1
|
Dong X, Qiu Y, Jia N, Wu Y, Nie Q, Wen J, Zhao C, Zhai Y. Recent advances of edible marine algae-derived sulfated polysaccharides in antiviral treatments: challenges vs. opportunities. Front Nutr 2025; 12:1561119. [PMID: 40206958 PMCID: PMC11978671 DOI: 10.3389/fnut.2025.1561119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
Marine polysaccharides, particularly those derived from red, brown, and green algae, have shown promising antiviral activity. Among them, sulfated polysaccharides are particularly notable due to their broad-spectrum antiviral properties. These include direct viral destruction, inhibition of virus adsorption, disruption of viral transcription and replication, and the stimulation of the host's antiviral immunity. With low toxicity, minimal drug resistance, and excellent biocompatibility, these polysaccharides represent promising candidates for the development of antiviral medications. For instance, carrageenan, a polysaccharide from red algae, and fucoidan, a polymer from brown algae, have both been proven to effectively inhibit viral infections. Sulfated polysaccharides from green algae, such as those found in Ulva species, also exhibit antiviral properties, including activity against the Japanese encephalitis virus. These polysaccharides function by blocking the attachment of viruses to host cells or interfering with various stages of the viral life cycle. Moreover, marine polysaccharides have been shown to enhance host immune responses, thereby aiding in viral clearance. Although these findings highlight the antiviral potential of marine polysaccharides, most studies have been conducted in vitro or in animal models. Further clinical trials are necessary to validate their effectiveness and safety for therapeutic use.
Collapse
Affiliation(s)
- Xiaoying Dong
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yusong Qiu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nan Jia
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yinfeng Wu
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qing Nie
- College of Marine and Biology Engineering, Yancheng Institute of Technology, Yancheng, China
| | - Jiahui Wen
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chao Zhao
- State Key Laboratory of Mariculture Breeding, Key Laboratory of Marine Biotechnology of Fujian Province, Fujian Agriculture and Forestry University, Fuzhou, China
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yongzhen Zhai
- Department of Infectious Disease, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
2
|
Son SU, Suh HJ, Shin KS. Characterization of a novel sulfated-rhamnoglucuronan isolated from Korean seaweed Ulva pertusa and its efficacy for treatment of inflammatory bowel disease in mice. Carbohydr Polym 2024; 342:122373. [PMID: 39048193 DOI: 10.1016/j.carbpol.2024.122373] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024]
Abstract
This study aimed to isolate Ulva pertusa polysaccharide (UPP), which elicits anti-inflammatory bowel disease (IBD) effects, from the Korea seaweed U. pertusa and identify its structure. Firstly, UPP was isolated from U. pertusa using hydrothermal extraction and ethanol precipitation. UPP is a novel polysaccharide that exhibits unique structural features such as 3-sulfated rhamnose, glucuronic acid, iduronic acid, and 3-sulfated xylose, which are repeated in 1,4-glycosidic bonds. Prophylactic oral administration of UPP in mice with dextran sulfate sodium (DSS)-induced ulcerative colitis (UC) suppressed the levels of inflammatory cytokines and MAPK- and NF-κB-related factors in the serum and colon tissue. Tight junction (TJ)-related factors such as occludin, claudin-1, and mucin were effectively augmented by UPP in the colon tissue. In addition, UPP administration prevented the DSS treatment-led cecal short chain fatty acid imbalance, and this effect was most evident for propionic acid. In conclusion, UPP isolated from the Korean U. pertusa demonstrates potent anti-IBD activity. Characterization of this ulvan revealed its unique structure. Moreover, its efficacy may be associated with its anti-inflammatory effects and regulation of gut microbiota and TJ proteins. Thus, this study provides new insights into the biological effects of UPP in IBD.
Collapse
Affiliation(s)
- Seung-U Son
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea; Transdisciplinary Major in Learning Health System, Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea.
| | - Hyung Joo Suh
- Transdisciplinary Major in Learning Health System, Department of Integrated Biomedical and Life Science, Korea University, Seoul 02841, Republic of Korea.
| | - Kwang-Soon Shin
- Department of Food Science and Biotechnology, Kyonggi University, Suwon 16227, Republic of Korea.
| |
Collapse
|
3
|
Kidgell JT, Glasson CRK, Magnusson M, Sims IM, Hinkley SFR, de Nys R, Carnachan SM. Ulvans are not equal - Linkage and substitution patterns in ulvan polysaccharides differ with Ulva morphology. Carbohydr Polym 2024; 333:121962. [PMID: 38494219 DOI: 10.1016/j.carbpol.2024.121962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/12/2024] [Accepted: 02/15/2024] [Indexed: 03/19/2024]
Abstract
Ulva are hardy green seaweeds that contain the sulfated polysaccharide ulvan and grow in two distinct morphologies: foliose and tubular. The authors hypothesise that ulvan from tubular species are more structurally complex than ulvans from foliose species. Herein, using standardised methods, the glycosyl linkage positions and sulfate ester substitutions of constituent monosaccharides of ulvan isolated from foliose (U. lacinulata and U. stenophylloides) and tubular (U. prolifera and U. ralfsii) species of Ulva were investigated. Comparison of native ulvans with 80 and 100 °C desulfated counterparts indicated that 4-linked rhamnose is predominantly 3-O-sulfated in all four ulvans. Ulvans from the foliose species predominantly contained →3,4)-Rhap-(1→, →4)-GlcAp-(1→ and →4)-IdoAp-(1→, collectively accounting for 67 to 81 mol% of the total linkages. In contrast, these same linkages in ulvans from the tubular species only collectively accounted for 29 to 36 mol%. Instead, ulvan from tubular species contained a combination of →2,3,4)-Rhap-(1→, terminal Rhap-(1→, →4)-GlcAp-(1→, →4)-Xylp-(1→, and/or →4)-Galp-(1→ in high proportions; some of the latter three residues were also likely O-2 sulfated. The results presented here suggest that ulvan from foliose species are predominantly unbranched polysaccharides composed of repeat disaccharides while ulvans from tubular species contain a greater diversity of branch and sulfate substitution locations.
Collapse
Affiliation(s)
- Joel T Kidgell
- College of Science and Engineering, James Cook University, Townsville 4811, Australia; The Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand.
| | | | - Marie Magnusson
- School of Science, University of Waikato, Tauranga 3110, New Zealand.
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand.
| | - Simon F R Hinkley
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand.
| | - Rocky de Nys
- College of Science and Engineering, James Cook University, Townsville 4811, Australia.
| | - Susan M Carnachan
- The Ferrier Research Institute, Victoria University of Wellington, Wellington 6012, New Zealand.
| |
Collapse
|
4
|
Hwang PA, Chen HY, Chang JS, Hsu FY. Electrospun nanofiber composite mat based on ulvan for wound dressing applications. Int J Biol Macromol 2023; 253:126646. [PMID: 37659492 DOI: 10.1016/j.ijbiomac.2023.126646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
Wound dressings can be used to create a temporary healing environment and expedite the wound healing process. Ulvan (ULV) is a sulfated polysaccharide with potent antiviral and anti-inflammatory activities. Polycaprolactone (PCL) is a hydrophobic biodegradable polyester that exhibits slow degradation, strong mechanical strength, and excellent biocompatibility. Electrospun nanofiber matrices mimic the microstructure of the extracellular matrix, allowing them to promote cell proliferation and differentiation. Therefore, the primary objective of this study was to fabricate a polycaprolactone-ulvan fibrous composite mat (PCL-ULV) using the electrospinning technique and to investigate its physical and chemical properties. To assess the characteristics of PCL-ULV, scanning electron microscopy (SEM) was utilized to examine its morphology and diameter distribution. Fourier transform infrared (FTIR) spectroscopy, calcofluor white staining, and monosaccharide analysis were employed to analyze the components of PCL-ULV. Additionally, the water contact angle was measured to evaluate the hydrophilicity. Furthermore, the proliferation and morphology of and gene expression in NIH3T3 fibroblasts on PCL-ULV were assessed. The results showed that the average PCL-ULV fiber diameter was significantly smaller than that of the PCL fibers. The water contact angle measurements indicated that PCL-ULV exhibited better hydrophilicity than the PCL mat. FTIR, calcofluor white staining, and monosaccharide analyses demonstrated that ULV could be successfully coelectrospun with PCL. NIH3T3 fibroblasts cultured on PCL and PCL-ULV showed different cellular behaviors. On PCL-ULV, cell adhesion, proliferation, and stretching were greater than those on PCL. Moreover, the behavior of NIH3T3 fibroblasts on PCL and PCL-ULV differed, as the cells on PCL-ULV exhibited higher proliferation and more stretching. Furthermore, NIH3T3 fibroblasts cultured on ULV-PCL showed higher α-SMA and MMP-9 gene expression and a lower ratio of TIMP-1/MMP-9 than those cultured on PCL. Notably, scarless wounds display lower TIMP/MMP expression ratios than scarring wounds. Thus, the fibrous composite mat PCL-ULV shows potential as a wound dressing for scarless wound healing.
