1
|
Kebschull JM, Casoni F, Consalez GG, Goldowitz D, Hawkes R, Ruigrok TJH, Schilling K, Wingate R, Wu J, Yeung J, Uusisaari MY. Cerebellum Lecture: the Cerebellar Nuclei-Core of the Cerebellum. CEREBELLUM (LONDON, ENGLAND) 2024; 23:620-677. [PMID: 36781689 PMCID: PMC10951048 DOI: 10.1007/s12311-022-01506-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/10/2022] [Indexed: 02/15/2023]
Abstract
The cerebellum is a key player in many brain functions and a major topic of neuroscience research. However, the cerebellar nuclei (CN), the main output structures of the cerebellum, are often overlooked. This neglect is because research on the cerebellum typically focuses on the cortex and tends to treat the CN as relatively simple output nuclei conveying an inverted signal from the cerebellar cortex to the rest of the brain. In this review, by adopting a nucleocentric perspective we aim to rectify this impression. First, we describe CN anatomy and modularity and comprehensively integrate CN architecture with its highly organized but complex afferent and efferent connectivity. This is followed by a novel classification of the specific neuronal classes the CN comprise and speculate on the implications of CN structure and physiology for our understanding of adult cerebellar function. Based on this thorough review of the adult literature we provide a comprehensive overview of CN embryonic development and, by comparing cerebellar structures in various chordate clades, propose an interpretation of CN evolution. Despite their critical importance in cerebellar function, from a clinical perspective intriguingly few, if any, neurological disorders appear to primarily affect the CN. To highlight this curious anomaly, and encourage future nucleocentric interpretations, we build on our review to provide a brief overview of the various syndromes in which the CN are currently implicated. Finally, we summarize the specific perspectives that a nucleocentric view of the cerebellum brings, move major outstanding issues in CN biology to the limelight, and provide a roadmap to the key questions that need to be answered in order to create a comprehensive integrated model of CN structure, function, development, and evolution.
Collapse
Affiliation(s)
- Justus M Kebschull
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21205, USA.
| | - Filippo Casoni
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - G Giacomo Consalez
- Division of Neuroscience, San Raffaele Scientific Institute, and San Raffaele University, Milan, Italy
| | - Daniel Goldowitz
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Richard Hawkes
- Department of Cell Biology & Anatomy and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, T2N 4N1, Canada
| | - Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | - Karl Schilling
- Department of Anatomy, Anatomy & Cell Biology, Rheinische Friedrich-Wilhelms-Universität, 53115, Bonn, Federal Republic of Germany
| | - Richard Wingate
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Joshua Wu
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Joanna Yeung
- Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, Canada
| | - Marylka Yoe Uusisaari
- Neuronal Rhythms in Movement Unit, Okinawa Institute of Science and Technology, 1919-1 Tancha, Onna-Son, Kunigami-Gun, Okinawa, 904-0495, Japan.
| |
Collapse
|
2
|
Novello M, Bosman LWJ, De Zeeuw CI. A Systematic Review of Direct Outputs from the Cerebellum to the Brainstem and Diencephalon in Mammals. CEREBELLUM (LONDON, ENGLAND) 2024; 23:210-239. [PMID: 36575348 PMCID: PMC10864519 DOI: 10.1007/s12311-022-01499-w] [Citation(s) in RCA: 28] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/22/2022] [Indexed: 05/13/2023]
Abstract
The cerebellum is involved in many motor, autonomic and cognitive functions, and new tasks that have a cerebellar contribution are discovered on a regular basis. Simultaneously, our insight into the functional compartmentalization of the cerebellum has markedly improved. Additionally, studies on cerebellar output pathways have seen a renaissance due to the development of viral tracing techniques. To create an overview of the current state of our understanding of cerebellar efferents, we undertook a systematic review of all studies on monosynaptic projections from the cerebellum to the brainstem and the diencephalon in mammals. This revealed that important projections from the cerebellum, to the motor nuclei, cerebral cortex, and basal ganglia, are predominantly di- or polysynaptic, rather than monosynaptic. Strikingly, most target areas receive cerebellar input from all three cerebellar nuclei, showing a convergence of cerebellar information at the output level. Overall, there appeared to be a large level of agreement between studies on different species as well as on the use of different types of neural tracers, making the emerging picture of the cerebellar output areas a solid one. Finally, we discuss how this cerebellar output network is affected by a range of diseases and syndromes, with also non-cerebellar diseases having impact on cerebellar output areas.
Collapse
Affiliation(s)
- Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, the Netherlands.
- Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| |
Collapse
|
3
|
Red nucleus structure and function: from anatomy to clinical neurosciences. Brain Struct Funct 2020; 226:69-91. [PMID: 33180142 PMCID: PMC7817566 DOI: 10.1007/s00429-020-02171-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
The red nucleus (RN) is a large subcortical structure located in the ventral midbrain. Although it originated as a primitive relay between the cerebellum and the spinal cord, during its phylogenesis the RN shows a progressive segregation between a magnocellular part, involved in the rubrospinal system, and a parvocellular part, involved in the olivocerebellar system. Despite exhibiting distinct evolutionary trajectories, these two regions are strictly tied together and play a prominent role in motor and non-motor behavior in different animal species. However, little is known about their function in the human brain. This lack of knowledge may have been conditioned both by the notable differences between human and non-human RN and by inherent difficulties in studying this structure directly in the human brain, leading to a general decrease of interest in the last decades. In the present review, we identify the crucial issues in the current knowledge and summarize the results of several decades of research about the RN, ranging from animal models to human diseases. Connecting the dots between morphology, experimental physiology and neuroimaging, we try to draw a comprehensive overview on RN functional anatomy and bridge the gap between basic and translational research.
