1
|
Xie Z, Protzer U. Activating adaptive immunity by bispecific, T-cell engager antibodies bridging infected and immune-effector cells is a promising novel therapy for chronic hepatitis B. Antiviral Res 2024; 229:105972. [PMID: 39084340 DOI: 10.1016/j.antiviral.2024.105972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 08/02/2024]
Abstract
Bispecific antibodies (bsAbs) are engineered immunoglobulins that combine two different antigen-binding sites in one molecule. BsAbs can be divided into two molecular formats: IgG-like and non-IgG-like antibodies. Structural elements of each format have implications for engaging the immune system. T cell engager antibodies (TCEs) are bsAbs designed to engage T cells with target cells. TCEs can be applied not only in cancer but also in infectious disease therapy to activate T-cell responses. In this review, we focus on current literature on the design and use of bsAbs as an innovative strategy to enhance adaptive antiviral immune responses. We summarized the novel T cell-related immunotherapies with a focus on TCEs, that are developed for the treatment of chronic hepatitis B. Chronic infection with the hepatitis B virus (HBV) had a death toll of 1.1 million humans in 2022, mainly due to liver cirrhosis and hepatocellular carcinoma developing in the more than 250 million humans chronically infected. A curative treatment approach for chronic hepatitis B is lacking. Combining antiviral therapy with immune therapies activating T-cell responses is regarded as the most promising therapeutic approach to curing HBV and preventing the sequelae of chronic infection. Attracting functionally intact T cells that are not HBV-specific and, therefore, have not yet been exposed to regulatory mechanisms and activating those at the target site in the liver is a very interesting therapeutic approach that could be achieved by TCEs. Thus, TCEs redirecting T cells toward HBV-positive cells represent a promising strategy for treating chronic hepatitis B and HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Zhe Xie
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine and Health, Technical University of Munich / Helmholtz Munich, Germany; German Center for Infection Research (DZIF), Munich Partner Sites, Germany.
| |
Collapse
|
2
|
Barbati C, Bromuro C, Vendetti S, Torosantucci A, Cauda R, Cassone A, Palma C. The Glycan Ectodomain of SARS-CoV-2 Spike Protein Modulates Cytokine Production and Expression of CD206 Mannose Receptor in PBMC Cultures of Pre-COVID-19 Healthy Subjects. Viruses 2024; 16:497. [PMID: 38675840 PMCID: PMC11054381 DOI: 10.3390/v16040497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 04/28/2024] Open
Abstract
The ability of recombinant, SARS-CoV-2 Spike (S) protein to modulate the production of two COVID-19 relevant, pro-inflammatory cytokines (IL-6 and IFN-γ) in PBMC cultures of healthy, pre-COVID-19 subjects was investigated. We observed that cytokine production was largely and diversely modulated by the S protein depending on antigen or mitogen stimulation, as well as on the protein source, insect (S-in) or human (S-hu) cells. While both proteins co-stimulated cytokine production by polyclonally CD3-activated T cells, PBMC activation by the mitogenic lectin Concanavalin A (Con A) was up-modulated by S-hu protein and down-modulated by S-in protein. These modulatory effects were likely mediated by the S glycans, as demonstrated by direct Con A-S binding experiments and use of yeast mannan as Con A binder. While being ineffective in modulating memory antigenic T cell responses, the S proteins and mannan were able to induce IL-6 production in unstimulated PBMC cultures and upregulate the expression of the mannose receptor (CD206), a marker of anti-inflammatory M2 macrophage. Our data point to a relevant role of N-glycans, particularly N-mannosidic chains, decorating the S protein in the immunomodulatory effects here reported. These novel biological activities of the S glycan ectodomain may add to the comprehension of COVID-19 pathology and immunity to SARS-CoV-2.
Collapse
Affiliation(s)
- Cristiana Barbati
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (C.B.); (C.B.); (S.V.); (A.T.)
| | - Carla Bromuro
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (C.B.); (C.B.); (S.V.); (A.T.)
| | - Silvia Vendetti
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (C.B.); (C.B.); (S.V.); (A.T.)
| | - Antonella Torosantucci
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (C.B.); (C.B.); (S.V.); (A.T.)
| | - Roberto Cauda
- Dipartimento Salute e Bioetica, Sezione Malattie Infettive, Policlinico Universitario A. Gemelli IRCCS, Largo Agostino Gemelli, 8, 00136 Rome, Italy;
| | - Antonio Cassone
- Polo d’Innovazione della Genomica, Genetica e Biologia, Strada del Petriccio e Belriguardo 35, 53100 Siena, Italy
| | - Carla Palma
- Department of Infectious Diseases, Istituto Superiore di Sanità, Viale Regina Elena, 299, 00161 Rome, Italy; (C.B.); (C.B.); (S.V.); (A.T.)
| |
Collapse
|
3
|
Perveen K, Quach A, Stark MJ, Prescott S, Barry SC, Hii CS, Ferrante A. PKCζ activation promotes maturation of cord blood T cells towards a Th1 IFN-γ propensity. Immunology 2023; 170:359-373. [PMID: 37340593 DOI: 10.1111/imm.13674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 06/08/2023] [Indexed: 06/22/2023] Open
Abstract
A significant number of babies present transiently with low protein kinase C zeta (PKCζ) levels in cord blood T cells (CBTC), associated with reduced ability to transition from a neonatal Th2 to a mature Th1 cytokine bias, leading to a higher risk of developing allergic sensitisation, compared to neonates whose T cells have 'normal' PKCζ levels. However, the importance of PKCζ signalling in regulating their differentiation from a Th2 to a Th1 cytokine phenotype propensity remains undefined. To define the role of PKCζ signalling in the regulation of CBTC differentiation from a Th2 to a Th1cytokine phenotype we have developed a neonatal T cell maturation model which enables the cells to develop to CD45RA- /CD45RO+ T cells while maintaining the Th2 immature cytokine bias, despite having normal levels of PKCζ. The immature cells were treated with phytohaemagglutinin, but in addition with phorbol 12-myristate 13-acetate (PMA), an agonist which does not activate PKCζ. This was compared to development in CBTC in which the cells were transfected to express constitutively active PKCζ. The lack of PKCζ activation by PMA was monitored by western blot for phospho-PKCζ and translocation from cell cytosol to the membrane by confocal microscopy. The findings demonstrate that PMA fails to activate PKCζ in CBTC. The data show that CBTC matured under the influence of the PKC stimulator, PMA, maintain a Th2 cytokine bias, characterised by robust IL-4 and minimal interferon gamma production (IFN-γ), and lack of expression of transcriptional factor, T-bet. This was also reflected in the production of a range of other Th2/Th1 cytokines. Interestingly, introduction of a constitutively active PKCζ mutant into CBTC promoted development towards a Th1 profile with high IFN-γ production. The findings demonstrate that PKCζ signalling is essential for the immature neonatal T cells to transition from a Th2 to a Th1 cytokine production bias.