Collapse
Affiliation(s)
- Pai-An Hwang
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan
| | - Hsin-Yu Chen
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan
| | - Jui-Sheng Chang
- Center of Excellence for the Oceans, National Taiwan Ocean University, Taiwan
| | - Fu-Yin Hsu
- Department of Bioscience and Biotechnology, National Taiwan Ocean University, Taiwan.
| |
Collapse
|
5
|
Rodrigues VJ, Jouanneau D, Fernandez-Fuentes N, Onime LA, Huws SA, Odaneth AA, Adams JMM. Biochemical characterisation of a PL24 ulvan lyase from seaweed-associated Vibrio sp. FNV38. JOURNAL OF APPLIED PHYCOLOGY 2023; 36:697-711. [PMID: 38765689 PMCID: PMC11101340 DOI: 10.1007/s10811-023-03136-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/06/2023] [Accepted: 11/08/2023] [Indexed: 05/22/2024]
Abstract
Ulvan is a green macroalgal cell wall polysaccharide that has tremendous potential for valorisation due to its unique composition of sulphated rhamnose, glucuronic acid, iduronic acid and xylose. Several potential applications such as production of biofuels, bioplastics and other value-added products necessitate the breakdown of the polysaccharide to oligomers or monomers. Research on ulvan saccharifying enzymes has been continually increasing over the last decade, with the increasing focus on valorisation of seaweed biomass for a biobased economy. Lyases are the first of several enzymes that are involved in saccharifying the polysaccharide and several ulvan lyases have been structurally and biochemically characterised to enable their effective use in the valorisation processes. This study investigates the whole genome of Vibrio sp. FNV38, an ulvan metabolising organism and biochemical characteristics of a PL24 ulvan lyase that it possesses. The genome of Vibrio sp. FNV38 has a diverse CAZy profile with several genes involved in the metabolism of ulvan, cellulose, agar, and alginate. The enzyme exhibits optimal activity at pH 8.5 in 100 mM Tris-HCl buffer and 30 °C. However, its thermal stability is poor with significant loss of activity after 2 h of incubation at temperatures above 25 °C. Breakdown product analysis reveals that the enzyme depolymerised the polysaccharide predominantly to disaccharides and tetrasaccharides. Supplementary Information The online version contains supplementary material available at 10.1007/s10811-023-03136-3.
Collapse
Affiliation(s)
- Valerie J. Rodrigues
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE United Kingdom
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai, 400019 Maharashtra India
| | - Diane Jouanneau
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), CNRS, 29688 Roscoff, Bretagne France
- Laboratory of Integrative Biology of Marine Models (LBI2M), Station Biologique de Roscoff (SBR), Sorbonne Université, Roscoff, Bretagne, France
| | - Narcis Fernandez-Fuentes
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE United Kingdom
| | - Lucy A. Onime
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE United Kingdom
| | - Sharon A. Huws
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE United Kingdom
- Institute for Global Food Security, Queen’s University Belfast, 19 Chlorine Gardens, Belfast, BT9 5DL United Kingdom
| | - Annamma A. Odaneth
- DBT-ICT Centre for Energy Biosciences, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga (East), Mumbai, 400019 Maharashtra India
| | - Jessica M. M. Adams
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Gogerddan, Aberystwyth, SY23 3EE United Kingdom
| |
Collapse
|
6
|
Tran VHN, Mikkelsen MD, Truong HB, Vo HNM, Pham TD, Cao HTT, Nguyen TT, Meyer AS, Thanh TTT, Van TTT. Structural Characterization and Cytotoxic Activity Evaluation of Ulvan Polysaccharides Extracted from the Green Algae Ulva papenfussii. Mar Drugs 2023; 21:556. [PMID: 37999380 PMCID: PMC10672449 DOI: 10.3390/md21110556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 11/25/2023] Open
Abstract
Ulvan, a sulfated heteropolysaccharide with structural and functional properties of interest for various uses, was extracted from the green seaweed Ulva papenfussii. U. papenfussii is an unexplored Ulva species found in the South China Sea along the central coast of Vietnam. Based on dry weight, the ulvan yield was ~15% (w/w) and the ulvan had a sulfate content of 13.4 wt%. The compositional constitution encompassed L-Rhamnose (Rhap), D-Xylose (Xylp), D-Glucuronic acid (GlcAp), L-Iduronic acid (IdoAp), D-Galactose (Galp), and D-Glucose (Glcp) with a molar ratio of 1:0.19:0.35:0.52:0.05:0.11, respectively. The structure of ulvan was determined using High-Performance Liquid Chromatography (HPLC), Fourier Transform Infrared Spectroscopy (FT-IR), and Nuclear Magnetic Resonance spectroscopy (NMR) methods. The results showed that the extracted ulvan comprised a mixture of two different structural forms, namely ("A3s") with the repeating disaccharide [→4)-β-D-GlcAp-(1→4)-α-L-Rhap 3S-(1→]n, and ("B3s") with the repeating disaccharide [→4)-α-L-IdoAp-(1→4)-α-L-Rhap 3S(1→]n. The relative abundance of A3s, and B3s was 1:1.5, respectively. The potential anticarcinogenic attributes of ulvan were evaluated against a trilogy of human cancer cell lineages. Concomitantly, Quantitative Structure-Activity Relationship (QSAR) modeling was also conducted to predict potential adverse reactions stemming from pharmacological interactions. The ulvan showed significant antitumor growth activity against hepatocellular carcinoma (IC50 ≈ 90 µg/mL), human breast cancer cells (IC50 ≈ 85 µg/mL), and cervical cancer cells (IC50 ≈ 67 µg/mL). The QSAR models demonstrated acceptable predictive power, and seven toxicity indications confirmed the safety of ulvan, warranting its candidacy for further in vivo testing and applications as a biologically active pharmaceutical source for human disease treatment.
Collapse
Affiliation(s)
- Vy Ha Nguyen Tran
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| | - Maria Dalgaard Mikkelsen
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (M.D.M.); (A.S.M.)
| | - Hai Bang Truong
- Optical Materials Research Group, Science and Technology Advanced Institute, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Vietnam;
- Faculty of Applied Technology, School of Technology, Van Lang University, 69/68 Dang Thuy Tram Street, Ward 13, Binh Thanh District, Ho Chi Minh City 70000, Vietnam
| | - Hieu Nhu Mai Vo
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| | - Thinh Duc Pham
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| | - Hang Thi Thuy Cao
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| | - Thuan Thi Nguyen
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| | - Anne S. Meyer
- Section for Protein Chemistry and Enzyme Technology, DTU Bioengineering-Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kongens Lyngby, Denmark; (M.D.M.); (A.S.M.)
| | - Thuy Thu Thi Thanh
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Street, Hanoi 10000, Vietnam;
| | - Tran Thi Thanh Van
- NhaTrang Institute of Technology Research and Application, Vietnam Academy of Science and Technology, 02 Hung Vuong Street, Nhatrang 650000, Vietnam; (V.H.N.T.); (H.N.M.V.); (T.D.P.); (H.T.T.C.); (T.T.N.)
| |
Collapse
|
7
|
Production and Characterization of a Novel Exopolysaccharide from Ramlibacter tataouinensis. Molecules 2022; 27:molecules27217172. [PMID: 36364003 PMCID: PMC9658432 DOI: 10.3390/molecules27217172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/15/2022] [Accepted: 10/17/2022] [Indexed: 12/04/2022] Open
Abstract
The current study examines the desiccation-resistant Ramlibacter tataouinensis TTB310T as a model organism for the production of novel exopolysaccharides and their structural features. This bacterium is able to produce dividing forms of cysts which synthesize cell-bound exopolysaccharide. Initial experiments were conducted on the enrichment of cyst biomass for exopolysaccharide production under batch-fed conditions in a pilot-scale bioreactor, with lactate as the source of carbon and energy. The optimized medium produced significant quantities of exopolysaccharide in a single growth phase, since the production of exopolysaccharide took place during the division of the cysts. The exopolysaccharide layer was extracted from the cysts using a modified trichloroacetic acid method. The biochemical characterization of purified exopolysaccharide was performed by gas chromatography, ultrahigh-resolution mass spectrometry, nuclear magnetic resonance, and Fourier-transform infrared spectrometry. The repeating unit of exopolysaccharide was a decasaccharide consisting of ribose, glucose, rhamnose, galactose, mannose, and glucuronic acid with the ratio 3:2:2:1:1:1, and additional substituents such as acetyl, succinyl, and methyl moieties were also observed as a part of the exopolysaccharide structure. This study contributes to a fundamental understanding of the novel structural features of exopolysaccharide from a dividing form of cysts, and, further, results can be used to study its rheological properties for various industrial applications.
Collapse
|
8
|
Negreanu-Pirjol BS, Negreanu-Pirjol T, Popoviciu DR, Anton RE, Prelipcean AM. Marine Bioactive Compounds Derived from Macroalgae as New Potential Players in Drug Delivery Systems: A Review. Pharmaceutics 2022; 14:pharmaceutics14091781. [PMID: 36145528 PMCID: PMC9505595 DOI: 10.3390/pharmaceutics14091781] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/06/2022] [Accepted: 08/11/2022] [Indexed: 11/16/2022] Open
Abstract
The marine algal ecosystem is characterized by a rich ecological biodiversity and can be considered as an unexploited resource for the discovery and isolation of novel bioactive compounds. In recent years, marine macroalgae have begun to be explored for their valuable composition in bioactive compounds and opportunity to obtain different nutraceuticals. In comparison with their terrestrial counterparts, Black Sea macroalgae are potentially good sources of bioactive compounds with specific and unique biological activities, insufficiently used. Macroalgae present in different marine environments contain several biologically active metabolites, including polysaccharides, oligosaccharides, polyunsaturated fatty acids, sterols, proteins polyphenols, carotenoids, vitamins, and minerals. As a result, they have received huge interest given their promising potentialities in supporting antitumoral, antimicrobial, anti-inflammatory, immunomodulatory, antiangiogenic, antidiabetic, and neuroprotective properties. An additional advantage of ulvans, fucoidans and carrageenans is the biocompatibility and limited or no toxicity. This therapeutic potential is a great natural treasure to be exploited for the development of novel drug delivery systems in both preventive and therapeutic approaches. This overview aims to provide an insight into current knowledge focused on specific bioactive compounds, which represent each class of macroalgae e.g., ulvans, fucoidans and carrageenans, respectively, as valuable potential players in the development of innovative drug delivery systems.
