 min. Taken together, these results, which support other lines of electrophysiological evidence, point to the amygdala as a critical site in the differential behavioral effects of typical and atypical antipsychotic drugs.
Collapse
Affiliation(s)
- Z Wang
- Department of Psychology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
29
|
Cousins MS, Salamone JD. Involvement of ventrolateral striatal dopamine in movement initiation and execution: a microdialysis and behavioral investigation. Neuroscience 1996; 70:849-59. [PMID: 8848171 DOI: 10.1016/0306-4522(95)00407-6] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Previous studies have demonstrated that the ventrolateral region of the rat neostriatum is the site at which dopamine depletions produce profound motor deficits that interfere with food handling and lever pressing. In the present work, two experiments were undertaken to investigate the role of ventrolateral striatal dopamine in lever pressing. The first experiment was a detailed characterization of the motor impairments induced by injections of the neurotoxic agent 6-hydroxydopamine into the ventrolateral striatum. Behavioral output during lever pressing on a fixed ratio 5 schedule was recorded by a computerized system that measured the duration and response initiation time for each lever press. Response initiation time was defined as the time from offset of one lever press to the onset of the next one. Dopamine depletions resulting from 6-hydroxydopamine injections profoundly depressed lever pressing response rate. This deficit was largely due to a dramatic increase in the average response initiation time. Analysis of the distribution of response initiation times indicated that dopamine-depleted rats made relatively few responses with fast initiation times (e.g. 0-125 ms), and also that dopamine depletions led to a dramatic increase in the number of pauses in responding (i.e. response initiation times greater than 2.5 s). This slowing of the initiation of movement was very sensitive to the effects of dopamine depletions, and even animals with mild dopamine depletions (29.1% of control levels) showed increased initiation times. Analysis of response durations indicated that dopamine depletions resulted in a shift in the distribution of durations such that depleted rats had a modal response duration of 375-500 ms, in contrast to the control mode of 125-250 ms. There was an overall increase in average response duration among animals with more severe dopamine depletions, although rats with moderate depletions showed no change in average response duration. In the second experiment, in vivo dialysis methods were used to study the dynamic activity of ventrolateral striatal dopamine during lever pressing. During the performance of a 30-min fixed ratio 5 lever pressing session, there was a small but significant increase (20.9% above baseline) in dopamine release. There was not a linear or curvilinear correlation between lever pressing rate and increases in dopamine release. The relatively modest increase in ventrolateral striatal dopamine release during lever pressing and the lack of relation between dopamine release and behavioral output may indicate that dopamine in the ventrolateral striatum plays mainly a permissive role in lever pressing. These results suggest that ventrolateral striatal dopamine depletions in rats produce deficits in skilled motor control that are similar to the motor deficits observed in patients with Parkinson's disease.
Collapse
Affiliation(s)
- M S Cousins
- Department of Psychology, University of Connecticut, Storrs 06269-1020, USA
| | | |
Collapse
|
30
|
Trytek ES, White IM, Schroeder DM, Heidenreich BA, Rebec GV. Localization of motor- and nonmotor-related neurons within the matrix-striosome organization of rat striatum. Brain Res 1996; 707:221-7. [PMID: 8919299 DOI: 10.1016/0006-8993(95)01261-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Striatal neurons can be classified as movement- and nonmovement-related depending on their ability to change firing rate in close temporal association with spontaneous movement in an open-field arena. The present study assessed the location of these cell types within the compartmental organization of the striatum by combining single-unit recording techniques in freely moving rats with calbindin immunohistochemistry. Movement-related neurons were found predominately either in the matrix or along the matrix-striosome border. Most of these neurons were nonselective in that they increased activity whenever the animals changed from a quiet resting posture to any form of behavioral activation (e.g., grooming, locomotion, rearing). The remaining neurons in this group responded exclusively to movements of the head. Nonselective units discharged at a significantly slower rate than head-movement units during both quiet rest and periods of actual movement. Nonmovement-related neurons, which failed to show a reliable change in activity to overt behavior, comprised a relatively small portion of the neuronal sample but were also located in either the matrix or along the matrix-striosome border. Collectively, these results suggest that even though striatal neurons can be distinguished on the basis of their responsiveness to ongoing behavior in an open-field paradigm, such distinctions are not clearly linked to sites within the matrix or its striosomal borders.