Collapse
Affiliation(s)
- Khalida Perveen
- Department of Immunology, SA Pathology at Women's and Children's Hospital, North Adelaide, Australia
- The Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, Australia
| | - Alex Quach
- Department of Immunology, SA Pathology at Women's and Children's Hospital, North Adelaide, Australia
- The Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, Australia
| | - Michael J Stark
- The Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, Australia
- Department of Neonatal Medicine, Women's and Children's Hospital, North Adelaide, Australia
| | - Susan Prescott
- School of Paediatrics, University of Western Australia, Crawley, Australia
- The ORIGINS Project, Telethon Kids Institute and Perth Children's Hospital, Nedlands, Australia
| | - Simon C Barry
- The Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, Australia
| | - Charles S Hii
- Department of Immunology, SA Pathology at Women's and Children's Hospital, North Adelaide, Australia
- The Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, Australia
| | - Antonio Ferrante
- Department of Immunology, SA Pathology at Women's and Children's Hospital, North Adelaide, Australia
- The Robinson Research Institute and School of Medicine, University of Adelaide, Adelaide, Australia
- School of Biological Sciences, University of Adelaide, Adelaide, Australia
| |
Collapse
|
4
|
Groß-Albenhausen E, Weier A, Velten M, Heider T, Chunder R, Kuerten S. Immune monitoring of SARS-CoV-2-specific T cell and B cell responses in patients with multiple sclerosis treated with ocrelizumab. Front Immunol 2023; 14:1254128. [PMID: 37841269 PMCID: PMC10569464 DOI: 10.3389/fimmu.2023.1254128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/30/2023] [Indexed: 10/17/2023] Open
Abstract
Introduction Since the development of the coronavirus disease (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), there has been significant interest in determining the effectiveness of SARS-CoV-2 vaccines in patients under immunomodulatory or immunosuppressive therapies. The aim of this study was to evaluate the impact of ocrelizumab, a monoclonal anti-CD20 antibody, on SARS-CoV-2-specific T cell and B cell responses in patients with relapsing-remitting multiple sclerosis (RRMS). Methods To this end, peripheral blood mononuclear cells (PBMCs) were isolated from n = 23 patients with RRMS. Of these patients, n = 17 were tested before (time point t0) and one month after (time point t1) their first dose of ocrelizumab. In addition, we studied n = 9 RRMS patients that got infected with SARS-CoV-2 over the course of ocrelizumab therapy (time point t2). PBMCs were also isolated from n = 19 age- and gender-matched healthy controls (HCs) after vaccination or infection with SARS-CoV-2, respectively. Interferon-γ (IFN-γ)/interleukin-2 (IL-2) and granzyme B (GzB)/perforin (PFN) double-color enzyme-linked immunospot (ELISPOT) assays or single-color ELISPOT assays were performed to measure SARS-CoV-2 antigen-specific T cell and B cell responses. Anti-viral antibody titers were quantified in the serum by chemiluminescence immunoassay. Results Our data indicate a significant difference in the SARS-CoV-2 specific IFN-γ (P = 0.0119) and PFN (P = 0.0005) secreting T cell compartment in the MS cohort at t0 compared to HCs. Following the first dose of ocrelizumab treatment, a significant decrease in the number of SARS-CoV-2 spike protein-specific B cells was observed (P = 0.0012). Infection with SARS-CoV-2 in MS patients under ocrelizumab therapy did not significantly alter their existing immune response against the virus. Kaplan-Meier survival analysis suggested that the spike S1 protein-specific immunoglobulin (Ig)G response might be a key parameter for predicting the probability of (re)infection with SARS-CoV-2. Discussion Our results call for a critical discussion regarding appropriate vaccination intervals and potential biomarkers for the prediction of (re)infection with SARS-CoV-2 in patients with MS receiving ocrelizumab. Unique identifier DRKS00029110; URL: http://apps.who.int/trialsearch/.
Collapse
Affiliation(s)
- Elina Groß-Albenhausen
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Alicia Weier
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Markus Velten
- Department of Anesthesiology and Intensive Care Medicine, University Medical Center Bonn, Bonn, Germany
| | - Thorsten Heider
- Clinic for Neurology, Klinikum St. Marien Amberg, Amberg, Germany
| | - Rittika Chunder
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| | - Stefanie Kuerten
- Institute of Neuroanatomy, Faculty of Medicine, University of Bonn and University Hospital Bonn, Bonn, Germany
| |
Collapse
|
5
|
Onwuha‐Ekpete L, Fields GB. Application of a triple‐helical peptide inhibitor of
MMP
‐2/
MMP
‐9 to examine T‐cell activation in experimental autoimmune encephalomyelitis. Pept Sci (Hoboken) 2022. [DOI: 10.1002/pep2.24262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Lillian Onwuha‐Ekpete
- The Institute for Human Health & Disease Intervention (I‐HEALTH) Florida Atlantic University Jupiter Florida USA
| | - Gregg B. Fields
- The Institute for Human Health & Disease Intervention (I‐HEALTH) Florida Atlantic University Jupiter Florida USA
- Department of Chemistry The Scripps Research Institute/Scripps Florida Jupiter Florida USA
| |
Collapse
|
6
|
Quitt O, Luo S, Meyer M, Xie Z, Golsaz-Shirazi F, Loffredo-Verde E, Festag J, Bockmann JH, Zhao L, Stadler D, Chou WM, Tedjokusumo R, Wettengel JM, Ko C, Noeßner E, Bulbuc N, Shokri F, Lüttgau S, Heikenwälder M, Bohne F, Moldenhauer G, Momburg F, Protzer U. T-cell engager antibodies enable T cells to control HBV infection and to target HBsAg-positive hepatoma in mice. J Hepatol 2021; 75:1058-1071. [PMID: 34171437 DOI: 10.1016/j.jhep.2021.06.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 05/25/2021] [Accepted: 06/02/2021] [Indexed: 01/05/2023]
Abstract
BACKGROUND & AIMS Current antiviral therapies control but rarely eliminate HBV, leaving chronic HBV carriers at risk of developing hepatocellular carcinoma (HCC). Lacking or dysfunctional virus-specific adaptive immunity prevents control of HBV and allows the virus to persist. Restoring antiviral T-cell immunity could lead to HBV elimination and cure of chronically infected patients. METHODS We constructed bispecific T-cell engager antibodies that are designed to induce antiviral immunity through simultaneous binding of HBV envelope proteins (HBVenv) on infected hepatocytes and CD3 or CD28 on T cells. T-cell engager antibodies were employed in co-cultures with healthy donor lymphocytes and HBV-infected target cells. Activation of the T-cell response was determined by detection of pro-inflammatory cytokines, effector function (by cytotoxicity) and antiviral effects. To study in vivo efficacy, immune-deficient mice were transplanted with HBVenv-positive and -negative hepatoma cells. RESULTS The 2 T-cell engager antibodies synergistically activated T cells to become polyfunctional effectors that in turn elicited potent antiviral effects by killing infected cells and in addition controlled HBV via non-cytolytic, cytokine-mediated antiviral mechanisms. In vivo in mice, the antibodies attracted T cells specifically to the tumors expressing HBVenv resulting in T-cell activation, tumor infiltration and reduction of tumor burden. CONCLUSION This study demonstrates that the administration of HBVenv-targeting T-cell engager antibodies facilitates a robust T-cell redirection towards HBV-positive target cells and provides a feasible and promising approach for the treatment of chronic viral hepatitis and HBV-associated HCC. LAY SUMMARY T-cell engager antibodies are an interesting, novel therapeutic tool to restore immunity in patients with chronic hepatitis B. As bispecific antibodies, they bind envelope proteins on the surface of the hepatitis B virus (HBV) and CD3 or CD28 on T cells. This way, they induce a potent antiviral and cytotoxic T-cell response that leads to the elimination of HBV-positive cells. These bispecific T-cell engager antibodies are exciting therapeutic candidates for chronic hepatitis B and HBV-associated hepatocellular carcinoma.