Collapse
Affiliation(s)
- Bogdan-Stefan Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Corp C, 900470 Constanta, Romania
| | - Ticuta Negreanu-Pirjol
- Faculty of Pharmacy, Ovidius University of Constanta, 6, Capitan Aviator Al. Serbanescu Street, Campus, Corp C, 900470 Constanta, Romania
- Biological Sciences Section, Romanian Academy of Scientists, 3, Ilfov Street, 050044 Bucharest, Romania
- Correspondence:
| | - Dan Razvan Popoviciu
- Faculty of Natural Sciences and Agricultural Sciences, Ovidius University of Constanta, 1, University Alley, Campus, Corp B, 900527 Constanta, Romania
| | - Ruxandra-Elena Anton
- Cellular and Molecular Biology Department, National Institute of R&D for Biological Sciences, 296, Splaiul Independentei Bvd., 060031 Bucharest, Romania
| | - Ana-Maria Prelipcean
- Cellular and Molecular Biology Department, National Institute of R&D for Biological Sciences, 296, Splaiul Independentei Bvd., 060031 Bucharest, Romania
| |
Collapse
|
9
|
Mukherjee S, Jana S, Khawas S, Kicuntod J, Marschall M, Ray B, Ray S. Synthesis, molecular features and biological activities of modified plant polysaccharides. Carbohydr Polym 2022; 289:119299. [DOI: 10.1016/j.carbpol.2022.119299] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 12/17/2022]
|
10
|
Cao S, Yang Y, Liu S, Shao Z, Chu X, Mao W. Immunomodulatory Activity In Vitro and In Vivo of a Sulfated Polysaccharide with Novel Structure from the Green Alga Ulvaconglobata Kjellman. Mar Drugs 2022; 20:md20070447. [PMID: 35877740 PMCID: PMC9320874 DOI: 10.3390/md20070447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/05/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Algae accumulate large amounts of polysaccharides in their cell walls or intercellular regions. Polysaccharides from algae possess high potential as promising candidates for marine drug development. In this study, a sulfated polysaccharide, UCP, from the green alga Ulva conglobata Kjellman was obtained by water extraction, anion-exchange, and size-exclusion chromatography purification, and its structure was characterized by a combination of chemical and spectroscopic methods. UCP mainly consisted of →4)-α/β-l-Rhap-(1→, →4)-β-d-Xylp-(1→ and →4)-β-d-GlcAp-(1→ residues. Sulfate ester groups were substituted mainly at C-3 of →4)-l-Rhap-(1→ and C-2 of →4)-β-d-Xylp-(1→. Partial glycosylation was at C-2 of →4)-α-l-Rhap-(1→ residues. UCP possessed a potent immunomodulatory effect in vitro, evaluated by the assays of lymphocyte proliferation and macrophage phagocytosis. The immunomodulatory activity of UCP in vivo was further investigated using immunosuppressive mice induced by cyclophosphamide. The results showed that UCP markedly increased the spleen and thymus indexes and ameliorated the cyclophosphamide-induced damage to the spleen and thymus. UCP could increase the levels of white blood cells, lymphocytes, and platelets, and improve the hematopoietic inhibition caused by cyclophosphamide. Moreover, UCP significantly promoted the secretions of the immunoglobulin (Ig)G, IgE, and IgM. The data demonstrated that UCP is a novel sulfated polysaccharide and may be a promising immunomodulatory agent.
Collapse
Affiliation(s)
- Sujian Cao
- Advanced Medical Research Institute, Shandong University, Jinan 250012, China;
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Yajing Yang
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Shan Liu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Zhuling Shao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Xiao Chu
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
| | - Wenjun Mao
- Key Laboratory of Marine Drugs of Ministry of Education, Shandong Key Laboratory of Glycoscience and Glycotechnology, School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; (Y.Y.); (S.L.); (Z.S.); (X.C.)
- Correspondence: ; Tel.: +86-532-8203-1560
| |
Collapse
|
11
|
Isolation, Diversity and Characterization of Ulvan-Degrading Bacteria Isolated from Marine Environments. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27113420. [PMID: 35684358 PMCID: PMC9182395 DOI: 10.3390/molecules27113420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 04/28/2022] [Accepted: 05/24/2022] [Indexed: 11/29/2022]
Abstract
In this study, we aimed to isolate bacteria capable of degrading the polysaccharide ulvan from the green algae Ulva sp. (Chlorophyta, Ulvales, Ulvaceae) in marine environments. We isolated 13 ulvan-degrading bacteria and observed high diversity at the genus level. Further, the genera Paraglaciecola, Vibrio, Echinicola, and Algibacter, which can degrade ulvan, were successfully isolated for the first time from marine environments. Among the 13 isolates, only one isolate (Echinicola sp.) showed the ability not only to produce externally expressed ulvan lyase, but also to be periplasmic or on the cell surface. From the results of the full-genome analysis, lyase was presumed to be a member of the PL25 (BNR4) family of ulvan lyases, and the bacterium also contained the sequence for glycoside hydrolase (GH43, GH78 and GH88), which is characteristic of other ulvan-degrading bacteria. Notably, this bacterium has a unique ulvan lyase gene not previously reported.
Collapse
|
12
|
Li J, He Z, Liang Y, Peng T, Hu Z. Insights into Algal Polysaccharides: A Review of Their Structure, Depolymerases, and Metabolic Pathways. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:1749-1765. [PMID: 35124966 DOI: 10.1021/acs.jafc.1c05365] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In recent years, marine macroalgae with extensive biomass have attracted the attention of researchers worldwide. Furthermore, algal polysaccharides have been widely studied in the food, pharmaceutical, and cosmetic fields because of their various kinds of bioactivities. However, there are immense barriers to their application as a result of their high molecular size, poor solubility, hydrocolloid nature, and low physiological activities. Unique polysaccharides, such as laminarin, alginate, fucoidan, agar, carrageenan, porphyran, ulvan, and other complex structural polysaccharides, can be digested by marine bacteria with many carbohydrate-active enzymes (CAZymes) by breaking down the limitation of glycosidic bonds. However, structural elucidation of algal polysaccharides, metabolic pathways, and identification of potential polysaccharide hydrolases that participate in different metabolic pathways remain major obstacles restricting the efficient utilization of algal oligosaccharides. This review focuses on the structure, hydrolase families, metabolic pathways, and potential applications of seven macroalgae polysaccharides. These results will contribute to progressing our understanding of the structure of algal polysaccharides and their metabolic pathways and will be valuable for clearing the way for the compelling utilization of bioactive oligosaccharides.
Collapse
Affiliation(s)
- Jin Li
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Zhixiao He
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Yumei Liang
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Tao Peng
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
| | - Zhong Hu
- Department of Biology, College of Science, Shantou University, Shantou, Guangdong 515063, People's Republic of China
- Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou, Guangdong 511458, People's Republic of China
| |
Collapse
|
13
|
Yang Z, Wang H, Liu N, Zhao K, Sheng Y, Pang H, Shao K, Zhang M, Li S, He N. Algal polysaccharides and derivatives as potential therapeutics for obesity and related metabolic diseases. Food Funct 2022; 13:11387-11409. [DOI: 10.1039/d2fo02185d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The potential and challenges of algal polysaccharides and their derivatives as potential therapeutic agents for obesity and its related metabolic diseases.
Collapse
Affiliation(s)
- Zizhen Yang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Haoyu Wang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Nian Liu
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Kunyi Zhao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Yingying Sheng
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Hao Pang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Kaidi Shao
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Mengyao Zhang
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Shangyong Li
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| | - Ningning He
- School of Basic Medicine, Qingdao Medical College, Qingdao University, Qingdao, China
| |
Collapse
|
14
|
Ray B, Ali I, Jana S, Mukherjee S, Pal S, Ray S, Schütz M, Marschall M. Antiviral Strategies Using Natural Source-Derived Sulfated Polysaccharides in the Light of the COVID-19 Pandemic and Major Human Pathogenic Viruses. Viruses 2021; 14:35. [PMID: 35062238 PMCID: PMC8781365 DOI: 10.3390/v14010035] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 12/14/2022] Open
Abstract
Only a mere fraction of the huge variety of human pathogenic viruses can be targeted by the currently available spectrum of antiviral drugs. The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) outbreak has highlighted the urgent need for molecules that can be deployed quickly to treat novel, developing or re-emerging viral infections. Sulfated polysaccharides are found on the surfaces of both the susceptible host cells and the majority of human viruses, and thus can play an important role during viral infection. Such polysaccharides widely occurring in natural sources, specifically those converted into sulfated varieties, have already proved to possess a high level and sometimes also broad-spectrum antiviral activity. This antiviral potency can be determined through multifold molecular pathways, which in many cases have low profiles of cytotoxicity. Consequently, several new polysaccharide-derived drugs are currently being investigated in clinical settings. We reviewed the present status of research on sulfated polysaccharide-based antiviral agents, their structural characteristics, structure-activity relationships, and the potential of clinical application. Furthermore, the molecular mechanisms of sulfated polysaccharides involved in viral infection or in antiviral activity, respectively, are discussed, together with a focus on the emerging methodology contributing to polysaccharide-based drug development.
