1
|
Lagière M, Bosc M, Whitestone S, Benazzouz A, Chagraoui A, Millan MJ, De Deurwaerdère P. A Subset of Purposeless Oral Movements Triggered by Dopaminergic Agonists Is Modulated by 5-HT 2C Receptors in Rats: Implication of the Subthalamic Nucleus. Int J Mol Sci 2020; 21:ijms21228509. [PMID: 33198169 PMCID: PMC7698107 DOI: 10.3390/ijms21228509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 02/06/2023] Open
Abstract
Dopaminergic medication for Parkinson’s disease is associated with troubling dystonia and dyskinesia and, in rodents, dopaminergic agonists likewise induce a variety of orofacial motor responses, certain of which are mimicked by serotonin2C (5-HT2C) receptor agonists. However, the neural substrates underlying these communalities and their interrelationship remain unclear. In Sprague-Dawley rats, the dopaminergic agonist, apomorphine (0.03–0.3 mg/kg) and the preferential D2/3 receptor agonist quinpirole (0.2–0.5 mg/kg), induced purposeless oral movements (chewing, jaw tremor, tongue darting). The 5-HT2C receptor antagonist 5-methyl-1-[[2-[(2-methyl-3-pyridyl)oxyl]-5-pyridyl]carbamoyl]-6-trifluoromethylindone (SB 243213) (1 mg/kg) reduced the oral responses elicited by specific doses of both agonists (0.1 mg/kg apomorphine; 0.5 mg/kg quinpirole). After having confirmed that the oral bouts induced by quinpirole 0.5 mg/kg were blocked by another 5-HT2C antagonist (6-chloro-5-methyl-1-[6-(2-methylpiridin-3-yloxy)pyridine-3-yl carbamoyl] indoline (SB 242084), 1 mg/kg), we mapped the changes in neuronal activity in numerous sub-territories of the basal ganglia using c-Fos expression. We found a marked increase of c-Fos expression in the subthalamic nucleus (STN) in combining quinpirole (0.5 mg/kg) with either SB 243213 or SB 242084. In a parallel set of electrophysiological experiments, the same combination of SB 243213/quinpirole produced an irregular pattern of discharge and an increase in the firing rate of STN neurons. Finally, it was shown that upon the electrical stimulation of the anterior cingulate cortex, quinpirole (0.5 mg/kg) increased the response of substantia nigra pars reticulata neurons corresponding to activation of the “hyperdirect” (cortico-subthalamonigral) pathway. This effect of quinpirole was abolished by the two 5-HT2C antagonists. Collectively, these results suggest that induction of orofacial motor responses by D2/3 receptor stimulation involves 5-HT2C receptor-mediated activation of the STN by recruitment of the hyperdirect (cortico-subthalamonigral) pathway.
Collapse
Affiliation(s)
- Mélanie Lagière
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), 33076 Bordeaux CEDEX, France;
| | - Marion Bosc
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), 33076 Bordeaux CEDEX, France;
| | - Sara Whitestone
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
| | - Abdelhamid Benazzouz
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5293), 33076 Bordeaux CEDEX, France;
| | - Abdeslam Chagraoui
- Neuronal and Neuroendocrine Differentiation and Communication Laboratory, Institute for Research and Innovation in Biomedicine of Normandy (IRIB), Normandie Univ, UNIROUEN, INSERM, U1239, CHU Rouen, 76000 Rouen, France;
- Department of Medical Biochemistry, Rouen University Hospital, 76000 Rouen, France
| | - Mark J. Millan
- Institut de Recherche Servier, Center for Therapeutic Innovation in Neuropsychiatry, Croissy/Seine, 78290 Paris, France;
| | - Philippe De Deurwaerdère
- Centre National de la Recherche Scientifique (Unité Mixte de Recherche 5287), 146 Rue Léo Saignat, 33076 Bordeaux CEDEX, France; (M.L.); (M.B.); (S.W.)
- Correspondence: ; Tel.: +33-(0)-557-57-12-90
| |
Collapse
|
2
|
Shehab S, D'souza C, Ljubisavljevic M, Redgrave P. Activation of the subthalamic nucleus suppressed by high frequency stimulation: A c-Fos immunohistochemical study. Brain Res 2018; 1685:42-50. [PMID: 29421187 DOI: 10.1016/j.brainres.2018.01.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 12/03/2017] [Accepted: 01/25/2018] [Indexed: 11/27/2022]
Abstract
Deep brain stimulation applied at high frequency (HFS) to the subthalamic nucleus (STN) is used to ameliorate the symptoms of Parkinson's disease. The mechanism by which this is achieved remains controversial. In particular, it is uncertain whether HFS has a suppressive or excitatory action locally within the STN. Brief exposure of rats to ether anesthesia evokes pathological burst firing and associated expression of the immediate early gene c-Fos in STN neurons. We used this ether model of STN activation to test the effect of a range of HFS parameters on c-Fos expression evoked by the anesthetic. The elevated baseline of c-Fos expression afforded the possibility of detecting further excitatory, or suppressive effects of STN HFS. Four HFS protocols were examined; 130, 200 and 260 Hz with 60 µs, and 130 Hz with 90 µs pulse width (HFS intensity:150-300 µA). All HFS protocols were applied for 20 min while the animals were exposed to ether. Ether-evoked expression of c-Fos immunoreactivity was suppressed by HFS at 200 and 260 Hz with a pulse width of 60 µs, and by 130 Hz when the pulse width was increased to 90 µs. HFS at 130 Hz with the 60 µs pulse width had no significant effect and HFS alone caused negligible c-Fos expression in the STN. These findings suggest that HFS of the STN causes significant suppression of evoked neuronal activity. It remains to be determined whether this locally suppressive property of HFS is associated with the efficacy of STN deep brain stimulation to relieve the symptoms of Parkinson's disease.
Collapse
Affiliation(s)
- Safa Shehab
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al-Ain, PO BOX 17666, United Arab Emirates.
| | - Crystal D'souza
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al-Ain, PO BOX 17666, United Arab Emirates
| | - Milos Ljubisavljevic
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al-Ain, PO BOX 17666, United Arab Emirates
| | - Peter Redgrave
- Department of Anatomy, College of Medicine and Health Sciences, UAE University, Al-Ain, PO BOX 17666, United Arab Emirates
| |
Collapse
|
3
|
Dendritic sodium channels promote active decorrelation and reduce phase locking to parkinsonian input oscillations in model globus pallidus neurons. J Neurosci 2011; 31:10919-36. [PMID: 21795543 DOI: 10.1523/jneurosci.6062-10.2011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Correlated firing among populations of neurons is present throughout the brain and is often rhythmic in nature, observable as an oscillatory fluctuation in the local field potential. Although rhythmic population activity is believed to be critical for normal function in many brain areas, synchronized neural oscillations are associated with disease states in other cases. In the globus pallidus (GP in rodents, homolog of the primate GPe), pairs of neurons generally have uncorrelated firing in normal animals despite an anatomical organization suggesting that they should receive substantial common input. In contrast, correlated and rhythmic GP firing is observed in animal models of Parkinson's disease (PD). Based in part on these findings, it has been proposed that an important part of basal ganglia function is active decorrelation, whereby redundant information is compressed. Mechanisms that implement active decorrelation, and changes that cause it to fail in PD, are subjects of great interest. Rat GP neurons express fast, transient voltage-dependent sodium channels (NaF channels) in their dendrites, with the expression level being highest near asymmetric synapses. We recently showed that the dendritic NaF density strongly influences the responsiveness of model GP neurons to synchronous excitatory inputs. In the present study, we use rat GP neuron models to show that dendritic NaF channel expression is a potential cellular mechanism of active decorrelation. We further show that model neurons with lower dendritic NaF channel expression have a greater tendency to phase lock with oscillatory synaptic input patterns like those observed in PD.
