1
|
Tamura K, Nishii R, Tani K, Hashimoto H, Kawamura K, Zhang MR, Maeda T, Yamazaki K, Higashi T, Jinzaki M. A first-in-man study of [ 18F] FEDAC: a novel PET tracer for the 18-kDa translocator protein. Ann Nucl Med 2024; 38:264-271. [PMID: 38285284 PMCID: PMC10954948 DOI: 10.1007/s12149-023-01895-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 12/10/2023] [Indexed: 01/30/2024]
Abstract
PURPOSE N-benzyl-N-methyl-2-[7, 8-dihydro-7-(2-[18F] fluoroethyl) -8-oxo-2-phenyl-9H-purin-9-yl] acetamide ([18F] FEDAC) is a novel positron emission tomography (PET) tracer that targets the translocator protein (TSPO; 18 kDa) in the mitochondrial outer membrane, which is known to be upregulated in various diseases such as malignant tumors, neurodegenerative diseases, and neuroinflammation. This study presents the first attempt to use [18F]FEDAC PET/CT and evaluate its biodistribution as well as the systemic radiation exposure to the radiotracer in humans. MATERIALS AND METHODS Seventeen whole-body [18F]FEDAC PET/CT (injected dose, 209.1 ± 6.2 MBq) scans with a dynamic scan of the upper abdomen were performed in seven participants. Volumes of interest were assigned to each organ, and a time-activity curve was created to evaluate the biodistribution of the radiotracer. The effective dose was calculated using IDAC-Dose 2.1. RESULTS Immediately after the intravenous injection, the radiotracer accumulated significantly in the liver and was subsequently excreted into the gastrointestinal tract through the biliary tract. It also showed high levels of accumulation in the kidneys, but showed minimal migration to the urinary bladder. Thus, the liver was the principal organ that eliminated [18F] FEDAC. Accumulation in the normal brain tissue was minimal. The effective dose estimated from biodistribution in humans was 19.47 ± 1.08 µSv/MBq, and was 3.60 mSV for 185 MBq dose. CONCLUSION [18F]FEDAC PET/CT provided adequate image quality at an acceptable effective dose with no adverse effects. Therefore, [18F]FEDAC may be useful in human TSPO-PET imaging.
Collapse
Affiliation(s)
- Kentaro Tamura
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan.
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan.
| | - Ryuichi Nishii
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan.
- Department of Integrated Health Sciences, Graduate School of Medicine, Nagoya University, 1-1-20 Daiko Minami, Higashi-ku, Nagoya, 461-8673, Japan.
| | - Kotaro Tani
- Department of Radiation Measurement and Dose Assessment, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Hiroki Hashimoto
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Kazunori Kawamura
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Takamasa Maeda
- Department of Medical Technology, Quantum Life and Medical Science Directorate, QST Hospital, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-ku, Chiba, 263-8555, Japan
| | - Kana Yamazaki
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Tatsuya Higashi
- Department of Molecular Imaging and Theranostics, Institute for Quantum Medical Science, Quantum Life and Medical Science Directorate, National Institutes for Quantum Science and Technology (QST), 4-9-1 Anagawa, Inage-Ku, Chiba, 263-8555, Japan
| | - Masahiro Jinzaki
- Department of Radiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-Ku, Tokyo, 160-8582, Japan
| |
Collapse
|
2
|
Mills KA, Du Y, Coughlin JM, Foss CA, Horti AG, Jenkins K, Skorobogatova Y, Spiro E, Motley CS, Dannals RF, Song JJ, Choi YR, Redding-Ochoa J, Troncoso J, Dawson VL, Kam TI, Pomper MG, Dawson TM. Exploring [ 11C]CPPC as a CSF1R-targeted PET Imaging Marker for Early Parkinson's Disease Severity. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2023.05.28.23290647. [PMID: 37398476 PMCID: PMC10312881 DOI: 10.1101/2023.05.28.23290647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Neuroinflammation through enhanced innate immunity is thought play a role in the pathogenesis of Parkinson's disease (PD). Methods for monitoring neuroinflammation in living patients with PD are currently limited to positron emission tomography (PET) ligands that lack specificity in labeling immune cells in the nervous system. The colony stimulating factor 1 receptor (CSF1R) plays a crucial role in microglial function, an important cellular contributor to the nervous system's innate immune response. Using immunologic methods, we show that CSF1R in human brain is colocalized with the microglial marker, ionized calcium binding adaptor molecule 1 (Iba1). In PD, CSF1R immunoreactivity is significantly increased in PD across multiple brain regions, with the largest differences in the midbrain versus controls. Autoradiography revealed significantly increased [3H]JHU11761 binding in the inferior parietal cortex of PD patients. PET imaging demonstrated that higher [11C]CPPC binding in the striatum was associated with greater motor disability in PD. Furthermore, increased [11C]CPPC binding in various regions correlated with more severe motor disability and poorer verbal fluency. This study finds that CSF1R expression is elevated in PD and that [11C]CPPC-PET imaging of CSF1R is indicative of motor and cognitive impairments in the early stages of the disease. Moreover, the study underscores the significance of CSF1R as a promising biomarker for neuroinflammation in Parkinson's disease, suggesting its potential use for non-invasive assessment of disease progression and severity, leading to earlier diagnosis and targeted interventions.