Collapse
Affiliation(s)
- Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Imran Ali
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Saikat Pal
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan 713104, West Bengal, India; (I.A.); (S.J.); (S.M.); (S.P.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Manfred Marschall
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany
| |
Collapse
|
15
|
Mahmood Ansari S, Saquib Q, De Matteis V, Awad Alwathnani H, Ali Alharbi S, Ali Al-Khedhairy A. Marine Macroalgae Display Bioreductant Efficacy for Fabricating Metallic Nanoparticles: Intra/Extracellular Mechanism and Potential Biomedical Applications. Bioinorg Chem Appl 2021; 2021:5985377. [PMID: 34873399 PMCID: PMC8643268 DOI: 10.1155/2021/5985377] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 10/26/2021] [Accepted: 11/01/2021] [Indexed: 11/17/2022] Open
Abstract
The application of hazardous chemicals during nanoparticle (NP) synthesis has raised alarming concerns pertaining to their biocompatibility and equally to the environmental harmlessness. In the recent decade, nanotechnological research has made a gigantic shift in order to include the natural resources to produce biogenic NPs. Within this approach, researchers have utilized marine resources such as macroalgae and microalgae, land plants, bacteria, fungi, yeast, actinomycetes, and viruses to synthesize NPs. Marine macroalgae (brown, red, and green) are rich in polysaccharides including alginates, fucose-containing sulfated polysaccharides (FCSPs), galactans, agars or carrageenans, semicrystalline cellulose, ulvans, and hemicelluloses. Phytochemicals are abundant in phenols, tannins, alkaloids, terpenoids, and vitamins. However, microorganisms have an abundance of active compounds ranging from sugar molecules, enzymes, canonical membrane proteins, reductase enzymes (NADH and NADPH), membrane proteins to many more. The prime reason for using the aforesaid entities in the metallic NPs synthesis is based on their intrinsic properties to act as bioreductants, having the capability to reduce and cap the metal ions into stabilized NPs. Several green NPs have been verified for their biocompatibility in human cells. Bioactive constituents from the above resources have been found on the green metallic NPs, which has demonstrated their efficacies as prospective antibiotics and anti-cancer agents against a range of human pathogens and cancer cells. Moreover, these NPs can be characterized for the size, shapes, functional groups, surface properties, porosity, hydrodynamic stability, and surface charge using different characterization techniques. The novelty and originality of this review is that we provide recent research compilations on green synthesis of NPs by marine macroalgae and other biological sources (plant, bacteria, fungi, actinomycetes, yeast, and virus). Besides, we elaborated on the detailed intra- and extracellular mechanisms of NPs synthesis by marine macroalgae. The application of green NPs as anti-bacterial, anti-cancer, and popular methods of NPs characterization techniques has also been critically reviewed.
Collapse
Affiliation(s)
- Sabiha Mahmood Ansari
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Quaiser Saquib
- Zoology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Valeria De Matteis
- Department of Mathematics and Physics “E. De Giorgi”, University of Salento, Via per Arnesano, 73100 Lecce, Italy
| | - Hend Awad Alwathnani
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Botany & Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | |
Collapse
|
16
|
Wassie T, Niu K, Xie C, Wang H, Xin W. Extraction Techniques, Biological Activities and Health Benefits of Marine Algae Enteromorpha prolifera Polysaccharide. Front Nutr 2021; 8:747928. [PMID: 34692752 PMCID: PMC8529069 DOI: 10.3389/fnut.2021.747928] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/10/2021] [Indexed: 01/03/2023] Open
Abstract
There is increasing interest in the use of marine algae as functional food additives for improving human health. Enteromorpha (Ulva) prolifera (E. prolifera) is a seaweed green alga (Chlorophyta) that contains many bioactive compounds, of which polysaccharide is the main component. With the advancement of technology in the methods of extraction and analysis, recent studies in in vitro and animals model showed that polysaccharides derived from E. prolifera exert various biological activities, such as gut microbiota modulation, immunomodulation, antioxidant, antidiabetic, antimicrobial, and hypolipidemic. Research evidence has shown that methods of extraction and molecular modification, such as degradation, carboxymethylation, and sulfonation could alter the biological activities of polysaccharides. Therefore, in this review, we discussed the different extraction techniques, structural-activity relationship, and health benefits of sulfated polysaccharides derived from E. prolifera, and suggested future research avenues. This review helps to advance the extraction techniques and promote the application of marine algae polysaccharides as functional food and therapeutic agent.
Collapse
Affiliation(s)
- Teketay Wassie
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
| | - Kaimin Niu
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
| | - Chunyan Xie
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Haihua Wang
- Qingdao Seawin Biotech Group Co., Ltd., Qingdao, China
| | - Wu Xin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang, China
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|
17
|
Rosmarinic Acid and Ulvan from Terrestrial and Marine Sources in Anti-Microbial Bionanosystems and Biomaterials. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11199249] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
In order to increase their sustainability, antimicrobial renewable molecules are fundamental additions to consumer goods. Rosmarinic acid is extracted from several terrestrial plants and represents an effective anti-microbial agent. Ulvan, extracted from algae, is an anti-microbial polysaccharide. The present review is dedicated to discussing the sources and the extraction methodologies for obtaining rosmarinic acid and ulvan. Moreover, the preparation of bioanosystems, integrating the two molecules with organic or inorganic substrates, are reviewed as methodologies to increase their effectiveness and stability. Finally, the possibility of preparing functional biomaterials and anti-microbial final products is discussed, considering scientific literature. The performed analysis indicated that the production of both molecules is not yet performed with mature industrial technologies. Nevertheless, both molecules could potentially be used in the packaging, biomedical, pharmaceutical, cosmetic, sanitary and personal care sectors, despite some research being required for developing functional materials with specific properties to pave the way for many more applications.
Collapse
|
18
|
Otero P, Carpena M, Garcia-Oliveira P, Echave J, Soria-Lopez A, Garcia-Perez P, Fraga-Corral M, Cao H, Nie S, Xiao J, Simal-Gandara J, Prieto MA. Seaweed polysaccharides: Emerging extraction technologies, chemical modifications and bioactive properties. Crit Rev Food Sci Nutr 2021; 63:1901-1929. [PMID: 34463176 DOI: 10.1080/10408398.2021.1969534] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Nowadays, consumers are increasingly aware of the relationship between diet and health, showing a greater preference of products from natural origin. In the last decade, seaweeds have outlined as one of the natural sources with more potential to obtain bioactive carbohydrates. Numerous seaweed polysaccharides have aroused the interest of the scientific community, due to their biological activities and their high potential on biomedical, functional food and technological applications. To obtain polysaccharides from seaweeds, it is necessary to find methodologies that improve both yield and quality and that they are profitable. Nowadays, environmentally friendly extraction technologies are a viable alternative to conventional methods for obtaining these products, providing several advantages like reduced number of solvents, energy and time. On the other hand, chemical modification of their structure is a useful approach to improve their solubility and biological properties, and thus enhance the extent of their potential applications since some uses of polysaccharides are still limited. The present review aimed to compile current information about the most relevant seaweed polysaccharides, available extraction and modification methods, as well as a summary of their biological activities, to evaluate knowledge gaps and future trends for the industrial applications of these compounds.Key teaching pointsStructure and biological functions of main seaweed polysaccharides.Emerging extraction methods for sulfate polysaccharides.Chemical modification of seaweeds polysaccharides.Potential industrial applications of seaweed polysaccharides.Biological activities, knowledge gaps and future trends of seaweed polysaccharides.
Collapse
Affiliation(s)
- Paz Otero
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M Carpena
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P Garcia-Oliveira
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - J Echave
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - A Soria-Lopez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - P Garcia-Perez
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M Fraga-Corral
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| | - Hui Cao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - Shaoping Nie
- State Key Laboratory of Food Science and Technology, China-Canada Joint Lab of Food Science and Technology (Nanchang), Nanchang University, Nanchang, China
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang, China
| | - J Simal-Gandara
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
| | - M A Prieto
- Nutrition and Bromatology Group, Faculty of Food Science and Technology, University of Vigo, Ourense, Spain
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Bragança, Portugal
| |
Collapse
|
19
|
Sulastri E, Lesmana R, Zubair MS, Elamin KM, Wathoni N. A Comprehensive Review on Ulvan Based Hydrogel and Its Biomedical Applications. Chem Pharm Bull (Tokyo) 2021; 69:432-443. [PMID: 33952853 DOI: 10.1248/cpb.c20-00763] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Ulvan is a natural sulfated polysaccharide obtained from marine green algae composed of 3-sulfated rhamnoglucuronan as the main component. It has a unique chemical structure that rich of L-rhamnosa, D-glucuronic acid, and L-iduronic acid. Ulvan has a similar structure to glycosaminoglycans (GAGs) in mammals including chondroitin sulfate, dermatan sulfate, and heparan sulfate that has broad range applications for many years. Here, we provide an overview of ulvan based hydrogels for biomedical applications. Hydrogels are one of ulvan advances in polymer science for application in drug delivery, tissue engineering, and wound healing. This review presented an overview about functional information of ulvan based hydrogels and the promising potential in biomedicals collected from published papers in Scopus, PubMed, and Google Scholar. Other important aspects concerning properties, hydrogel-forming mechanisms, and ulvan based hydrogel developments were reported as well. As conclusion, ulvan showed interesting properties in forming hydrogels and promising advances in biomedical applications.
Collapse
Affiliation(s)
- Evi Sulastri
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran.,Department of Pharmacy, Faculty of Mathematics and Natural Sciences, Universitas Tadulako
| | - Ronny Lesmana
- Department of Anatomy, Physiology and Biology Cell, Faculty of Medicine, Universitas Padjadjaran
| | | | - Khaled M Elamin
- Global Center for Natural Resources Sciences, Faculty of Life Sciences, Kumamoto University
| | - Nasrul Wathoni
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Universitas Padjadjaran
| |
Collapse
|
20
|
Role and Evolution of the Extracellular Matrix in the Acquisition of Complex Multicellularity in Eukaryotes: A Macroalgal Perspective. Genes (Basel) 2021; 12:genes12071059. [PMID: 34356075 PMCID: PMC8307928 DOI: 10.3390/genes12071059] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
Multicellular eukaryotes are characterized by an expanded extracellular matrix (ECM) with a diversified composition. The ECM is involved in determining tissue texture, screening cells from the outside medium, development, and innate immunity, all of which are essential features in the biology of multicellular eukaryotes. This review addresses the origin and evolution of the ECM, with a focus on multicellular marine algae. We show that in these lineages the expansion of extracellular matrix played a major role in the acquisition of complex multicellularity through its capacity to connect, position, shield, and defend the cells. Multiple innovations were necessary during these evolutionary processes, leading to striking convergences in the structures and functions of the ECMs of algae, animals, and plants.