Collapse
Affiliation(s)
- E S Trytek
- Medical Sciences Program, Indiana University, Bloomington 47405, USA
| | | | | | | | | |
Collapse
|
31
|
Pierce RC, Rebec GV. Iontophoresis in the neostriatum of awake, unrestrained rats: differential effects of dopamine, glutamate and ascorbate on motor- and nonmotor-related neurons. Neuroscience 1995; 67:313-24. [PMID: 7675172 DOI: 10.1016/0306-4522(95)00012-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The neostriatum and its major afferent transmitters, dopamine and glutamate, play a critical role in behavior, but relatively little information is available on their postsynaptic effects in behaving animals. As a first step in addressing this shortcoming, single-unit electrophysiology was combined with iontophoresis in the neostriatum of awake, unrestrained rats. Relative to periods of quiet rest, most neurons (58 of 77) changed discharge rate in close temporal association with movement, while the remainder showed no such relationship. When animals resumed a resting posture, iontophoretic current-response curves were established for dopamine and glutamate as well as for ascorbate, a modulator of neostriatal function released from glutamatergic terminals. Application of either glutamate or ascorbate produced current-dependent increases in activity in all neurons, although this effect was somewhat less pronounced for nonmotor cells. In both types of neurons, the excitatory effect of ascorbate either diminished or shifted to an inhibition at high ejection currents. Dopamine, on the other hand, routinely excited motor-related, but inhibited nonmotor-related neurons. Further assessment of motor-related neurons revealed that in most cases the excitatory effects of either glutamate or dopamine alone were supra-additive when these compounds were either administered together or co-administered with ascorbate. Our results suggest that the response of neostriatal neurons to glutamate or dopamine depends, at least in part, on the motor responsiveness of these cells. Motor-related neurons, moreover, respond to the co-administration of glutamate and dopamine with synergistic increases in firing rate. Ascorbate also influences neostriatal activity, but the postsynaptic action of this substance cannot be explained as a simple interaction with either glutamatergic or dopaminergic mechanisms.
Collapse
Affiliation(s)
- R C Pierce
- Department of Psychology, Indiana University, Bloomington 47405, USA
| | | |
Collapse
|
32
|
White IM, Christensen JR, Flory GS, Miller DW, Rebec GV. Amphetamine, cocaine, and dizocilpine enhance performance on a lever-release, conditioned avoidance response task in rats. Psychopharmacology (Berl) 1995; 118:324-31. [PMID: 7617826 DOI: 10.1007/bf02245962] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A lever-release version of the conditioned avoidance response (CAR) task was used to assess the behavioral effects of several psychomotor stimulants in rats. The indirect dopamine agonists, d-amphetamine (0.1 and 0.25 mg/kg) and cocaine (7.5 and 15 mg/kg), enhanced performance on this task. Both drugs increased percent avoidance responses and decreased avoidance latency. A higher dose of amphetamine (0.5 mg/kg) also decreased avoidance latency but failed to improve percent avoidance. Similar effects were seen at low (0.01 and 0.025 mg/kg) and high (0.05 mg/kg) doses of dizocilpine (MK-801), a stimulant that acts as a noncompetitive antagonist of N-methyl-d-aspartate (NMDA) glutamate receptors. When combined with haloperidol (0.1 mg/kg), a dopamine antagonist, amphetamine (0.25 mg/kg) and dizocilpine (0.025 mg/kg) had differential effects on the lever-release CAR task. Thus, amphetamine-haloperidol was significantly better than haloperidol alone on percent avoidance but not on avoidance latency, whereas dizocilpine-haloperidol had the opposite effect: significantly better than haloperidol alone on avoidance latency but not on percent avoidance. Taken together, these results provide further support for dopaminergic mechanisms in CAR performance but suggest an opposing glutamatergic influence.
Collapse
Affiliation(s)
- I M White
- Department of Psychology, Indiana University, Bloomington 47405, USA
| | | | | | | | | |
Collapse
|
33
|
Heidenreich BA, Trytek ES, Schroeder DM, Sengelaub DR, Rebec GV. A methodology for determining the patch-matrix compartmental location of extracellular single-unit recordings in the striatum of freely moving rats. J Neurosci Methods 1994; 52:169-74. [PMID: 7967719 DOI: 10.1016/0165-0270(94)90127-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A methodology was developed to combine extracellular electrophysiological recording techniques in awake, behaving rats with immunohistochemical protocols to determine the placement of recording sites in the patch (striosome) or matrix (extrastriosome) regions of the striatum. The recording system includes a 3-barrel glass micropipette, which can be used to deposit Pontamine Sky Blue to mark a small number of neurons at the recording site. Subsequent immunostaining for calbindin allows the site to be localized within the patch-matrix organization. Other dyes or neuroanatomical probes can be ejected from other barrels of the recording pipette to label afferent and efferent structures. The methodology can be applied to many brain regions, providing for integrative studies of behavior and nervous system structure and function.
Collapse
Affiliation(s)
- B A Heidenreich
- Department of Psychology, Indiana University, Bloomington 47405
| | | | | | | | | |
Collapse
|
34
|
Tschanz JT, Griffith KE, Haracz JL, Rebec GV. Cortical lesions attenuate the opposing effects of amphetamine and haloperidol on neostriatal neurons in freely moving rats. Eur J Pharmacol 1994; 257:161-7. [PMID: 8082698 DOI: 10.1016/0014-2999(94)90708-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Neuronal activity was recorded from the neostriatum of freely moving rats at least 1 week following either sham or bilateral ablations of frontal and somatosensory cortex. In both groups of animals, the majority of neurons increased firing rate in close temporal association with spontaneous movement. No group differences emerged either with respect to baseline firing rates or open-field behavior. Following amphetamine administration, however, the excitatory response of motor-related neurons was suppressed in cortical-lesioned rats. A behavioral clamping procedure, which assessed neuronal activity during matched pre- and post-amphetamine behaviors, confirmed these results, suggesting that the amphetamine-induced changes in neuronal activity reflect a direct drug effect independent of behavioral feedback. In animals that received a subsequent injection of 1.0 mg/kg haloperidol, cortical lesions attenuated the ability of this neuroleptic to block both the behavioral and neuronal effects of amphetamine. Collectively, these results support mounting evidence for an important modulatory influence of cortical afferents on the amphetamine-induced excitation of neostriatal neurons and the reversal of this effect by haloperidol.