Collapse
Affiliation(s)
- Kelly A. Mills
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yong Du
- Johns Hopkins University School of Medicine, Russell H. Morgan Dept. of Radiology and Radiologic Science, Baltimore, MD, USA
| | - Jennifer M. Coughlin
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Catherine A. Foss
- Johns Hopkins University School of Medicine, Russell H. Morgan Dept. of Radiology and Radiologic Science, Baltimore, MD, USA
| | - Andrew G. Horti
- Johns Hopkins University School of Medicine, Russell H. Morgan Dept. of Radiology and Radiologic Science, Baltimore, MD, USA
| | - Katelyn Jenkins
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Yana Skorobogatova
- Johns Hopkins University School of Medicine, Russell H. Morgan Dept. of Radiology and Radiologic Science, Baltimore, MD, USA
| | - Ergi Spiro
- Johns Hopkins University School of Medicine, Russell H. Morgan Dept. of Radiology and Radiologic Science, Baltimore, MD, USA
| | - Chelsie S. Motley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
| | - Robert F. Dannals
- Johns Hopkins University School of Medicine, Russell H. Morgan Dept. of Radiology and Radiologic Science, Baltimore, MD, USA
| | - Jae-Jin Song
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Yu Ree Choi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Javier Redding-Ochoa
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Juan Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pathology (Neuropathology), Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Valina L. Dawson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Physiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tae-In Kam
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Martin G. Pomper
- Johns Hopkins University School of Medicine, Russell H. Morgan Dept. of Radiology and Radiologic Science, Baltimore, MD, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, US
- Department of Radiology, University of Texas Southwestern School of Medicine, Dallas, TX, USA (current)
| | - Ted M. Dawson
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA
- Neuroregeneration and Stem Cell Programs, Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21287, US
| |
Collapse
|
3
|
The mitochondrial translocator protein (TSPO): a key multifunctional molecule in the nervous system. Biochem J 2022; 479:1455-1466. [PMID: 35819398 DOI: 10.1042/bcj20220050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/12/2022]
Abstract
Translocator protein (TSPO, 18 kDa), formerly known as peripheral benzodiazepine receptor, is an evolutionary well-conserved protein located on the outer mitochondrial membrane. TSPO is involved in a variety of fundamental physiological functions and cellular processes. Its expression levels are regulated under many pathological conditions, therefore, TSPO has been proposed as a tool for diagnostic imaging and an attractive therapeutic drug target in the nervous system. Several synthetic TSPO ligands have thus been explored as agonists and antagonists for innovative treatments as neuroprotective and regenerative agents. In this review, we provide state-of-the-art knowledge of TSPO functions in the brain and peripheral nervous system. Particular emphasis is placed on its contribution to important physiological functions such as mitochondrial homeostasis, energy metabolism and steroidogenesis. We also report how it is involved in neuroinflammation, brain injury and diseases of the nervous system.
Collapse
|
4
|
Van Camp N, Lavisse S, Roost P, Gubinelli F, Hillmer A, Boutin H. TSPO imaging in animal models of brain diseases. Eur J Nucl Med Mol Imaging 2021; 49:77-109. [PMID: 34245328 PMCID: PMC8712305 DOI: 10.1007/s00259-021-05379-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/25/2021] [Indexed: 12/19/2022]
Abstract
Over the last 30 years, the 18-kDa TSPO protein has been considered as the PET imaging biomarker of reference to measure increased neuroinflammation. Generally assumed to image activated microglia, TSPO has also been detected in endothelial cells and activated astrocytes. Here, we provide an exhaustive overview of the recent literature on the TSPO-PET imaging (i) in the search and development of new TSPO tracers and (ii) in the understanding of acute and chronic neuroinflammation in animal models of neurological disorders. Generally, studies testing new TSPO radiotracers against the prototypic [11C]-R-PK11195 or more recent competitors use models of acute focal neuroinflammation (e.g. stroke or lipopolysaccharide injection). These studies have led to the development of over 60 new tracers during the last 15 years. These studies highlighted that interpretation of TSPO-PET is easier in acute models of focal lesions, whereas in chronic models with lower or diffuse microglial activation, such as models of Alzheimer's disease or Parkinson's disease, TSPO quantification for detection of neuroinflammation is more challenging, mirroring what is observed in clinic. Moreover, technical limitations of preclinical scanners provide a drawback when studying modest neuroinflammation in small brains (e.g. in mice). Overall, this review underlines the value of TSPO imaging to study the time course or response to treatment of neuroinflammation in acute or chronic models of diseases. As such, TSPO remains the gold standard biomarker reference for neuroinflammation, waiting for new radioligands for other, more specific targets for neuroinflammatory processes and/or immune cells to emerge.