Collapse
|
21
|
Kumar Y, Tarafdar A, Badgujar PC. Seaweed as a Source of Natural Antioxidants: Therapeutic Activity and Food Applications. J FOOD QUALITY 2021; 2021:1-17. [DOI: 10.1155/2021/5753391] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Seaweed is a valuable source of bioactive compounds, polysaccharides, antioxidants, minerals, and essential nutrients such as fatty acids, amino acids, and vitamins that could be used as a functional ingredient. The variation in the composition of biologically active compounds in seaweeds depends on the environmental growth factors that make seaweed of the same species compositionally different across the globe. Nevertheless, all seaweeds exhibit extraordinary antioxidant potential which can be harnessed for a broad variety of food applications such as in preparation of soups, pasta, salads, noodles, and other country specific dishes. This review highlights the nutritional and bioactive compounds occurring in different classes of seaweeds while focusing on their therapeutic activities including but not limited to blood cell aggregation, antiviral, antitumor, anti-inflammatory, and anticancer properties. The review also explores the existing and potential application of seaweeds as a source of natural antioxidant in food products. Seaweed-derived compounds have great potential for being used as a supplement in functional foods due to their high stability as well as consumer demand for antioxidant-rich foods.
Collapse
Affiliation(s)
- Yogesh Kumar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India
| | - Ayon Tarafdar
- Department of Food Engineering, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izzatnagar, Bareilly 243 122, Uttar Pradesh, India
| | - Prarabdh C. Badgujar
- Department of Food Science and Technology, National Institute of Food Technology Entrepreneurship and Management, Kundli, Sonipat 131028, Haryana, India
| |
Collapse
|
22
|
Gruskiene R, Kavleiskaja T, Staneviciene R, Kikionis S, Ioannou E, Serviene E, Roussis V, Sereikaite J. Nisin-Loaded Ulvan Particles: Preparation and Characterization. Foods 2021; 10:foods10051007. [PMID: 34064524 PMCID: PMC8147952 DOI: 10.3390/foods10051007] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/27/2021] [Accepted: 05/01/2021] [Indexed: 11/17/2022] Open
Abstract
Nisin is an attractive alternative to chemical preservatives in the food industry. It is a cationic peptide of 34 amino acid residues that exhibits antimicrobial activity against Gram-positive bacteria. To ensure nisin stability in food matrices, new nisin-loaded ulvan particles were developed by the complexation method. The interaction of nisin with ulvan was demonstrated by FT-IR spectroscopy and differential scanning calorimetry. The encapsulation efficiency was calculated at different pH values within the range of 4.0–7.0 and was found to have the highest value at pH 7.0. The size and surface charge of particles fabricated at different concentrations of nisin and pH values were determined. Nisin-loaded ulvan particles exhibited antimicrobial activity against Gram-positive bacteria comparable to that of free nisin. Therefore, the developed complexes have the potential for application as biopreservatives in the food industry. For the first time, the potential of ulvan as a carrier of antimicrobial agent nisin was demonstrated.
Collapse
Affiliation(s)
- Ruta Gruskiene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania; (R.G.); (E.S.)
| | | | - Ramune Staneviciene
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, 08412 Vilnius, Lithuania;
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (E.I.); (V.R.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (E.I.); (V.R.)
| | - Elena Serviene
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania; (R.G.); (E.S.)
- Laboratory of Genetics, Institute of Botany, Nature Research Centre, 08412 Vilnius, Lithuania;
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (S.K.); (E.I.); (V.R.)
| | - Jolanta Sereikaite
- Department of Chemistry and Bioengineering, Vilnius Gediminas Technical University, 10221 Vilnius, Lithuania; (R.G.); (E.S.)
- Correspondence:
| |
Collapse
|
23
|
Chen J, Zeng W, Gan J, Li Y, Pan Y, Li J, Chen H. Physicochemical properties and anti-oxidation activities of ulvan from Ulva pertusa Kjellm. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
24
|
Fournière M, Bedoux G, Lebonvallet N, Leschiera R, Le Goff-Pain C, Bourgougnon N, Latire T. Poly- and Oligosaccharide Ulva sp. Fractions from Enzyme-Assisted Extraction Modulate the Metabolism of Extracellular Matrix in Human Skin Fibroblasts: Potential in Anti-Aging Dermo-Cosmetic Applications. Mar Drugs 2021; 19:md19030156. [PMID: 33802739 PMCID: PMC8002389 DOI: 10.3390/md19030156] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 03/09/2021] [Accepted: 03/12/2021] [Indexed: 12/30/2022] Open
Abstract
Ulva sp. is known to be a source of bioactive compounds such as ulvans, but their biological activity on human dermal fibroblast extracellular matrix (ECM) is poorly reported. In this work, the regulation of ECM has been investigated for the first time at both proteomic and transcriptomic levels in normal human skin dermal fibroblasts, after 48 h of incubation with poly- and oligosaccharide fractions from Ulva sp. obtained after enzyme-assisted extraction and depolymerization. Cell proliferation enhancement (up to +68%) without exhibiting any cytotoxic effect on fibroblasts was demonstrated at 50 and 1000 µg/mL by both fractions. At the proteomic level, polysaccharide fractions at 1000 µg/mL enhanced the most the synthesis of glycosaminoglycans (GAGs, up to +57%), total collagen, especially types I (up to +217%) and III, as well as the synthesis and activity of MMP-1 (Matrix Metalloproteinase-1, up to +309%). In contrast, oligosaccharide fractions had no effect on GAGs synthesis but exhibited similarities for collagens and MMP-1 regulation. At the transcriptomic level, the decrease of COL1A1 and COL1A2 expression, and increase of COL3A1 and MMP-1 expression, confirmed the modulation of ECM metabolism by both fractions. Our research emphasizes that poly- and oligosaccharide Ulva sp. fractions exhibit interesting biological activities and supports their potential use in the area of skin renewal for anti-aging dermo-cosmetic applications.
Collapse
Affiliation(s)
- Mathilde Fournière
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
- Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France;
- Correspondence:
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
| | - Nicolas Lebonvallet
- Laboratoire Interaction Epithéliums Neurones, EA 4686, Université Bretagne Occidentale, 29200 Brest, France; (N.L.); (R.L.)
| | - Raphaël Leschiera
- Laboratoire Interaction Epithéliums Neurones, EA 4686, Université Bretagne Occidentale, 29200 Brest, France; (N.L.); (R.L.)
| | | | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
| | - Thomas Latire
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884, IUEM, Université Bretagne Sud, 56000 Vannes, France; (G.B.); (N.B.); (T.L.)
- Université Catholique de l’Ouest Bretagne Nord, 22200 Guingamp, France;
| |
Collapse
|
25
|
Inoue A, Kudo M, Werner E, Ojima T. Identification and characterization of cellouronate (β-1,4-linked polyglucuronic acid) lyase from the scallop Mizuhopecten yessoensis. Carbohydr Polym 2021; 254:117306. [PMID: 33357872 DOI: 10.1016/j.carbpol.2020.117306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 10/11/2020] [Accepted: 10/20/2020] [Indexed: 10/23/2022]
Abstract
The semisynthetic polysaccharide cellouronate is a β-1,4-linked polyglucuronic acid prepared from regenerated cellulose by chemical oxidation. Here, we isolated a novel enzyme, MyAly, as a cellouronate lyase from a scallop Mizuhopecten yessoensis. Its optimum temperature, pH, and NaCl concentration for cellouronate degradation were determined to be 30 °C, 6.9, and 200-500 mM, respectively. MyAly endolytically degraded cellouronate into unsaturated di-, tri-, and tetrasaccharides with kcat of 31.1 s-1. MyAly also showed an alginate-degradation activity with a kcat value of 0.58 s-1. However, there was no significant difference in Km values between cellouronate and alginate. MyAly consisted of 280 amino acids and shared 36.5-44.1 % identity with known marine gastropod alginate lyases belonging to the polysaccharide lyase family 14. This is the first study to identify and characterize a cellouronate-degrading lyase from a marine organism, providing a better understanding of the biodegradability of the industrially important polysaccharide, cellouronate, in marine environments.
Collapse
Affiliation(s)
- Akira Inoue
- Laboratory of Marine Biotechnology and Microbiology, Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan.
| | - Masataka Kudo
- Laboratory of Marine Biotechnology and Microbiology, Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| | - Elisa Werner
- Section of Organic Chemistry and Biochemistry, Department of Chemistry, Technische Universität München, Lichtenbergstraße 4, D-85748, Garching, Germany
| | - Takao Ojima
- Laboratory of Marine Biotechnology and Microbiology, Division of Marine Life Science, Graduate School of Fisheries Sciences, Hokkaido University, 3-1-1 Minato-cho, Hakodate, Hokkaido, 041-8611, Japan
| |
Collapse
|
26
|
Ray B, Schütz M, Mukherjee S, Jana S, Ray S, Marschall M. Exploiting the Amazing Diversity of Natural Source-Derived Polysaccharides: Modern Procedures of Isolation, Engineering, and Optimization of Antiviral Activities. Polymers (Basel) 2020; 13:E136. [PMID: 33396933 PMCID: PMC7794815 DOI: 10.3390/polym13010136] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/15/2022] Open
Abstract
Naturally occurring polysaccharide sulfates are highly diverse, owning variations in the backbone structure, linkage pattern and stereochemistry, branching diversity, sulfate content and positions of sulfate group(s). These structural characteristics bring about diverse sulfated polymers with dissimilar negative charge densities and structure-activity relationships. Herein, we start with a short discussion of techniques needed for extraction, purification, chemical sulfation, and structural characterization of polysaccharides. Processes of isolation and sulfation of plant-derived polysaccharides are challenging and usually involve two steps. In this context, we describe an integrated extraction-sulfation procedure that produces polysaccharide sulfates from natural products in one step, thereby generating additional pharmacological activities. Finally, we provide examples of the spectrum of natural source-derived polysaccharides possessing specific features of bioactivity, in particular focusing on current aspects of antiviral drug development and drug-target interaction. Thus, the review presents a detailed view on chemically engineered polysaccharides, especially sulfated derivatives, and underlines their promising biomedical perspectives.