Collapse
|
4
|
Shehab S, Al-Nahdi A, Al-Zaabi F, Al-Mugaddam F, Al-Sultan M, Ljubisavljevic M. Effective inhibition of substantia nigra by deep brain stimulation fails to suppress tonic epileptic seizures. Neurobiol Dis 2011; 43:725-35. [DOI: 10.1016/j.nbd.2011.06.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2011] [Revised: 05/22/2011] [Accepted: 06/06/2011] [Indexed: 11/28/2022] Open
|
5
|
Zhang X, Andren PE, Svenningsson P. Repeated l-DOPA treatment increases c-fos and BDNF mRNAs in the subthalamic nucleus in the 6-OHDA rat model of Parkinson's disease. Brain Res 2006; 1095:207-10. [PMID: 16725125 DOI: 10.1016/j.brainres.2006.04.019] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2005] [Revised: 04/02/2006] [Accepted: 04/04/2006] [Indexed: 11/26/2022]
Abstract
The subthalamic nucleus and the striatum are input regions of the basal ganglia. This study used the unilateral 6-OHDA rat model of Parkinson's disease to examine effects of l-DOPA on the expression of c-fos and BDNF mRNAs in these nuclei. Dopamine depletion per se did not affect c-fos or BDNF. Both a single and repeated injections of l-DOPA induced c-fos, but not BDNF, in the dopamine-depleted striatum. However, repeated l-DOPA treatment increased c-fos and BDNF in the dopamine-depleted subthalamic nucleus. These molecular adaptations may reflect changes in neuronal plasticity that underlie some therapeutic actions and/or side effects of l-DOPA in Parkinson's disease.
Collapse
Affiliation(s)
- Xiaoqun Zhang
- Department of Physiology and Pharmacology, Section for Molecular Neuropharmacology, Karolinska Institute, 171 77 Stockholm, Sweden
| | | | | |
Collapse
|
6
|
Soghomonian JJ. L-DOPA-induced dyskinesia in adult rats with a unilateral 6-OHDA lesion of dopamine neurons is paralleled by increased c-fos gene expression in the subthalamic nucleus. Eur J Neurosci 2006; 23:2395-403. [PMID: 16706847 DOI: 10.1111/j.1460-9568.2006.04758.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Levodopa (L-DOPA), the metabolic precursor of dopamine, is widely used as a pharmacological agent for the symptomatic treatment of Parkinson's disease. However, long-term L-DOPA use results in abnormal involuntary movements such as dyskinesias. There is evidence that abnormal cell signaling in the basal ganglia is involved in L-DOPA-induced dyskinesia. The subthalamic nucleus (STN) plays a key role in the circuitry of the basal ganglia and in the pathophysiology of Parkinson's disease. However, the contribution of the STN to L-DOPA-induced dyskinesias remains unclear. The objective of this work was to study the effects of acute or chronic systemic administration of L-DOPA to adult rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of dopamine neurons on c-fos expression in the STN and test the hypothesis that these effects correlate with L-DOPA-induced dyskinesias. c-fos mRNA expression was measured in the STN by in situ hybridization histochemistry at the single cell level. Our results confirm earlier evidence that the chronic administration of L-DOPA to rats with a unilateral 6-OHDA lesion increases c-fos expression in the STN. We also report that c-fos expression can be increased following an acute injection of L-DOPA to 6-OHDA-lesioned rats but not following a chronic injection of L-DOPA to sham-operated, unlesioned rats. Finally, we provide evidence that the occurrence and severity of dyskinesia is correlated with c-fos mRNA levels in the ipsilateral STN. These results suggest that altered cell signaling in the STN is involved in some of the behavioral effects induced by systemic L-DOPA administration.
Collapse
Affiliation(s)
- Jean-Jacques Soghomonian
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA.
| |
Collapse
|
7
|
Yasoshima Y, Kai N, Yoshida S, Shiosaka S, Koyama Y, Kayama Y, Kobayashi K. Subthalamic neurons coordinate basal ganglia function through differential neural pathways. J Neurosci 2006; 25:7743-53. [PMID: 16120775 PMCID: PMC6725250 DOI: 10.1523/jneurosci.1904-05.2005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The subthalamic nucleus (STN) is a key component of basal ganglia circuitry that mediates a variety of motor functions. The STN neurons send glutamatergic projections to the output structures of basal ganglia, including the substantia nigra pars reticulata (SNr) and the entopeduncular nucleus, and also innervate the globus pallidus (GP). However, the mechanism by which the STN regulates motor functions in the neural circuitry is not fully understood. Here we performed conditional ablation of the STN neurons by using immunotoxin-mediated cell targeting. We then analyzed dopamine (DA)-mediated motor behavior and firing activity of the SNr and GP neurons. Ablation of the STN neurons increased spontaneous movement and reduced hyperactivity in response to DA stimulation. Ablation of these neurons modulated the pattern and rate of spontaneous firing of the SNr neurons, although it did not substantially affect spontaneous firing of the GP neurons. The ablation attenuated DA-induced suppression of the firing rate of the SNr neurons and inhibited DA-induced elevation of the rate of the GP neurons. In addition, pharmacological blockade of GP activation in response to DA stimulation inhibited the suppression of SNr activity and the resultant motor activation. These results suggest that the STN neurons suppress spontaneous behavior through their direct projection to the output neurons and that, in response to DA, they contribute to expression of behavior by acting on the output neurons mainly through the GP-mediated pathways. We conclude that the STN coordinates motor behavior through differential neural pathways depending on the state of DA transmission.
Collapse
Affiliation(s)
- Yasunobu Yasoshima
- Department of Molecular Genetics, Institute of Biomedical Sciences, Fukushima Medical University School of Medicine, Fukushima 960-1295, Japan
| | | | | | | | | | | | | |
Collapse
|
8
|
Conditional ablation of striatal neuronal types containing dopamine D2 receptor disturbs coordination of basal ganglia function. J Neurosci 2003. [PMID: 14534241 DOI: 10.1523/jneurosci.23-27-09078.2003] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Dopamine (DA) exerts synaptic organization of basal ganglia circuitry through a variety of neuronal populations in the striatum. We performed conditional ablation of striatal neuronal types containing DA D2 receptor (D2R) by using immunotoxin-mediated cell targeting. Mutant mice were generated that express the human interleukin-2 receptor alpha-subunit under the control of the D2R gene. Intrastriatal immunotoxin treatment of the mutants eliminated the majority of the striatopallidal medium spiny neurons and cholinergic interneurons. The elimination of these neurons caused hyperactivity of spontaneous movement and reduced motor activation in response to DA stimulation. The elimination also induced upregulation of GAD gene expression in the globus pallidus (GP) and downregulation of cytochrome oxidase activity in the subthalamic nucleus (STN), whereas it attenuated DA-induced expression of the immediate-early genes (IEGs) in the striatonigral neurons. In addition, chemical lesion of cholinergic interneurons did not alter spontaneous movement but caused a moderate enhancement in DA-induced motor activation. This enhancement of the behavior was accompanied by an increase in the IEG expression in the striatonigral neurons. These data suggest that ablation of the striatopallidal neurons causes spontaneous hyperactivity through modulation of the GP and STN activity and that the ablation leads to the reduction in DA-induced behavior at least partly through attenuation of the striatonigral activity as opposed to the influence of cholinergic cell lesion. We propose a possible model in which the striatopallidal neurons dually regulate motor behavior dependent on the state of DA transmission through coordination of the basal ganglia circuitry.