Collapse
Affiliation(s)
- Nadja Van Camp
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Sonia Lavisse
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Pauline Roost
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Francesco Gubinelli
- Université Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodégénératives, 92265, Fontenay-aux-Roses, France
| | - Ansel Hillmer
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Department of Radiology & Biomedical Imaging, Yale School of Medicine, New Haven, CT, USA
- Department of Biomedical Engineering, Yale School of Engineering & Applied Science, New Haven, CT, USA
| | - Hervé Boutin
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Brain and Mental Health, University of Manchester, M13 9PL, Manchester, UK.
- Wolfson Molecular Imaging Centre, University of Manchester, 27 Palatine Road, M20 3LJ, Manchester, UK.
- Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance & University of Manchester, Manchester, UK.
| |
Collapse
|
5
|
Siméon FG, Lee JH, Morse CL, Stukes I, Zoghbi SS, Manly LS, Liow JS, Gladding RL, Dick RM, Yan X, Taliani S, Costa B, Martini C, Da Settimo F, Castellano S, Innis RB, Pike VW. Synthesis and Screening in Mice of Fluorine-Containing PET Radioligands for TSPO: Discovery of a Promising 18F-Labeled Ligand. J Med Chem 2021; 64:16731-16745. [PMID: 34756026 PMCID: PMC8817670 DOI: 10.1021/acs.jmedchem.1c01562] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Translocator protein 18 kDa (TSPO) is a biomarker of neuroinflammation. [11C]ER176 robustly quantifies TSPO in the human brain with positron emission tomography (PET), irrespective of subject genotype. We aimed to develop an ER176 analog with potential for labeling with longer-lived fluorine-18 (t1/2 = 109.8 min). New fluoro and trifluoromethyl analogs of ER176 were prepared through a concise synthetic strategy. These ligands showed high TSPO affinity and low human genotype sensitivity. Each ligand was initially labeled by a generic 11C-methylation procedure, thereby enabling speedy screening in mice. Each radioligand was rapidly taken up and well retained in the mouse brain at baseline after intravenous injection. Preblocking of TSPO showed that high proportions of brain uptake were specifically bound to TSPO at baseline. Overall, the 3-fluoro analog of [11C]ER176 ([11C]3b) displayed the most promising imaging properties. Therefore, a method was developed to label 3b with [18F]fluoride ion. [18F]3b gave similarly promising PET imaging results and deserves evaluation in higher species.
Collapse
Affiliation(s)
- Fabrice G Siméon
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jae-Hoon Lee
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department of Nuclear Medicine, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 03772, South Korea
| | - Cheryl L Morse
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ian Stukes
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sami S Zoghbi
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lester S Manly
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jeih-San Liow
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Robert L Gladding
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Rachel M Dick
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Xuefeng Yan
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Barbara Costa
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | - Claudia Martini
- Department of Pharmacy, University of Pisa, 56126 Pisa, Italy
| | | | - Sabrina Castellano
- Department of Pharmacy, University of Salerno, 84084 Fisciano, SA, Italy
| | - Robert B Innis
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
6
|
Cipollina G, Davari Serej A, Di Nolfi G, Gazzano A, Marsala A, Spatafora MG, Peviani M. Heterogeneity of Neuroinflammatory Responses in Amyotrophic Lateral Sclerosis: A Challenge or an Opportunity? Int J Mol Sci 2020; 21:E7923. [PMID: 33113845 PMCID: PMC7662281 DOI: 10.3390/ijms21217923] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a complex pathology: (i) the neurodegeneration is chronic and progressive; it starts focally in specific central nervous system (CNS) areas and spreads to different districts; (ii) multiple cell types further than motor neurons (i.e., glial/immune system cells) are actively involved in the disease; (iii) both neurosupportive and neurotoxic neuroinflammatory responses were identified. Microglia cells (a key player of neuroinflammation in the CNS) attracted great interest as potential target cell population that could be modulated to counteract disease progression, at least in preclinical ALS models. However, the heterogeneous/multifaceted microglia cell responses occurring in different CNS districts during the disease represent a hurdle for clinical translation of single-drug therapies. To address this issue, over the past ten years, several studies attempted to dissect the complexity of microglia responses in ALS. In this review, we shall summarize these results highlighting how the heterogeneous signature displayed by ALS microglia reflects not only the extent of neuronal demise in different regions of the CNS, but also variable engagement in the attempts to cope with the neuronal damage. We shall discuss novel avenues opened by the advent of single-cell and spatial transcriptomics technologies, underlining the potential for discovery of novel therapeutic targets, as well as more specific diagnostic/prognostic not-invasive markers of neuroinflammation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Marco Peviani
- Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, via Ferrata 9, 27100 Pavia, Italy; (G.C.); (A.D.S.); (G.D.N.); (A.G.); (A.M.); (M.G.S.)