Collapse
Affiliation(s)
- Bimalendu Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Martin Schütz
- Institute for Clinical and Molecular Virology, Friedrich-Alexander University (FAU) of Erlangen-Nürnberg, 91054 Erlangen, Germany;
| | - Shuvam Mukherjee
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Subrata Jana
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Sayani Ray
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| | - Manfred Marschall
- Department of Chemistry, The University of Burdwan, Burdwan, West Bengal 713104, India; (B.R.); (S.M.); (S.J.)
| |
Collapse
|
27
|
Chemically Diverse and Biologically Active Secondary Metabolites from Marine Phylum chlorophyta. Mar Drugs 2020; 18:md18100493. [PMID: 32993146 PMCID: PMC7601752 DOI: 10.3390/md18100493] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
For a long time, algal chemistry from terrestrial to marine or freshwater bodies, especially chlorophytes, has fascinated numerous investigators to develop new drugs in the nutraceutical and pharmaceutical industries. As such, chlorophytes comprise a diverse structural class of secondary metabolites, having functional groups that are specific to a particular source. All bioactive compounds of chlorophyte are of great interest due to their supplemental/nutritional/pharmacological activities. In this review, a detailed description of the chemical diversity of compounds encompassing alkaloids, terpenes, steroids, fatty acids and glycerides, their subclasses and their structures are discussed. These promising natural products have efficiency in developing new drugs necessary in the treatment of various deadly pathologies (cancer, HIV, SARS-CoV-2, several inflammations, etc.). Marine chlorophyte, therefore, is portrayed as a pivotal treasure in the case of drugs having marine provenience. It is a domain of research expected to probe novel pharmaceutically or nutraceutically important secondary metabolites resulting from marine Chlorophyta. In this regard, our review aims to compile the isolated secondary metabolites having diverse chemical structures from chlorophytes (like Caulerpa ssp., Ulva ssp., Tydemania ssp., Penicillus ssp., Codium ssp., Capsosiphon ssp., Avrainvillea ssp.), their biological properties, applications and possible mode of action.
Collapse
|
28
|
Hentati F, Tounsi L, Djomdi D, Pierre G, Delattre C, Ursu AV, Fendri I, Abdelkafi S, Michaud P. Bioactive Polysaccharides from Seaweeds. Molecules 2020; 25:E3152. [PMID: 32660153 PMCID: PMC7397078 DOI: 10.3390/molecules25143152] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 07/06/2020] [Accepted: 07/07/2020] [Indexed: 02/08/2023] Open
Abstract
Bioactive compounds with diverse chemical structures play a significant role in disease prevention and maintenance of physiological functions. Due to the increase in industrial demand for new biosourced molecules, several types of biomasses are being exploited for the identification of bioactive metabolites and techno-functional biomolecules that are suitable for the subsequent uses in cosmetic, food and pharmaceutical fields. Among the various biomasses available, macroalgae are gaining popularity because of their potential nutraceutical and health benefits. Such health effects are delivered by specific diterpenes, pigments (fucoxanthin, phycocyanin, and carotenoids), bioactive peptides and polysaccharides. Abundant and recent studies have identified valuable biological activities of native algae polysaccharides, but also of their derivatives, including oligosaccharides and (bio)chemically modified polysaccharides. However, only a few of them can be industrially developed and open up new markets of active molecules, extracts or ingredients. In this respect, the health and nutraceutical claims associated with marine algal bioactive polysaccharides are summarized and comprehensively discussed in this review.
Collapse
Affiliation(s)
- Faiez Hentati
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Département Génie Biologique, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisie;
| | - Latifa Tounsi
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| | - Djomdi Djomdi
- Department of Renewable Energy, National Advanced School of Engineering of Maroua, University of Maroua, P.O. Box 46 Maroua, Cameroon;
| | - Guillaume Pierre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| | - Cédric Delattre
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
- Institut Universitaire de France (IUF), 1 rue Descartes, 75005 Paris, France
| | - Alina Violeta Ursu
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| | - Imen Fendri
- Laboratoire de Biotechnologie des Plantes Appliquée à l’Amélioration des Cultures, Faculté des Sciences de Sfax, Université de Sfax, Sfax 3038, Tunisie;
| | - Slim Abdelkafi
- Laboratoire de Génie Enzymatique et Microbiologie, Équipe de Biotechnologie des Algues, Département Génie Biologique, Ecole Nationale d’Ingénieurs de Sfax, Université de Sfax, Sfax 3038, Tunisie;
| | - Philippe Michaud
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut Pascal, F-63000 Clermont-Ferrand, France; (F.H.); (L.T.); (G.P.); (C.D.); (A.V.U.)
| |
Collapse
|
29
|
A Short Review on the Valorization of Green Seaweeds and Ulvan: FEEDSTOCK for Chemicals and Biomaterials. Biomolecules 2020; 10:biom10070991. [PMID: 32630631 PMCID: PMC7407860 DOI: 10.3390/biom10070991] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 06/28/2020] [Accepted: 06/30/2020] [Indexed: 11/25/2022] Open
Abstract
This short review analyzed the recent trend towards, progresses towards the preparation of chemicals of, and value-added biomaterials from marine macroalgae resources, especially green seaweeds and their derived ulvan polysaccharides for various applications. In recent years, ulvan both in pristine and modified forms has gained a large amount of attention for its effective utilization in various areas due to its unique physiochemical properties, lack of exploration, and higher green seaweed production. The pristine form of ulvan (sulfated polysaccharides) is used as a bio-component; food ingredient; or a raw material for the production of numerous chemicals such as fuels, cosmetics, and pharmaceuticals, whereas its modified form is used in the sector of composites, membranes, and scaffolds, among others, because of its physicochemical properties. This review highlights the utilization of green seaweed and its derived ulvan polysaccharides for the preparation of numerous chemicals (e.g., solvents, fuel, and gas) and also value-added biomaterials with various morphologies (e.g., gels, fibers, films, scaffolds, nanomaterials, and composites).
Collapse
|
30
|
Jin W, He X, Long L, Fang Q, Wei B, Sun J, Zhang W, Wang H, Zhang F, Linhardt RJ. Structural characterization and anti-lung cancer activity of a sulfated glucurono-xylo-rhamnan from Enteromorpha prolifera. Carbohydr Polym 2020; 237:116143. [PMID: 32241440 DOI: 10.1016/j.carbpol.2020.116143] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 01/27/2020] [Accepted: 03/07/2020] [Indexed: 12/21/2022]
Abstract
A sulfated glucurono-xylo-rhamnan (EP-3-H) was purified from a green alga, Enteromorpha prolifera. EP-3-H and its oligomers were characterized by high performance liquid chromatography, mass spectrometry and one and two-dimensional nuclear magnetic resource spectroscopy. The structural analysis showed EP-3-H has a backbone of glucurono-xylo-rhamnan, branches with glucuronic acid and sulfated at C3 of rhamnose and/or C2 of xylose. The inhibition of EP-3-H on human lung cancer A549 cell proliferation in vitro and its therapeutic effects in BALB/c-nu mice in vivo were determined to evaluate the anti-lung cancer activity of EP-3-H. The tumor inhibition level was 59 %, suggesting that EP-3-H might be a good candidate for the treatment of lung cancer. Surface plasmon resonance (SPR) studies revealed the IC50 on the binding of fibroblast growth factors, (FGF1 and FGF2), to heparin were 0.85 and 1.47 mg/mL, respectively. These results suggest that EP-3-H inhibits cancer proliferation by interacting with these growth factors.
Collapse
Affiliation(s)
- Weihua Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China; Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| | - Xinyue He
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Liufei Long
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qiufu Fang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bin Wei
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jiadong Sun
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI, 02881, USA; Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), National Institutes of Health, Bethesda, MD, 20878, USA
| | - Wenjing Zhang
- Department of Endocrinology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Hong Wang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals & College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Fuming Zhang
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Robert J Linhardt
- Department of Chemical and Biological Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA; Department of Biological Science, Departments of Chemistry and Chemical Biology and Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| |
Collapse
|
31
|
Tziveleka LA, Sapalidis A, Kikionis S, Aggelidou E, Demiri E, Kritis A, Ioannou E, Roussis V. Hybrid Sponge-Like Scaffolds Based on Ulvan and Gelatin: Design, Characterization and Evaluation of Their Potential Use in Bone Tissue Engineering. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E1763. [PMID: 32283814 PMCID: PMC7178717 DOI: 10.3390/ma13071763] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 04/01/2020] [Accepted: 04/08/2020] [Indexed: 01/01/2023]
Abstract
Ulvan, a bioactive natural sulfated polysaccharide, and gelatin, a collagen-derived biopolymer, have attracted interest for the preparation of biomaterials for different biomedical applications, due to their demonstrated compatibility for cell attachment and proliferation. Both ulvan and gelatin have exhibited osteoinductive potential, either alone or in combination with other materials. In the current work, a series of novel hybrid scaffolds based on crosslinked ulvan and gelatin was designed, prepared and characterized. Their mechanical performance, thermal stability, porosity, water-uptake and in vitro degradation ability were assessed, while their morphology was analyzed through scanning electron microscopy. The prepared hybrid ulvan/gelatin scaffolds were characterized by a highly porous and interconnected structure. Human adipose-derived mesenchymal stem cells (hADMSCs) were seeded in selected ulvan/gelatin hybrid scaffolds and their adhesion, survival, proliferation, and osteogenic differentiation efficiency was evaluated. Overall, it was found that the prepared hybrid sponge-like scaffolds could efficiently support mesenchymal stem cells' adhesion and proliferation, suggesting that such scaffolds could have potential uses in bone tissue engineering.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Andreas Sapalidis
- Institute of Nanosciences and Nanotechnology, NCSR “Demokritos”, Aghia Paraskevi, 15310 Attiki, Greece;
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Eleni Aggelidou
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Efterpi Demiri
- Department of Plastic Surgery, School of Medicine, Faculty of Health Sciences, Papageorgiou Hospital, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Aristeidis Kritis
- cGMP Regenerative Medicine Facility, Department of Physiology and Pharmacology, School of Medicine, Faculty of Health Sciences, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.A.); (A.K.)
