1
|
Eum WS, Kim DW, Yeo EJ, Yeo HJ, Choi YJ, Cha HJ, Park J, Han KH, Kim DS, Yu YH, Cho SW, Kwon OS, Cho YJ, Shin MJ, Choi SY. Transduced Tat-PRAS40 prevents dopaminergic neuronal cell death through ROS inhibition and interaction with 14-3-3σ protein. Free Radic Biol Med 2021; 172:418-429. [PMID: 34175438 DOI: 10.1016/j.freeradbiomed.2021.06.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/18/2021] [Accepted: 06/23/2021] [Indexed: 12/20/2022]
Abstract
Proline rich Akt substrate (PRAS40) is a component of mammalian target of rapamycin complex 1 (mTORC1) and activated mTORC1 plays important roles for cellular survival in response to oxidative stress. However, the roles of PRAS40 in dopaminergic neuronal cell death have not yet been examined. Here, we examined the roles of Tat-PRAS40 in MPP+- and MPTP-induced dopaminergic neuronal cell death. Our results showed that Tat-PRAS40 effectively transduced into SH-SY5Y cells and inhibited DNA damage, ROS generation, and apoptotic signaling in MPP+-induced SH-SY5Y cells. Further, these protective mechanisms of Tat-PRAS40 protein display through phosphorylation of Tat-PRAS40, Akt and direct interaction with 14-3-3σ protein, but not via the mTOR-dependent signaling pathway. In a Parkinson's disease animal model, Tat-PRAS40 transduced into dopaminergic neurons in mouse brain and significantly protected against dopaminergic cell death by phosphorylation of Tat-PRAS40, Akt and interaction with 14-3-3σ protein. In this study, we demonstrated for the first time that Tat-PRAS40 directly protects against dopaminergic neuronal cell death. These results indicate that Tat-PRAS40 may provide a useful therapeutic agent against oxidative stress-induced dopaminergic neuronal cell death, which causes diseases such as PD.
Collapse
Affiliation(s)
- Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Kangneung-Wonju National University, Kangneung, 25457, South Korea
| | - Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Yeon Joo Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Hyun Ju Cha
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Jinseu Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Kyu Hyung Han
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Duk-Soo Kim
- Department of Anatomy and BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan, 31538, South Korea
| | - Yeon Hee Yu
- Department of Anatomy and BK21 FOUR Project, College of Medicine, Soonchunhyang University, Cheonan, 31538, South Korea
| | - Sung-Woo Cho
- Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, Seoul, 05505, South Korea
| | - Oh-Shin Kwon
- School of Life Sciences, College of Natural Sciences Kyungpook National University, Taegu, 41566, South Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon, 24253, South Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
2
|
Badruzzaman M, Shahjahan M, Roy PK, Islam MT. Rotenone alters behavior and reproductive functions of freshwater catfish, Mystus cavasius, through deficits of dopaminergic neurons in the brain. CHEMOSPHERE 2021; 263:128355. [PMID: 33297277 DOI: 10.1016/j.chemosphere.2020.128355] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 08/31/2020] [Accepted: 09/13/2020] [Indexed: 06/12/2023]
Abstract
Rotenone, commonly used as a pesticide in agriculture and as a piscicide in aquaculture, is a toxic compound that causes dopaminergic neuronal cell loss in the substantia nigra pars compacta of the brain. At the neuroendocrine level, dopamine (DA) drives behavioral (locomotion, emotion, feeding, and social interactions, etc.) and reproductive functions of fish. In the current investigation, we examined effects of rotenone toxicity on neurobehavioral and reproductive functions in whole brain and in selected brain regions in an Indian freshwater catfish, locally known as gulsha (Mystus cavasius). After fish were exposed to water containing rotenone at 0, 2.5, 25, and 250 μg/L for 2 days, significant reductions of DA, 3,4-dihydroxyphenylacetic acid (DOPAC; a DA metabolite), and their ratio (DOPAC/DA) were observed in whole brain at 250 μg/L ambient concentrations of rotenone. When fish were treated with rotenone at 250 μg/L concentration for 2 days, there was a significant reduction of DA, DOPAC and DOPAC/DA in diencephalon, DA and DOPAC in pituitary, and only DA in the telencephalon, compared with control fish. In parallel, numbers of tyrosine hydroxylase-positive (TH+) neurons declined significantly in the diencephalon and pituitary after rotenone treatment. Slowed, spontaneous movement and reduced feeding behavior were observed in rotenone-treated fish. Rotenone treatment resulted in a significantly higher gonadosomatic index with many mature vitellogenic oocytes in ovaries and lowered dopaminergic activity in these fish. These results indicate that rotenone influences neurobehavioral and reproductive functions through dopaminergic neuronal cell loss in gulsha brain.
Collapse
Affiliation(s)
- Muhammad Badruzzaman
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur, 1706, Bangladesh.
| | - Md Shahjahan
- Laboratory of Fish Ecophysiology, Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh, 2202, Bangladesh
| | - Prodip Kumar Roy
- Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, 904-0495, Japan
| | - Md Taimur Islam
- Department of Pathobiology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Salna, Gazipur, 1706, Bangladesh
| |
Collapse
|
3
|
Venables MJ, Xing L, Edington CC, Trudeau VL. Neuronal regeneration in the goldfish telencephalon following 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) insult. Facets (Ott) 2018. [DOI: 10.1139/facets-2017-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The constitutive regenerative ability of the goldfish central nervous system makes them an excellent model organism to study neurogenesis. Intraperitoneal injection of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was used to deplete tyrosine hydroxylase-positive neurons in the adult goldfish telencephalon. We report novel information on the ability of the goldfish to regenerate (∼3–4 d post-MPTP insult) damaged neurons in telencephalic tissue by observing the rapid incorporation of bromodeoxyuridine into newly generated cells, which precedes the recovery of motor function in MPTP-treated animals. Specifically, the telencephalon area telencephali pars dorsalis in female goldfish, which is associated with fish motor activity, regenerates following MPTP toxicity. The remarkable ability of goldfish to rapidly regenerate damaged neurons provides insight into their use as model organisms to study neuroregenerative abilities within a few days following injury. We provide evidence that goldfish are able to regenerate neurons in ∼3–4 d to both replenish and recover baseline catecholaminergic levels, thus enabling the fish to reestablish basic activities such as swimming. The study of neuron regeneration in the damaged goldfish brain will increase our understanding of vertebrate neurogenesis and regeneration processes following central nervous system injury.