Collapse
Affiliation(s)
- Oliver Quitt
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Shanshan Luo
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Marten Meyer
- Antigen Presentation and T/NK Cell Activation Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Centre, Heidelberg, Germany
| | - Zhe Xie
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Forough Golsaz-Shirazi
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Eva Loffredo-Verde
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Julia Festag
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Jan Hendrik Bockmann
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), Munich and Hamburg Partner sites, Germany; Department of Internal Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lili Zhao
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Daniela Stadler
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Wen-Min Chou
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Raindy Tedjokusumo
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Jochen Martin Wettengel
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Chunkyu Ko
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Elfriede Noeßner
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Nadja Bulbuc
- Antigen Presentation and T/NK Cell Activation Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Centre, Heidelberg, Germany
| | - Fazel Shokri
- Department of Immunology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sandra Lüttgau
- Department of Translational Immunology, German Cancer Research Centre, Heidelberg, Germany
| | - Mathias Heikenwälder
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Felix Bohne
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany
| | - Gerhard Moldenhauer
- Department of Translational Immunology, German Cancer Research Centre, Heidelberg, Germany
| | - Frank Momburg
- Antigen Presentation and T/NK Cell Activation Group, Clinical Cooperation Unit Applied Tumor Immunity, German Cancer Research Centre, Heidelberg, Germany
| | - Ulrike Protzer
- Institute of Virology, School of Medicine, Technical University of Munich, Helmholtz Zentrum München, Munich, Germany; German Center for Infection Research (DZIF), Munich and Hamburg Partner sites, Germany.
| |
Collapse
|
7
|
Spiesberger K, Paulfranz F, Egger A, Reiser J, Vogl C, Rudolf-Scholik J, Mayrhofer C, Grosse-Hovest L, Brem G. Large-Scale Purification of r28M: A Bispecific scFv Antibody Targeting Human Melanoma Produced in Transgenic Cattle. PLoS One 2015; 10:e0140471. [PMID: 26469402 PMCID: PMC4607477 DOI: 10.1371/journal.pone.0140471] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 09/25/2015] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND 30 years ago, the potential of bispecific antibodies to engage cytotoxic T cells for the lysis of cancer cells was discovered. Today a variety of bispecific antibodies against diverse cell surface structures have been developed, the majority of them produced in mammalian cell culture systems. Beside the r28M, described here, no such bispecific antibody is known to be expressed by transgenic livestock, although various biologicals for medical needs are already harvested-mostly from the milk-of these transgenics. In this study we investigated the large-scale purification and biological activity of the bispecific antibody r28M, expressed in the blood of transgenic cattle. This tandem single-chain variable fragment antibody is designed to target human CD28 and the melanoma/glioblastoma-associated cell surface chondroitin sulfate proteoglycan 4 (CSPG4). RESULTS With the described optimized purification protocol an average yield of 30 mg enriched r28M fraction out of 2 liters bovine plasma could be obtained. Separation of this enriched fraction by size exclusion chromatography into monomers, dimers and aggregates and further testing regarding the biological activity revealed the monomer fraction as being the most appropriate one to continue working with. The detailed characterization of the antibody's activity confirmed its high specificity to induce the killing of CSPG4 positive cells. In addition, first insights into tumor cell death pathways mediated by r28M-activated peripheral blood mononuclear cells were gained. In consideration of possible applications in vivo we also tested the effect of the addition of different excipients to r28M. CONCLUSION Summing up, we managed to purify monomeric r28M from bovine plasma in a large-scale preparation and could prove that its biological activity is unaffected and still highly specific and thus, might be applicable for the treatment of melanoma.
Collapse
Affiliation(s)
- Katrin Spiesberger
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Immunotherapy, University of Veterinary Medicine Vienna, Vienna, Austria
- * E-mail:
| | - Florian Paulfranz
- Christian Doppler Laboratory for Innovative Immunotherapy, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Anton Egger
- Christian Doppler Laboratory for Innovative Immunotherapy, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Judith Reiser
- Christian Doppler Laboratory for Innovative Immunotherapy, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Claus Vogl
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Judith Rudolf-Scholik
- Christian Doppler Laboratory for Innovative Immunotherapy, University of Veterinary Medicine Vienna, Vienna, Austria
| | - Corina Mayrhofer
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Agrobiotechnology (IFA Tulln), Institute of Biotechnology in Animal Production, University of Natural Resources and Applied Life Sciences Vienna, Tulln, Austria
| | - Ludger Grosse-Hovest
- Department of Immunology, Institute for Cell Biology, University of Tübingen, Tübingen, Germany
| | - Gottfried Brem
- Department of Biomedical Sciences, Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, Vienna, Austria
- Christian Doppler Laboratory for Innovative Immunotherapy, University of Veterinary Medicine Vienna, Vienna, Austria
- Department of Agrobiotechnology (IFA Tulln), Institute of Biotechnology in Animal Production, University of Natural Resources and Applied Life Sciences Vienna, Tulln, Austria
| |
Collapse
|
8
|
Burchiel SW, Lauer FT, Beswick EJ, Gandolfi AJ, Parvez F, Liu KJ, Hudson LG. Differential susceptibility of human peripheral blood T cells to suppression by environmental levels of sodium arsenite and monomethylarsonous acid. PLoS One 2014; 9:e109192. [PMID: 25271956 PMCID: PMC4182801 DOI: 10.1371/journal.pone.0109192] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Accepted: 08/29/2014] [Indexed: 11/21/2022] Open
Abstract
Human exposure to arsenic in drinking water is known to contribute to many different health outcomes such as cancer, diabetes, and cardiopulmonary disease. Several epidemiological studies suggest that T cell function is also altered by drinking water arsenic exposure. However, it is unclear how individual responses differ to various levels of exposure to arsenic. Our laboratory has recently identified differential responses of human peripheral blood mononuclear cell (HPMBC) T cells as measured by polyclonal T cell activation by mitogens during sodium arsenite exposure. T cells from certain healthy individuals exposed to various concentrations (1-100 nM) of arsenite in vitro showed a dose-dependent suppression at these extremely low concentrations (∼ 0.1-10 ppb) of arsenite, whereas other individuals were not suppressed at low concentrations. In a series of more than 30 normal donors, two individuals were found to be sensitive to low concentration (10 nM equivalent ∼ 1 ppb drinking water exposure) to sodium arsenite-induced inhibition of T cell proliferation produced by phytohemagglutinin (PHA) and anti-CD3/anti-CD28. In an arsenite-susceptible individual, arsenite suppressed the activation of Th1 (Tbet) cells, and decreased the percentage of cells in the double positive Th17 (RORγt) and Treg (FoxP3) population. While the majority of normal blood donors tested were not susceptible to inhibition of proliferation at the 1-100 nM concentrations of As(+3), it was found that all donors were sensitive to suppression by 100 nM monomethylarsonous acid (MMA+3), a key metabolite of arsenite. Thus, our studies demonstrate for the first time that low ppb-equivalent concentrations of As(+3) are immunosuppressive to HPBMC T cells in some individuals, but that most donor HPBMC are sensitive to suppression by MMA(+3) at environmentally relevant exposure levels.
Collapse
Affiliation(s)
- Scott W. Burchiel
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Fredine T. Lauer
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Ellen J. Beswick
- Department of Molecular Genetics and Microbiology, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - A. Jay Gandolfi
- Department of Pharmacology and Toxicology, University of Arizona, Tucson, Arizona, United States of America
| | - Faruque Parvez
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York, United States of America
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| | - Laurie G. Hudson
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, New Mexico, United States of America
| |
Collapse
|
9
|
Bashour KT, Tsai J, Shen K, Lee JH, Sun E, Milone MC, Dustin ML, Kam LC. Cross talk between CD3 and CD28 is spatially modulated by protein lateral mobility. Mol Cell Biol 2014; 34:955-64. [PMID: 24379441 PMCID: PMC3958039 DOI: 10.1128/mcb.00842-13] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/21/2013] [Accepted: 12/21/2013] [Indexed: 12/23/2022] Open
Abstract
Functional convergence of CD28 costimulation and TCR signaling is critical to T-cell activation and adaptive immunity. These receptors form complex microscale patterns within the immune synapse, although the impact of this spatial organization on cell signaling remains unclear. We investigate this cross talk using micropatterned surfaces that present ligands to these membrane proteins in order to control the organization of signaling molecules within the cell-substrate interface. While primary human CD4(+) T cells were activated by features containing ligands to both CD3 and CD28, this functional convergence was curtailed on surfaces in which engagement of these two systems was separated by micrometer-scale distances. Moreover, phosphorylated Lck was concentrated to regions of CD3 engagement and exhibited a low diffusion rate, suggesting that costimulation is controlled by a balance between the transport of active Lck to CD28 and its deactivation. In support of this model, disruption of the actin cytoskeleton increased Lck mobility and allowed functional T-cell costimulation by spatially separated CD3 and CD28. In primary mouse CD4(+) T cells, a complementary system, reducing the membrane mobility increased the sensitivity to CD3-CD28 separation. These results demonstrate a subcellular reaction-diffusion system that allows cells to sense the microscale organization of the extracellular environment.