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; (L.-A.T.); (S.K.); (E.I.)
| |
Collapse
|
32
|
Li Q, Hu F, Zhu B, Ni F, Yao Z. Insights into ulvan lyase: review of source, biochemical characteristics, structure and catalytic mechanism. Crit Rev Biotechnol 2020; 40:432-441. [PMID: 32050804 DOI: 10.1080/07388551.2020.1723486] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Ulvan, a kind of polyanionic heteropolysaccharide consisting of 3-sulfated rhamnose, uronic acids (iduronic acid and glucuronic acid) and xylose, has been widely applied in food and cosmetic industries. In addition, ulvan can be converted into fermentable monosaccharides through the cascade system of carbohydrate-active enzymes. Ulvan lyases can degrade ulvan into ulvan oligosaccharides, which is the first step in the fully degradation of ulvan. Various ulvan lyases have been cloned and characterized from marine bacteria and grouped into five polysaccharide lyase (PL) families, namely: PL24, PL25, PL28, PL37 and PL40 families. The elucidation of the biochemical characterization, action pattern and catalytic mechanism of ulvan lyase would definitely enhance our understanding of the deep utilization of marine bioresource and marine carbon cycling. In this review, we summarized the recent progresses about the source and biochemical characteristics of ulvan lyase. Additionally, the structural characteristics and catalytic mechanisms have been introduced in detail. This comprehensive information should be helpful regarding the application of ulvan lyases.
Collapse
Affiliation(s)
- Qian Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Fu Hu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Benwei Zhu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Fang Ni
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| | - Zhong Yao
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, P.R. China
| |
Collapse
|
33
|
Kidgell JT, Glasson CRK, Magnusson M, Vamvounis G, Sims IM, Carnachan SM, Hinkley SFR, Lopata AL, de Nys R, Taki AC. The molecular weight of ulvan affects the in vitro inflammatory response of a murine macrophage. Int J Biol Macromol 2020; 150:839-848. [PMID: 32057850 DOI: 10.1016/j.ijbiomac.2020.02.071] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/04/2020] [Accepted: 02/08/2020] [Indexed: 11/25/2022]
Abstract
Ulvan, a sulfated polysaccharide extracted from the green seaweed genus Ulva, has bioactive properties including an immunomodulating capacity. The immunomodulatory capacity of ulvan from Ulva ohnoi, however, has not been assessed in detail. We depolymerised purified ulvan from U. ohnoi to obtain a range of molecular weight fractions (Mw 7, 9, 13, 21, 209 kDa), which were characterised by constituent sugar analysis, SEC-MALLS, and NMR. Ulvan fractions contained 48.8-54.7 mol% rhamnose, 32.5-35.9 mol% glucuronic acid, 4.5-7.3 mol% iduronic acid, and 3.3-5.6 mol% xylose. 1H and 13C NMR was consistent with hydrolysis occurring at the anomeric centre without further modification to the oligosaccharide structure. The in vitro immunomodulatory effect of ulvan fractions was quantified by measuring levels of inflammatory-mediating signalling molecules released from LPS-stimulated RAW264.7 murine macrophages. All ulvan fractions showed no toxicity on RAW264.7 cells at concentrations below 100 μg mL-1 over 48 h. Secreted interleukin-10 and prostaglandin E2 demonstrated an anti-inflammatory effect by higher molecular weight ulvan fractions at 100 μg mL-1. To a lesser extent, these fractions also enhanced the LPS-induced inflammation through minor increases of IL-1β and IL-6. This study confirms that ulvan from U. ohnoi has a mild in vitro immunomodulatory effect.
Collapse
Affiliation(s)
- Joel T Kidgell
- MACRO - The Centre for Macroalgal Resources and Biotechnology, College of Science and Engineering, James Cook University, Townsville, Australia.
| | | | - Marie Magnusson
- School of Science, University of Waikato, Tauranga, New Zealand
| | - George Vamvounis
- College of Science and Engineering, James Cook University, Townsville, Australia
| | - Ian M Sims
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Susan M Carnachan
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Simon F R Hinkley
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Andreas L Lopata
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia
| | - Rocky de Nys
- MACRO - The Centre for Macroalgal Resources and Biotechnology, College of Science and Engineering, James Cook University, Townsville, Australia
| | - Aya C Taki
- Molecular Allergy Research Laboratory, College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Australia; Australian Institute of Tropical Health and Medicine, James Cook University, Townsville, Australia; Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Australia
| |
Collapse
|
34
|
|
35
|
An overview of extraction and purification techniques of seaweed dietary fibers for immunomodulation on gut microbiota. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.08.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
36
|
Fournière M, Latire T, Lang M, Terme N, Bourgougnon N, Bedoux G. Production of Active Poly- and Oligosaccharidic Fractions from Ulva sp. by Combining Enzyme-Assisted Extraction (EAE) and Depolymerization. Metabolites 2019; 9:E182. [PMID: 31547343 PMCID: PMC6780239 DOI: 10.3390/metabo9090182] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/08/2019] [Accepted: 09/10/2019] [Indexed: 12/26/2022] Open
Abstract
Data on fractionation and depolymerization of the matrix ulvan polysaccharides, and studies on the biological activities on skin cells, are very scarce. In this work, crude ulvans were produced by using EAE (enzyme-assisted extraction) and compared to maceration (an established procedure). After different fractionation procedures-ethanolic precipitation, dialysis, or ammonium sulfate precipitation-the biochemical composition showed that EAE led to an increased content in ulvans. Coupling EAE to sulfate ammonium precipitation led to protein enrichment. Oligosaccharides were obtained by using radical depolymerization by H2O2 and ion-exchange resin depolymerization. Sulfate groups were partially cleaved during these chemical treatments. The potential bioactivity of the fractions was assessed using a lipoxygenase inhibition assay for anti-inflammatory activity and a WST-1 assay for human dermal fibroblast viability and proliferation. All ulvans extracts, poly- and oligosaccharidic fractions from EAE, expanded the fibroblast proliferation rate up to 62%. Our research emphasizes the potential use of poly- and oligosaccharidic fractions of Ulva sp. for further development in cosmetic applications.
Collapse
Affiliation(s)
- Mathilde Fournière
- Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France.
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884 Université Bretagne Sud, 56000 Vannes, France.
| | - Thomas Latire
- Université Catholique de l'Ouest Bretagne Nord, 22200 Guingamp, France.
| | - Marie Lang
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884 Université Bretagne Sud, 56000 Vannes, France.
| | - Nolwenn Terme
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884 Université Bretagne Sud, 56000 Vannes, France.
| | - Nathalie Bourgougnon
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884 Université Bretagne Sud, 56000 Vannes, France.
| | - Gilles Bedoux
- Laboratoire de Biotechnologie et Chimie Marines, EA 3884 Université Bretagne Sud, 56000 Vannes, France.
| |
Collapse
|
37
|
Goyal M, Baranwal M, Pandey SK, Reddy MS. Hetero-Polysaccharides Secreted from Dunaliella salina Exhibit Immunomodulatory Activity Against Peripheral Blood Mononuclear Cells and RAW 264.7 Macrophages. Indian J Microbiol 2019; 59:428-435. [PMID: 31762505 DOI: 10.1007/s12088-019-00818-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 08/17/2019] [Indexed: 01/05/2023] Open
Abstract
Several species of microalgae have been known to produce exopolysaccharides (EPS) with potential immune activity. In the present investigation, ethyl acetate fraction of crude EPS secreted by Dunaliella salina was explored for immunomodulatory activity against peripheral blood mononuclear cells (PBMC) and RAW 264.7 macrophages. Effect of EPS on cell growth and cytokines production were measured using MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay and ELISA respectively. Griess reagent was used for measuring the nitric oxide production in RAW 264.7 macrophages. FTIR analysis and mass spectroscopy were carried out for the characterization. Ethyl acetate fraction exhibited dose dependent increase in proliferative index and cytokines production (IFN-γ, TNF-α, TGF-β). At low concentration (250 and 500 µg/mL), it showed growth inhibition and at higher concentration (1000 and 1500 µg/mL), it enhanced the cell growth. Interestingly, the pronounced increased TNF-α production was observed in ethyl acetate fraction treated PBMC cells at higher concentration (750 and 1000 µg/mL) indicating the immunostimulatory effect. In RAW cells, concentration dependent diminished cell growth (IC50 = 691 µg/mL) and nitric oxide production (IC50 = 630 µg/mL) was observed. FTIR analysis showed the presence of polysaccharides due to the detection of hydroxyl (-OH), Carbonyl (C-O) and alkyl (C-H) groups. Mass spectroscopy results revealed ethyl acetate fraction as penta-saccharide (m/z = 887.56 and 886.54) which are confirmed to be hetero-polysaccharides consisting of hexoses and pentoses along with association of ions. These results suggest that penta-saccharide (ethyl acetate fraction) isolated from D. salina may have the potential to be used for therapeutic purpose as immunomodulatory agent.