Collapse
Affiliation(s)
| | - Lei Xing
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Vance L. Trudeau
- Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| |
Collapse
|
4
|
Xing L, Venables MJ, Trudeau VL. Role of aromatase and radial glial cells in neurotoxin-induced dopamine neuron degeneration and regeneration. Gen Comp Endocrinol 2017; 241:69-79. [PMID: 26873632 DOI: 10.1016/j.ygcen.2016.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 02/04/2016] [Accepted: 02/08/2016] [Indexed: 11/24/2022]
Abstract
Radial glial cells (RGCs) in teleost brain are progenitor cells that express aromatase B and produce estrogens. Controversial data suggest that estrogens are critical for brain repair and neurogenesis in teleosts. Using a goldfish model for neurotoxin-induced Parkinson-like syndrome, we investigated the possible roles of RGCs, especially estrogen synthetic function, in the processes underlying dopamine neuron regeneration. The data indicate that dopamine neuron degeneration and aromatase activity inhibition could be respectively achieved in vivo with treatments with the neurotoxin 1-methyl-1,2,3,6-tetrahydropyridine (MPTP) and fadrozole in female goldfish. The expression of genes in the telencephalon and hypothalamus related to RGC functions including gfap, gdnf and bdnf as well as genes related to mature dopamine neuron functions including th, slc6a3 and pitx3 are under modulation of estrogens. Together these results revealed that the activation of radial glial cells and dopamine neuron recovery after MPTP insult is aromatase-dependent. Findings in this study provide support for the hypothesis that endogenous estrogens are neuroprotective in goldfish. Future studies focus on the molecular pathways for enhancing protective functions of estrogens and understanding global effects of estrogens in the central nervous system.
Collapse
Affiliation(s)
- Lei Xing
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Maddie J Venables
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
| | - Vance L Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| |
Collapse
|
5
|
Ikegami T, Takemura A, Choi E, Suda A, Tomonaga S, Badruzzaman M, Furuse M. Increase in telencephalic dopamine and cerebellar norepinephrine contents by hydrostatic pressure in goldfish: the possible involvement in hydrostatic pressure-related locomotion. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1105-1115. [PMID: 25975379 DOI: 10.1007/s10695-015-0072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
Fish are faced with a wide range of hydrostatic pressure (HP) in their natural habitats. Additionally, freshwater fish are occasionally exposed to rapid changes in HP due to heavy rainfall, flood and/or dam release. Accordingly, variations in HP are one of the most important environmental cues for fish. However, little information is available on how HP information is perceived and transmitted in the central nervous system of fish. The present study examined the effect of HP (water depth of 1.3 m) on the quantities of monoamines and their metabolites in the telencephalon, optic tectum, diencephalon, cerebellum (including partial mesencephalon) and vagal lobe (including medulla oblongata) of the goldfish, Carassius auratus, using high-performance liquid chromatography. HP affected monoamine and metabolite contents in restricted brain regions, including the telencephalon, cerebellum and vagal lobe. In particular, HP significantly increased the levels of dopamine (DA) in the telencephalon at 15 min and that of norepinephrine (NE) in the cerebellum at 30 min. In addition, HP also significantly increased locomotor activity at 15 and 30 min after HP treatment. It is possible that HP indirectly induces locomotion in goldfish via telencephalic DA and cerebellar NE neuronal activity.
Collapse
Affiliation(s)
- Taro Ikegami
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan.
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan.
| | - Akihiro Takemura
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Eunjung Choi
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Atsushi Suda
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | - Shozo Tomonaga
- Laboratory of Nutritional Science for Animals, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Muhammad Badruzzaman
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| |
Collapse
|
6
|
Kim MJ, Park M, Kim DW, Shin MJ, Son O, Jo HS, Yeo HJ, Cho SB, Park JH, Lee CH, Kim DS, Kwon OS, Kim J, Han KH, Park J, Eum WS, Choi SY. Transduced PEP-1-PON1 proteins regulate microglial activation and dopaminergic neuronal death in a Parkinson's disease model. Biomaterials 2015; 64:45-56. [DOI: 10.1016/j.biomaterials.2015.06.015] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 06/09/2015] [Accepted: 06/11/2015] [Indexed: 01/01/2023]
|
7
|
Badruzzaman M, Imamura S, Takeuchi Y, Ikegami T, Takemura A. Effects of neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) treatment on ovarian development of the sapphire devil, Chrysiptera cyanea. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:61-71. [PMID: 25362562 DOI: 10.1007/s10695-014-0006-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/20/2014] [Indexed: 06/04/2023]
Abstract
In the neuroendocrine system controlling fish reproduction, dopamine (DA) acts as a gonadotropin inhibitory factor and plays a role in regulating gonadal development of certain species. The present study examined the effects of chemical destruction of dopaminergic neurons in the brain on DA production and ovarian development in the sapphire devil Chrysiptera cyanea, a reef-associated damselfish. The avidin-biotin-peroxidase complex method using an antibody against tyrosine hydroxylase (TH), a critical enzyme in the DA synthesis pathway, identified a population of dopaminergic neurons with somata in the anteroventral preoptic nucleus of the diencephalon and fibers terminating in the proximal pars distalis of the pituitary. Maintaining fish in seawater containing 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) at 0.02 and 0.2 µg/mL for 2 days resulted in decreases in DA, 3,4-dihydroxyphenylacetic acid (DOPAC; DA metabolite), and DA metabolic rate in the whole brain. The number of TH-positive neurons in the diencephalon decreased after 0.02 µg/mL MPTP treatment for 2 days. These results suggest that MPTP treatment destroys TH-positive neurons in the diencephalon, thereby decreasing the synthesis and release of DA from the brain. This treatment rescued ovarian development in fish with artificially retracted ovaries during the spawning season. The gonadosomatic index of MPTP-treated fish 5 and 7 days after treatment was significantly higher than that of control fish. Oocytes in the vitellogenic stages were observed in the ovaries of MPTP-treated fish, but not in control fish. These results suggest that DA in the brain drives ovarian development in the sapphire devil.
Collapse
Affiliation(s)
- Muhammad Badruzzaman
- Department of Chemistry, Biology and Marine Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa, 903-0213, Japan
| | | | | | | | | |
Collapse
|
8
|
Lu Z, Wang J, Li M, Liu Q, Wei D, Yang M, Kong L. (1)H NMR-based metabolomics study on a goldfish model of Parkinson's disease induced by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Chem Biol Interact 2014; 223:18-26. [PMID: 25242684 DOI: 10.1016/j.cbi.2014.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2014] [Revised: 08/22/2014] [Accepted: 09/09/2014] [Indexed: 11/19/2022]
Abstract
A goldfish (Carassius auratus) model of Parkinson's disease (PD) was constructed by a single dose of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) according to previously reported methods. Global metabolite changes in brain of the MPTP induced goldfish model of PD were investigated. (1)H NMR-based metabolomics combined with various statistical methods such as orthogonal partial least squares discriminant analysis (OPLS-DA) and two-dimensional statistical total correlation spectroscopy (2D-STOCSY) found significant increase of leucine, isoleucine, valine, alanine, alanylalanine, creatinine, myo-inositol, 18:2 fatty acid, total fatty acids, arachic alcohol, taurine and significant decrease of N-acetylaspartate, (phospho)creatine, (phospho)choline, betaine, glutamine, 3-hexenedioate, acetamide, malonate, isocitrate, scyllo-inositol, phosphatidylcholines, cholesterols, n-3 fatty acids, polyunsaturated fatty acids (PUFAs) in brain of MPTP induced PD goldfish. These disturbed metabolite levels were involved in oxidative stress, energy failure, neuronal cell injury and death, consistent with those observed in clinical PD patients, and rodents and primates model of PD, indicating that the acute MPTP model of goldfish was an ideal and valuable model for PD research. In addition, several unusual metabolites in brain were significantly changed between MPTP induced PD and control goldfish, which might also play an important role in the pathogenesis of PD. This study also demonstrated the applicability and potential of (1)H NMR-based metabolomics approach for evaluation of animal models of disease induced by chemicals, such as MPTP-induced PD goldfish.