Collapse
Affiliation(s)
- Keenan T. Bashour
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Jones Tsai
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Keyue Shen
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Joung-Hyun Lee
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Eileen Sun
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| | - Michael C. Milone
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | - Michael L. Dustin
- Molecular Pathogenesis Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA
- Nuffield Department of Orthopedics and Musculoskeletal Sciences, The University of Oxford, and Kennedy Institute of Rheumatology, Oxford, United Kingdom
| | - Lance C. Kam
- Department of Biomedical Engineering, Columbia University, New York, New York, USA
| |
Collapse
|
10
|
Antagonistic and agonistic anti-canine CD28 monoclonal antibodies: tools for allogeneic transplantation. Transplantation 2011; 91:833-40. [PMID: 21343872 DOI: 10.1097/tp.0b013e31820f07ff] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND It has been presumed that antibody-mediated selective costimulatory molecule blockade of CD28 is superior to cytotoxic T lymphocyte antigen 4 (CTLA4)-Ig. This is based on the premise that specifically blocking CD28 allows inhibitory signals through CTLA-4 to proceed, which furthermore suppresses T-cell function. METHODS The extracelluar domain of canine (ca)CD28 was cloned from dog peripheral blood mononuclear cells. Mice were immunized with a caCD28/murine IgG2a fusion protein. Hybridomas were produced by fusing splenocytes with mouse NSO cells and screened for caCD28 binding by ELISA. Agonistic and antagonistic activities of the monoclonal antibodies (mAb) were tested in mixed leukocyte reactions. Canine regulatory T cells were expanded using plate-bound anti-CD3 and an anti-CD28 agonist mAb. RESULTS One agonistic and seven antagonistic mAbs to canine (ca)CD28 were cloned. Binding studies indicated that an agonistic (5B8) and an antagonistic (1C6) mAb bound equally well to a caCD28/caIgG1 fusion protein and to CD28 expressed on CD4+ and CD8+ peripheral blood T cells. Antagonistic antibody blocked mixed lymphocyte reactions (MLR) in a dose-dependent manner similar to CTLA4-Ig, whereas the agonistic antibody to caCD28 enhanced MLR. The 5B8 was superior to 1C6 when either was combined with anti-caCD3 to stimulate lymphocyte proliferation. Furthermore, the agonistic mAb, 5B8, together with anti-CD3 mAb induced 100-fold proliferation of canine regulatory T cells. Relative to untreated control cells, anti-caCD28 (1C6) and CTLA4-Ig equivalently inhibited cytotoxic T lymphocyte-mediated killing of alloreactive target cells. CONCLUSION These studies demonstrated that mouse anti-caCD28 mAbs can be generated with agonistic or antagonistic function.
Collapse
|
11
|
Cell density plays a critical role in ex vivo expansion of T cells for adoptive immunotherapy. J Biomed Biotechnol 2010; 2010:386545. [PMID: 20625484 PMCID: PMC2896674 DOI: 10.1155/2010/386545] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 04/05/2010] [Accepted: 05/06/2010] [Indexed: 11/17/2022] Open
Abstract
The successful ex vivo expansion of a large numbers of T cells is a prerequisite for adoptive immunotherapy. In this study, we found that cell density had important effects on the process of expansion of T cells in vitro. Resting T cells were activated to expand at high cell density but failed to be activated at low cell density. Activated T cells (ATCs) expanded rapidly at high cell density but underwent apoptosis at low cell density. Our studies indicated that low-cell-density related ATC death is mediated by oxidative stress. Antioxidants N-acetylcysteine, catalase, and albumin suppressed elevated reactive oxygen species (ROS) levels in low-density cultures and protected ATCs from apoptosis. The viability of ATCs at low density was preserved by conditioned medium from high-density cultures of ATCs in which the autocrine survival factor was identified as catalase. We also found that costimulatory signal CD28 increases T cell activation at lower cell density, paralleled by an increase in catalase secretion. Our findings highlight the importance of cell density in T cell activation, proliferation, survival and apoptosis and support the importance of maintaining T cells at high density for their successful expansion in vitro.
Collapse
|
12
|
Bour-Jordan H, Bluestone JA. How suppressor cells led to anergy, costimulation, and beyond. THE JOURNAL OF IMMUNOLOGY 2009; 183:4147-9. [PMID: 19767564 DOI: 10.4049/jimmunol.0990078] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Hélène Bour-Jordan
- University of California at San Francisco Diabetes Center, San Francisco, CA 94143-0540, USA
| | | |
Collapse
|
13
|
|
14
|
Chandraker A, Huurman V, Hallett K, Yuan X, Tector AJ, Park CH, Lu E, Zavazava N, Oaks M. CTLA4-Ig-based conditioning regimen to induce tolerance to cardiac allografts. Transplantation 2006; 79:897-903. [PMID: 15849541 DOI: 10.1097/01.tp.0000158275.56248.f8] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Transplant rejection and toxicity associated with chronic immunosuppressive therapy remain a major problem. Mixed hematopoietic chimerism has been shown to produce tolerance to solid organ transplants. However, currently available protocols to induce mixed hematopoietic chimerism invariably require toxic pre-conditioning. In this study, we investigated a non-toxic CTLA4-Ig-based protocol to induce donor-specific tolerance to cardiac allografts in rats. METHODS Fully mismatched, 4 to 6 week old ACI (RT1.A(a)) and Wistar Furth (RT1.A(u)) rats were used as cell/organ donors and recipients, respectively. Recipients were treated with CTLA4-Ig 2 mg/kg/day (on days 0, 2, 4, 6, 8), tacrolimus 1 mg/kg/day (daily, from days 0 to 9), and a single dose of anti-lymphocyte serum (10 mg) on day 10, soon after total body irradiation (300 cGy) and donor bone marrow (100 x 10(6) T-cell depleted cells) transplantation (BMT). Six weeks after BMT, chimeric animals received heterotopic heart transplants. RESULTS Hematopoietic chimerism was 18.8 +/- 10.6% at day 30, and was stable (24 +/- 10%) at 1 year post-BMT; there was no graft versus host disease. Chimeric recipients (RT1.A(u)) permanently accepted (>360 days) donor-specific (RT1.A(a); n = 6) hearts, yet rapidly rejected (<9 days) third-party hearts (RT1.A(l); n = 5). Graft (heart) tolerant (>100 days) recipients accepted donor-specific secondary skin grafts (>200 days) while rejected the third-party skin grafts (<9 days). Lymphocytes of graft tolerant animals demonstrated hyporesponsiveness in mixed lymphocyte cultures in a donor-specific manner. Tolerant graft histology showed no obliterative arteriopathy or chronic rejection. CONCLUSIONS The CTLA4-Ig based conditioning regimen with donor BMT produced mixed chimerism and induced donor- specific tolerance to cardiac allografts.