Collapse
|
9
|
Nielsen KM, Soghomonian JJ. Dual effects of intermittent or continuous L-DOPA administration on gene expression in the globus pallidus and subthalamic nucleus of adult rats with a unilateral 6-OHDA lesion. Synapse 2003; 49:246-60. [PMID: 12827644 DOI: 10.1002/syn.10234] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Intermittent oral doses of levodopa (L-DOPA) are routinely used to treat Parkinson's disease, but with prolonged use can result in adverse motor complications, such as dyskinesia. Continuous administration of L-DOPA achieves therapeutic efficacy without producing this effect, yet the molecular mechanisms are unclear. This study examined, by in situ hybridization histochemistry, the effects of continuous or intermittent L-DOPA administration on gene expression in the globus pallidus and subthalamic nucleus of adult rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion of the nigrostriatal pathway. Results were compared to 6-OHDA-treated rats receiving vehicle. Our results provide original evidence that continuous L-DOPA normalizes the 6-OHDA-lesion-induced increase in mRNA levels encoding for the 67 kDa isoform of glutamate decarboxylase in neurons of the globus pallidus and cytochrome oxidase subunit I mRNA levels in the subthalamic nucleus. The extent of normalization did not differ between the continuous and intermittent groups. In addition, intermittent L-DOPA induced an increase in the mRNA levels encoding for the 65 kDa isoform of glutamate decarboxylase in globus pallidus neurons ipsilateral to the lesion and a bilateral increase in c-fos mRNA expression in the subthalamic nucleus. These results suggest that continuous L-DOPA tends to normalize the 6-OHDA-lesion-induced alterations in cell signaling in the pallido-subthalamic loop. On the other hand, we propose that chronic intermittent L-DOPA exerts a dual effect by normalizing cell signaling in a subpopulation of neurons in the globus pallidus and subthalamic nucleus while inducing abnormal signaling in another subpopulation.
Collapse
Affiliation(s)
- Kirsten M Nielsen
- Department of Anatomy and Neurobiology, Boston University School of Medicine, 715 Albany Street, Boston, MA 02118, USA
| | | |
Collapse
|
10
|
Carr KD, Tsimberg Y, Berman Y, Yamamoto N. Evidence of increased dopamine receptor signaling in food-restricted rats. Neuroscience 2003; 119:1157-67. [PMID: 12831870 DOI: 10.1016/s0306-4522(03)00227-6] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It is well established that chronic food restriction enhances sensitivity to the rewarding and motor-activating effects of abused drugs. However, neuroadaptations underlying these behavioral effects have not been characterized. The purpose of the present study was to explore the possibility that food restriction produces increased dopamine (DA) receptor function that is evident in behavior, signal transduction, and immediate early gene expression. In the first two experiments, rats received intracerebroventricular (i.c.v.) injections of the D1 DA receptor agonist SKF-82958, and the D2/3 DA receptor agonist quinpirole. Both agonists produced greater motor-activating effects in food-restricted than ad libitum-fed rats. In addition, Fos-immunostaining induced by SKF-82958 in caudate-putamen (CPu) and nucleus accumbens (Nac) was greater in food-restricted than ad libitum-fed rats, as was staining induced by quinpirole in globus pallidus and ventral pallidum. In the next two experiments, neuronal membranes prepared from CPu and Nac were exposed to SKF-82958 and quinpirole. Despite the documented involvement of cyclic AMP (cAMP) signaling in D1 DA receptor-mediated c-fos induction, stimulation of adenylyl cyclase (AC) activity by SKF-82958 in CPu and Nac did not differ between groups. Food restriction did, however, decrease AC stimulation by the direct enzyme stimulant, forskolin, but not NaF or MnCl(2), suggesting a shift in AC expression to a less catalytically efficient isoform. Finally, food restriction increased quinpirole-stimulated [(35)S]guanosine triphosphate-gammaS binding in CPu, suggesting that increased functional coupling between D2 DA receptors and G(i) may account for the augmented behavioral and pallidal c-Fos responses to quinpirole. Results of this study support the hypothesis that food restriction leads to neuroadaptations at the level of postsynaptic D1 and D2 receptor-bearing cells which, in turn, mediate augmented behavioral and transcriptional responses to DA. The signaling pathways mediating these augmented responses remain to be fully elucidated.
Collapse
Affiliation(s)
- K D Carr
- Department of Psychiatry, Millhauser Laboratories, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA.
| | | | | | | |
Collapse
|
11
|
Uslaner JM, Crombag HS, Ferguson SM, Robinson TE. Cocaine-induced psychomotor activity is associated with its ability to induce c-fos mRNA expression in the subthalamic nucleus: effects of dose and repeated treatment. Eur J Neurosci 2003; 17:2180-6. [PMID: 12786985 DOI: 10.1046/j.1460-9568.2003.02638.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Factors that modulate the psychomotor activating effects of amphetamine and cocaine, such as environmental novelty and dose, also regulate the ability of these drugs to induce c-fos mRNA expression in the subthalamic nucleus (STN). We hypothesized therefore that engagement of the STN may be important for stimulant-induced psychomotor activation. To further test this hypothesis we examined whether repeated treatment with cocaine, which enhances its psychomotor activating effects (i.e. produces behavioural sensitization), also enhances its ability to induce c-fos expression in the STN. In addition, given that STN activity is thought to be influenced by preproenkephalin mRNA-containing (ENK+) neurons in the caudate-putamen, we also examined whether repeated cocaine treatment alters c-fos expression in ENK+ cells. We report that: (i) cocaine pretreatment enhances the ability of a cocaine challenge to induce c-fos mRNA expression in the STN, and this effect is most robust at challenge doses where behavioural sensitization is observed; (ii) the ability of cocaine to induce c-fos in the STN is independent of the ability of cocaine to engage ENK+ cells. These results support the idea that the STN is involved in stimulant-induced psychomotor activation and sensitization, but suggest that stimulant-induced engagement of the STN is not dependent on ENK+ cells in the caudate-putamen. These findings may have implications concerning the neurobiological mechanisms underlying the behavioural effects of psychostimulant drugs.
Collapse
Affiliation(s)
- Jason M Uslaner
- Biopsychology Program, Department of Psychology, The University of Michigan, East Hall, 525 E. University St., Ann Arbor, MI 48019-1109, USA
| | | | | | | |
Collapse
|
12
|
Uslaner JM, Norton CS, Watson SJ, Akil H, Robinson TE. Amphetamine-induced c-fos mRNA expression in the caudate-putamen and subthalamic nucleus: interactions between dose, environment, and neuronal phenotype. J Neurochem 2003; 85:105-14. [PMID: 12641732 DOI: 10.1046/j.1471-4159.2003.01646.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
When administered in a novel environment relatively low doses of amphetamine induce c-fos mRNA in the subthalamic nucleus (STN) and in preproenkephalin mRNA-containing (ENK+) neurons in the caudate-putamen (CPu). When administered at home, however, low doses of amphetamine do not produce these effects. Environmental novelty also facilitates the behavioral effects of acute and repeated amphetamine, but this is dose-dependent. The purpose of the present experiment therefore was to determine if the effect of context on amphetamine-induced c-fos expression is also dose-dependent. It was found that: (i) No dose of amphetamine tested (1-10 mg/kg) induced c-fos in many ENK+ cells when given at home. (ii) When given in a novel environment low to moderate doses of amphetamine (1-5 mg/kg) induced c-fos in substantial numbers of ENK+ cells, but the highest dose examined (10 mg/kg) did not. (iii) Environmental novelty enhanced the ability of low to moderate doses of amphetamine to induce c-fos in the STN, but the highest dose of amphetamine induced robust c-fos mRNA expression in the STN regardless of context. The results do not support the idea that engaging ENK+ cells, at least as indicated by c-fos mRNA expression, is critical to produce robust behavioral sensitization, but do suggest a possible role for the STN. Furthermore, the results highlight the importance of drug-environment interactions on the neurobiological effects of drugs, and have implications for thinking about the circuits by which context modulates the acute and long-lasting consequences of amphetamine treatment.