Collapse
Affiliation(s)
- Zhaoguang Lu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Junsong Wang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, 200 Xiao Ling Wei Street, Nanjing 210094, PR China.
| | - Minghui Li
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Qingwang Liu
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Dandan Wei
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Minghua Yang
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China
| | - Lingyi Kong
- State Key Laboratory of Natural Medicines, Department of Natural Medicinal Chemistry, China Pharmaceutical University, 24 Tong Jia Xiang, Nanjing 210009, PR China.
| |
Collapse
|
9
|
Darland T, Mauch JT, Meier EM, Hagan SJ, Dowling JE, Darland DC. Sulpiride, but not SCH23390, modifies cocaine-induced conditioned place preference and expression of tyrosine hydroxylase and elongation factor 1α in zebrafish. Pharmacol Biochem Behav 2012; 103:157-67. [PMID: 22910534 DOI: 10.1016/j.pbb.2012.07.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Revised: 07/21/2012] [Accepted: 07/31/2012] [Indexed: 01/27/2023]
Abstract
Finding genetic polymorphisms and mutations linked to addictive behavior can provide important targets for pharmaceutical and therapeutic interventions. Forward genetic approaches in model organisms such as zebrafish provide a potentially powerful avenue for finding new target genes. In order to validate this use of zebrafish, the molecular nature of its reward system must be characterized. We have previously reported the use of cocaine-induced conditioned place preference (CPP) as a reliable method for screening mutagenized fish for defects in the reward pathway. Here we test if CPP in zebrafish involves the dopaminergic system by co-treating fish with cocaine and dopaminergic antagonists. Sulpiride, a potent D2 receptor (DR2) antagonist, blocked cocaine-induced CPP, while the D1 receptor (DR1) antagonist SCH23390 had no effect. Acute cocaine exposure also induced a rise in the expression of tyrosine hydroxylase (TH), an important enzyme in dopamine synthesis, and a significant decrease in the expression of elongation factor 1α (EF1α), a housekeeping gene that regulates protein synthesis. Cocaine selectively increased the ratio of TH/EF1α in the telencephalon, but not in other brain regions. The cocaine-induced change in TH/EF1α was blocked by co-treatment with sulpiride, but not SCH23390, correlating closely with the action of these drugs on the CPP behavioral response. Immunohistochemical analysis revealed that the drop in EF1α was selective for the dorsal nucleus of the ventral telencephalic area (Vd), a region believed to be the teleost equivalent of the striatum. Examination of TH mRNA and EF1α transcripts suggests that regulation of expression is post-transcriptional, but this requires further examination. These results highlight important similarities and differences between zebrafish and more traditional mammalian model organisms.
Collapse
Affiliation(s)
- Tristan Darland
- Biology Department, University of North Dakota, United States; Turtle Mountain Community College, United States.
| | | | | | | | | | | |
Collapse
|
10
|
Popesku JT, Martyniuk CJ, Denslow ND, Trudeau VL. Rapid dopaminergic modulation of the fish hypothalamic transcriptome and proteome. PLoS One 2010; 5:e12338. [PMID: 20808832 PMCID: PMC2924890 DOI: 10.1371/journal.pone.0012338] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2010] [Accepted: 07/10/2010] [Indexed: 11/25/2022] Open
Abstract
Background Dopamine (DA) is a major neurotransmitter playing an important role in the regulation of vertebrate reproduction. We developed a novel method for the comparison of transcriptomic and proteomic data obtained from in vivo experiments designed to study the neuroendocrine actions of DA. Methods and Findings Female goldfish were injected (i.p.) with DA agonists (D1-specific; SKF 38393, or D2-specific; LY 171555) and sacrificed after 5 h. Serum LH levels were reduced by 57% and 75% by SKF 38393 and LY 171555, respectively, indicating that the treatments produced physiologically relevant responses in vivo. Bioinformatic strategies and a ray-finned fish database were established for microarray and iTRAQ proteomic analysis of the hypothalamus, revealing a total of 3088 mRNAs and 42 proteins as being differentially regulated by the treatments. Twenty one proteins and mRNAs corresponding to these proteins appeared on both lists. Many of the mRNAs and proteins affected by the treatments were grouped into the Gene Ontology categorizations of protein complex, signal transduction, response to stimulus, and regulation of cellular processes. There was a 57% and 14% directional agreement between the differentially-regulated mRNAs and proteins for SKF 38393 and LY 171555, respectively. Conclusions The results demonstrate the applicability of advanced high-throughput genomic and proteomic analyses in an amendable well-studied teleost model species whose genome has yet to be sequenced. We demonstrate that DA rapidly regulates multiple hypothalamic pathways and processes that are also known to be involved in pathologies of the central nervous system.
Collapse
Affiliation(s)
- Jason T. Popesku
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Christopher J. Martyniuk
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
| | - Nancy D. Denslow
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida, Gainesville, Florida, United States of America
| | - Vance L. Trudeau
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
- * E-mail:
| |
Collapse
|
11
|
Increased DJ-1 expression under oxidative stress and in Alzheimer's disease brains. Mol Neurodegener 2009; 4:12. [PMID: 19243613 PMCID: PMC2654450 DOI: 10.1186/1750-1326-4-12] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 02/25/2009] [Indexed: 11/10/2022] Open
Abstract
Mutations in the DJ-1 gene have been linked to autosomal recessive familial Parkinson's disease. To understand the function of DJ-1, we determined the DJ-1 expression in both zebrafish and post mortem human brains. We found that DJ-1 was expressed early during zebrafish development and throughout adulthood. Knock down (KD) of DJ-1 by injection of morpholino did not cause dramatic morphologic alterations during development, and no loss of dopaminergic neurons was observed in embryos lacking DJ-1. However, DJ-1 KD embryos were more susceptible to programmed cell death. While a slight reduction in staining for islet-1 positive neurons was observed in both DJ-1 KD and H2O2 treated embryos, the number of apoptotic cells was significantly increased in both KD and H2O2 treated embryos. Interestingly, DJ-1 expression was increased in brains of zebrafish under conditions of oxidative stress, indicating that DJ-1 is a part of stress-responsive machinery. Since oxidative stress is one of the major contributors to the development of Alzheimer's disease (AD), we also examined DJ-1 expression in AD brains. Using DJ-1 specific antibodies, we failed to detect a robust staining of DJ-1 in brain tissues from control subjects. However, DJ-1 immunoreactivity was detected in hippocampal pyramidal neurons and astrocytes of AD brains. Therefore, our results strongly suggest that DJ-1 expression is not necessary during zebrafish development but can be induced in zebrafish exposed to oxidative stress and is present in human AD brains.