Collapse
Affiliation(s)
- Anil Chandraker
- Transplant Research Center, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Dong GC, Chuang PH, Forrest MD, Lin YC, Chen HM. Immuno-suppressive effect of blocking the CD28 signaling pathway in T-cells by an active component of Echinacea found by a novel pharmaceutical screening method. J Med Chem 2006; 49:1845-54. [PMID: 16539370 DOI: 10.1021/jm0509039] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AFTIR (after flowing through immobilized receptor) is a novel method for screening herbal extracts for pharmaceutical properties. Using AFTIR, we identified Cynarin in Echinacea purpurea by its selective binding to chip immobilized CD28, a receptor of T-cells, which is instrumental to immune functioning. The results of surface plasma resonance show that binding between immobilized CD28 and Cynarin is stronger than the binding between CD28 and CD80, a co-stimulated receptor of antigen presenting cells. Cynarin's function was verified by its ability to downregulate CD28-dependent interleukin-2 (IL-2) expression in a T-cell culture line. AFTIR offers promise as an efficient screening method for herbal medicines.
Collapse
Affiliation(s)
- Guo-Chung Dong
- Institute of BioAgricultural Sciences, Academia Sinica, Taipei, Taiwan 115, Republic of China
| | | | | | | | | |
Collapse
|
16
|
Costabile M, Hii CST, Melino M, Easton C, Ferrante A. The immunomodulatory effects of novel beta-oxa, beta-thia, and gamma-thia polyunsaturated fatty acids on human T lymphocyte proliferation, cytokine production, and activation of protein kinase C and MAPKs. THE JOURNAL OF IMMUNOLOGY 2005; 174:233-43. [PMID: 15611245 DOI: 10.4049/jimmunol.174.1.233] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have recently demonstrated that a novel n-3 long chain polyunsaturated fatty acid (PUFA) (beta-oxa 21:3n-3) was a more potent and more selective anti-inflammatory agent than n-3 PUFA. To gain further insights into this technology, we synthesized other novel PUFA consisting of beta-oxa, beta-thia, and gamma-thia compounds. All three types displayed anti-inflammatory activity. Each of the unsaturated beta-oxa fatty acids showed similar inhibition of PHA-PMA-induced T cell proliferation with a parallel inhibition of TNF-beta production. However, beta-oxa 25:6n-3 and beta-oxa 21:4n-3 displayed lower inhibitory action on IFN-gamma production. Surprisingly, beta-oxa 23:4n-6 and beta-oxa 21:3n-6 had marginal effect on IL-2 production. Thus, structural variation can generate selectivity for different immunological parameters. The beta-thia compounds 23:4n-6, 21:3n-6, and 21:3n-3 were highly effective in inhibiting all immunological responses. Of the two gamma-thia PUFA tested, gamma-thia 24:4n-6 was a strong inhibitor of all responses apart from IL-2, but gamma-thia 22:3n-6 had very little inhibitory effect. Two of the most active compounds, beta-thia 23:4n-6 and beta-thia 21:3n-6, were studied in more detail and shown to have an IC(50) of 1-2 muM under optimal conditions. Thus, these PUFA retain the immunosuppressive properties of the n-3 PUFAs, 20:5n-3 and 22:6n-3, but not the neutrophil-stimulating properties. Their action on T lymphocytes is independent of cyclooxygenase or lipoxygenase activity, and they act at a postreceptor-binding level by inhibiting the activation of protein kinase C and ERK1/ERK2 kinases.
Collapse
Affiliation(s)
- Maurizio Costabile
- Department of Immunopathology, Women's and Children's Hospital, 72 King William Road, North Adelaide, South Australia 5006
| | | | | | | | | |
Collapse
|
17
|
Hooi DSW, Bycroft BW, Chhabra SR, Williams P, Pritchard DI. Differential immune modulatory activity of Pseudomonas aeruginosa quorum-sensing signal molecules. Infect Immun 2004; 72:6463-70. [PMID: 15501777 PMCID: PMC522992 DOI: 10.1128/iai.72.11.6463-6470.2004] [Citation(s) in RCA: 137] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pseudomonas aeruginosa releases a spectrum of well-regulated virulence factors, controlled by intercellular communication (quorum sensing) and mediated through the production of small diffusible quorum-sensing signal molecules (QSSM). We hypothesize that QSSM may in fact serve a dual purpose, also allowing bacterial colonization via their intrinsic immune-modulatory capacity. One class of signal molecule, the N-acylhomoserine lactones, has pleiotropic effects on eukaryotic cells, particularly those involved in host immunity. In the present study, we have determined the comparative effects of two chemically distinct and endobronchially detectable QSSM, N-(3-oxododecanoyl)-L-homoserine lactone (3-oxo-C12-HSL) and 2-heptyl-3-hydroxy-4 (1H)-quinolone or the Pseudomonas quinolone signal (PQS), on human leukocytes exposed to a series of stimuli designed to detect differential immunological activity in vitro. 3-Oxo-C12-HSL and PQS displayed differential effects on the release of interleukin-2 (IL-2) when human T cells were activated via the T-cell receptor and CD28 (a costimulatory molecule). 3-Oxo-C12-HSL inhibited cell proliferation and IL-2 release; PQS inhibited cell proliferation without affecting IL-2 release. Both molecules inhibited cell proliferation and the release of IL-2 following mitogen stimulation. Furthermore, in the presence of Escherichia coli lipopolysaccharide, 3-oxo-C12-HSL inhibited tumor necrosis factor alpha release from human monocytes, as reported previously (K. Tateda et al., Infect. Immun. 64:37-43, 1996), whereas PQS did not inhibit in this assay. These data highlight the presence of two differentially active immune modulatory QSSM from P. aeruginosa, which are detectable endobronchially and may be active at the host/pathogen interface during infection with P. aeruginosa, should the bronchial airway lymphoid tissues prove to be accessible to QSSM.
Collapse
Affiliation(s)
- Doreen S W Hooi
- School of Pharmacy, University of Nottingham, University Park, NG7 2RD, UK
| | | | | | | | | |
Collapse
|
18
|
Horikoshi H, Kinomoto M, Kurosu T, Komoto S, Shiraga M, Otake T, Mukai T, Ikuta K. Resting CD4(+) T cells with CD38(+)CD62L(+) produce interleukin-4 which contributes to enhanced replication of T-tropic human immunodeficiency virus type 1. Virology 2002; 293:94-102. [PMID: 11853403 DOI: 10.1006/viro.2001.1272] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
A significant increase in the CD38(+) population among T lymphocytes has been observed in human immunodeficiency virus type 1 (HIV-1)-infected carriers. We previously reported a higher replication rate of T-tropic HIV-1 in the CD4(+)CD38(+)CD62L(+) than CD38(-) subset under conditions of mitogen stimulation after infection. Here, we revealed a similarly high susceptibility in the CD38(+) subset on culture with conditioned medium containing Th2 cytokine, interleukin (IL)-4 that was produced endogenously from this subset on stimulation with mitogen or anti-CD3 antibody for 3 days. The contribution of IL-4 to the upregulated production of virus in the CD38(+) subset was confirmed by culture of this subset with recombinant human IL-4. In contrast, the rate of replication in the CD38(-) subset was not augmented in the conditioned medium from either subset or with IL-4. However, there were no differences in the surface expression of IL-4 receptor or HIV-1 receptors CD4 and CXCR4 between the two subsets. Thus, the CD4(+)CD38(+)CD62L(+) subset comprises a specific cell population secreting endogenous Th2 cytokine that contributes to the efficient production of T-tropic HIV-1 through upregulation at a certain stage of the viral life cycle, probably after the adsorption step.