Collapse
Affiliation(s)
- Jason M Uslaner
- Biopsychology and Neuroscience Programs, Department of Psychology, The University of Michigan, Ann Arbor, Michigan 48019, USA
| | | | | | | | | |
Collapse
|
13
|
Ishida Y, Denovan-Wright E, Hebb MO, Robertson HA. Amphetamine-induced Fos expression is evident in gamma-aminobutyric acid neurons in the globus pallidus and entopeduncular nucleus in rats treated with intrastriatal c-fos antisense oligodeoxynucleotides. Exp Neurol 2002; 175:275-81. [PMID: 12009778 DOI: 10.1006/exnr.2002.7902] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Double immunostaining for Fos and gamma-aminobutyric acid (GABA) was used in a previously established animal model of striatal dysfunction to examine whether GABA-immunoreactive neurons in the globus pallidus (GP) and entopeduncular nucleus (EP) are activated to express Fos immunoreactivity by intraperitoneal injection of amphetamine. Striatal efferent activity was suppressed by intrastriatal infusions of antisense oligodeoxynucleotide targeted to the messenger RNA of the immediate early gene, c-fos. This suppression produced robust rotational behavior and expression of Fos in the ipsilateral GP and EP following amphetamine challenge. The expression of Fos in the ipsilateral GP and EP following amphetamine challenge is not observed in naïve or control antisense-treated animals. Quantitative analysis revealed that a majority of the amphetamine-activated (Fos-immunoreactive) neurons in the GP and EP express GABA. The present results suggest that inhibitory GABAergic projection neurons within these two nuclei are regulated by inhibitory striatal output and suggests that decreased inhibitory striatal output may contribute to the motor dysfunction observed in patients with Huntington's disease.
Collapse
Affiliation(s)
- Yasushi Ishida
- Department of Psychiatry, Miyazaki Medical College, 5200 Kihara, Kiyotake-cho, Miyazaki-gun, Miyazaki, 889-1692, Japan
| | | | | | | |
Collapse
|
14
|
Marshall JF, Henry BL, Billings LM, Hoover BR. The role of the globus pallidus D2 subfamily of dopamine receptors in pallidal immediate early gene expression. Neuroscience 2002; 105:365-78. [PMID: 11672604 DOI: 10.1016/s0306-4522(01)00180-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The globus pallidus plays an important role in basal ganglia circuitry, representing the first relay nucleus of the 'indirect pathway' of striatal efferents. In contrast to the well-characterized actions of dopamine on striatal neurons, the functional role of the dopamine innervation of globus pallidus is less well understood. Previous research showed that systemic administration of either a dopamine D2 receptor antagonist or combined dopamine D1 and D2 receptor agonists induces Fos, the protein product of the immediate early gene c-fos, in neurons of globus pallidus [Ruskin and Marshall (1997) Neuroscience 81, 79-92]. To determine whether the ability of the D2 receptor antagonist, sulpiride, to induce Fos in rat pallidal neurons is mediated by D2-like receptors in striatum or globus pallidus, intrastriatal or intrapallidal sulpiride infusions were conducted. The diffusion of intrastriatal sulpiride was estimated by measuring this antagonist's competition for N-ethoxycarbonyl-2-ethoxy-1,2-dihydroquinoline (EEDQ)-induced D2 receptor inactivation. The phenotype of the striatal neurons expressing Fos after intrastriatal infusion was assessed by combining Fos immunocytochemistry with D2 receptor mRNA in situ hybridization. Intrastriatal infusions of (-)-sulpiride (10-200 ng) dose-dependently increased the number of striatal cells expressing Fos; and the Fos-immunoreactive striatal cells were D2 receptor mRNA-expressing, the same population in which systemic D2 receptor antagonists induce Fos. Intrastriatal infusions of high (5 microg), but not low (10-200 ng), (-)-sulpiride doses also induced Fos in globus pallidus cells but the sulpiride appeared to spread to the globus pallidus. Direct intrapallidal infusions of (-)-sulpiride (50-100 ng) dose-dependently induced Fos in globus pallidus with minimal influence on striatum or other basal ganglia structures. Using sensitive in situ hybridization conditions, prominent labeling of D2 receptor mRNA was evident in globus pallidus. D2 receptor mRNA was densest in a lateral 200 microm wide band that follows the curvature of the pallidal/striatal boundary. Cellular analysis revealed silver clusters associated with D2 receptor mRNA labeling over globus pallidus neurons that were immunoreactive for neuron-specific nuclear protein. These results strongly suggest that the dopaminergic innervation of globus pallidus, acting through D2-like receptors internal to this structure, can control gene expression in pallidal neurons.
Collapse
Affiliation(s)
- J F Marshall
- Department of Neurobiology and Behavior, 2215 Bio Sci II, University of California, Irvine, CA 92697-4550, USA.
| | | | | | | |
Collapse
|
15
|
Murer MG, Dziewczapolski G, Salin P, Vila M, Tseng KY, Ruberg M, Rubinstein M, Kelly MA, Grandy DK, Low MJ, Hirsch E, Raisman-Vozari R, Gershanik O. The indirect basal ganglia pathway in dopamine D(2) receptor-deficient mice. Neuroscience 2001; 99:643-50. [PMID: 10974427 DOI: 10.1016/s0306-4522(00)00223-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Recent pathophysiological models of basal ganglia function in Parkinson's disease predict that specific neurochemical changes in the indirect pathway would follow the lack of stimulation of D(2) dopamine receptors. Post mortem studies of the basal ganglia in genetically modified mice lacking functional copies of the D(2) dopamine receptor gene allowed us to test these predictions. When compared with their congenic N(5) wild-type siblings, mice lacking D(2) receptors show an increased expression of enkephalin messenger RNA in the striatum, and an increased activity and expression of cytochrome oxidase I in the subthalamic nucleus, as expected. In addition, D(2) receptor-deficient mice display a reduced expression of glutamate decarboxylase-67 messenger RNA in the globus pallidus, as the basal ganglia model predicts. This reduction contrasts with the lack of change or increase in glutamate decarboxylase-67 messenger RNA expression found in animals depleted of dopamine after lesions of the mesostriatal dopaminergic system. Furthermore, D(2) receptor-deficient mice show a significant decrease in substance P messenger RNA expression in the striatonigral neurons which form the direct pathway. Finally, glutamate decarboxylase-67 messenger RNA expression in the basal ganglia output nuclei was not affected by mutations in the D(2) receptor gene, a fact that could probably be related to the absence of a parkinsonian locomotor phenotype in D(2) receptor-deficient mice. In summary, these findings provide compelling evidence demonstrating that the lack of endogenous stimulation of D(2) receptors is sufficient to produce subthalamic nucleus hyperactivity, as assessed by cytochrome oxidase I histochemistry and messenger RNA expression, and strongly suggest the existence of interactions between the basal ganglia direct and indirect pathways.
Collapse
Affiliation(s)
- M G Murer
- INSERM U289, Hôpital de la Salpêtrière, Paris, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
The dopaminergic nigropallidal and nigrosubthalamic projections control the activity of the globus pallidus and subthalamic nucleus neurons in both normal and pathological conditions. Intrastriatal dopaminergic neurons increase substantially in animal models of Parkinson's disease. They contain GABA, display the ultrastructural features of interneurons and form axo-axonic synapses with putative cortical-like glutamatergic boutons. The local dendritic release of dopamine by neurons in the substantia nigra pars compacta and ventral tegmental also influences basal ganglia functions. Thus, the long-term belief that the effects of dopamine in the basal ganglia were solely mediated through the nigrostriatal system must be changed to take into account extrastriatal dopaminergic projections and intrastriatal dopaminergic neurons.