Collapse
|
4
|
Ruggiero F, Ferrucci R, Bocci T, Nigro M, Vergari M, Marceglia S, Barbieri S, Priori A. Spino-cerebellar tDCS modulates N100 components of the P300 event related potential. Neuropsychologia 2019; 135:107231. [PMID: 31628894 DOI: 10.1016/j.neuropsychologia.2019.107231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Revised: 10/02/2019] [Accepted: 10/11/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To evaluate the role of the cerebellum and spinal cord in cognitive processes, we assessed changes in event-related potentials (ERPs), before and after different combinations of spinal and cerebellar direct current stimulation (tDCS) in healthy subjects. METHOD We enrolled 37 volunteers (11 males and 26 females, aged 20-50 years), who were subsequently randomly assigned to one of four stimulation conditions: i) anodal cerebellar tDCS, with the reference electrode over the right shoulder; ii) anodal spinal tDCS, with the reference electrode over the right shoulder; iii) anodal spinal tDCS with cathodal cerebellar tDCS, and iv) sham stimulation. Stimulation intensity was set at 2 mA and delivered for 20 min. ERPs were assessed in an auditory oddball task before (T0) and 5 (T1) and 30 min (T2) after tDCS offset. RESULTS In condition iii, spino-cerebellar tDCS, the N100 component at T2 increased in amplitude by 60% (p = 0.019), whereas the sham stimulation left the N100 amplitude unchanged (p > 0.05). CONCLUSION The N100 wave reflects pre-attentive processes and correlates with arousal due to a specific stimuli and selective attention. Because spino-cerebellar tDCS induces electric fields in the brainstem, the facilitation of the N100 may be due to the modulation of the reticular formation. Regardless of the underlying mechanism, spino-cerebellar tDCS can help patients with deficits at the pre-attentive or selective attentional level.
Collapse
Affiliation(s)
- Fabiana Ruggiero
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurophysiology Unit, Milan, Italy
| | - Roberta Ferrucci
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurophysiology Unit, Milan, Italy; "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Dipartimento di Scienze della salute, Università degli Studi di Milano, Milan, Italy; III Neurology Clinic, ASST Santi Paolo e Carlo, Milan, Italy
| | - Tommaso Bocci
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Dipartimento di Scienze della salute, Università degli Studi di Milano, Milan, Italy; III Neurology Clinic, ASST Santi Paolo e Carlo, Milan, Italy
| | - Martina Nigro
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurophysiology Unit, Milan, Italy
| | - Maurizio Vergari
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurophysiology Unit, Milan, Italy
| | - Sara Marceglia
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurophysiology Unit, Milan, Italy; Dipartimento di Ingegneria e Architettura, University of Trieste, Trieste, Italy
| | - Sergio Barbieri
- Foundation IRCCS Ca' Granda Ospedale Maggiore Policlinico, Neurophysiology Unit, Milan, Italy
| | - Alberto Priori
- "Aldo Ravelli" Center for Neurotechnology and Experimental Brain Therapeutics, Dipartimento di Scienze della salute, Università degli Studi di Milano, Milan, Italy; III Neurology Clinic, ASST Santi Paolo e Carlo, Milan, Italy.
| |
Collapse
|
5
|
Apps R, Hawkes R, Aoki S, Bengtsson F, Brown AM, Chen G, Ebner TJ, Isope P, Jörntell H, Lackey EP, Lawrenson C, Lumb B, Schonewille M, Sillitoe RV, Spaeth L, Sugihara I, Valera A, Voogd J, Wylie DR, Ruigrok TJH. Cerebellar Modules and Their Role as Operational Cerebellar Processing Units: A Consensus paper [corrected]. CEREBELLUM (LONDON, ENGLAND) 2018; 17:654-682. [PMID: 29876802 PMCID: PMC6132822 DOI: 10.1007/s12311-018-0952-3] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The compartmentalization of the cerebellum into modules is often used to discuss its function. What, exactly, can be considered a module, how do they operate, can they be subdivided and do they act individually or in concert are only some of the key questions discussed in this consensus paper. Experts studying cerebellar compartmentalization give their insights on the structure and function of cerebellar modules, with the aim of providing an up-to-date review of the extensive literature on this subject. Starting with an historical perspective indicating that the basis of the modular organization is formed by matching olivocorticonuclear connectivity, this is followed by consideration of anatomical and chemical modular boundaries, revealing a relation between anatomical, chemical, and physiological borders. In addition, the question is asked what the smallest operational unit of the cerebellum might be. Furthermore, it has become clear that chemical diversity of Purkinje cells also results in diversity of information processing between cerebellar modules. An additional important consideration is the relation between modular compartmentalization and the organization of the mossy fiber system, resulting in the concept of modular plasticity. Finally, examination of cerebellar output patterns suggesting cooperation between modules and recent work on modular aspects of emotional behavior are discussed. Despite the general consensus that the cerebellum has a modular organization, many questions remain. The authors hope that this joint review will inspire future cerebellar research so that we are better able to understand how this brain structure makes its vital contribution to behavior in its most general form.
Collapse
Affiliation(s)
- Richard Apps
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Richard Hawkes
- Hotchkiss Brain Institute, University of Calgary, Calgary, Canada
| | - Sho Aoki
- Neurobiology Research Unit, Okinawa Institute of Science and Technology, Onna, Japan
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Fredrik Bengtsson
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Amanda M. Brown
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Gang Chen
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Timothy J. Ebner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN USA
| | - Philippe Isope
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Henrik Jörntell
- Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elizabeth P. Lackey
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
| | - Charlotte Lawrenson
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Bridget Lumb
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Martijn Schonewille
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Roy V. Sillitoe
- Department of Pathology & Immunology, Baylor College of Medicine, Houston, TX USA
- Department of Neuroscience, Baylor College of Medicine, Houston, TX USA
- Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, TX USA
- Program in Developmental Biology, Baylor College of Medicine, Houston, TX USA
| | - Ludovic Spaeth
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Izumi Sugihara
- Department of Systems Neurophysiology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Antoine Valera
- Institut des Neurosciences Cellulaires et Intégratives, CNRS, Université de Strasbourg, Strasbourg, France
| | - Jan Voogd
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| | - Douglas R. Wylie
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB Canada
| | - Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
6
|
Ruigrok TJH, van Touw S, Coulon P. Caveats in Transneuronal Tracing with Unmodified Rabies Virus: An Evaluation of Aberrant Results Using a Nearly Perfect Tracing Technique. Front Neural Circuits 2016; 10:46. [PMID: 27462206 PMCID: PMC4939302 DOI: 10.3389/fncir.2016.00046] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/15/2016] [Indexed: 12/23/2022] Open
Abstract
Apart from the genetically engineered, modified, strains of rabies virus (RABV), unmodified ‘fixed’ virus strains of RABV, such as the ‘French’ subtype of CVS11, are used to examine synaptically connected networks in the brain. This technique has been shown to have all the prerequisite characteristics for ideal tracing as it does not metabolically affect infected neurons within the time span of the experiment, it is transferred transneuronally in one direction only and to all types of neurons presynaptic to the infected neuron, number of transneuronal steps can be precisely controlled by survival time and it is easily detectable with a sensitive technique. Here, using the ‘French’ CVS 11 subtype of RABV in Wistar rats, we show that some of these characteristics may not be as perfect as previously indicated. Using injection of RABV in hind limb muscles, we show that RABV-infected spinal motoneurons may already show lysis 1 or 2 days after infection. Using longer survival times we were able to establish that Purkinje cells may succumb approximately 3 days after infection. In addition, some neurons seem to resist infection, as we noted that the number of RABV-infected inferior olivary neurons did not progress in the same rate as other infected neurons. Furthermore, in our hands, we noted that infection of Purkinje cells did not result in expected transneuronal labeling of cell types that are presynaptic to Purkinje cells such as molecular layer interneurons and granule cells. However, these cell types were readily infected when RABV was injected directly in the cerebellar cortex. Conversely, neurons in the cerebellar nuclei that project to the inferior olive did not take up RABV when this was injected in the inferior olive, whereas these cells could be infected with RABV via a transneuronal route. These results suggest that viral entry from the extracellular space depends on other factors or mechanisms than those used for retrograde transneuronal transfer. We conclude that transneuronal tracing with RABV may result in unexpected results, as not all properties of RABV seem to be ubiquitously valid.