Collapse
Affiliation(s)
- Haruko Horikoshi
- Department of Virology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Glavas NA, Ostenson C, Schaefer JB, Vasta V, Beavo JA. T cell activation up-regulates cyclic nucleotide phosphodiesterases 8A1 and 7A3. Proc Natl Acad Sci U S A 2001; 98:6319-24. [PMID: 11371644 PMCID: PMC33466 DOI: 10.1073/pnas.101131098] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Agents that increase intracellular cAMP inhibit the activation and function of T cells and can lead to cell death. Recently, it has been postulated that cAMP inhibits T cell function in large part by acting as a brake on the T cell receptor and costimulatory receptor pathways. Therefore, for full activation of the T cell to occur, this inhibitory influence must be removed. One likely mechanism for accomplishing this is by up-regulation and/or activation of specific cyclic nucleotide phosphodiesterases (PDEs), and such a mechanism for one phosphodiesterase, PDE7A1, has been reported. In this paper, we extend this mechanism to another isozyme variant of the same PDE family, PDE7A3. We also report the full-length sequence of human PDE8A1 and show that it also is induced in response to a combination of T cell receptor and costimulatory receptor pathway activation. However, the time course for induction of PDE8A1 is slower than that of PDE7A1. The basal level measured and, therefore, the apparent fold induction of PDE7A1 mRNA and protein depend in large part on the method of isolation of the T cells. On the other hand, regardless of the isolation method, the basal levels of PDE7A3 and PDE8A1 are very low and fold activation is much higher. Constitutively expressed PDE8A1 and PDE7A3 also have been isolated from a human T cell line, Hut78.
Collapse
Affiliation(s)
- N A Glavas
- Department of Pharmacology, Box 357280, University of Washington, Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
20
|
Magistrelli G, Jeannin P, Elson G, Gauchat JF, Nguyen TN, Bonnefoy JY, Delneste Y. Identification of three alternatively spliced variants of human CD28 mRNA. Biochem Biophys Res Commun 1999; 259:34-7. [PMID: 10334911 DOI: 10.1006/bbrc.1999.0725] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
CD28, expressed by T cells, plays a central role in providing costimulatory signals to T cells. The cd28 gene is organized into 4 exons. An alternatively spliced CD28 mRNA lacking most of the exon 2 has been previously evidenced. We report here that non stimulated human T cells express three additional alternatively spliced variants of CD28 mRNA (CD28a-c) in. The CD28a variant, expressed at similar levels to that of the full length CD28 mRNA encoding for the membrane form, lacks exon 3. This deletion introduces (i) a frame shift resulting in the addition of two extra amino acids and a premature stop codon and, (ii) induces the loss of the transmembrane region, suggesting that it could encodes for a soluble monomeric molecule which conserves the binding sites of CD28. The CD28b and CD28c variants, expressed at a low level compared with CD28a, are generated by deletion of most of the 3' end of exon 2 plus exon 3 and exon 2 plus exon 3, respectively. Activated T cells express only the membrane CD28 mRNA. These results suggest that resting human T cells may constitutively express both membrane and soluble CD28 which can differentially regulate the outcome of the T cell response.
Collapse
Affiliation(s)
- G Magistrelli
- Centre d'Immunologie Pierre Fabre, Saint Julien en Genevois, France
| | | | | | | | | | | | | |
Collapse
|
21
|
Krause A, Guo HF, Latouche JB, Tan C, Cheung NK, Sadelain M. Antigen-dependent CD28 signaling selectively enhances survival and proliferation in genetically modified activated human primary T lymphocytes. J Exp Med 1998; 188:619-26. [PMID: 9705944 PMCID: PMC2213361 DOI: 10.1084/jem.188.4.619] [Citation(s) in RCA: 237] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/1997] [Revised: 05/14/1998] [Indexed: 11/04/2022] Open
Abstract
Most tumor cells function poorly as antigen-presenting cells in part because they do not express costimulatory molecules. To provide costimulation to T lymphocytes that recognize tumor cells, we constructed a CD28-like receptor specific for GD2, a ganglioside overexpressed on the surface of neuroblastoma, small-cell lung carcinoma, melanoma, and other human tumors. Recognition of GD2 was provided by a single-chain antibody derived from the GD2-specific monoclonal antibody 3G6. We demonstrate that the chimeric receptor 3G6-CD28 provides CD28 signaling upon specific recognition of the GD2 antigen on tumor cells. Human primary T lymphocytes retrovirally transduced with 3G6-CD28 secrete interleukin 2, survive proapoptotic culture conditions, and selectively undergo clonal expansion in the presence of an antiidiotypic antibody specific for 3G6-CD28. Polyclonal CD8(+) lymphocytes expressing 3G6-CD28 are selectively expanded when cultured with cells expressing allogeneic major histocompatibility complex class I together with GD2. Primary T cells given such an antigen-dependent survival advantage should be very useful to augment immune responses against tumor cells.
Collapse
Affiliation(s)
- A Krause
- Department of Human Genetics, Memorial Sloan-Kettering Cancer Center, New York 10021, USA
| | | | | | | | | | | |
Collapse
|
22
|
Horwitz DA, Tang FL, Stimmler MM, Oki A, Gray JD. Decreased T cell response to anti-CD2 in systemic lupus erythematosus and reversal by anti-CD28: evidence for impaired T cell-accessory cell interaction. ARTHRITIS AND RHEUMATISM 1997; 40:822-33. [PMID: 9153542 DOI: 10.1002/art.1780400508] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To assess the ability of T cells from patients with systemic lupus erythematosus (SLE) to respond to a mitogenic combination of anti-CD2 monoclonal antibodies (MAb), and to learn the molecular basis of the documented defect. METHODS Peripheral blood mononuclear cell (PBMC) populations from individuals with SLE and paired controls were stimulated in vitro with anti-CD2, and the proliferative response was compared with that evoked by stimulation with phytohemagglutinin (PHA) and anti-CD3. Surface markers on lymphocyte populations were assessed by flow cytometry after staining with specific MAb. RESULTS The proliferative response to anti-CD2 was decreased to a greater extent than was the response to anti-CD3 or PHA in SLE patients. This defect was found in approximately one-half of the patients examined, was not associated with disease activity, and was maintained upon repeated testing. Since either monocytes or resting B cells can serve as accessory cells for T cells following activation by anti-CD2, we examined the T cell response after depletion of adherent cells. In approximately two-thirds of the individuals with a decreased response, depletion of monocytes or substitution of monocytes with allogeneic, resting B cells from normal donors corrected the defect. The addition to PBMC of anti-CD28, but not of a neutralizing antibody to interleukin-10, largely reversed the anti-CD2 proliferative defect. Significantly fewer CD8+ T cells expressed CD28 in SLE, and this defect was also documented, to a lesser extent, in CD4+ cells. CONCLUSION This study provides evidence that some functional T cell defects in SLE may be due, at least in part, to decreased CD28-mediated costimulatory activity following the interaction of T cells with conventional accessory cells.