Collapse
|
12
|
Popesku JT, Martyniuk CJ, Mennigen J, Xiong H, Zhang D, Xia X, Cossins AR, Trudeau VL. The goldfish (Carassius auratus) as a model for neuroendocrine signaling. Mol Cell Endocrinol 2008; 293:43-56. [PMID: 18657592 DOI: 10.1016/j.mce.2008.06.017] [Citation(s) in RCA: 119] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 04/30/2008] [Accepted: 06/11/2008] [Indexed: 12/25/2022]
Abstract
Goldfish (Carassius auratus) are excellent model organisms for the neuroendocrine signaling and the regulation of reproduction in vertebrates. Goldfish also serve as useful model organisms in numerous other fields. In contrast to mammals, teleost fish do not have a median eminence; the anterior pituitary is innervated by numerous neuronal cell types and thus, pituitary hormone release is directly regulated. Here we briefly describe the neuroendocrine control of luteinizing hormone. Stimulation by gonadotropin-releasing hormone and a multitude of classical neurotransmitters and neuropeptides is opposed by the potent inhibitory actions of dopamine. The stimulatory actions of gamma-aminobutyric acid and serotonin are also discussed. We will focus on the development of a cDNA microarray composed of carp and goldfish sequences which has allowed us to examine neurotransmitter-regulated gene expression in the neuroendocrine brain and to investigate potential genomic interactions between these key neurotransmitter systems. We observed that isotocin (fish homologue of oxytocin) and activins are regulated by multiple neurotransmitters, which is discussed in light of their roles in reproduction in other species. We have also found that many novel and uncharacterized goldfish expressed sequence tags in the brain are also regulated by neurotransmitters. Their sites of production and whether they play a role in neuroendocrine signaling and control of reproduction remain to be determined. The transcriptomic tools developed to study reproduction could also be used to advance our understanding of neuroendocrine-immune interactions and the relationship between growth and food intake in fish.
Collapse
|
13
|
Thompson RH, Ménard A, Pombal M, Grillner S. Forebrain dopamine depletion impairs motor behavior in lamprey. Eur J Neurosci 2008; 27:1452-60. [DOI: 10.1111/j.1460-9568.2008.06125.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Abstract
Parkinson's disease (PD) has been modeled in humans, lower primates, and to a lesser extent in some other vertebrates by the administration of the potent neurotoxin 1-methyl-4-phenyl-1,2,3,6 tetrahydropyridine (MPTP). The MPTP model has thus drawn considerable attention during the past 15 years, as a system to search for anti-PD drugs. It has been previously reported that a Parkinsonian syndrome can be elicited in the common goldfish (Carassius auratus) by a single dose of MPTP. This protocol describes the relatively simple and inexpensive MPTP model of PD in goldfish. The procedure takes 14-30 d, depending on how many animals are tested and on the planned study. The accessibility of the goldfish nervous system, neural density, the evolutionary equivalent subcortical circuitry and the greatly abbreviated blood-brain barrier of the goldfish brain, make it an attractive system for study of PD as well as potential drugs for therapy.
Collapse
Affiliation(s)
- Orly Weinreb
- Eve Topf and USA National Parkinson Foundation Centers of Excellence for Neurodegenerative Diseases Research, Department of Pharmacology, and Rappaport Family Research Institute, Technion-Faculty of Medicine, Haifa, 31096, Israel
| | | |
Collapse
|
15
|
Anichtchik O, Sallinen V, Peitsaro N, Panula P. Distinct structure and activity of monoamine oxidase in the brain of zebrafish (Danio rerio). J Comp Neurol 2006; 498:593-610. [PMID: 16917825 DOI: 10.1002/cne.21057] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Monoamine oxidase (MAO) is a mitochondrial flavoprotein involved in the metabolism of, e.g., aminergic neurotransmitters and the parkinsonism-inducing neurotoxin 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine (MPTP). We have reported earlier MPTP-related alterations of brain catecholaminergic system in zebrafish (Danio rerio) brain. Here we describe the structural and functional properties of zebrafish MAO and the distribution of MAO mRNA and activity in zebrafish brain. The gene is located in chromosome 9 and consists of 15 exons. The amino acid composition of the active center resembles both human MAO-A and MAO-B. The enzyme displayed the highest substrate specificity for tyramine, followed by serotonin, phenylethylamine, MPTP, and dopamine; isoform-specific antagonists blocked the activity of the enzyme with equal potency. Zebrafish MAO mRNA, which was present in several tissues, and enzyme displayed differential distribution in the brain; dopaminergic cell clusters had low to moderate levels of MAO activity, whereas the highest levels of MAO activity were detected in noradrenergic and serotonergic cell groups and the habenulointerpeduncular pathway, including its caudal projection to the medial ventral rhombencephalon. The results of this study confirm the presence of functionally active MAO in zebrafish brain and other tissues and characterize the neural systems that express MAO and areas of intense activity in the brain. They also suggest that MPTP toxicity not related to MAO may affect the zebrafish brain.
Collapse
Affiliation(s)
- Oleg Anichtchik
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Biomedicum Helsinki, 00290 Helsinki, Finland
| | | | | | | |
Collapse
|
16
|
Davis JM, Carvalho HM, Rasmussen SB, O'Brien AD. Cytotoxic necrotizing factor type 1 delivered by outer membrane vesicles of uropathogenic Escherichia coli attenuates polymorphonuclear leukocyte antimicrobial activity and chemotaxis. Infect Immun 2006; 74:4401-8. [PMID: 16861625 PMCID: PMC1539604 DOI: 10.1128/iai.00637-06] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cytotoxic necrotizing factor type 1 (CNF1), a toxin produced by many strains of uropathogenic Escherichia coli (UPEC), constitutively activates small GTPases of the Rho family by deamidating a single amino acid within these target proteins. Such activated GTPases not only stimulate actin polymerization within affected cells but also, as we previously reported, decrease membrane fluidity on mouse polymorphonuclear leukocytes (PMNs). In that same investigation we found that this diminished membrane movement impedes the clustering of the complement receptor CD11b/CD18 on PMNs and, in turn, decreases PMN phagocytic capacity and microbicidal activity on PMNs in direct contact with CNF1-expressing UPEC as well as on those in proximity to wild-type UPEC. The latter observation suggested to us that CNF1 is released from neighboring bacteria, although at the time of initiation of the study described here, no specific mechanism for export of CNF1 from UPEC had been described. Here we present evidence that CNF1 is released from the CNF1-expressing UPEC strain CP9 (serotype O4/H5/K54) in a complex with outer membrane vesicles (OMVs) and that these CNF1-bearing vesicles transfer biologically active CNF1 to PMNs and attenuate phagocyte function. Furthermore, we show that CNF1-bearing vesicles act in a dose-dependent fashion on PMNs to inhibit their chemotactic response to formyl-Met-Leu-Phe, while purified CNF1 does not. We conclude that OMVs provide a means for delivery of CNF1 from a UPEC strain to PMNs and thus negatively affect the efficacy of the acute inflammatory response to these organisms.