| |
Collapse
|
7
|
Wilson H, Pagano G, Politis M. Dementia spectrum disorders: lessons learnt from decades with PET research. J Neural Transm (Vienna) 2019; 126:233-251. [PMID: 30762136 PMCID: PMC6449308 DOI: 10.1007/s00702-019-01975-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 01/21/2019] [Indexed: 02/07/2023]
Abstract
The dementia spectrum encompasses a range of disorders with complex diagnosis, pathophysiology and limited treatment options. Positron emission tomography (PET) imaging provides insights into specific neurodegenerative processes underlying dementia disorders in vivo. Here we focus on some of the most common dementias: Alzheimer's disease, Parkinsonism dementias including Parkinson's disease with dementia, dementia with Lewy bodies, progressive supranuclear palsy and corticobasal syndrome, and frontotemporal lobe degeneration. PET tracers have been developed to target specific proteinopathies (amyloid, tau and α-synuclein), glucose metabolism, cholinergic system and neuroinflammation. Studies have shown distinct imaging abnormalities can be detected early, in some cases prior to symptom onset, allowing disease progression to be monitored and providing the potential to predict symptom onset. Furthermore, advances in PET imaging have identified potential therapeutic targets and novel methods to accurately discriminate between different types of dementias in vivo. There are promising imaging markers with a clinical application on the horizon, however, further studies are required before they can be implantation into clinical practice.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, Camberwell, London, SE5 9NU, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, Camberwell, London, SE5 9NU, UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Maurice Wohl Clinical Neuroscience Institute, 125 Coldharbour Lane, Camberwell, London, SE5 9NU, UK.
| |
Collapse
|
8
|
Kwon YD, Kang S, Park H, Cheong IK, Chang KA, Lee SY, Jung JH, Lee BC, Lim ST, Kim HK. Novel potential pyrazolopyrimidine based translocator protein ligands for the evaluation of neuroinflammation with PET. Eur J Med Chem 2018; 159:292-306. [PMID: 30296688 DOI: 10.1016/j.ejmech.2018.09.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 09/06/2018] [Accepted: 09/28/2018] [Indexed: 01/06/2023]
Abstract
Translocator protein (TSPO) is an interesting biological target because TSPO overexpression is associated with microglial activation caused by neuronal damage or neuroinflammation, and these activated microglia are involved in several central nervous system diseases. Herein, novel fluorinated ligands (14a-c and 16a-c) based on a 2-phenylpyrazolo[1,5-a]pyrimidin-3-yl acetamide scaffold were synthesized, and in vitro characterization of each of the novel ligands was performed to elucidate structure activity relationships. All of the newly synthesized ligands displayed nano-molar affinity for TSPO. Particularly, an in vitro affinity study suggests that 2-(5,7-diethyl-2-(4-(3-fluoro-2-methylpropoxy)phenyl)pyrazolo[1,5-a]pyrimidin-3-yl)-N,N-diethylacetamide (14a), which exhibited high nano-molar affinity for TSPO and proper lipophilicity, was suitable for in vivo brain studies. Thus, radiosynthesis from tosylate precursor 13a using fluorine-18 was performed, and [18F]14a was obtained in a 31% radiochemical yield (decay-corrected). Dynamic positron emission tomography (PET) imaging studies were performed in a lipopolysaccharide (LPS)-induced neuroinflammation rat model using [18F]14a to identify the location of inflammation in the brain with a high target-to-background signal ratio. In addition, we validated that the locations of inflammatory lesions found by PET imaging were consistent with the locations observed by histological examination of dissected brains using antibodies. These results suggest that [18F]14a is a novel promising PET imaging agent for diagnosing neuroinflammation, and it may also prove to be applicable for diagnosing other diseases, including cancers associated with altered TSPO expression, using PET techniques.
Collapse
Affiliation(s)
- Young-Do Kwon
- Department of Nuclear Medicine, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea; Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea
| | - Shinwoo Kang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea
| | - Hyunjun Park
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea
| | - Il-Koo Cheong
- Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea
| | - Keun-A Chang
- Department of Pharmacology, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea; Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea.
| | - Sang-Yoon Lee
- Neuroscience Research Institute, Gachon University, Incheon, 21565, Republic of Korea; Gachon Advanced Institute for Health Science and Technology, Graduate School, Gachon University, Incheon, 21936, Republic of Korea; Department of Neuroscience, College of Medicine, Gachon University, Incheon, 21936, Republic of Korea
| | - Jae Ho Jung
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea
| | - Byung Chul Lee
- Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, 13620, Republic of Korea; Center for Nanomolecular Imaging and Innovative Drug Development, Advanced Institutes of Convergence Technology, Suwon, 16229, Republic of Korea
| | - Seok Tae Lim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, 54907, Republic of Korea
| | - Hee-Kwon Kim
- Department of Nuclear Medicine, Molecular Imaging & Therapeutic Medicine Research Center, Chonbuk National University Medical School and Hospital, Jeonju, 54907, Republic of Korea; Research Institute of Clinical Medicine of Chonbuk National University-Biomedical Research Institute of Chonbuk National University Hospital, Jeonju, 54907, Republic of Korea.