Collapse
Affiliation(s)
- D A Horwitz
- University of Southern California School of Medicine, Los Angeles 90033, USA
| | | | | | | | | |
Collapse
|
23
|
Spina CA, Prince HE, Richman DD. Preferential replication of HIV-1 in the CD45RO memory cell subset of primary CD4 lymphocytes in vitro. J Clin Invest 1997; 99:1774-85. [PMID: 9120023 PMCID: PMC507999 DOI: 10.1172/jci119342] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The ability of HIV-1 to establish an infection and replicate to high copy number in CD4 lymphocytes is dependent on both the activation state of the cell and virus-encoded regulatory proteins that modulate viral gene expression. To study these required virus-cell interactions, we have used an in vitro cell model of acute HIV infection of quiescent, primary CD4 lymphocytes and subsequent induction of T cell activation and virus replication by lectin or CD3 receptor cross-linking. Experiments were done to determine if the capacity of HIV to establish infection and complete replication was impacted by the maturational state of the CD4 cell target or the specific signal induction pathway engaged during activation. Primary CD4 cells were FACS-sorted into the major phenotypic subsets representative of memory (CD45RO) and naive (CD45RA) cells. Levels of virus replication were compared between infection with wild-type NL4-3 virus and an isogenic mutant containing a deletion in nef regulatory gene. PHA mitogen stimulation was compared with anti-CD3, with and without anti-CD28 costimulation, for induction of cell proliferation and virus replication. In both infected and uninfected cells, the RA cell subset exhibited significantly greater response to CD3/CD28 stimulation than did the RO cell subset. In contrast, the majority of virus replication occurred consistently in the RO cell subset. Deletion of HIV nef function caused a severe reduction in viral replication, especially in the RA naive cell subset after CD3 induction. PCR analysis of viral DNA formation, during infection of quiescent cells, demonstrated that the observed differences in HIV replication capacity between RO and RA cell subsets were not due to inherent differences in cell susceptibility to infection. Our results indicate that HIV replication is enhanced selectively in CD45RO memory phenotype cells through the probable contribution of specialized cellular factors which are produced during CD3-initiated signal transduction.
Collapse
Affiliation(s)
- C A Spina
- The Veterans Affairs Medical Center, San Diego, California 92161, USA.
| | | | | |
Collapse
|
24
|
Van Gool SW, Vandenberghe P, de Boer M, Ceuppens JL. CD80, CD86 and CD40 provide accessory signals in a multiple-step T-cell activation model. Immunol Rev 1996; 153:47-83. [PMID: 9010719 DOI: 10.1111/j.1600-065x.1996.tb00920.x] [Citation(s) in RCA: 188] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In this review, a sequential multiple-step model for T-cell activation is proposed. In a series of in vitro studies, highly purified freshly isolated human peripheral blood T lymphocytes were stimulated through the CD28 receptor, with mAb or with natural ligands B7-1 or B7-2, along with TCR stimulation, in the absence of other costimulatory interactions. Ligation of the CD28 receptor, along with stimulation of the TCR, was found to up-regulate pleiotropic in vitro activities, including the secretion of both Th1 and Th2-type cytokines, B-cell help, and the development of cytotoxic activity. This costimulatory action involves CD4+ and CD8+ as well as naive and memory T-cell subsets. The expression of B7-1 and B7-2 on professional APC in situ in both normal and pathological tissues, and its up-regulation on monocytes by GM-CSF and IFN-gamma is consistent with this role. Additional studies have addressed the contribution of interactions between CD28 and B7-1 and B7-2 in T-cell activation initiated by normal un-engineered APC, such as stimulation with recall antigens and primary MLR. Blockade of the interaction between CD28 and B7-1/B7-2 under these conditions failed to completely inhibit T-cell responses or to induce anergy. Complete inhibition and anergy were, however, induced with a combination of CsA, targeting downstream TCR-triggered signalling, as well as anti-B7-1- and anti-B7-2-directed reagents. Interestingly, and in contrast to anti-LFA-1 mAb, the addition of anti-B7-1 or anti-B7-2 reagents could be delayed until at least 48 h after the initiation of T-cell stimulation, indicating a requirement for a late interaction between CD28 and its counter-receptors. Interactions between CD40L on activated T cells and CD40 on APC may serve to sustain, enhance or prolong the presentation of B7-1 or B7-2 on the APC, and thus to prevent anergy induction, or ineffective or abortive T-cell stimulation. Based on these data a sequential multiple-step T-cell activation model is proposed, and novel strategies for immuno-intervention can be designed.
Collapse
Affiliation(s)
- S W Van Gool
- Department of Pathophysiology, Catholic University of Leuven, Belgium
| | | | | | | |
Collapse
|
25
|
Karawajew L, Micheel B, Jung G, Wolf H, Behrsing O. A simple and sensitive method to study effects mediated by soluble lymphokines as demonstrated by the interaction of CD4+ and CD8+ cell subsets during T cell activation. J Immunol Methods 1994; 173:27-31. [PMID: 7913480 DOI: 10.1016/0022-1759(94)90279-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
A method is described for the study of lymphokine-mediated cellular interactions using triple wells, which permits co-culture of cell subpopulations without direct physical contact. The triple wells are constructed by slitting the walls to half height between three adjacent wells of a 96-well microtiter plate. The cells under study are positioned in the outer two wells, whereas the middle well serves to separate the cells. The half slits permit the wells to be treated independently before filling the triple well with the culture medium and prevents cell leakage thereafter. The feasibility of the method was established by studying the interaction of isolated CD4+ and CD8+ T cell subsets during T cell proliferation induced by immobilized anti-CD3 and anti-CD28 monoclonal antibodies.
Collapse
Affiliation(s)
- L Karawajew
- Max Delbrück Centre for Molecular Medicine, Berlin-Buch, Germany
| | | | | | | | | |
Collapse
|
26
|
Renner C, Jung W, Sahin U, Denfeld R, Pohl C, Trümper L, Hartmann F, Diehl V, van Lier R, Pfreundschuh M. Cure of xenografted human tumors by bispecific monoclonal antibodies and human T cells. Science 1994; 264:833-5. [PMID: 8171337 DOI: 10.1126/science.8171337] [Citation(s) in RCA: 119] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Tumor immunotherapy should increase both the number of T cells that kill the tumor and the likelihood that those cells are activated at the tumor site. Bispecific monoclonal antibodies (Bi-mAbs) were designed that bound to a Hodgkin's tumor-associated antigen (CD30) on the tumor and to either CD3 or CD28 on the T cell. Immunodeficient mice were cured of established human tumors when mice were treated with both the CD3-CD30 and the CD28-CD30 Bi-mAbs and then given human peripheral blood lymphocytes that had been incubated with the CD3-CD30 Bi-mAb and cells that expressed CD30. The enrichment of human T cells within the tumor and the fact that established tumors can be cured may indicate in situ activation of both the T cell receptor and the costimulatory pathway.
Collapse
Affiliation(s)
- C Renner
- Medizinische Klinik und Poliklinik, Universität des Saarlandes, Homburg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Pohl C, Denfeld R, Renner C, Jung W, Bohlen H, Sahin U, Hombach A, van Lier R, Schwonzen M, Diehl V. CD30-antigen-specific targeting and activation of T cells via murine bispecific monoclonal antibodies against CD3 and CD28: potential use for the treatment of Hodgkin's lymphoma. Int J Cancer 1993; 54:820-7. [PMID: 7686889 DOI: 10.1002/ijc.2910540517] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Cross-linking of specific tumor antigens with the T-cell-associated CD3 and CD28 antigens can increase IL-2 secretion, proliferation and antigen-specific cytotoxicity in resting T cells. This cross-linking can be achieved effectively by bispecific monoclonal antibodies (BiMAb) with specificity for both the tumor antigen and CD3 or CD28 antigen, respectively. To take advantage of the enhanced activation of CD3 pre-activated T cells by additional activation via the CD28 antigen, BiMAb OKT3/HRS-3 with reactivity to both CD3 and the Hodgkin's-lymphoma-associated CD30 antigen and the BiMAb 15E8/HRS-3 with reactivity to both CD28 and CD30 antigen were generated by hybridoma fusion. Resting T cells, represented by Jurkat cells (CD3+/CD28+) were specifically activated to produce IL-2 by co-cultivation with an EBV-transformed B-cell line (LAZ509, CD30+/CD19+) only in the presence of the CD30/CD28 cross-linking BiMAb and an additional cross-linking anti-CD3/CD19 BiMAb (OKT3/6A4). Neither the cross-linking BiMAbs alone nor any combination of the monospecific parental MAbs induced a comparable IL-2 production by Jurkat cells in the presence of LAZ509. In addition, using a combination of these BiMAbs, an antigen-dependent cytotoxicity was induced by targeting APC-depleted peripheral blood lymphocytes to CD30+ L540 cells. T cells, previously specifically activated by CD3/CD30 in the presence of CD30 antigen, were cytotoxic to CD30+ cell lines only after incubation with BiMAb anti-CD28/CD30. Neither of the BiMAbs nor any of the parental antibodies induced a comparable effect. Our results indicate that such BiMAbs may offer a new approach for specific immunotherapy of Hodgkin's lymphoma, which takes advantage of cytokine secretion and cytotoxicity of activated T cells.