Collapse
Affiliation(s)
- Tom J H Ruigrok
- Department of Neuroscience, Erasmus Medical Center Rotterdam, Netherlands
| | - Sven van Touw
- Department of Neuroscience, Erasmus Medical Center Rotterdam, Netherlands
| | - Patrice Coulon
- Equipe P3M - UMR 7298, Institut de Neurosciences de la Timone, Aix-Marseille Université, CNRS Marseille, France
| |
Collapse
|
7
|
Houck BD, Person AL. Cerebellar Premotor Output Neurons Collateralize to Innervate the Cerebellar Cortex. J Comp Neurol 2015; 523:2254-71. [PMID: 25869188 DOI: 10.1002/cne.23787] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 04/07/2015] [Accepted: 04/07/2015] [Indexed: 12/12/2022]
Abstract
Motor commands computed by the cerebellum are hypothesized to use corollary discharge, or copies of outgoing commands, to accelerate motor corrections. Identifying sources of corollary discharge, therefore, is critical for testing this hypothesis. Here we verified that the pathway from the cerebellar nuclei to the cerebellar cortex in mice includes collaterals of cerebellar premotor output neurons, mapped this collateral pathway, and identified its postsynaptic targets. Following bidirectional tracer injections into a distal target of the cerebellar nuclei, the ventrolateral thalamus, we observed retrogradely labeled somata in the cerebellar nuclei and mossy fiber terminals in the cerebellar granule layer, consistent with collateral branching. Corroborating these observations, bidirectional tracer injections into the cerebellar cortex retrogradely labeled somata in the cerebellar nuclei and boutons in the ventrolateral thalamus. To test whether nuclear output neurons projecting to the red nucleus also collateralize to the cerebellar cortex, we used a Cre-dependent viral approach, avoiding potential confounds of direct red nucleus-to-cerebellum projections. Injections of a Cre-dependent GFP-expressing virus into Ntsr1-Cre mice, which express Cre selectively in the cerebellar nuclei, retrogradely labeled somata in the interposed nucleus, and putative collateral branches terminating as mossy fibers in the cerebellar cortex. Postsynaptic targets of all labeled mossy fiber terminals were identified using immunohistochemical Golgi cell markers and electron microscopic profiles of granule cells, indicating that the collaterals of nuclear output neurons contact both Golgi and granule cells. These results clarify the organization of a subset of nucleocortical projections that constitute an experimentally accessible corollary discharge pathway within the cerebellum.
Collapse
Affiliation(s)
- Brenda D Houck
- Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, Colorado, 80045
| | - Abigail L Person
- Department of Physiology & Biophysics, University of Colorado School of Medicine, Aurora, Colorado, 80045
| |
Collapse
|
8
|
Mapelli L, Pagani M, Garrido JA, D'Angelo E. Integrated plasticity at inhibitory and excitatory synapses in the cerebellar circuit. Front Cell Neurosci 2015; 9:169. [PMID: 25999817 PMCID: PMC4419603 DOI: 10.3389/fncel.2015.00169] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Accepted: 04/16/2015] [Indexed: 12/25/2022] Open
Abstract
The way long-term potentiation (LTP) and depression (LTD) are integrated within the different synapses of brain neuronal circuits is poorly understood. In order to progress beyond the identification of specific molecular mechanisms, a system in which multiple forms of plasticity can be correlated with large-scale neural processing is required. In this paper we take as an example the cerebellar network, in which extensive investigations have revealed LTP and LTD at several excitatory and inhibitory synapses. Cerebellar LTP and LTD occur in all three main cerebellar subcircuits (granular layer, molecular layer, deep cerebellar nuclei) and correspondingly regulate the function of their three main neurons: granule cells (GrCs), Purkinje cells (PCs) and deep cerebellar nuclear (DCN) cells. All these neurons, in addition to be excited, are reached by feed-forward and feed-back inhibitory connections, in which LTP and LTD may either operate synergistically or homeostatically in order to control information flow through the circuit. Although the investigation of individual synaptic plasticities in vitro is essential to prove their existence and mechanisms, it is insufficient to generate a coherent view of their impact on network functioning in vivo. Recent computational models and cell-specific genetic mutations in mice are shedding light on how plasticity at multiple excitatory and inhibitory synapses might regulate neuronal activities in the cerebellar circuit and contribute to learning and memory and behavioral control.