| |
Collapse
|
9
|
de Lange C, Solberg R, Holtedahl JE, Tulipan A, Barlinn J, Trigg W, Wickstrøm T, Saugstad OD, Malinen E, Revheim ME. Dynamic TSPO-PET for assessing early effects of cerebral hypoxia and resuscitation in new born pigs. Nucl Med Biol 2018; 66:49-57. [PMID: 30257223 DOI: 10.1016/j.nucmedbio.2018.08.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Revised: 07/27/2018] [Accepted: 08/19/2018] [Indexed: 01/07/2023]
Abstract
INTRODUCTION Inflammation associated with microglial activation may be an early prognostic indicator of perinatal hypoxic ischemic injury, where translocator protein (TSPO) is a known inflammatory biomarker. This piglet study used dynamic TSPO-PET with [18F]GE180 to evaluate if microglial activation after global perinatal hypoxic injury could be detected. METHODS New born anesthetized pigs (n = 14) underwent hypoxia with fraction of inspired oxygen (FiO2)0.08 until base excess -20 mmol/L and/or a mean arterial blood pressure decrease to 20 mm Hg, followed by resuscitation with FiO2 0.21 or 1.0. Three piglets served as controls and one had intracranial injection of lipopolysaccharide (LPS). Whole body [18F]GE180 Positron emission tomography-computed tomography (PET-CT) was performed repeatedly up to 32 h after hypoxia and resuscitation. Volumes of interest were traced in the basal ganglia, cerebellum and liver using MRI as anatomic correlation. Standardized uptake values (SUVs) were measured at baseline and four time-points, quantifying microglial activity over time. Statistical analysis used Mann Whitney- and Wilcoxon rank test with significance value set to p < 0.05. RESULTS At baseline (n = 5), mean SUVs ±1 standard deviation were 0.43 ± 0.10 and 1.71 ± 0.62 in brain and liver respectively without significant increase after hypoxia at the four time-points (n = 5-13/time point). Succeeding LPS injection, SUV increased 80% from baseline values. CONCLUSIONS Cerebral inflammatory response caused by severe asphyxia was not possible to detect with [18F]GE180 PET CT the first 32 h after hypoxia and only sparse hepatic uptake was revealed. ADVANCES IN KNOWLEDGE Early microglial activation as indicator of perinatal hypoxic ischemic injury was not detectable by TSPO-PET with [18F]GE180. IMPLICATIONS FOR PATIENT CARE TSPO-PET with [18F]GE180 might not be suitable for early detection of perinatal hypoxic ischemic brain injury.
Collapse
Affiliation(s)
- Charlotte de Lange
- Div. of Radiology and Nuclear Medicine, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway.
| | - Rønnaug Solberg
- Dept. of Paediatric Research, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway; Dept. of Pediatrics, Vestfold Hospital Trust, Tønsberg, Norway
| | - Jon Erik Holtedahl
- Dept. of Medical Physics, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway
| | - Andreas Tulipan
- Div. of Radiology and Nuclear Medicine, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway
| | - Jon Barlinn
- Dept. of Pediatrics, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway
| | | | | | - Ola Didrik Saugstad
- Dept. of Paediatric Research, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway; Faculty of Medicine, University of Oslo, PO Box1078, Blindern, N-0316 Oslo, Norway
| | - Eirik Malinen
- Dept. of Medical Physics, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway; Dept. of Physics, University of Oslo, P.O Box 1048, Blindern, N-0316 Oslo, Norway
| | - Mona Elisabeth Revheim
- Div. of Radiology and Nuclear Medicine, Oslo University Hospital, PO box 4950, Nydalen, N-0424 Oslo, Norway; Faculty of Medicine, University of Oslo, PO Box1078, Blindern, N-0316 Oslo, Norway
| |
Collapse
|
10
|
Bonsack F, Sukumari-Ramesh S. TSPO: An Evolutionarily Conserved Protein with Elusive Functions. Int J Mol Sci 2018; 19:ijms19061694. [PMID: 29875327 PMCID: PMC6032217 DOI: 10.3390/ijms19061694] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 05/18/2018] [Indexed: 12/22/2022] Open
Abstract
TSPO (18 kDa translocator protein) was identified decades ago in a search for peripheral tissue binding sites for benzodiazepines, and was formerly called the peripheral benzodiazepine receptor. TSPO is a conserved protein throughout evolution and it is implicated in the regulation of many cellular processes, including inflammatory responses, oxidative stress, and mitochondrial homeostasis. TSPO, apart from its broad expression in peripheral tissues, is highly expressed in neuroinflammatory cells, such as activated microglia. In addition, emerging studies employing the ligands of TSPO suggest that TSPO plays an important role in neuropathological settings as a biomarker and therapeutic target. However, the precise molecular function of this protein in normal physiology and neuropathology remains enigmatic. This review provides an overview of recent advances in our understanding of this multifaceted molecule and identifies the knowledge gap in the field for future functional studies.