Collapse
Affiliation(s)
- C Pohl
- Klinik I für Innere Medizin, Universität zu Köln, Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Hahn AB, Tian H, Wiegand G, Soloski MJ. Signals delivered via the Qa-2 molecule can synergize with limiting anti-CD3-induced signals to cause T lymphocyte activation. Immunol Invest 1992; 21:203-17. [PMID: 1350269 DOI: 10.3109/08820139209072259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Qa-2 is a glycolipid anchored, MHC encoded class I molecule expressed at high levels on all murine peripheral T lymphocytes. Anti-Qa-2 antibodies have previously been found to stimulate T cells to proliferate in the presence of crosslinking antibody and PMA. We have examined the effect of anti-Qa-2 antibodies on T cells stimulated with a suboptimal concentration of immobilized anti-CD3. When anti-Qa-2 antibodies were co-immobilized with limiting anti-CD3, in the absence of PMA, a clear augmentation of T cell proliferation was seen. Interestingly, the co-stimulatory anti-Qa-2 antibodies could be directed against epitopes mapped to either the alpha 3 or the alpha 1/alpha 2 Qa-2 domains. As was the case with activation induced by soluble/crosslinked anti-Qa-2 antibodies plus PMA, CD8+ T cells were less able to be costimulated with anti-Qa-2 antibodies than CD4+ cells. Surprisingly, Ca2+ mobilization was only seen when two anti-Qa-2 antibodies reactive to separate structural domains were co-crosslinked on the surface of Indo-1 loaded T cells with a suboptimal concentration of anti-CD3. Collectively these results raise questions regarding the mechanism of Qa-2 mediated signaling and its potential role in T cell activation.
Collapse
Affiliation(s)
- A B Hahn
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205
| | | | | | | |
Collapse
|
29
|
Verwilghen J, Vandesande R, Vandenberghe P, Ceuppens JL. Crosslinking of the CD5 antigen on human T cells induces functional IL2 receptors. Cell Immunol 1990; 131:109-19. [PMID: 1699670 DOI: 10.1016/0008-8749(90)90238-m] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
CD5 is a 67-kDa antigen that is expressed on the membrane of the majority of human T cells, and on a subset of B cells. Previous studies have demonstrated that anti-CD5 monoclonal antibodies (mAb) can provide a helper signal for T cell activation through the TCR/CD3 complex. We now demonstrate that when CD5 is crosslinked by immobilized anti-CD5 mAb in the absence of other activating stimuli, the T cells proliferate in response to recombinant interleukin 2 (rIL2) (but not to rIL4). Four different anti-CD5 mAb (anti-Leu1, 10.2, anti-T1, and OKT1) had a similar effect. IL2 responsiveness could be induced with immobilized anti-CD5 mAb in cultures of purified T cells, but was enhanced by the addition of monocytes, by monocyte culture supernatant, or by the combination of IL1 and IL6. Staining with an anti-IL2 receptor (p55) mAb demonstrated expression of IL2 receptors on about 10% of the anti-CD5-stimulated T cells. Both virgin (CD45RA+) and memory (CD45RO+) T cells were responsive. Our data provide further evidence for the involvement of CD5 in T cell activation.
Collapse
Affiliation(s)
- J Verwilghen
- Department of Internal Medicine and Pathophysiology, University of Leuven Faculty of Medicine, Belgium
| | | | | | | |
Collapse
|
30
|
Kohno K, Shibata Y, Matsuo Y, Minowada J. CD28 molecule as a receptor-like function for accessory signals in cell-mediated augmentation of IL-2 production. Cell Immunol 1990; 131:1-10. [PMID: 2171783 DOI: 10.1016/0008-8749(90)90230-o] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
IL-2 production by PHA-stimulated MOLT 14 cells (a TcR gamma/delta-bearing human leukemic T cell line) and MOLT 16 cells (a TcR alpha/beta-bearing human leukemic T cell line) was markedly augmented by coculturing with BALL-1 cells ( a human leukemic B cell line), or with recombinant human interleukin-1 alpha (rhIL-1 alpha). We have previously shown that the augmentation of IL-2 production, induced by BALL-1 cells, requires cell to cell contact and is an IL-1-independent pathway. In this report, the expression of the CD28 molecule on MOLT 14 cells and MOLT 16 cells was examined for its role in IL-2 production augmented by BALL-1 cells. A 1-hr preincubation of MOLT 14 cells and MOLT 16 cells with anti-CD28 mAb resulted in the inhibition of BALL-1 cell-induced augmentation of IL-2 production (90 and 62% inhibition of control, respectively). The inhibition was observed in a dose-dependent manner of anti-CD28 mAb added and reached a plateau level at concentrations of 0.05 micrograms/ml of anti-CD28 mAb. This was sufficient to cover all the CD28 molecules expressed on the surface of both T cells as detected by flow cytometric analysis. Flow cytometric analysis also showed that the inhibition was not due to a modulation of CD28 molecules. In contrast, the treatment with anti-CD28 mAb did not inhibit IL-2 production which was augmented by rhIL-1 alpha costimulator. These results suggest that the CD28 molecule on the T cells is important for the interaction with BALL-1 cells which causes the augmentation of IL-2 production and further imply that the CD28 molecule is a receptor for an accessory signal provided by BALL-1 cells.
Collapse
Affiliation(s)
- K Kohno
- Fujisaki Cell Center, Hayashibara Biochemical Laboratories, Inc., Okayama, Japan
| | | | | | | |
Collapse
|
31
|
Vanham G, Ceuppens JL, Bouillon R. T lymphocytes and their CD4 subset are direct targets for the inhibitory effect of calcitriol. Cell Immunol 1989; 124:320-33. [PMID: 2573434 DOI: 10.1016/0008-8749(89)90134-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
We studied the direct effects of the hormone calcitriol on the activation and proliferation of pure T lymphocytes and their subsets. Calcitriol inhibited the proliferation of T lymphocytes stimulated in the absence of monocytes with phytohemagglutinin (PHA) and either a monocytic culture supernatant or a combination of monocyte-derived interleukin 1 and interleukin 6. This inhibition was not influenced by the concentration of the stimulating agents. The minimal effective concentration of calcitriol was 10(-10) M. In contrast, the interleukin 2 (10 U/ml)-driven growth of PHA-stimulated T lymphocytes was not significantly altered by calcitriol at 10(-8) M. The hormone had also no influence on the T lymphocyte proliferation induced by a combination of PHA and the anti-CD28 monoclonal antibody 9.3. Pure T lymphocytes, after incubation for 5 days with PHA and monocytic factors, expressed a high level of transferrin receptors. This phenomenon was strongly suppressed on both CD4 and CD8 subsets when 10(-8) M calcitriol had been present during the culture. Moreover, the proliferation of pure CD4 cells was directly inhibited by calcitriol in similar conditions as for unseparated T lymphocytes. We conclude that T lymphocytes and their CD4 subset are direct targets for the inhibitory effect of calcitriol.
Collapse
Affiliation(s)
- G Vanham
- LEGENDO, Onderwijs en Navorsing, Gasthuisberg, Leuven, Belgium
| | | | | |
Collapse
|