Collapse
Affiliation(s)
- Y Smith
- Yerkes Regional Primate Research Center and Dept of Neurology, Emory University, Atlanta, GA 30322, USA
| | | |
Collapse
|
17
|
Blandini F, Nappi G, Tassorelli C, Martignoni E. Functional changes of the basal ganglia circuitry in Parkinson's disease. Prog Neurobiol 2000; 62:63-88. [PMID: 10821982 DOI: 10.1016/s0301-0082(99)00067-2] [Citation(s) in RCA: 370] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The basal ganglia circuitry processes the signals that flow from the cortex, allowing the correct execution of voluntary movements. In Parkinson's disease, the degeneration of dopaminergic neurons of the substantia nigra pars compacta triggers a cascade of functional changes affecting the whole basal ganglia network. The most relevant alterations affect the output nuclei of the circuit, the medial globus pallidus and substantia nigra pars reticulata, which become hyperactive. Such hyperactivity is sustained by the enhanced glutamatergic inputs that the output nuclei receive from the subthalamic nucleus. The mechanisms leading to the subthalamic disinhibition are still poorly understood. According to the current model of basal ganglia organization, the phenomenon is due to a decrease in the inhibitory control exerted over the subthalamic nucleus by the lateral globus pallidus. Recent data, however, suggest that additional if not alternative mechanisms may underlie subthalamic hyperactivity. In particular, given the reciprocal innervation of the substantia nigra pars compacta and the subthalamic nucleus, the dopaminergic deficit might influence the subthalamic activity, directly. In addition, the increased excitatory drive to the dopaminergic nigral neurons originating from the hyperactive subthalamic nucleus might sustain the progression of the degenerative process. The identification of the role of the subthalamic nucleus and, more in general, of the glutamatergic mechanisms in the pathophysiology of Parkinson's disease might lead to a new approach in the pharmacological treatment of the disease. Current therapeutic strategies rely on the use of L-DOPA and/or dopamine agonists to correct the dopaminergic deficit. Drugs capable of antagonizing the effects of glutamate might represent, in the next future, a valuable tool for the development of new symptomatic and neuroprotective strategies for therapy of Parkinson's disease.
Collapse
Affiliation(s)
- F Blandini
- Neurological Institute "C. Mondino", Pavia, Italy.
| | | | | | | |
Collapse
|
18
|
Tseng KY, Riquelme LA, Belforte JE, Pazo JH, Murer MG. Substantia nigra pars reticulata units in 6-hydroxydopamine-lesioned rats: responses to striatal D2 dopamine receptor stimulation and subthalamic lesions. Eur J Neurosci 2000; 12:247-56. [PMID: 10651879 DOI: 10.1046/j.1460-9568.2000.00910.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In order to increase our understanding of Parkinson's disease pathophysiology, we studied the effects of intrastriatally administered selective dopamine receptor agonists on single units from the substantia nigra pars reticulata of 6-hydroxydopamine (6-OHDA)-lesioned rats with or without an additional subthalamic nucleus lesion. Nigral pars reticulata units of 6-OHDA-lesioned rats were classified into two types, showing regular and bursting discharge patterns, respectively ('non-burst' and 'burst' units). Non-burst and burst units showed distinct responses to intrastriatal quinpirole (the former were excited and burst units inhibited). Furthermore, subthalamic nucleus lesions significantly decreased the number of nigral units showing a spontaneous bursting pattern, and reduced the proportion of units that responded to quinpirole. In contrast, subthalamic lesions did not alter the proportion of nigral units that responded to SKF38393, although the lesions changed some response features, e.g. response type and magnitude. Burst analysis showed that quinpirole did not modify the discharge pattern of burst units, whereas SKF38393 produced a shift to regular firing in 62% of the burst units tested. In conjunction, our results support that: (i) the subthalamic nucleus has an important influence on output nuclei firing pattern; (ii) striatal D2 receptors have a strong influence on nigral firing rate, and a less relevant role in controlling firing pattern; (iii) burst and non-burst units differ in their response to selective stimulation of striatal dopamine receptors; (iv) the effects of striatal D2 receptors on nigral units are mainly, though not exclusively, mediated by the subthalamic nucleus; and (v) nigral responses to SKF38393 involve the subthalamic nucleus.
Collapse
Affiliation(s)
- K Y Tseng
- Laboratorio de Neurofisiología, Departamento de Fisiología y Biofísica, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires 1121, Argentina
| | | | | | | | | |
Collapse
|
19
|
Wirtshafter D, Asin KE. Haloperidol induces Fos expression in the globus pallidus and substantia nigra of cynomolgus monkeys. Brain Res 1999; 835:154-61. [PMID: 10415370 DOI: 10.1016/s0006-8993(99)01550-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Systemic injections of the dopamine antagonist haloperidol (0.1-2.5 mg/kg) induced a dose dependent increase in Fos-like immunoreactivity (FLI) in the internal segment of the globus pallidus (GPi) and in the substantia nigra (SN) of cynomolgus monkeys. These findings are consistent with models of basal ganglia organization which predict that blockade of dopamine receptors should result in a disinhibition of cells in these structures. In the GPi, labeling was most pronounced along the ventral, lateral and medial borders of the nucleus and none of the pallidal cells expressing FLI were immunopositive for choline acetyltransferase. In the SN, immunoreactive nuclei were concentrated in the pars reticulata and the majority of labeled nigral neurons did not display tyrosine hydroxylase-like immunoreactivity. A small number of cells displaying FLI were also observed in the external pallidal segment, but no labeling was seen in the subthalamic nucleus. These findings indicate that blockade of dopamine receptors induces a characteristic pattern of Fos expression in the primate brain which strongly resembles that previously reported in rodents.
Collapse
Affiliation(s)
- D Wirtshafter
- Department Psychology, M/C 285, The University of Illinois at Chicago, 1007 W. Harrison St., Chicago, IL 60607-7137, USA.
| | | |
Collapse
|
20
|
Ruskin DN, Bergstrom DA, Mastropietro CW, Twery MJ, Walters JR. Dopamine agonist-mediated rotation in rats with unilateral nigrostriatal lesions is not dependent on net inhibitions of rate in basal ganglia output nuclei. Neuroscience 1999; 91:935-46. [PMID: 10391472 DOI: 10.1016/s0306-4522(98)00689-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Current models of basal ganglia function predict that dopamine agonist-induced motor activation is mediated by decreases in basal ganglia output. This study examines the relationship between dopamine agonist effects on firing rate in basal ganglia output nuclei and rotational behavior in rats with nigrostriatal lesions. Extracellular single-unit activity ipsilateral to the lesion was recorded in awake, locally-anesthetized rats. Separate rats were used for behavioral experiments. Low i.v. doses of D1 agonists (SKF 38393, SKF 81297, SKF 82958) were effective in producing rotation, yet did not change average firing rate in the substantia nigra pars reticulata or entopeduncular nucleus. At these doses, firing rate effects differed from neuron to neuron, and included increases, decreases, and no change. Higher i.v. doses of D1 agonists were effective in causing both rotation and a net decrease in rate of substantia nigra pars reticulata neurons. A low s.c. dose of the D1/D2 agonist apomorphine (0.05 mg/kg) produced both rotation and a robust average decrease in firing rate in the substantia nigra pars reticulata, yet the onset of the net firing rate decrease (at 13-16 min) was greatly delayed compared to the onset of rotation (at 3 min). Immunostaining for the immediate-early gene Fos indicated that a low i.v. dose of SKF 38393 (that produced rotation but not a net decrease in firing rate in basal ganglia output nuclei) induced Fos-like immunoreactivity in the striatum and subthalamic nucleus, suggesting an activation of both inhibitory and excitatory afferents to the substantia nigra and entopeduncular nucleus. In addition, D1 agonist-induced Fos expression in the striatum and subthalamic nucleus was equivalent in freely-moving and awake, locally-anesthetized rats. The results show that decreases in firing rate in basal ganglia output nuclei are not necessary for dopamine agonist-induced motor activation. Motor-activating actions of dopamine agonists may be mediated by firing rate decreases in a small subpopulation of output nucleus neurons, or may be mediated by other features of firing activity besides rate in these nuclei such as oscillatory firing pattern or interneuronal firing synchrony. Also, the results suggest that dopamine receptors in both the striatum and at extrastriatal sites (especially the subthalamic nucleus) are likely to be involved in dopamine agonist influences on firing rates in the substantia nigra pars reticulata and entopeduncular nucleus.