Collapse
Affiliation(s)
- Frederick Bonsack
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| | - Sangeetha Sukumari-Ramesh
- Department of Neurosurgery, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA 30912, USA.
| |
Collapse
|
11
|
Niccolini F, Pagano G, Fusar-Poli P, Wood A, Mrzljak L, Sampaio C, Politis M. Striatal molecular alterations in HD gene carriers: a systematic review and meta-analysis of PET studies. J Neurol Neurosurg Psychiatry 2018; 89:185-196. [PMID: 28889093 DOI: 10.1136/jnnp-2017-316633] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 07/31/2017] [Accepted: 08/23/2017] [Indexed: 11/03/2022]
Abstract
BACKGROUND Over the past years, positron emission tomography (PET) imaging studies have investigated striatal molecular changes in premanifest and manifest Huntington's disease (HD) gene expansion carriers (HDGECs), but they have yielded inconsistent results. OBJECTIVE To systematically examine the evidence of striatal molecular alterations in manifest and premanifest HDGECs as measured by PET imaging studies. METHODS MEDLINE, ISI Web of Science, Cochrane Library and Scopus databases were searched for articles published until 7 June 2017 that included PET studies in manifest and premanifest HDGECs. Meta-analyses were conducted with random effect models, and heterogeneity was addressed with I2 index, controlling for publication bias and quality of study. The primary outcome was the standardised mean difference (SMD) of PET uptakes in the whole striatum, caudate and putamen in manifest and premanifest HDGECs compared with healthy controls (HCs). RESULTS Twenty-four out of 63 PET studies in premanifest (n=158) and manifest (n=191) HDGECs and HCs (n=333) were included in the meta-analysis. Premanifest and manifest HDGECs showed significant decreases in dopamine D2 receptors in caudate (SMD=-1.233, 95% CI -1.753 to -0.713, p<0.0001; SMD=-5.792, 95% CI -7.695 to -3.890, p<0.0001) and putamen (SMD=-1.479, 95% CI -1.965 to -0.992, p<0.0001; SMD=-5.053, 95% CI -6.558 to -3.549, p<0.0001), in glucose metabolism in caudate (SMD=-0.758, 95% CI -1.139 to -0.376, p<0.0001; SMD=-3.738, 95% CI -4.880 to -2.597, p<0.0001) and putamen (SMD=-2.462, 95% CI -4.208 to -0.717, p=0.006; SMD=-1.650, 95% CI -2.842 to -0.458, p<0.001) and in striatal PDE10A binding (SMD=-1.663, 95% CI -2.603 to -0.723, p=0.001; SMD=-2.445, 95% CI -3.371 to -1.519, p<0.001). CONCLUSIONS PET imaging has the potential to detect striatal molecular changes even at the early premanifest stage of HD, which are relevant to the neuropathological mechanisms underlying the development of the disease.
Collapse
Affiliation(s)
- Flavia Niccolini
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Gennaro Pagano
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Paolo Fusar-Poli
- Department of Psychosis Studies, Institute of Psychiatry Psychology and Neuroscience, King's College London, London, UK
| | - Andrew Wood
- CHDI Management/CHDI Foundation, Princeton, New Jersey, USA
| | | | | | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| |
Collapse
|
12
|
Wilson H, De Micco R, Niccolini F, Politis M. Molecular Imaging Markers to Track Huntington's Disease Pathology. Front Neurol 2017; 8:11. [PMID: 28194132 PMCID: PMC5278260 DOI: 10.3389/fneur.2017.00011] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 01/09/2017] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is a progressive, monogenic dominant neurodegenerative disorder caused by repeat expansion mutation in the huntingtin gene. The accumulation of mutant huntingtin protein, forming intranuclear inclusions, subsequently leads to degeneration of medium spiny neurons in the striatum and cortical areas. Genetic testing can identify HD gene carriers before individuals develop overt cognitive, psychiatric, and chorea symptoms. Thus, HD gene carriers can be studied in premanifest stages to understand and track the evolution of HD pathology. While advances have been made, the precise pathophysiological mechanisms underlying HD are unclear. Magnetic resonance imaging (MRI) and positron emission tomography (PET) have been employed to understand HD pathology in presymptomatic and symptomatic disease stages. PET imaging uses radioactive tracers to detect specific changes, at a molecular level, which could be used as markers of HD progression and to monitor response to therapeutic treatments for HD gene expansion carriers (HDGECs). This review focuses on available PET techniques, employed in cross-sectional and longitudinal human studies, as biomarkers for HD, and highlights future potential PET targets. PET studies have assessed changes in postsynaptic dopaminergic receptors, brain metabolism, microglial activation, and recently phosphodiesterase 10A (PDE10A) as markers to track HD progression. Alterations in PDE10A expression are the earliest biochemical change identified in HD gene carriers up to 43 years before predicted symptomatic onset. Thus, PDE10A expression could be a promising marker to track HD progression from early premanifest disease stages. Other PET targets which have been less well investigated as biomarkers include cannabinoid, adenosine, and GABA receptors. Future longitudinal studies are required to fully validate these PET biomarkers for use to track disease progression from far-onset premanifest to manifest HD stages. PET imaging is a crucial neuroimaging tool, with the potential to detect early changes and validate sensitivity of biomarkers for tracking HD pathology. Moreover, continued development of novel PET tracers provides exciting opportunities to investigate new molecular targets, such as histamine and serotonin receptors, to further understand the mechanisms underlying HD pathology.