Collapse
Affiliation(s)
- Lisa Mapelli
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy ; Museo Storico Della Fisica e Centro Studi e Ricerche Enrico Fermi Rome, Italy
| | - Martina Pagani
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy ; Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| | - Jesus A Garrido
- Brain Connectivity Center, C. Mondino National Neurological Institute Pavia, Italy ; Department of Computer Architecture and Technology, University of Granada Granada, Spain
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia Pavia, Italy ; Brain Connectivity Center, C. Mondino National Neurological Institute Pavia, Italy
| |
Collapse
|
9
|
Perciavalle V, Apps R, Bracha V, Delgado-García JM, Gibson AR, Leggio M, Carrel AJ, Cerminara N, Coco M, Gruart A, Sánchez-Campusano R. Consensus paper: current views on the role of cerebellar interpositus nucleus in movement control and emotion. THE CEREBELLUM 2014; 12:738-57. [PMID: 23564049 DOI: 10.1007/s12311-013-0464-0] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
In the present paper, we examine the role of the cerebellar interpositus nucleus (IN) in motor and non-motor domains. Recent findings are considered, and we share the following conclusions: IN as part of the olivo-cortico-nuclear microcircuit is involved in providing powerful timing signals important in coordinating limb movements; IN could participate in the timing and performance of ongoing conditioned responses rather than the generation and/or initiation of such responses; IN is involved in the control of reflexive and voluntary movements in a task- and effector system-dependent fashion, including hand movements and associated upper limb adjustments, for quick effective actions; IN develops internal models for dynamic interactions of the motor system with the external environment for anticipatory control of movement; and IN plays a significant role in the modulation of autonomic and emotional functions.
Collapse
Affiliation(s)
- Vincenzo Perciavalle
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Cerebellar Inhibitory Output Shapes the Temporal Dynamics of Its Somatosensory Inferior Olivary Input. THE CEREBELLUM 2014; 13:452-61. [DOI: 10.1007/s12311-014-0558-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
11
|
Ruigrok TJH, Teune TM. Collateralization of cerebellar output to functionally distinct brainstem areas. A retrograde, non-fluorescent tracing study in the rat. Front Syst Neurosci 2014; 8:23. [PMID: 24600356 PMCID: PMC3930852 DOI: 10.3389/fnsys.2014.00023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2013] [Accepted: 02/01/2014] [Indexed: 11/21/2022] Open
Abstract
The organization of the cerebellum is characterized by a number of longitudinally organized connection patterns that consist of matching olivo-cortico-nuclear zones. These entities, referred to as modules, have been suggested to act as functional units. The various parts of the cerebellar nuclei (CN) constitute the output of these modules. We have studied to what extent divergent and convergent patterns in the output of the modules to four, functionally distinct brain areas can be recognized. Two retrograde tracers were injected in various combinations of the following nuclei: the red nucleus (RN), as a main premotor nucleus; the prerubral area, as a main supplier of afferents to the inferior olive (IO); the nucleus reticularis tegmenti pontis (NRTP), as a main source of cerebellar mossy fibers; and the IO, as the source of climbing fibers. For all six potential combinations three cases were examined. All nine cases with combinations that involved the IO did not, or hardly, resulted in double labeled neurons. In contrast, all other combinations resulted in at least 10% and up to 67% of double labeled neurons in cerebellar nuclear areas where both tracers were found. These results show that the cerebellar nuclear neurons that terminate within the studied areas represent basically two intermingled populations of projection cells. One population corresponds to the small nucleo-olivary neurons whereas the other consists of medium- to large-sized neurons which are likely to distribute their axons to several other areas. Despite some consistent differences between the output patterns of individual modules we propose that modular cerebellar output to premotor areas such as the RN provides simultaneous feedback to both the mossy fiber and the climbing fiber system and acts in concert with a designated GABAergic nucleo-olivary circuit. These features seem to form a basic characteristic of cerebellar operation.
Collapse
Affiliation(s)
- Tom J. H. Ruigrok
- Department of Neuroscience, Erasmus MC RotterdamRotterdam, Netherlands
| | | |
Collapse
|
12
|
Jaeger D. Mini-review: synaptic integration in the cerebellar nuclei--perspectives from dynamic clamp and computer simulation studies. THE CEREBELLUM 2012; 10:659-66. [PMID: 21259124 DOI: 10.1007/s12311-011-0248-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The cerebellar nuclei (CN) process inhibition from Purkinje cells (PC) and excitation from mossy and climbing fiber collaterals. CN neurons in slices show intrinsic pacemaking activity, which is easily modulated by synaptic inputs. Our work using dynamic clamping and computer modeling shows that synchronicity between PC inputs is an important factor in determining spike rate and spike timing of CN neurons and that brief pauses in PC inputs provide a potent stimulus to trigger CN spikes. Excitatory input can equally control spike rate, but, due to a large slow, NMDA component also amplifies responses to inhibitory inputs. Intrinsic properties of CN neurons are well suited to provide prolonged responses to strong input transients and could be involved in motor pattern generation. One such specific mechanism is given by fast and slow rebound bursting. Nevertheless, we are just beginning to unravel synaptic integration in the CN, and the outcome of the work to date is best characterized by the generation of new specific questions that lend themselves to a combined experimental and computer modeling approach in future studies.
Collapse
Affiliation(s)
- Dieter Jaeger
- Department of Biology, Emory University, 1510 Clifton Road NE, Atlanta, GA 30322, USA.
| |
Collapse
|
13
|
Abstract
The modular concept of cerebellar connections has been advocated in the lifetime work of Jan Voogd. In this concept, a cerebellar module is defined as the conglomerate of one or multiple and non-adjacent, parasagittally arranged zones of Purkinje cells, their specific projection to a well-defined region of the cerebellar nuclei, and the climbing fiber input to these zones by a well-defined region of the inferior olivary complex. The modular organization of these olivo-cortico-nuclear connections is further exemplified by matching reciprocal connections between inferior olive and cerebellar nuclei. Because the different regions of the cerebellar nuclei show highly specific output patterns, cerebellar modules have been suggested to constitute functional entities. This idea is strengthened by the observation that anatomically defined modules adhere to the distribution of chemical markers in the cerebellar cortex suggesting that modules not only differ in their input and output relations but also may differ in operational capabilities. Here, I will briefly review some recent data on the establishment of cerebellar modules in rats. Furthermore, some evidence will be shown suggesting that the other main afferent system (i.e., mossy fibers), at least to some extent, also adheres to the modular organization. Finally, using retrograde transneuronal tracing with rabies virus, some evidence will be provided that several cerebellar modules may be involved in the control of individual muscles.