Collapse
Affiliation(s)
- Mehendi Goyal
- 1Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| | - Manoj Baranwal
- 1Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| | - Satyendra Kumar Pandey
- 2Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh India
| | - Mondem Sudhakara Reddy
- 1Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004 India
| |
Collapse
|
38
|
|
39
|
Tziveleka LA, Ioannou E, Roussis V. Ulvan, a bioactive marine sulphated polysaccharide as a key constituent of hybrid biomaterials: A review. Carbohydr Polym 2019; 218:355-370. [PMID: 31221340 DOI: 10.1016/j.carbpol.2019.04.074] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 04/23/2019] [Accepted: 04/23/2019] [Indexed: 12/22/2022]
Abstract
Ulvan, a sulphated polysaccharide located in the cell walls of green algae that possesses unique structural properties albeit its repeating unit shares chemical affinity with glycosoaminoglycans, such as hyaluronan and chondroitin sulphate, has been increasingly studied over the years for applications in the pharmaceutical field. The increasing knowledge on ulvan's chemical properties and biological activities has triggered its utilization in hybrid materials, given its potential efficacy in biomedical applications. In the present review, the use of ulvan in the design of different biomaterials, including membranes, particles, hydrogels, 3D porous structures and nanofibers, is presented. The applications of these structures may vary from drug delivery to wound dressing or bone tissue engineering. In this context, general information regarding the structure and chemical variability, extraction processes, physicochemical properties, and biological activities of ulvan is reported.
Collapse
Affiliation(s)
- Leto-Aikaterini Tziveleka
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece.
| |
Collapse
|
40
|
Hira K, Sultana V, Khatoon N, Ara J, Ehteshamul-Haque S. Protective effect of crude sulphated polysaccharides from Sargassum Swartzii (Turn.) C.Ag. against acetaminophen induced liver toxicity in rats. CLINICAL PHYTOSCIENCE 2019. [DOI: 10.1186/s40816-019-0108-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
41
|
Konasani VR, Jin C, Karlsson NG, Albers E. Ulvan lyase from Formosa agariphila and its applicability in depolymerisation of ulvan extracted from three different Ulva species. ALGAL RES 2018. [DOI: 10.1016/j.algal.2018.10.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
42
|
Modification of ulvans via periodate-chlorite oxidation: Chemical characterization and anticoagulant activity. Carbohydr Polym 2018; 197:631-640. [DOI: 10.1016/j.carbpol.2018.06.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 06/07/2018] [Accepted: 06/07/2018] [Indexed: 11/20/2022]
|
43
|
Tabarsa M, You S, Dabaghian EH, Surayot U. Water-soluble polysaccharides from Ulva intestinalis : Molecular properties, structural elucidation and immunomodulatory activities. J Food Drug Anal 2018; 26:599-608. [PMID: 29567229 PMCID: PMC9322205 DOI: 10.1016/j.jfda.2017.07.016] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/20/2017] [Accepted: 07/26/2017] [Indexed: 02/05/2023] Open
Abstract
Water-soluble sulfated polysaccharides extracted from Ulva intestinalis and fractionated using DEAE Sepharose fast flow column to identify their molecular properties and macrophage cells stimulating activities. Crude and fractions (F1 and F2) were formed of neutral sugars (58.7–74.7%), sulfates (6.2–24.5%), uronic acids (4.9–5.9%) and proteins (3.2–10.4%). Different levels of sugar constituents including rhamnose (30.1–39.1%), glucose (39.0–48.4%), galactose (0.0–15.8%), xylose (8.5–11.3) and arabinose (0.0–5.1%). The molecular weight (Mw) of crude and fractionated polysaccharides ranged from 87.1 × 103 to 194.1 × 103 (g/mol). Crude polysaccharides were not toxic to RAW264.7 cells and fractions induced cell proliferation. Fraction F1 stimulated RAW264.7 cells to release considerable amounts of nitric oxide, IL-1β, TNF-α, IL-6, IL-10 and IL-12 cytokines. The main backbone of the most immunostimulating polysaccharide (F1) was consisted of mixed linkages of (1 → 2)-linked rhamnose and (1 → 2)-linked glucose residues.
Collapse
Affiliation(s)
- Mehdi Tabarsa
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor,
Iran
- Corresponding author: Fax: +98 1144550906. E-mail address: (M. Tabarsa)
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457,
Republic of Korea
| | - Elham Hashem Dabaghian
- Department of Seafood Processing, Faculty of Marine Sciences, Tarbiat Modares University, P.O. Box 46414-356, Noor,
Iran
| | - Utoomporn Surayot
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, Gangneung, Gangwon 25457,
Republic of Korea
| |
Collapse
|
44
|
|
45
|
Tran TTV, Truong HB, Tran NHV, Quach TMT, Nguyen TN, Bui ML, Yuguchi Y, Thanh TTT. Structure, conformation in aqueous solution and antimicrobial activity of ulvan extracted from green seaweed Ulva reticulata. Nat Prod Res 2017; 32:2291-2296. [PMID: 29199449 DOI: 10.1080/14786419.2017.1408098] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of this study is to elucidate the structure and investigate the antimicrobial activity of an ulvan obtained by water extraction from green seaweed Ulva reticulata collected at Nha Trang sea of Vietnam by using IR, NMR, SEC-MALLS and SAXS methods. The ulvan is composed of rhamnose, galactose, xylose, manose and glucose (mole ratio Rha: Gal: Xyl: Man: Glu = 1:0.12:0.1:0.06:0.03), uronic acid (22.5%) and sulphate groups (17.6%). Chemically structural determination showed that the ulvan mainly composed of disaccharide [→4)β-D-GlcA(1→4)α-L-Rha3S-(1→]. The results from SAXS indicated that ulvan under study has a rod-like bulky chain conformation. Ulvan from U. reticulata showed high antimicrobial activity, with inhibition zone diameter of 20 mm against Enterobacter cloace and 18 mm against Escherichia coli.
Collapse
Affiliation(s)
- Thi Thanh Van Tran
- a Nha Trang Institute of Technology Research and Application , Vietnam Academy of Science and Technology , Nha Trang , Vietnam
| | - Hai Bang Truong
- a Nha Trang Institute of Technology Research and Application , Vietnam Academy of Science and Technology , Nha Trang , Vietnam
| | - Nguyen Ha Vy Tran
- a Nha Trang Institute of Technology Research and Application , Vietnam Academy of Science and Technology , Nha Trang , Vietnam
| | - Thi Minh Thu Quach
- b Institute of Chemistry , Vietnam Academy of Science and Technology , Hanoi , Vietnam
| | | | - Minh Ly Bui
- a Nha Trang Institute of Technology Research and Application , Vietnam Academy of Science and Technology , Nha Trang , Vietnam
| | - Yoshiaki Yuguchi
- d Faculty of Engineering , Osaka Electro-Communication University , Osaka , Japan
| | - Thi Thu Thuy Thanh
- b Institute of Chemistry , Vietnam Academy of Science and Technology , Hanoi , Vietnam
| |
Collapse
|
46
|
Structure analysis of sulfated polysaccharides extracted from green seaweed Ulva lactuca: experimental and density functional theory studies. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2056-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
47
|
Glasson CR, Sims IM, Carnachan SM, de Nys R, Magnusson M. A cascading biorefinery process targeting sulfated polysaccharides (ulvan) from Ulva ohnoi. ALGAL RES 2017. [DOI: 10.1016/j.algal.2017.07.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
48
|
Shi Q, Wang A, Lu Z, Qin C, Hu J, Yin J. Overview on the antiviral activities and mechanisms of marine polysaccharides from seaweeds. Carbohydr Res 2017; 453-454:1-9. [PMID: 29102716 DOI: 10.1016/j.carres.2017.10.020] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/29/2017] [Accepted: 10/27/2017] [Indexed: 10/18/2022]
Abstract
Marine polysaccharides are attracting increasing attention in medical and pharmaceutical development because of their important biological properties. The seaweed polysaccharides have now become a rich resource of potential antiviral drugs due to their antiviral activities against various viruses. The structural diversity and complexity of marine polysaccharides and their derivatives contribute to their antiviral activities in different phases of many different viral infection processes. This review mainly introduces the different types of seaweed polysaccharides and their derivatives with potent antiviral activities. Moreover, the antiviral mechanisms and medical applications of certain marine polysaccharides from seaweeds are also demonstrated.
Collapse
Affiliation(s)
- Qimin Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi 214122, China
| | - Anjian Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi 214122, China
| | - Zhonghua Lu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi 214122, China; Wuxi No.5 People's Hospital, Xingyuan Rd. 88, Wuxi 214002, China
| | - Chunjun Qin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi 214122, China
| | - Jing Hu
- Wuxi School of Medicine, Jiangnan University, Lihu Avenue 1800, 214122, Wuxi, China.
| | - Jian Yin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Lihu Avenue1800, Wuxi 214122, China.
| |
Collapse
|
49
|
Green seaweed Enteromorpha compressa ( Chlorophyta , Ulvaceae ) derived sulphated polysaccharides inhibit herpes simplex virus. Int J Biol Macromol 2017; 102:605-612. [DOI: 10.1016/j.ijbiomac.2017.04.043] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 04/09/2017] [Accepted: 04/10/2017] [Indexed: 02/02/2023]
|
50
|
|