Collapse
Affiliation(s)
- Heather Wilson
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| | - Rosa De Micco
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| | - Flavia Niccolini
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| | - Marios Politis
- Neurodegeneration Imaging Group, Department of Basic and Clinical Neuroscience, King's College London , London , UK
| |
Collapse
|
13
|
Scott G, Mahmud M, Owen DR, Johnson MR. Microglial positron emission tomography (PET) imaging in epilepsy: Applications, opportunities and pitfalls. Seizure 2017; 44:42-47. [DOI: 10.1016/j.seizure.2016.10.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 10/27/2016] [Indexed: 10/20/2022] Open
|
14
|
Politis M, Pagano G, Niccolini F. Imaging in Parkinson's Disease. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2017; 132:233-274. [DOI: 10.1016/bs.irn.2017.02.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
A systematic review of lessons learned from PET molecular imaging research in atypical parkinsonism. Eur J Nucl Med Mol Imaging 2016; 43:2244-2254. [PMID: 27470326 PMCID: PMC5047923 DOI: 10.1007/s00259-016-3464-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Accepted: 07/11/2016] [Indexed: 12/27/2022]
Abstract
PURPOSE To systematically review the previous studies and current status of positron emission tomography (PET) molecular imaging research in atypical parkinsonism. METHODS MEDLINE, ISI Web of Science, Cochrane Library, and Scopus electronic databases were searched for articles published until 29th March 2016 and included brain PET studies in progressive supranuclear palsy (PSP), multiple system atrophy (MSA), and corticobasal syndrome (CBS). Only articles published in English and in peer-reviewed journals were included in this review. Case-reports, reviews, and non-human studies were excluded. RESULTS Seventy-seven PET studies investigating the dopaminergic system, glucose metabolism, microglial activation, hyperphosphorilated tau, opioid receptors, the cholinergic system, and GABAA receptors in PSP, MSA, and CBS patients were included in this review. Disease-specific patterns of reduced glucose metabolism have shown higher accuracy than dopaminergic imaging techniques to distinguish between parkinsonian syndromes. Microglial activation has been found in all forms of atypical parkinsonism and reflects the known distribution of neuropathologic changes in these disorders. Opioid receptors are decreased in the striatum of PSP and MSA patients. Subcortical cholinergic dysfunction was more severe in MSA and PSP than Parkinson's disease patients although no significant changes in cortical cholinergic receptors were seen in PSP with cognitive impairment. GABAA receptors were decreased in metabolically affected cortical and subcortical regions in PSP patients. CONCLUSIONS PET molecular imaging has provided valuable insight for understanding the mechanisms underlying atypical parkinsonism. Changes at a molecular level occur early in the course of these neurodegenerative diseases and PET imaging provides the means to aid differential diagnosis, monitor disease progression, identify of novel targets for pharmacotherapy, and monitor response to new treatments.
Collapse
|
16
|
Laskaris LE, Di Biase MA, Everall I, Chana G, Christopoulos A, Skafidas E, Cropley VL, Pantelis C. Microglial activation and progressive brain changes in schizophrenia. Br J Pharmacol 2016; 173:666-80. [PMID: 26455353 PMCID: PMC4742288 DOI: 10.1111/bph.13364] [Citation(s) in RCA: 162] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/16/2015] [Accepted: 10/06/2015] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia is a debilitating disorder that typically begins in adolescence and is characterized by perceptual abnormalities, delusions, cognitive and behavioural disturbances and functional impairments. While current treatments can be effective, they are often insufficient to alleviate the full range of symptoms. Schizophrenia is associated with structural brain abnormalities including grey and white matter volume loss and impaired connectivity. Recent findings suggest these abnormalities follow a neuroprogressive course in the earliest stages of the illness, which may be associated with episodes of acute relapse. Neuroinflammation has been proposed as a potential mechanism underlying these brain changes, with evidence of increased density and activation of microglia, immune cells resident in the brain, at various stages of the illness. We review evidence for microglial dysfunction in schizophrenia from both neuroimaging and neuropathological data, with a specific focus on studies examining microglial activation in relation to the pathology of grey and white matter. The studies available indicate that the link between microglial dysfunction and brain change in schizophrenia remains an intriguing hypothesis worthy of further examination. Future studies in schizophrenia should: (i) use multimodal imaging to clarify this association by mapping brain changes longitudinally across illness stages in relation to microglial activation; (ii) clarify the nature of microglial dysfunction with markers specific to activation states and phenotypes; (iii) examine the role of microglia and neurons with reference to their overlapping roles in neuroinflammatory pathways; and (iv) examine the impact of novel immunomodulatory treatments on brain structure in schizophrenia.