Collapse
Affiliation(s)
- Tom J H Ruigrok
- Department of Neuroscience, Erasmus MC Rotterdam, P.O. Box 2040, 3000 CA, Rotterdam, The Netherlands.
| |
Collapse
|
14
|
Abstract
A key organisational feature of the cerebellum is its division into a series of cerebellar modules. Each module is defined by its climbing input originating from a well-defined region of the inferior olive, which targets one or more longitudinal zones of Purkinje cells within the cerebellar cortex. In turn, Purkinje cells within each zone project to specific regions of the cerebellar and vestibular nuclei. While much is known about the neuronal wiring of individual cerebellar modules, their behavioural significance remains poorly understood. Here, we briefly review some recent data on the functional role of three different cerebellar modules: the vermal A module, the paravermal C2 module and the lateral D2 module. The available evidence suggests that these modules have some differences in function: the A module is concerned with balance and the postural base for voluntary movements, the C2 module is concerned more with limb control and the D2 module is involved in predicting target motion in visually guided movements. However, these are not likely to be the only functions of these modules and the A and C2 modules are also both concerned with eye and head movements, suggesting that individual cerebellar modules do not necessarily have distinct functions in motor control.
Collapse
Affiliation(s)
- Nadia L. Cerminara
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD UK
| | - Richard Apps
- School of Physiology and Pharmacology, University of Bristol, University Walk, Bristol, BS8 1TD UK
| |
Collapse
|
15
|
Zheng N, Raman IM. Synaptic inhibition, excitation, and plasticity in neurons of the cerebellar nuclei. THE CEREBELLUM 2010; 9:56-66. [PMID: 19847585 DOI: 10.1007/s12311-009-0140-6] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Neurons of the cerebellar nuclei generate the non-vestibular output of the cerebellum. Like other neurons, they integrate excitatory and inhibitory synaptic inputs and filter them through their intrinsic properties to produce patterns of action potential output. The synaptic and intrinsic features of cerebellar nuclear cells are unusual in several respects, however: these neurons receive an overwhelming amount of basal and driven inhibition from Purkinje neurons, but are also spontaneously active, producing action potentials even without excitation. Moreover, not only is spiking by nuclear cells sensitive to the amount of inhibition, but the strength of inhibition is also sensitive to the amount of spiking, through multiple forms of long-term plasticity. Here, we review the properties of synaptic excitation and inhibition, their short-term plasticity, and their influence on action potential firing of cerebellar nuclear neurons, as well as the interactions among excitation, inhibition, and spiking that produce long-term changes in synaptic strength. The data provide evidence that electrical and synaptic signaling in the cerebellar circuit is both plastic and resilient: the strength of IPSPs and EPSPs readily changes as the activity of cerebellar nuclear cells is modified. Notably, however, many of the identified forms of plasticity have an apparently homeostatic effect, responding to perturbations of input by restoring cerebellar output toward pre-perturbation values. Such forms of self-regulation appear consistent with the role of cerebellar output in coordinating movements. In contrast, other forms of plasticity in nuclear cells, including a long-term potentiation of excitatory postsynaptic currents (EPSCs) and excitation-driven increases in intrinsic excitability, are non-homeostatic, and instead appear suited to bring the circuit to a new set point. Interestingly, the combinations of inhibitory and excitatory stimuli that potentiate EPSCs resemble patterns of activity predicted to occur during eyelid conditioning, suggesting that this form long-term potentiation, perhaps amplified by intrinsic plasticity, may represent a cellular mechanism that is engaged during cerebellar learning.
Collapse
Affiliation(s)
- Nan Zheng
- Northwestern University Interdepartmental Neuroscience Program, Evanston, IL 60208, USA
| | | |
Collapse
|
16
|
Olyntho-Tokunaga HHV, Pinto ML, Souccar C, Schoorlemmer GHM, Lapa RCRS. Projections From the Anterior Interposed Nucleus to the Red Nucleus Diminish With Age in the Mouse. Anat Histol Embryol 2008; 37:438-41. [DOI: 10.1111/j.1439-0264.2008.00877.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Uusisaari M, Knöpfel T. GABAergic synaptic communication in the GABAergic and non-GABAergic cells in the deep cerebellar nuclei. Neuroscience 2008; 156:537-49. [PMID: 18755250 DOI: 10.1016/j.neuroscience.2008.07.060] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2008] [Revised: 07/29/2008] [Accepted: 07/29/2008] [Indexed: 11/29/2022]
Abstract
The deep cerebellar nuclei (DCN) are the final integrative units of the cerebellar network. The strongest single afferent to the DCN is formed by GABAergic Purkinje neuron axons whose synapses constitute the majority of all synapses in the DCN, with their action strongly regulating the intrinsic activity of their target neurons. Although this is well established, it remains unclear whether all DCN cell groups receive a functionally similar inhibitory input. We previously characterized three types of mouse DCN neurons based on the expression of glutamic acid decarboxylase isoform 67 (GAD67), their active membrane properties and morphological features. Here we describe the GABAergic synapses in these cell groups and show that spontaneous GABAergic synaptic activity can be seen in all three cell types. Since the majority of DCN neurons fire action potentials spontaneously at high frequencies both in vivo and in vitro, we expected that spontaneous GABAergic synaptic activities mediated by intra-DCN synaptic connections could be uncovered by their sensitivity to TTX. However, TTX had little effect on spontaneous synaptic activity. It seems, therefore that functional GABAergic connectivity within the DCN is sparse and/or weak at least under our experimental conditions. Even though present in all cell types, the spontaneous GABAergic events showed significant differences between the cell types. The synaptic currents in GABAergic cells had lower amplitude, lower frequency and slower kinetics than those of non-GABAergic cells. These differences could not be sufficiently explained by considering only cell size differences or a differential GABA(A)-receptor alpha-subunit composition. Rather, the main differentiating factor appears to be the dendritic localization of GABAergic synapses in the GABAergic cells.