Collapse
Affiliation(s)
- D N Ruskin
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1406, USA
| | | | | | | | | |
Collapse
|
21
|
Wirtshafter D, Asin KE. Unilateral dopamine depletion paradoxically enhances amphetamine-induced Fos expression in basal ganglia output structures. Brain Res 1999; 824:81-8. [PMID: 10095045 DOI: 10.1016/s0006-8993(99)01091-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The ability of amphetamine to induce expression of the immediate early gene protein, Fos, was examined by immunocytochemistry in animals with unilateral 6-hydroxydopamine lesions of the nigrostriatal bundle. Amphetamine induced Fos expression in the globus pallidus (GP) on the intact side of the brain, but this response was greatly attenuated on the dopamine-depleted side. In contrast, amphetamine induced little Fos expression in the entopeduncular nucleus (EPN) and the substantia nigra pars reticulata (SNpr) on the intact side of the brain, but resulted in pronounced expression in these structures on the lesioned side. These findings demonstrate that unilateral dopamine depletion results in a pathophysiological state in which some responses to amphetamine are attenuated while others are paradoxically potentiated. One explanation of these effects is that amphetamine may indirectly activate excitatory inputs to the SNpr and the EPN on both sides of the brain. On the intact side, these effects would be opposed by the simultaneous activation of inhibitory pathways arising in the striatum and the GP, with the result that little Fos expression would be seen. On the dopamine-depleted side, however, engagement of these inhibitory pathways would be attenuated and the unopposed effects of the excitatory inputs mobilized by amphetamine would result in exaggerated Fos synthesis.
Collapse
Affiliation(s)
- D Wirtshafter
- Department of Psychology, M/C 285, The University of Illinois at Chicago, 1007 West Harrison St., Chicago, IL 60607-7137, USA.
| | | |
Collapse
|
22
|
Alonso R, Gnanadicom H, Fréchin N, Fournier M, Le Fur G, Soubrié P. Blockade of neurotensin receptors suppresses the dopamine D1/D2 synergism on immediate early gene expression in the rat brain. Eur J Neurosci 1999; 11:967-74. [PMID: 10103090 DOI: 10.1046/j.1460-9568.1999.00506.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A remarkable feature of dopamine functioning is that the concomitant activation of D1-like and D2-like receptors acts to intensify the expression of various dopamine-dependent effects, in particular the expression of the immediate-early genes, c-fos and zif268. Using non-peptide neurotensin receptor antagonists, including SR48692, we have determined that blockade of neurotensin receptors reduced the cooperative responses of direct acting D2-like (quinpirole) and partial D1-like (SKF38393) dopamine agonists on the expression of Fos-like antigens and zif268 mRNA. Pretreatment with SR48692 (3 and 10 mg/kg) reduced the number of Fos-like immunoreactive cells produced by the combined administration of SKF38393 (20 mg/kg) and quinpirole (1 mg/kg) in the caudate-putamen, nucleus accumbens, globus pallidus and ventral pallidum. High-affinity neurotensin receptors are likely to be involved in these D1-like/D2-like cooperative responses, as compounds structurally related to SR48692, SR48527 (3 mg/kg) and its (-)antipode, SR49711 (3 mg/kg), exerted a stereospecific antagonism in all selected brain regions. Pretreatment with SR48692 (10 mg/kg) also diminished Fos induction by the indirect dopamine agonist, cocaine (25 mg/kg), particularly at the rostral level of the caudate-putamen. In situ hybridization experiments in the caudate-putamen indicated that SR48692 (10 mg/kg) markedly reduced zif268 mRNA labelling produced by SKF38393 plus quinpirole in cells not expressing enkephalin mRNA, but was unable to affect the concomitant decrease of zif268 mRNA labelling in enkephalin-positive cells. Taken together, the results of the present study indicate that neurotensin is a key element for the occurrence of cooperative responses of D2-like and partial D1-like agonists on immediate-early gene expression.
Collapse
MESH Headings
- 2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepine/pharmacology
- Animals
- Brain Chemistry/physiology
- Cocaine/pharmacology
- DNA-Binding Proteins/genetics
- Dopamine Agonists/pharmacology
- Dopamine Uptake Inhibitors/pharmacology
- Early Growth Response Protein 1
- Enkephalins/analysis
- Gene Expression/drug effects
- Gene Expression/physiology
- Genes, Immediate-Early/physiology
- Immediate-Early Proteins
- In Situ Hybridization
- Male
- Neostriatum/chemistry
- Neostriatum/cytology
- Neostriatum/physiology
- Neurons/chemistry
- Neurons/drug effects
- Neurons/physiology
- Proto-Oncogene Proteins c-fos/genetics
- Pyrazoles/pharmacology
- Quinolines/pharmacology
- Quinpirole/pharmacology
- RNA, Messenger/analysis
- Rats
- Rats, Sprague-Dawley
- Receptors, Dopamine D1/physiology
- Receptors, Dopamine D2/physiology
- Receptors, Neurotensin/antagonists & inhibitors
- Transcription Factors/genetics
Collapse
Affiliation(s)
- R Alonso
- Sanofi Recherche, Department of Neuropsychiatry, 371 rue du Pr. J. Blayac, 34184 Montpellier Cedex 04, France.
| | | | | | | | | | | |
Collapse
|
23
|
Blandini F, Conti G, Martignoni E, Colangelo V, Nappi G, Di Grezia R, Orzi F. Modifications of local cerebral metabolic rates for glucose and motor behavior in rats with unilateral lesion of the subthalamic nucleus. J Cereb Blood Flow Metab 1999; 19:149-54. [PMID: 10027770 DOI: 10.1097/00004647-199902000-00006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Inactivation of the subthalamic nucleus (STN) has attracted interest as a therapeutic tool in Parkinson's disease. The functional consequences of the inactivation, however, are uncertain. In this study definition of the pattern of changes of cerebral functional activity associated with lesion of the STN and dopaminergic stimulation, by using the [14C]deoxyglucose method, was sought. Six or 7 days following unilateral lesion of the STN, the animals were divided into two groups: One group (n = 10) was administered apomorphine (1 mg/kg) subcutaneously; the second group (n = 10) received saline. The [14C]deoxyglucose procedure was initiated 10 minutes following the drug or saline injection. The results show that systemic administration of apomorphine to rats with unilateral lesion of the STN causes ipsiversive rotational behavior and asymmetries of glucose utilization of defined brain areas, including the substantia nigra reticulata, globus pallidus, and entopeduncular nucleus. These nuclei are the main targets of the subthalamic excitatory projections. Lesion of the nucleus per se (without challenge with apomorphine) has no significant consequences on glucose utilization. The findings indicate that the STN is involved in the activation of the basal ganglia output nuclei induced by systemic dopaminergic stimulation.
Collapse
Affiliation(s)
- F Blandini
- Neurological Institute C Mondino, University of Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
24
|
Cook DF, Wirtshafter D. Quinpirole attenuates striatal c-fos induction by 5-HT, opioid and muscarinic receptor agonists. Eur J Pharmacol 1998; 349:41-7. [PMID: 9669494 DOI: 10.1016/s0014-2999(98)00184-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Pretreatment with the dopamine D2 receptor agonist quinpirole (0.025-2.5 mg/kg) produced a marked, dose-dependent, attenuation of the striatal Fos expression induced by the serotonin (5-Hydroxytryptamine, 5-HT) releasing agent fenfluramine (25 mg/kg). Quinpirole (2.5 mg/kg) was also able to drastically attenuate the striatal Fos response produced by injections of the direct 5-HT1/2 receptor agonist N-(3-trifluoromethylphenyl)piperazine hydrochloride (TFMPP) (5 mg/kg), the selective 5-HT2 receptor agonist 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane hydrochloride (DOI) (6.64 mg/kg), the 5-HT1A/1B receptor agonist RU-24969 (5-methoxy-3-(1,2,3,6-tetrahydropyridin-4-yl)1H-indole) (5 mg/kg), the mu-opioid receptor agonist morphine (5 mg/kg) and the muscarinic cholinergic receptor agonist pilocarpine (50 mg/kg). These results are in marked contrast to the previously reported ability of quinpirole to potentiate the response to D1 dopamine receptor agonists and demonstrate that stimulation of D2-like receptors can have differential effects on the Fos responses induced by various drugs.