Collapse
Affiliation(s)
- J T Tschanz
- Department of Psychology, Indiana University, Bloomington 47405
| | | | | | | |
Collapse
|
35
|
White IM, Miller DP, White W, Dike GL, Rebec GV, Steinmetz JE. Neuronal activity in rabbit neostriatum during classical eyelid conditioning. Exp Brain Res 1994; 99:179-90. [PMID: 7925801 DOI: 10.1007/bf00239585] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Extracellular multiple- and single-unit recordings were made from the neostriatum of rabbits during classical eyelid conditioning. Neostriatal neurons processed information regarding the conditioned auditory stimulus (CS) and conditioned eyelid response (CR) as well as the unconditioned stimulus/response (US/UR). These data are consistent with previous reports that neostriatal neurons respond to movement and movement-related sensory stimuli. In most cases, neostriatal neurons increased activity to the US during the early phase of training, but to the CR as training progressed. A close temporal correlation was found between neuronal activity and CR onset with unit discharges typically preceding CR onset by 10-50 ms. The activity of some multiple and single units was monitored after injection of haloperidol, a neuroleptic and dopamine antagonist known to disrupt neostriatal function. Interestingly, haloperidol caused a greater disruption of CRs at low-intensity than at high-intensity CSs, but conditioning-related neuronal activity was disrupted equally at both intensities. These data are discussed in terms of a possible role for the neostriatum in eyelid conditioning.
Collapse
Affiliation(s)
- I M White
- Department of Psychology, Indiana University, Bloomington 47405
| | | | | | | | | | | |
Collapse
|
36
|
White IM, Rebec GV. Performance on a lever-release, conditioned avoidance response task involves both dopamine D1 and D2 receptors. Eur J Pharmacol 1994; 253:167-9. [PMID: 8013542 DOI: 10.1016/0014-2999(94)90772-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
SCH-23390 (0.01 and 0.05 mg/kg s.c.), a dopamine D1 receptor antagonist, or eticlopride (0.01 and 0.05 mg/kg s.c.), a dopamine D2 receptor antagonist, dose-dependently impaired performance on a lever-release conditioned avoidance response (CAR) task by decreasing percent avoidance responses and increasing avoidance latency. When combined, these drugs impaired CAR performance in an additive fashion. Lever-release CAR performance, therefore, requires activation of both dopamine D1 and D2 receptors.
Collapse
Affiliation(s)
- I M White
- Department of Psychology, Indiana University, Bloomington 47405
| | | |
Collapse
|
37
|
Wang Z, Rebec GV. Neuronal and behavioral correlates of intrastriatal infusions of amphetamine in freely moving rats. Brain Res 1993; 627:79-88. [PMID: 8293307 DOI: 10.1016/0006-8993(93)90751-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
When injected systemically in rats, amphetamine routinely activates striatal neurons that increase firing rate in close temporal association with movement but suppresses nonmotor-related neurons. To assess the role of striatal mechanisms in these opposing effects, D-amphetamine (20 micrograms/microliters) was infused (10 microliters/h) directly into the striatum of awake, behaving rats and single-unit activity was recorded simultaneously at the infusion site. Intrastriatal amphetamine reliably activated motor-related, but suppressed nonmotor-related neuronal activity shortly after infusion onset. These changes in firing rate preceded overt behavioral changes, in most cases by several minutes. When they did emerge, behavioral responses were characterized mainly by focused sniffing and head bobbing. Interestingly, the strongest behavioral responses, as measured by onset latency and response magnitude, were likely to result from infusions into motor-related rather than nonmotor-related recording sites. Systemic injection of haloperidol (1.0 mg/kg) shortly after infusion offset suppressed both behavior and striatal neuronal activity. Control infusions of intrastriatal saline had no consistent effect on either striatal neuronal activity or behavior. Collectively, these results indicate that the divergence in firing rate between motor- and nonmotor-related striatal neurons reflects an intrinsic action of amphetamine in the striatum rather than a secondary effect of behavioral feedback. Moreover, the linkage of motor-related striatal areas with the strongest behavioral responses to amphetamine suggests important functional differences between motor- and nonmotor-related striatal neurons.
Collapse
Affiliation(s)
- Z Wang
- Department of Psychology, Indiana University, Bloomington 47405
| | | |
Collapse
|