Collapse
Affiliation(s)
- M Uusisaari
- Laboratory for Neuronal Circuit Dynamics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, 351-0198, Japan
| | | |
Collapse
|
18
|
Green JT, Arenos JD, Dillon CJ. The effects of moderate neonatal ethanol exposure on eyeblink conditioning and deep cerebellar nuclei neuron numbers in the rat. Alcohol 2006; 39:135-50. [PMID: 17127133 DOI: 10.1016/j.alcohol.2006.09.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2006] [Revised: 08/27/2006] [Accepted: 09/01/2006] [Indexed: 11/29/2022]
Abstract
Heavy, bingelike patterns of exposure to ethanol during a portion of the early postnatal period in the rat, a time of rodent brain development corresponding to the human third trimester, has been shown to deplete cerebellar neurons and to produce deficits in cerebellar-dependent tasks. In the current study, we examined the impact of more moderate ethanol exposure, during an extended portion of the rat third trimester equivalent, on cerebellar-dependent learning (eyeblink conditioning) and deep cerebellar nuclei neuron numbers. Neonatal rats received 0, 1, 2, or 3g/kg/day of ethanol in milk formula via a single intragastric intubation each day across postnatal days 2-11, or were left untreated. Peak BACs for ethanol-exposed rats were 50, 150, and 225 mg/dl, respectively. Rats underwent eyeblink conditioning as young adults (70 days of age) and deep cerebellar nuclei neuron numbers were assessed at 100 days of age. In Experiment 1, all rats showed normal responsiveness to periorbital stimulation prior to conditioning. The 3-g/kg/day group was impaired in eyeblink conditioning and possessed fewer deep cerebellar nuclei neurons. A trend toward impairment was observed in the 2-g/kg/day group. However, the 0-g/kg/day group was also impaired in eyeblink conditioning. In Experiment 2, the unconditioned stimulus pretest phase was eliminated, the 0-g/kg/day group learned normally, and both the 2- and 3-g/kg/day groups were again impaired. These results suggest that more moderate doses of ethanol during the rat third-trimester equivalent can produce long-term effects on the cerebellum.
Collapse
Affiliation(s)
- John T Green
- Department of Psychology, University of Vermont, Burlington VT 05405-0134, USA.
| | | | | |
Collapse
|
19
|
Rowland NC, Jaeger D. Coding of tactile response properties in the rat deep cerebellar nuclei. J Neurophysiol 2005; 94:1236-51. [PMID: 16061491 DOI: 10.1152/jn.00285.2005] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the lateral hemispheres of the cerebellar cortex, somatosensory responses are represented in a finely grained fractured somatotopy. It is unclear, however, how these responses contribute to the ultimate output of the cerebellum from the deep cerebellar nuclei (DCN). Robust responses of DCN neurons to somatosensory stimuli have been described, but a detailed examination of their somatotopic arrangement and stimulus coding properties is lacking. To address these questions, we recorded extracellular, single-unit activity in the DCN of ketamine-anesthetized rats in response to air-puff stimuli aimed at six different orofacial and forelimb locations. In additional experiments, the duration and intensity of air-puff stimuli to the ipsilateral upper lip were systematically varied. Overall, we found that DCN neuron responses to air puff stimuli showed combinations of three distinct response components: a short-latency spike response, a pronounced inhibition, and a long-latency increase in firing. Individual neurons responsive to air-puff stimulation exhibited any combination of just one, two, or all three of these response components. The inhibitory response was most common and frequently consisted of a complete cessation of spiking despite a high spontaneous rate of baseline firing. In contrast to published findings from cerebellar cortical recordings, the receptive fields of all responsive neurons in the DCN were large. In fact, the receptive field of most neurons covered the ipsi- and contralateral face as well as forepaws. Response properties of individual neurons did not reliably indicate stimulus intensity or duration, although as a population DCN neurons showed significantly increasing response amplitudes as air-puff intensity or duration increased. Overall, the responses were characterized by a distinct temporal profile in each neuron, which remained unchanged with changes in stimulus condition. We conclude that the responses in the DCN of rats to air-puff stimuli differ substantially from cerebellar cortical responses in their receptive field properties and do not provide a robust code of tactile stimulus properties. Rather, the characteristic temporal response profile of each neuron may be tuned to control the timing of a specific task to which its output is linked.
Collapse
|
20
|
Sultan F, Czubayko U, Thier P. Morphological classification of the rat lateral cerebellar nuclear neurons by principal component analysis. J Comp Neurol 2003; 455:139-55. [PMID: 12454981 DOI: 10.1002/cne.10443] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The deep cerebellar nuclei (DCN) constitute the major structures by which the cerebellum forwards its output to the rest of the brain. Although the connectivity of the DCN has been well studied, little is known about the interface-the neurons' soma and dendrites-between the DCN's inputs and outputs. We therefore decided to analyze the neurons' somatic and dendritic morphology by applying a multivariate approach (principal component analysis; PCA), in order to define morphological groups possibly related to distinct positions in the nuclear microcircuitry. The PCA was based on intracellularly stained neurons from the rat's lateral DCN and on 19 parameters that described the neurons' morphology. The PCA yielded two principal components that accounted for 46% of the variance. The first component, correlated with soma size, separated the majority of neurons (type I) from a population of small neurons (type II). The second component showed negative correlation with larger cells with more numerous primary dendrites and a more multipolar appearance (type Ia) and positive correlation with smaller neurons with asymmetric dendritic fields and tufted dendrites (type Ib). The preponderance of small somata in our type Ib neurons suggests that these neurons probably correspond to the inferior olive projection neurons. In summary, our results are in agreement with previous classifications, which distinguished projection neurons (type I) from local neurons (type II); furthermore, our results point to a hitherto undescribed dendritic morphological difference in the projection neurons. The latter may be important for understanding the phylogenetic changes seen in the mammalian lateral cerebellar nucleus.
Collapse
Affiliation(s)
- Fahad Sultan
- Department of Cognitive Neurology, Neurology Universitätsklinik, 72076 Tübingen, Germany.