Collapse
Affiliation(s)
- D F Cook
- Department of Psychology, The University of Illinois at Chicago, 60607-7137, USA
| | | |
Collapse
|
25
|
The significance of the expression of Fos protein in the brain for the classification of antipsychotics. Acta Neuropsychiatr 1997; 9:143-50. [PMID: 26972456 DOI: 10.1017/s0924270800036711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Samenvatting In de afgelopen zes jaar is veel onderzoek verficht naar de effecten van antipsychotica op de regionale c-fos-expressie in de hersenen. Deze benadering biedt in een dierexperimentele proefopzet de mogelijkheid op cellulair niveau de effecten van psychofarmaca te bestuderen. Het fos-gen behoort tot de groep 'immediate early genes'. Dit zijn genen die de transcriptie van andere, vaak onbekende genen reguleren. Een aantal aspecten van dit mechanisme wordt in deze bijdrage beschreven. Het onderzoek naar de effecten van antipsychotica op c-fos-expressie wordt samengevat en de betekenis voor de classificatie van antipsychotica benadrukt. Het blijkt dat deze farmaca effectief zijn in zowel de (meso)limbische gebieden (als nucleus accumbens, septum en amygdala) als ook in de basale ganglia. De relatieve effecten, wat betreft de c-fos-reactie, van de atypische antipsychotica (als clozapine en risperidon) zijn hoger in de limbische structuren, vergeleken met de effecten van de typische (als haloperidol). De potentie van de c-fos-methodiek voor verdere ontwikkelingen in dit gebied wordt aangegeven.
Collapse
|
26
|
Consequences of nigrostriatal denervation on the functioning of the basal ganglia in human and nonhuman primates: an in situ hybridization study of cytochrome oxidase subunit I mRNA. J Neurosci 1997. [PMID: 8987798 DOI: 10.1523/jneurosci.17-02-00765.1997] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To examine the consequences of nigrostriatal denervation and chronic levodopa (L-DOPA) treatment on functional activity of the basal ganglia, we analyzed, using in situ hybridization, the cellular expression of the mRNA encoding for cytochrome oxidase subunit I (COI mRNA), a molecular marker for functional neuronal activity, in the basal ganglia. This analysis was performed in monkeys rendered parkinsonian by 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) Intoxication, some of which had been receiving L-DOPA, and in patients with Parkinson's disease (PD). In MPTP-intoxicated monkeys compared with control animals, COI mRNA expression was increased in the subthalamic nucleus (STN) and in the output nuclei of the basal ganglia, i.e., the internal segment of the globus pallidus and the substantia nigra pars reticulata. This increase was partially reversed by L-DOPA treatment. COI mRNA expression remained unchanged in the external segment of the globus pallidus (GPe). In PD patients, all of whom had been treated chronically by L-DOPA, COI mRNA expression in the analyzed basal ganglia structures was similar to that in control subjects. These results are in agreement with the accepted model of basal ganglia organization, to the extent that the output nuclei of the basal ganglia are considered to be overactive after nigrostriatal denervation, partly because of increased activity of excitatory afferents from the STN. Yet, our results would also seem to contradict this model, because the overactivity of the STN does not seem to be attributable to a hypoactivation of the GPe.
Collapse
|
27
|
Ruskin DN, Marshall JF. Differing influences of dopamine agonists and antagonists on Fos expression in identified populations of globus pallidus neurons. Neuroscience 1997; 81:79-92. [PMID: 9300403 DOI: 10.1016/s0306-4522(97)00113-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dopamine agonists increase the activity of globus pallidus neurons, as shown electrophysiologically and with Fos expression. More recently it has been shown that decreased D2 receptor activity also causes pallidal Fos expression. Similar responses occur in the striatum, where both dopamine agonists and D2 blockade induce Fos, although in separate neuronal populations (i.e. striatonigral and -pallidal). The present experiments investigate the possible differential dopaminergic regulation of Fos within pallidal neuronal populations, which were classified as parvalbumin-positive or -negative (with parvalbumin immunostaining), or as projecting to various target nuclei (with retrograde transport of FluoroGold iontophoresed into these nuclei). Rats with prior nigrostriatal lesions received saline, D1 agonist, or D2 agonist. Rats with no lesions received saline, combined D1/D2 agonists, or the D2 antagonist eticlopride. Two hours after drug injection, rats were perfused and their brains processed for double-labeling: either Fos staining with parvalbumin staining, or Fos or parvalbumin staining in FluoroGold-labeled sections. Overall, dopamine drug treatments induced more Fos in parvalbumin-negative than -positive cells. However, unlike dopamine agonists, eticlopride induced significant Fos only in the parvalbumin-negative cells. Dopamine agonist-induced Fos was found in pallidal neurons projecting to each of the target nuclei examined, in both normal and nigrostriatal-lesioned rats. Eticlopride-induced Fos occurred only in pallidal neurons projecting to the striatum, providing functional evidence for pallidostriatal cells without axon collaterals to other nuclei. It was also found that pallidostriatal neurons were distinguished from other projection populations by a relative lack of parvalbumin immunoreactivity. Pallidal cells respond heterogeneously to dopaminergic treatments based on their projection target and expression of parvalbumin. The smaller Fos responses in parvalbumin-containing cells may be due largely to the calcium buffering by the parvalbumin itself. Also, the pattern of Fos expression in pallidostriatal neurons suggests that dopamine regulates activity in these cells differently than in other projection populations.
Collapse
Affiliation(s)
- D N Ruskin
- Department of Psychobiology, University of California at Irvine 92697-4550, USA
| | | |
Collapse
|
28
|
The response of subthalamic nucleus neurons to dopamine receptor stimulation in a rodent model of Parkinson's disease. J Neurosci 1997. [PMID: 9254691 DOI: 10.1523/jneurosci.17-17-06807.1997] [Citation(s) in RCA: 132] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Overactivity in the subthalamic nucleus (STN) is believed to contribute to the pathophysiology of Parkinson's disease. It is hypothesized that dopamine receptor agonists reduce neuronal output from the STN. The present study tests this hypothesis by using in vivo extracellular single unit recording techniques to measure neuronal activity in the STN of rats with 6-hydroxydopamine-induced lesions of the nigrostriatal pathway (a model of Parkinson's disease). As predicted, firing rates of STN neurons in lesioned rats were tonically elevated under basal conditions and were decreased by the nonselective dopamine receptor agonists apomorphine and L-3, 4-dihydroxyphenylalanine (L-DOPA). STN firing rates were also decreased by the D2 receptor agonist quinpirole when administered after the D1 receptor agonist (+/-)- 1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol (SKF 38393). Results of the present study challenge the prediction that dopaminergic agonists reduce STN activity predominantly through actions at striatal dopamine D2 receptors. Firing rates of STN neurons were not altered by selective stimulation of D2 receptors and were increased by selective stimulation of D1 receptors. Moreover, there was a striking difference between the responses of the STN to D1/D2 receptor stimulation in the lesioned and intact rat; apomorphine inhibited STN firing in the lesioned rat and increased STN firing in the intact rat. These findings support the premise that therapeutic efficacy in the treatment of Parkinson's disease is associated with a decrease in the activity of the STN, but challenge assumptions about the roles of D1 and D2 receptors in the regulation of neuronal activity of the STN in both the intact and dopamine-depleted states.