Collapse
Affiliation(s)
- Jon M Davis
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, B4052, 4301 Jones Bridge Road, Bethesda, Maryland 20814-4799, USA
| | | | | | | |
Collapse
|
17
|
Panula P, Sallinen V, Sundvik M, Kolehmainen J, Torkko V, Tiittula A, Moshnyakov M, Podlasz P. Modulatory Neurotransmitter Systems and Behavior: Towards Zebrafish Models of Neurodegenerative Diseases. Zebrafish 2006; 3:235-47. [DOI: 10.1089/zeb.2006.3.235] [Citation(s) in RCA: 199] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Pertti Panula
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Ville Sallinen
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Maria Sundvik
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Juha Kolehmainen
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Veera Torkko
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Anu Tiittula
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Maxim Moshnyakov
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | - Piotr Podlasz
- Neuroscience Center, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
18
|
Carvalho HM, Teel LD, Goping G, O'Brien AD. A three-dimensional tissue culture model for the study of attach and efface lesion formation by enteropathogenic and enterohaemorrhagic Escherichia coli. Cell Microbiol 2006; 7:1771-81. [PMID: 16309463 DOI: 10.1111/j.1462-5822.2004.00594.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We sought to develop a practical and representative model to study the interactions of enteropathogenic and enterohaemorrhagic Escherichia coli (EPEC and EHEC, respectively) with human intestinal tissue. For this purpose, human intestinal epithelial HCT-8 cells were cultured under low-shear microgravity conditions in a rotating cell culture system. After 10 days, layered cell aggregates, or 'organoids', developed. Three lines of evidence indicated that these organoids exhibited traits characteristic of normal tissue. First, the organoids expressed normal intestinal tissue markers in patterns that suggested greater cellular differentiation in the organoids than conventionally grown monolayers. Second, the organoids produced higher levels of intestinally expressed disaccharidases and alkaline phosphatase on a cell basis than did conventionally cultured monolayers. Third, HCT-8 organoid tissue developed microvilli and desmosomes characteristic of normal tissue, as revealed by electron microscopy. Because the low-shear microgravity condition is proposed by modelling studies to more closely approximate conditions in the intestinal microvilli, we also tested the impact of microgravity of bacterial growth and virulence gene expression. No influence on growth rates was observed but intimin expression by EHEC was elevated during culture in microgravity as compared with normal gravity. That the responses of HCT-8 organoids to infection with wild-type EPEC or EHEC under microgravitational conditions approximated infection of normal tissue was demonstrated by the classical appearance of the resultant attaching and effacing lesions. We concluded that the low shear microgravity environment promoted growth of intestinal cell organoids with greater differentiation than was seen in HCT-8 cells maintained in conventional tissue culture and provided a reduced gravity environment for study of bacterial-host cell interactions.
Collapse
Affiliation(s)
- Humberto M Carvalho
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
19
|
McKinley ET, Baranowski TC, Blavo DO, Cato C, Doan TN, Rubinstein AL. Neuroprotection of MPTP-induced toxicity in zebrafish dopaminergic neurons. ACTA ACUST UNITED AC 2005; 141:128-37. [PMID: 16209898 DOI: 10.1016/j.molbrainres.2005.08.014] [Citation(s) in RCA: 144] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2005] [Revised: 08/03/2005] [Accepted: 08/13/2005] [Indexed: 12/21/2022]
Abstract
Parkinson's disease is characterized by a severe loss of dopaminergic neurons resulting in a range of motor deficits. The neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) is known to cause a similar loss of dopaminergic neurons in the human midbrain with corresponding Parkinsonian symptoms. Several animal species have also shown sensitivity to MPTP, including primates, mice, goldfish, and, most recently, zebrafish. This study demonstrates that the effect of MPTP on dopaminergic neurons in zebrafish larvae is mediated by the same pathways that have been demonstrated in mammalian species. MPTP-induced neurodegeneration was prevented by co-incubation with either the monoamine oxidase-B (MAO-B) inhibitor l-deprenyl or the dopamine transporter (DAT) inhibitor nomifensine. Furthermore, targeted inactivation of the DAT gene by antisense morpholinos also protected neurons from MPTP damage. Thus, the mechanism for MPTP-induced dopaminergic neuron toxicity in mammals is conserved in zebrafish larvae. Effects on swimming behavior and touch response that result from MPTP damage are partially ameliorated by both l-deprenyl and DAT knockdown.
Collapse
Affiliation(s)
- Enid T McKinley
- Zygogen, 520 Kell Hall, 24 Peachtree Center Avenue, Atlanta, GA 30303, USA
| | | | | | | | | | | |
Collapse
|
20
|
Hibbert B, Fung I, McAuley R, Larivière K, MacNeil B, Bafi-Yeboa N, Livesey J, Trudeau V. Increased GAD67 mRNA levels are correlated with in vivo GABA synthesis in the MPTP-treated catecholamine-depleted goldfish brain. ACTA ACUST UNITED AC 2004; 128:121-30. [PMID: 15363887 DOI: 10.1016/j.molbrainres.2004.06.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/09/2004] [Indexed: 11/24/2022]
Abstract
The role of catecholamine neuronal input on GABAergic activity in the hypothalamus, telencephalon, optic tectum, and cerebellum was investigated in early recrudescent female goldfish (Carassius auratus). A new quantitative technique was developed and validated, permitting concomitant quantification and correlational analysis of glutamic acid decarboxylase 65 (GAD65), GAD67, and GAD3 mRNA levels and in vivo GABA synthesis. Catecholamine depletion was achieved by the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP; 50 microg/g body weight) and dopamine (DA) depletion verified by HPLC. Endogenous GABA levels were increased by intraperitoneal administration of gamma-vinyl GABA (GVG; 300 microg/g body weight), an inhibitor of the GABA catabolic enzyme GABA transaminase. Treatment with MPTP resulted in a greater than twofold increase in GABA synthesis rate in the optic tectum and telencephalon. The increase in GABA synthesis rate was highly correlated with an increase in GAD67, but not GAD65 or GAD3 mRNA levels. These results suggest that catecholaminergic input exerts inhibitory effects on GABA synthesis rates through the modulation of GAD67 in the optic tectum and telencephalon. Together with previously published observations in rodents and primates, it is suggested that catecholaminergic control of GABA synthesis must have evolved more than 200 million years ago, before the emergence of the teleost fishes.