| | | | | |
Collapse
|
21
|
Jiang MC, Alheid GF, Nunzi MG, Houk JC. Cerebellar input to magnocellular neurons in the red nucleus of the mouse: synaptic analysis in horizontal brain slices incorporating cerebello-rubral pathways. Neuroscience 2002; 110:105-21. [PMID: 11882376 DOI: 10.1016/s0306-4522(01)00544-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We studied the synaptic input from the nucleus interpositus of the cerebellum to the magnocellular division of the red nucleus (RNm) in the mouse using combined electrophysiological and neuroanatomical methods. Whole-cell patch-clamp recordings were made from brain slices (125-150 microm) cut in a horizontal plane oriented to pass through both red nucleus and nucleus interpositus. Large cells that were visually selected and patched were injected with Lucifer Yellow and identified as RNm neurons. Using anterograde tracing from nucleus interpositus in vitro, we examined the course of interposito-rubral axons which are dispersed in the superior cerebellar peduncle. In vitro monosynaptic responses in RNm were elicited by an electrode array placed contralaterally in this pathway but near the midline. Mixed excitatory post-synaptic potentials (EPSPs)/inhibitory post-synaptic potentials (IPSPs) were observed in 48 RNm neurons. Excitatory components of the evoked potentials were studied after blocking inhibitory components with picrotoxin (100 microM) and strychnine (5 microM). All RNm neurons examined continued to show monosynaptic EPSPs after non-N-methyl-D-aspartate (NMDA) glutamate receptor components were blocked with 10 microM 6,7-dinitroquinoxaline-2,3-dione or 5 microM 2,3-dihydro-6-nitro-7-sulfamoyl-benzo(f)-quinoxaline (NBQX; n=12). The residual potentials were identified as NMDA receptor components since they (i) were blocked by the addition of the NMDA receptor antagonist, D,L-2-amino-5-phosphonovaleric acid (APV), (ii) were voltage-dependent, and (iii) were enhanced by Mg(2+) removal. Inhibitory components of the evoked potentials were studied after blocking excitatory components with NBQX and APV. Under these conditions, all RNm neurons studied continued to show IPSPs. Blockade of GABA(A) receptors reduced but did not eliminate the IPSPs. These were eliminated when GABA(A) receptor blockade was combined with strychnine to eliminate glycine components of the IPSPs. Thus, IPSPs evoked by midline stimulation of the superior cerebellar peduncle, while blocking alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) and NMDA receptors, raise the possibility of direct inhibitory inputs to RNm from the cerebellum. In summary we propose that the special properties of the NMDA receptor components are considered important for the generation of RNm motor commands: their slow time course will contribute a steady driving force for sustained discharge and their voltage dependency will facilitate abrupt transitions from a resting state of quiescence to an active state of intense motor command generation.
Collapse
|
22
|
Abstract
Neurons of the cerebellar nuclei fire spontaneous action potentials both in vitro, with synaptic transmission blocked, and in vivo, in resting animals, despite ongoing inhibition from spontaneously active Purkinje neurons. We have studied the intrinsic currents of cerebellar nuclear neurons isolated from the mouse, with an interest in understanding how these currents generate spontaneous activity in the absence of synaptic input as well as how they allow firing to continue during basal levels of inhibition. Current-clamped isolated neurons fired regularly ( approximately 20 Hz), with shallow interspike hyperpolarizations (approximately -60 mV), much like neurons in more intact preparations. The spontaneous firing frequency lay in the middle of the dynamic range of the neurons and could be modulated up or down with small current injections. During step or action potential waveform voltage-clamp commands, the primary current active at interspike potentials was a tetrodotoxin-insensitive (TTX), cesium-insensitive, voltage-independent, cationic flux carried mainly by sodium ions. Although small, this cation current could depolarize neurons above threshold voltages. Voltage- and current-clamp recordings suggested a high level of inactivation of the TTX-sensitive transient sodium currents that supported action potentials. Blocking calcium currents terminated firing by preventing repolarization to normal interspike potentials, suggesting a significant role for K(Ca) currents. Potassium currents that flowed during action potential waveform voltage commands had high activation thresholds and were sensitive to 1 mm TEA. We propose that, after the decay of high-threshold potassium currents, the tonic cation current contributes strongly to the depolarization of neurons above threshold, thus maintaining the cycle of firing.
Collapse
|
23
|
Abstract
The detailed organization of projections from the inferior olive to the cerebellar nuclei of the rat was studied by using anterograde tracing. The presence of a collateral projection to the cerebellar nuclei could be confirmed, and a detailed organization was recognized at the nuclear and subnuclear level. Olivary projections to the different parts of the medial cerebellar nucleus arise from various parts of the caudal half of the medial accessory olivary nucleus. The interstitial cell groups receive olivary afferents from the intermediate part of the medial accessory olive and from the dorsomedial cell column. A mediolateral topography was noted in the projections from the rostral half of the medial accessory olive to the posterior interposed nucleus. Olivary projections to the lateral cerebellar nucleus are derived from the principal olive according to basically inversed rostrocaudal topography. Projections from the dorsomedial group of the principal olive to the dorsolateral hump were found to follow a basically rostrocaudal topography. The anterior interposed nucleus receives olivary afferents from the dorsal accessory olive. Its rostromedial parts are directed to the lateral part of the anterior interposed nucleus and its caudolateral part reach the medial anterior interposed nucleus. No terminal arborizations in the cerebellar nuclei were found to originate from (1) the dorsal fold of the dorsal accessory olive, which resulted in projections to the lateral vestibular nucleus and (2) the dorsal cap of Kooy. It was noted that the olivary projection to the cerebellar nuclei is strictly reciprocal to the nucleo-olivary projection as described by Ruigrok and Voogd (1990). Moreover, it is suggested that the olivonuclear projection adheres to the organization of the climbing fiber projection to the cerebellar cortex and to the corticonuclear projection, thus, establishing and extending the detailed micromodular organization of the connections between inferior olive and cerebellum.
Collapse
Affiliation(s)
- T J Ruigrok
- Department of Anatomy, Erasmus University Rotterdam, 3000 DR Rotterdam, The Netherlands.