Collapse
|
29
|
Palkovits M, Baffi JS, Berzsenyi P, Horváth EJ. Anxiolytic homophthalazines increase Fos-like immunoreactivity in selected brain areas of the rat. Eur J Pharmacol 1997; 331:53-63. [PMID: 9274930 DOI: 10.1016/s0014-2999(97)01008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Nerisopam, an anxiolytic and antipsychotic homophthalazine induces rapid, intense expression of Fos-like immunoreactivity in the rostral, dorsomedial and lateral parts of the striatum in the rat. Fos-positive cells also occurred in the globus pallidus, the olfactory tubercle and in the accumbens nucleus (in the cone and shell portions) but the substantia nigra, the entopeduncular and the subthalamic nuclei were virtually Fos-negative. 5 h after nerisopam application, however, cells in the reticular zone of the substantia nigra showed Fos-like immunopositivity. After a daily application of nerisopam for two weeks, relatively weak Fos-like immunoreactivity was observed in the striatum and the subthalamic nucleus but not in the globus pallidus. Unilateral surgical transection of the striato-nigral pathway, which depleted tyrosine hydroxylase immunostaining in the ipsilateral striatum did not influence nerisopam-induced Fos-like immunoreactivity in the striatal neurons, either ipsi- or contralateral to the knife cut. Our results suggest that the striatal neurons are the primary targets of this anxiolytic and antipsychotic drug in the central nervous system.
Collapse
Affiliation(s)
- M Palkovits
- Laboratory of Neuromorphology, Semmelweis University Medical School, Budapest, Hungary.
| | | | | | | |
Collapse
|
30
|
Wirtshafter D, Krebs JC. Interactive effects of stimulation of D1 and D2 dopamine receptors on Fos expression in the lateral habenula. Brain Res 1997; 750:245-50. [PMID: 9098550 DOI: 10.1016/s0006-8993(96)01353-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We have previously shown that systemic administration of non-selective dopamine agonists results in a pronounced expression of the proto-oncoprotein Fos within the lateral habenula. In the current study we examined the effects of selective D1 and D2 dopamine receptor agonists on habenular Fos expression. Rats were injected with various doses of the selective D2 agonist quinpirole (0, 0.62 or 2.5 mg/kg) either alone or in combination with various doses of the selective full D1 agonist A-77636 (0, 0.75 or 3.0 mg/kg). The selective agonists, by themselves, induced only small increases in Fos-like immunoreactivity within the lateral habenula, but combinations of the two drugs resulted in a very robust response. These findings indicate that D1 and D2 receptor agonists interact to induce Fos expression within the habenula and that the nature of this interaction differs from that reported in the striatum and the globus pallidus.
Collapse
Affiliation(s)
- D Wirtshafter
- Department of Psychology, University of Illinois at Chicago 60607-7137, USA.
| | | |
Collapse
|
31
|
Kashihara K, Akiyama K, Ishihara T, Shiro Y, Shohmori T. Synergistic effect of D1 and D2 dopamine receptors on AP-1 DNA-binding activity in the striatum and globus pallidus of the rat with a unilateral 6-OHDA lesion of the medical forebrain bundle. Life Sci 1996; 59:1683-93. [PMID: 8890942 DOI: 10.1016/s0024-3205(96)00504-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The synergistic effect of D1 and D2 dopamine receptors on transcription factor AP-1 was studied in the striatum and globus pallidus of rats with unilateral 6-OHDA lesions of the medial forebrain bundle. Contralateral rotational behavior in response to a challenge dose of D1 agonist with and without D2 agonist was determined by behavioral observation, and AP-1 induction was studied by a gel mobility-shift assay. Single administration of vehicle and of a low dose of the D1 agonist (SKF38393, 0.5 mg/kg, i.p.) failed to induce rotational behavior, while the D2 agonists bromocriptine (2.5 mg/kg, i.p.) and quinpirole (1 mg/kg. i.p.) induced low rate rotations. High dose of SKF38393, 10 mg/kg, i.p., and low dose D1 and D2 agonists administered together induced a higher rate of rotation. The gel mobility-shift assay also suggested a synergistic interaction between D1 and D2 receptors on AP-1 induction in both the striatum and globus pallidus ipsilateral to the 6-OHDA lesioned nigrostriatal pathway. However, the mode of AP-1 induction via each dopamine receptor subtype appeared to differ between these brain structures. Thus, in the striatum of the lesioned side, single administration of a high dose of D1 agonist, and combined administration of D1 agonist with either of the D2 agonists resulted in AP-1 induction, while in the globus pallidus, AP-1 binding was induced by the D2 agonist bromocriptine and combined administration of a low dose D1 agonist with D2 agonists, but not by D1 agonist alone, even at a high dose. These results demonstrate that a D1/D2 dopamine receptor synergism is involved is the induction of AP-1 both in the striatum and globus pallidus of the rat with ipsilateral dopamine depletion. The induction of AP-1 via each receptor subtype appears, however, to be differently regulated in these two structures.
Collapse
Affiliation(s)
- K Kashihara
- Department of Neurology, Okayama University Medical School, Japan
| | | | | | | | | |
Collapse
|
32
|
Schwarting RK, Huston JP. Unilateral 6-hydroxydopamine lesions of meso-striatal dopamine neurons and their physiological sequelae. Prog Neurobiol 1996; 49:215-66. [PMID: 8878304 DOI: 10.1016/s0301-0082(96)00015-9] [Citation(s) in RCA: 257] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
One of the primary approaches in experimental brain research is to investigate the effects of specific destruction of its parts. Here, several neurotoxins are available which can be used to eliminate neurons of a certain neurochemical type or family. With respect to the study of dopamine neurons in the brain, especially within the basal ganglia, the neurotoxin 6-hydroxydopamine (6-OHDA) provides an important tool. The most common version of lesion induced with this toxin is the unilateral lesion placed in the area of mesencephalic dopamine somata or their ascending fibers, which leads to a lateralized loss of striatal dopamine. This approach has contributed to neuroscientific knowledge at the basic and clinical levels, since it has been used to clarify the neuroanatomy, neurochemistry, and electrophysiology of mesencephalic dopamine neurons and their relationships with the basal ganglia. Furthermore, unilateral 6-OHDA lesions have been used to investigate the role of these dopamine neurons with respect to behavior, and to examine the brain's capacity to recover from or compensate for specific neurochemical depletions. Finally, in clinically-oriented research, the lesion has been used to model aspects of Parkinson's disease, a human neurodegenerative disease which is neuronally characterized by a severe loss of the meso-striatal dopamine neurons. In the present review, which is the first of two, the lesion's effects on physiological parameters are being dealt with, including histological manifestations, effects on dopaminergic measures, other neurotransmitters (e.g. GABA, acetylcholine, glutamate), neuromodulators (e.g. neuropeptides, neurotrophins), electrophysiological activity, and measures of energy consumption. The findings are being discussed especially in relation to time after lesion and in relation to lesion severeness, that is, the differential role of total versus partial depletions of dopamine and the possible mechanisms of compensation. Finally, the advantages and possible drawbacks of such a lateralized lesion model are discussed.
Collapse
Affiliation(s)
- R K Schwarting
- Institute of Physiological Psychology I, Heinrich-Heine University of Düsseldorf, Germany
| | | |
Collapse
|
33
|
Vargo JM, Estrick MS, Marshall JF. Amphetamine-induced Fos expression in globus pallidus is altered by frontal cortex injury. Brain Res 1996; 716:207-12. [PMID: 8738241 DOI: 10.1016/0006-8993(96)00027-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Functional recovery from cortical injury may result from subcortical compensatory processes. This study examined basal gangliar expression of the immediate early gene c-fos after unilateral medial agranular cortex (AGm) ablation. In the ipsilateral dorsal globus pallidus of rats demonstrating neglect of contralateral stimuli (sacrificed 5 days postinjury), the numbers of amphetamine-induced Fos-positive nuclei were reduced 37% compared to intact hemisphere values. These reductions were no longer apparent in recovered AGm-ablated rats (sacrificed 21 + days postinjury). These findings mirror in timing and direction the changes in Fos seen in dorsolateral striatum after AGm ablation.
Collapse
Affiliation(s)
- J M Vargo
- Department of Psychobiology, University of California, Irvine 92717-4550, USA
| | | | | |
Collapse
|