Collapse
Affiliation(s)
- Benjamin Hibbert
- University of Ottawa Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Chandroo K, Duncan I, Moccia R. Can fish suffer?: perspectives on sentience, pain, fear and stress. Appl Anim Behav Sci 2004. [DOI: 10.1016/j.applanim.2004.02.004] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
22
|
Anichtchik OV, Kaslin J, Peitsaro N, Scheinin M, Panula P. Neurochemical and behavioural changes in zebrafish Danio rerio after systemic administration of 6-hydroxydopamine and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine. J Neurochem 2003; 88:443-53. [PMID: 14690532 DOI: 10.1111/j.1471-4159.2004.02190.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dopaminergic deficiency in the brain of zebrafish was produced by systemic administration of two catecholaminergic neurotoxins, 6-hydroxydopamine (6-OHDA) and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP), and the neurochemical and behavioural changes were characterized. The levels of dopamine and noradrenaline decreased significantly after the injection of MPTP and 6-OHDA. Corresponding to these changes, fish exhibited characteristic changes in locomotor behaviour, i.e. the total distance moved and velocity decreased after both neurotoxins. Tyrosine hydroxylase and caspase 3 protein levels were not altered after MPTP or 6-OHDA injections, as studied by immunohistochemistry and western blotting. The catecholaminergic cell clusters suggested to correspond to the mammalian nigrostriatal cell group displayed normal tyrosine hydroxylase immunoreactivity after the toxin treatment and did not show signs of DNA fragmentation that would indicate activation of cascades that lead to cell death. The results show that single systemic injections of MPTP and 6-OHDA induce both biochemical and behavioural changes in zebrafish, albeit failing to produce any significant morphological alteration in catecholaminergic cell clusters at the tested doses. This approach may be used for the screening of chemicals affecting the dopaminergic system. The model may be especially useful for evaluation of the role of novel genes in neurotoxicity, as a large number of zebrafish mutants are becoming available.
Collapse
Affiliation(s)
- Oleg V Anichtchik
- Neuroscience Center, Biomedicum Helsinki, Institute of Biomedicine/Anatomy, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|
23
|
Goping G, Pollard HB, Srivastava M, Leapman R. Mapping protein expression in mouse pancreatic islets by immunolabeling and electron energy loss spectrum-imaging. Microsc Res Tech 2003; 61:448-56. [PMID: 12845571 DOI: 10.1002/jemt.10294] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
A combination of immuno-electron microscopy and electron energy-loss spectrum-imaging was used to map the distributions of endocrine polypeptide hormones and proteins in mouse pancreatic islet of Langerhans. Tissue was analyzed from control animals and from mice that were heterozygous for the Anx7 gene, which defines a Ca2+/GTP-dependent membrane fusion and ion channel protein. The heterozygous Anx7 (+/-) mouse displays defects in IP3 receptor mediated Ca2+ signaling and insulin secretion. Therefore, information was obtained about the distributions of the hormones insulin and glucagon, as well as the proteins ANX7 and the IP3 receptor. Insulin secretion appears to be defective in the mutants. It was found from immunolabeling experiments that expression of the IP3 receptor is reduced in mutant islets compared to control islets. Subcellular distributions of sulfur and nitrogen obtained by electron energy-loss spectrum-imaging showed that the insulin concentrations of beta granules were essentially the same in control and mutant islets. By contrast, immunogold labeling of mutant islets shows more insulin immunoreactivity in the beta granules. It follows that insulin may be packaged differently in mutant islets, making antigenic determinants more available to the labeling antibody. The increased rate of insulin secretion in the hyperplastic mutant islets can be explained by compensatory increases in islet size, rather than by an increased insulin concentration in the beta cells. The results indicate that reduced ANX7 expression leads to defects in the IP3 receptor expression in the endocrine cells of the mutant mouse. Increased size of the islet or of adrenal medulla may be a compensatory mechanism for secretion defect by individual endocrine cells. Defects in IP3 receptor expression, and documented consequences of a Ca2+ signaling defect, lead to other changes in organelles such as the mitochondrial number in islet beta-cells. The effects and consequences of reduced ANX7 expression on mitochondria are evident in ultrastructural observations.
Collapse
Affiliation(s)
- Gertrud Goping
- Department of Anatomy, Physiology and Genetics, and Institute for Molecular Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| | | | | | | |
Collapse
|
24
|
Temple JG, Miller DB, Barthalmus GT. Differential vulnerability of snake species to MPTP: a behavioral and biochemical comparison in ratsnakes (Elaphe) and watersnakes (Nerodia). Neurotoxicol Teratol 2002; 24:227-33. [PMID: 11943510 DOI: 10.1016/s0892-0362(02)00204-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The synthetic neurotoxicant 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) induces a Parkinsonian-like syndrome in humans and nonhuman primates, and also causes movement disorders in rodents, fish, amphibians and lizards. To date, the effects of MPTP have not been characterized in snakes. In this study, the behavioral and biochemical effects of MPTP were assessed in the black ratsnake Elaphe o. obsoleta and the banded watersnake Nerodia f. fasciata--species that display contrasting behavioral sensitivities to dopaminergic antagonists and to amphibian toxins. We report that MPTP induces depletion of norepinephrine and serotonin in fore, mid and hindbrain regions and depletion of dopamine in fore and midbrain regions in E.o. obsoleta. MPTP also induced a marked reduction in righting ability in E.o. obsoleta. In N.f. fasciata, norepinephrine and dopamine were depleted by MPTP in all three brain regions and serotonin was only significantly reduced in the forebrain. In contrast to E.o. obsoleta, N.f. fasciata demonstrated no behavioral disorders. This study demonstrates a behavioral and biochemical sensitivity to MPTP in E.o. obsoleta that differs from that in N.f. fasciata. The differential sensitivities to monoaminergic modulation may be related to the contrasting diets of these species.