| | | |
Collapse
|
24
|
Oldenbeuving AW, Eisenman LM, De Zeeuw CI, Ruigrok TJ. Inferior olivary-induced expression of Fos-like immunoreactivity in the cerebellar nuclei of wild-type and Lurcher mice. Eur J Neurosci 1999; 11:3809-22. [PMID: 10583470 DOI: 10.1046/j.1460-9568.1999.00796.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Earlier behavioural studies have shown that the expression of the immediate-early gene c-fos, as visualized by the immunohistochemical detection of Fos, in the inferior olive (IO) correlated closely with expression in related areas of the cerebellar nuclei. It has been speculated that the expression of c-fos within the cerebellar nuclei may be induced by enhanced spiking activity of the immunopositive neurons in the inferior olive. Two potential mechanisms may play a role in this process: a direct induction by way of the collaterals of the olivary climbing fibres to the cerebellar nuclei, or indirectly, by climbing fibre activity-induced depression of mossy fibre-parallel fibre-induced simple spike frequency of the Purkinje cells resulting in a subsequent disinhibition of the related parts of the cerebellar nuclei. In an attempt to distinguish between these possible mechanisms, we analysed Fos immunoreactivity in the olivocerebellar system of wild-type mice and in the mutant mouse Lurcher which lacks Purkinje cells. The tremorgenic agent harmaline, which is known to induce enhanced and rhythmic firing of olivary neurons was given intraperitoneally to anaesthetized mice of both genotypes. Harmaline application coincides with the induction of Fos-immunoreactive neurons in most areas of the IO in both wild-type and Lurcher mice. Both types of mice also showed enhanced expression in the larger neurons of the cerebellar nuclei. However, in the smaller, GABAergic nucleo-olivary neurons, increased c-fos expression was only observed in the wild-type mice. We conclude that: (i) increased olivary activity indeed may result in increased c-Fos expression in related areas of the cerebellar nuclei; (ii) because the indirect mode of induction is not operative in Lurcher mice, the olivary collateral innervation of the cerebellar nuclei is sufficient for c-fos induction in the larger nucleobulbar neurons in Lurcher and potentially also in wild-type mice; however (iii) for the nucleo-olivary cells an intact cerebellar cortical input is necessary to evoke increased expression of c-fos following harmaline application.
Collapse
Affiliation(s)
- A W Oldenbeuving
- Department of Anatomy, Erasmus University, 3000 DR Rotterdam, The Netherlands
| | | | | | | |
Collapse
|
25
|
Teune TM, van der Burg J, de Zeeuw CI, Voogd J, Ruigrok TJ. Single Purkinje cell can innervate multiple classes of projection neurons in the cerebellar nuclei of the rat: a light microscopic and ultrastructural triple-tracer study in the rat. J Comp Neurol 1998; 392:164-78. [PMID: 9512267 DOI: 10.1002/(sici)1096-9861(19980309)392:2<164::aid-cne2>3.0.co;2-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Two different populations of projection neurons are intermingled in the cerebellar nuclei. One group consists of small, gamma-aminobutyric acid-containing (GABAergic) neurons that project to the inferior olive, and the other group consists of larger, non-GABAergic neurons that provide an input to one or more, usually premotor, centers in the brainstem, such as the red nucleus, the thalamus, and the superior colliculus. All cerebellar nuclear neurons are innervated by GABAergic Purkinje cells. In this study, we investigated whether individual Purkinje cells of the C1 zone of the paramedian lobe of the rat innervate both groups of projection neurons in the anterior interposed nucleus. Two different, retrogradely transported tracers, either cholera toxin beta subunit (CTb) or wheat germ agglutinin coupled to horseradish peroxidase (WGA-HRP) and a gold lectin tracer were injected into the red nucleus and the inferior olive, respectively, whereas Purkinje cell axons were anterogradely labeled with biotinylated dextran amine (BDA) injected into the paramedian lobule. Cerebellar nuclear sections studied with the light microscope demonstrated a close relation of varicosities from BDA-labeled Purkinje cell axons with both gold lectin- and CTb-labeled neurons. Branches of individual axons could be traced to both retrogradely labeled cell populations. At the ultrastructural level, synapses of labeled Purkinje cell terminals with profiles of WGA-HRP-labeled projection neurons predominated over contacts with gold lectin-containing neurons. Nine out of 367 investigated BDA-labeled terminals were observed to be presynaptic to a WGA-HRP-labeled profile as well as to a gold lectin-labeled profile. This indicates that nuclear cells that project to the inferior olive as well as those that project to premotor centers are under the influence of the same Purkinje cells. Such an arrangement would suggest an in-phase cortical modulation of the activation patterns of the inhibitory cells that project to the inferior olive and excitatory cells that project to premotor nuclei, which could explain why olivary neurons, especially those of the rostral part of the dorsal accessory olive, appear to be unresponsive to stimuli generated during active movement.
Collapse
Affiliation(s)
- T M Teune
- Department of Anatomy, Erasmus University Rotterdam, The Netherlands
| | | | | | | | | |
Collapse
|
26
|
|
27
|
De Zeeuw CI, Berrebi AS. Postsynaptic targets of Purkinje cell terminals in the cerebellar and vestibular nuclei of the rat. Eur J Neurosci 1995; 7:2322-33. [PMID: 8563981 DOI: 10.1111/j.1460-9568.1995.tb00653.x] [Citation(s) in RCA: 130] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The cerebellar and vestibular nuclei consist of a heterogeneous group of inhibitory and excitatory neurons. A major proportion of the inhibitory neurons provides a GABAergic feedback to the inferior olive, while the excitatory neurons exert more direct effects on motor control via non-olivary structures. At present is is not clear whether Purkinje cells innervate all types of neurons in the cerebellar and vestibular nuclei or whether an individual Purkinje cell axon can innervate different types of neurons. In the present study, we studied the postsynaptic targets of Purkinje cell axons in the rat using a combination of pre-embedding immunolabelling of the Purkinje cell terminals by L7, a Purkinje cell-specific marker, and postembedding GABA and glycine immunocytochemistry. In the cerebellar nuclei, vestibular nuclei and nucleus prepositus hypoglossi Purkinje cell terminals were found apposed to GABAergic and glycinergic neurons as well as to larger non-GABAergic, non-glycinergic neurons. In the cerebellar and vestibular nuclei individual Purkinje cell terminals innervated both the inhibitory and excitatory neurons. Both types of neurons were contacted no only by non-GABAergic Purkinje cell terminals but also by GABA-containing terminals that were not labelled for L7 and by non-GABAergic, non-glycinergic terminals that formed excitatory synapses. Glycine-containing terminals were relatively scarce ( < 2% of the GABA-containing terminals) and frequently contacted the larger non-GABAergic, non-glycinergic neurons. To summarize, Purkinje cell axons evoke their effects through different types of neurons present in the cerebellar and vestibular nuclear complex. The observation that individual Purkinje cells can innervate both excitatory and inhibitory neurons suggests that the excitatory cerebellar output system and the inhibitory feedback to the inferior olive are controlled simultaneously.
Collapse
Affiliation(s)
- C I De Zeeuw
- Department of Anatomy, Erasmus University Rotterdam, The Netherlands
| | | |
Collapse
|