Collapse
Affiliation(s)
- John G Temple
- Department of Biological Sciences, Mary Washington College, Fredericksburg, VA 22401, USA.
| | | | | |
Collapse
|
25
|
|
26
|
Kaslin J, Panula P. Comparative anatomy of the histaminergic and other aminergic systems in zebrafish (Danio rerio). J Comp Neurol 2001; 440:342-77. [PMID: 11745628 DOI: 10.1002/cne.1390] [Citation(s) in RCA: 321] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The histaminergic system and its relationships to the other aminergic transmitter systems in the brain of the zebrafish were studied by using confocal microscopy and immunohistochemistry on brain whole-mounts and sections. All monoaminergic systems displayed extensive, widespread fiber systems that innervated all major brain areas, often in a complementary manner. The ventrocaudal hypothalamus contained all monoamine neurons except noradrenaline cells. Histamine (HA), tyrosine hydroxylase (TH), and serotonin (5-HT) -containing neurons were all found around the posterior recess (PR) of the caudal hypothalamus. TH- and 5-HT-containing neurons were found in the periventricular cell layer of PR, whereas the HA-containing neurons were in the surrounding cell layer as a distinct boundary. Histaminergic neurons, which send widespread ascending and descending fibers, were all confined to the ventrocaudal hypothalamus. Histaminergic neurons were medium in size (approximately 12 microm) with varicose ascending and descending ipsilateral and contralateral fiber projections. Histamine was stored in vesicles in two types of neurons and fibers. A close relationship between HA fibers and serotonergic raphe neurons and noradrenergic locus coeruleus neurons was evident. Putative synaptic contacts were occasionally detected between HA and TH or 5-HT neurons. These results indicate that reciprocal contacts between monoaminergic systems are abundant and complex. The results also provide evidence of homologies to mammalian systems and allow identification of several previously uncharacterized systems in zebrafish mutants.
Collapse
Affiliation(s)
- J Kaslin
- Department of Biology, Abo Akademi University, Biocity, FIN-20520 Turku/Abo, Finland
| | | |
Collapse
|
27
|
Rink E, Wullimann MF. The teleostean (zebrafish) dopaminergic system ascending to the subpallium (striatum) is located in the basal diencephalon (posterior tuberculum). Brain Res 2001; 889:316-30. [PMID: 11166725 DOI: 10.1016/s0006-8993(00)03174-7] [Citation(s) in RCA: 358] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Tyrosine hydroxylase immunohistochemistry is used to demonstrate catecholaminergic neuronal populations in the fore- and midbrain of adult zebrafish (Danio rerio). While no catecholaminergic neurons are found in the midbrain, various immunoreactive populations were found in the diencephalon (hypothalamus, posterior tuberculum, ventral thalamus, pretectum) and telencephalon (preoptic region, subpallium, olfactory bulb). The posterior tubercular catecholaminergic cells include three cytological types (small round, large pear-shaped, and bipolar liquor-contacting cells). Furthermore, the retrograde neuronal tracers DiI or biocytin were applied to demonstrate ascending projections to the basal telencephalon (incl. the striatum). A double-label approach was used - together with tyrosine hydroxylase immunohistochemistry - in order to visualize neurons positive for tyrosine hydroxylase and a retrograde tracer. Double-labeled cells were identified in two locations in the posterior tuberculum (i.e, small round neurons in the periventricular nucleus of the posterior tuberculum and large pear-shaped cells adjacent to it). They are interpreted as the teleostean dopaminergic system ascending to the striatum, since previous work [16] established that no noradrenergic neurons exist in the forebrain of the adult zebrafish.
Collapse
Affiliation(s)
- E Rink
- Brain Research Institute, University of Bremen, P.O. Box 33 04 40, D-28334, Bremen, Germany.
| | | |
Collapse
|
28
|
Smeets WJ, González A. Catecholamine systems in the brain of vertebrates: new perspectives through a comparative approach. BRAIN RESEARCH. BRAIN RESEARCH REVIEWS 2000; 33:308-79. [PMID: 11011071 DOI: 10.1016/s0165-0173(00)00034-5] [Citation(s) in RCA: 300] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A comparative analysis of catecholaminergic systems in the brain and spinal cord of vertebrates forces to reconsider several aspects of the organization of catecholamine systems. Evidence has been provided for the existence of extensive, putatively catecholaminergic cell groups in the spinal cord, the pretectum, the habenular region, and cortical and subcortical telencephalic areas. Moreover, putatively dopamine- and noradrenaline-accumulating cells have been demonstrated in the hypothalamic periventricular organ of almost every non-mammalian vertebrate studied. In contrast with the classical idea that the evolution of catecholamine systems is marked by an increase in complexity going from anamniotes to amniotes, it is now evident that the brains of anamniotes contain catecholaminergic cell groups, of which the counterparts in amniotes have lost the capacity to produce catecholamines. Moreover, a segmental approach in studying the organization of catecholaminergic systems is advocated. Such an approach has recently led to the conclusion that the chemoarchitecture and connections of the basal ganglia of anamniote and amniote tetrapods are largely comparable. This review has also brought together data about the distribution of receptors and catecholaminergic fibers as well as data about developmental aspects. From these data it has become clear that there is a good match between catecholaminergic fibers and receptors, but, at many places, volume transmission seems to play an important role. Finally, although the available data are still limited, striking differences are observed in the spatiotemporal sequence of appearance of catecholaminergic cell groups, in particular those in the retina and olfactory bulb.
Collapse
Affiliation(s)
- W J Smeets
- Graduate School of Neurosciences of Amsterdam, Research Institute of Neurosciences, Amsterdam, The Netherlands.
| | | |
Collapse
|
29
|
Kapsimali M, Vidal B, Gonzalez A, Dufour S, Vernier P. Distribution of the mRNA encoding the four dopamine D1 receptor subtypes in the brain of the european eel (Anguilla anguilla): Comparative approach to the function of D1 receptors in vertebrates. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000410)419:3%3c320::aid-cne5%3e3.0.co;2-f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
30
|
Kapsimali M, Vidal B, Gonzalez A, Dufour S, Vernier P. Distribution of the mRNA encoding the four dopamine D(1) receptor subtypes in the brain of the european eel (Anguilla anguilla): comparative approach to the function of D(1) receptors in vertebrates. J Comp Neurol 2000; 419:320-43. [PMID: 10723008 DOI: 10.1002/(sici)1096-9861(20000410)419:3<320::aid-cne5>3.0.co;2-f] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Four subtypes of D(1) dopamine receptors are expressed in the brain of the European eel (Anguilla anguilla), an elopomorph teleost. To correlate this molecular multiplicity with specific localisation and functions, the distribution of the D(1) receptor transcripts was analysed by in situ hybridisation. The four D(1) receptor transcripts exhibit largely overlapping expression territories. In telencephalon, they are found in the olfactory bulb and the dorsal telencephalon (except its lateral part) but are most abundant in the subpallial areas. More caudally, the entopeduncular nucleus, preoptic nuclei, preglomerular nuclear complex, ventral thalamus, periventricular hypothalamus, optic tectum and cerebellum, all contain various amounts of D(1) receptor transcripts. Finally, D(1) receptor mRNAs are present in nuclei associated with the cranial nerves. The two D(1A) receptor subtypes are generally the most abundant and present a different distribution in several areas. The D(1B) mRNA, although present in fewer areas than D(1A) transcripts, is the most abundant in ventrolateral telencephalon and torus semicircularis. The D(1C) receptor transcript, which has not been found in mammals, is restricted to diencephalon and cerebellum. In view of the expression territories of D(1) receptor transcripts and previous data, some areas of the everted telencephalon of teleost may be homologous to regions of the tetrapod brain. In particular, D(1) expression territories of the ventral telencephalon are likely to be equivalent to striatal areas. These observations suggest an evolutionary scenario in which the D(1A) receptor subtype was highly conserved after the first gene duplication during the evolution of craniates, whereas D(1B) and D(1C), and their associated specific characteristics, appeared later, probably in the gnathostome lineage.
Collapse
Affiliation(s)
- M Kapsimali
- Institut Alfred Fessard, UPR2212, CNRS, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
31
|
Otto CJ, Lin X, Peter RE. Dopaminergic regulation of three somatostatin mRNAs in goldfish brain. REGULATORY PEPTIDES 1999; 83:97-104. [PMID: 10511463 DOI: 10.1016/s0167-0115(99)00052-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Three distinct somatostatin cDNAs characterized previously from goldfish brain encode three preprosomatostatins (PSS), designated as PSS-I, PSS-II and PSS-III. In this study, dopaminergic regulation of PSS gene expression was examined by Northern blot analysis in the forebrain of goldfish. Intraperitoneal injection of the non-selective dopamine (DA) agonist, apomorphine, significantly decreased the levels of all three PSS mRNAs, indicating an inhibitory regulation of PSS gene expression by DA. The involvement of DA receptor subtypes in the regulation of PSS gene expression was examined using the D1 receptor agonist and antagonist drugs SKF 38393 and SCH 23390, and the D2 agonist and antagonist drugs LY 171555 and pimozide, respectively. The results provide evidence for inhibitory and/or stimulatory regulation of PSS gene expression by DA through both D1 and D2 receptors, which are dependent on the temporal pattern of dopamine input and reproductive stage of the fish. Demonstration of involvement of both DA D1 and D2 receptors in the dopaminergic regulation of goldfish brain PSS gene expression is a novel finding, distinct from the observations in mammalian models.
Collapse
Affiliation(s)
- C J Otto
- Department of Biological Sciences, University of Alberta, Edmonton, Canada
| | | | | |
Collapse
|
32
|
Goping G, Wood KA, Sei Y, Pollard HB. Detection of fragmented DNA in apoptotic cells embedded in LR white: A combined histochemical (LM) and ultrastructural (EM) study. J Histochem Cytochem 1999; 47:561-8. [PMID: 10082758 DOI: 10.1177/002215549904700415] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
We developed an improved method for the detection of double-strand DNA breaks in apoptotic cells at both the light (LM) and electron microscopic (EM) levels using a modification of the TdT (terminal deoxynucleotidyl transferase)-mediated dUTP nick end-labeling (TUNEL) technique. Cultured rat cerebellar granule cells were exposed to low potassium conditions to induce apoptosis. Twenty-four hr after treatment, one group of cells was fixed in situ with 4% paraformaldehyde and labeled for DNA fragmentation characteristic of apoptosis. Apoptotic cells were visualized with diaminobenzidine (DAB) and viewed by LM. The second group of cells was detached from the culture dish, pelleted, fixed with a 4% paraformaldehyde and 0. 2% glutaraldehyde mixture, and embedded in LR White. For LM, the modified TUNEL technique was performed on 1.5-microm LR White sections and apoptotic cells were visualized using an enzymatic reaction to generate a blue precipitate. For EM, thin sections (94 nm) were processed and DNA fragmentation was identified using modified TUNEL with streptavidin-conjugated gold in conjunction with in-depth ultrastructural detail. Alternate sections of cells embedded in LR White can therefore be used for LM and EM TUNEL-based detection of apoptosis. The present findings suggest that the modified TUNEL technique on LR White semithin and consecutive thin sections has useful application for studying the fundamental mechanism of cell death. (J Histochem Cytochem 47:561-568, 1999)
Collapse
Affiliation(s)
- G Goping
- Department of Anatomy and Cell Biology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814-4799, USA
| | | | | | | |
Collapse
|
33
|
Mok EY, Munro AD. Effects of dopaminergic drugs on locomotor activity in teleost fish of the genus Oreochromis (Cichlidae): involvement of the telencephalon. Physiol Behav 1998; 64:227-34. [PMID: 9748087 DOI: 10.1016/s0031-9384(98)00038-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Single Oreochromis niloticus and O. mossambicus were placed in an unfamiliar white basin for 21 min, and their activity in this open-field situation was recorded from overhead on video. Apomorphine added to the water (2-8 mg/liter) caused a significant increase in locomotor activity, as assessed by the frequency that a fish swam over a rectilinear array of lines drawn on the base. This effect was attenuated by chlorpromazine (2 mg/liter) and abolished by the D1 antagonist SCH-23390 (1 mg/liter); the D2 antagonist metoclopramide (8 mg/liter) had no effect. Removal of both hemispheres of the telencephalon abolished the response to apomorphine, whereas removal of only one hemisphere or cauterization of the nostrils had no effect. It is concluded that the role of the dopaminergic system in the regulation of locomotor activity is reminiscent of the mammalian mesolimbic, rather than the nigrostriatal, system but that further studies are required to determine the source of the dopaminergic innervation and its likely telencephalic targets.
Collapse
Affiliation(s)
- E Y Mok
- Department of Biological Sciences, The National University of Singapore, Singapore
| | | |
Collapse
|
34
|
Lucchi R, Notari S, Pierantozzi S, Barnabei O, Villani L, Poli A. Effect of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in goldfish cerebellum: neurochemical and immunocytochemical analysis. Brain Res 1998; 782:105-12. [PMID: 9519254 DOI: 10.1016/s0006-8993(97)01272-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administered in goldfish for 3 consecutive days (10 mg kg-1 i.p.), caused cerebellar disappearance of dopamine-hydroxylase (DBH) immunoreactive fibres, whereas the noradrenergic cell bodies located in the medulla oblongata appeared intact. This effect was coupled with marked decreases in cerebellar noradrenaline (NA) and dopamine (DA) levels. An increase of immunostaining for glial fibrillary acidic protein (GFAP) was also observed. In the cerebellum of MPTP-treated fish, the contents of glutamate and GABA were significantly reduced, whereas glutamine was strongly increased. These modifications were concomitant with a significant increase of glutamine synthetase (GS) activity, whereas glutamic acid decarboxylase (GAD) activity was decreased. No changes in choline acetyltransferase (ChAT) and ornithine decarboxylase (ODC) activities were observed. High affinity uptake of glutamate and GABA was strongly reduced. Pretreatment of fish with either the monoamine oxidase inhibitor pargyline or the catecholamine (CA) uptake blocker mazindol largely prevented such modifications. The NMDA-sensitive glutamate receptor uncompetitive antagonist, dizocilpine maleate (MK-801), failed to protect against MPTP-induced damage. In conclusion, the neurotoxic effects of MPTP in goldfish cerebellum appear to be not specific against catecholaminergic terminals and could promote astrocytic reactions.
Collapse
Affiliation(s)
- R Lucchi
- Department of Biology, University of Bologna, Italy
| | | | | | | | | | | |
Collapse
|