Collapse
Affiliation(s)
- L E Laskaris
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - M A Di Biase
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - I Everall
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| | - G Chana
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - A Christopoulos
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, Australia
| | - E Skafidas
- Centre for Neural Engineering, The University of Melbourne, Carlton, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| | - V L Cropley
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
| | - C Pantelis
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne and Melbourne Health, Carlton South, VIC, Australia
- Department of Psychiatry, The University of Melbourne, Parkville, VIC, Australia
- Florey Institute for Neurosciences and Mental Health, Parkville, VIC, Australia
| |
Collapse
|
17
|
Cistaro A. Neuroimaging in Amyotrophic Lateral Sclerosis. PET-CT AND PET-MRI IN NEUROLOGY 2016:231-246. [DOI: 10.1007/978-3-319-31614-7_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
18
|
Sollini M, Boni R, Lazzeri E, Erba PA. PET/CT and PET/MRI in Neurology: Infection/Inflammation. PET-CT AND PET-MRI IN NEUROLOGY 2016:139-176. [DOI: 10.1007/978-3-319-31614-7_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
|
20
|
Hatano K, Sekimata K, Yamada T, Abe J, Ito K, Ogawa M, Magata Y, Toyohara J, Ishiwata K, Biggio G, Serra M, Laquintana V, Denora N, Latrofa A, Trapani G, Liso G, Suzuki H, Sawada M, Nomura M, Toyama H. Radiosynthesis and in vivo evaluation of two imidazopyridineacetamides, [(11)C]CB184 and [ (11)C]CB190, as a PET tracer for 18 kDa translocator protein: direct comparison with [ (11)C](R)-PK11195. Ann Nucl Med 2015; 29:325-335. [PMID: 25616581 PMCID: PMC4835529 DOI: 10.1007/s12149-015-0948-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 01/14/2015] [Indexed: 10/31/2022]
Abstract
OBJECTIVE We report synthesis of two carbon-11 labeled imidazopyridines TSPO ligands, [(11)C]CB184 and [(11)C]CB190, for PET imaging of inflammatory process along with neurodegeneration, ischemia or brain tumor. Biodistribution of these compounds was compared with that of [(11)C]CB148 and [(11)C](R)-PK11195. METHODS Both [(11)C]CB184 and [(11)C]CB190 having (11)C-methoxyl group on an aromatic ring were readily prepared using [(11)C]methyl triflate. Biodistribution and metabolism of the compounds were examined with normal mice. An animal PET study using 6-hydroxydopamine treated rats as a model of neurodegeneration was pursued for proper estimation of feasibility of the radioligands to determine neuroinflammation process. RESULTS [(11)C]CB184 and [(11)C]CB190 were obtained via O-methylation of corresponding desmethyl precursor using [(11)C]methyl triflate in radiochemical yield of 73 % (decay-corrected). In vivo validation as a TSPO radioligand was carried out using normal mice and lesioned rats. In mice, [(11)C]CB184 showed more uptake and specific binding than [(11)C]CB190. Metabolism studies showed that 36 % and 25 % of radioactivity in plasma remained unchanged 30 min after intravenous injection of [(11)C]CB184 and [(11)C]CB190, respectively. In the PET study using rats, lesioned side of the brain showed significantly higher uptake than contralateral side after i.v. injection of either [(11)C]CB184 or [(11)C](R)-PK11195. Indirect Logan plot analysis revealed distribution volume ratio (DVR) between the two sides which might indicate lesion-related elevation of TSPO binding. The DVR was 1.15 ± 0.10 for [(11)C](R)-PK11195 and was 1.15 ± 0.09 for [(11)C]CB184. CONCLUSION The sensitivity to detect neuroinflammation activity was similar for [(11)C]CB184 and [(11)C](R)-PK11195.
Collapse
Affiliation(s)
- Kentaro Hatano
- Department of Clinical and Experimental Neuroimaging, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, 474-8522, Japan,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
|
22
|
Zanotti-Fregonara P, Zhang Y, Jenko KJ, Gladding RL, Zoghbi SS, Fujita M, Sbardella G, Castellano S, Taliani S, Martini C, Innis RB, Da Settimo F, Pike VW. Synthesis and evaluation of translocator 18 kDa protein (TSPO) positron emission tomography (PET) radioligands with low binding sensitivity to human single nucleotide polymorphism rs6971. ACS Chem Neurosci 2014; 5:963-71. [PMID: 25123416 PMCID: PMC4210126 DOI: 10.1021/cn500138n] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
![]()
The imaging of translocator 18 kDa
protein (TSPO) in living human
brain with radioligands by positron emission tomography (PET) has
become an important means for the study of neuroinflammatory conditions
occurring in several neuropsychiatric disorders. The widely used prototypical
PET radioligand [11C](R)-PK 11195 ([11C](R)-1; [N-methyl-11C](R)-N-sec-butyl-1-(2-chlorophenyl)-N-methylisoquinoline-3-carboxamide) gives a low PET signal and is
difficult to quantify, whereas later generation radioligands have
binding sensitivity to a human single nucleotide polymorphism (SNP)
rs6971, which imposes limitations on their utility for comparative
quantitative PET studies of normal and diseased subjects. Recently,
azaisosteres of 1 have been developed with improved drug-like
properties, including enhanced TSPO affinity accompanied by moderated
lipophilicity. Here we selected three of these new ligands (7–9) for labeling with carbon-11 and for
evaluation in monkey as candidate PET radioligands for imaging brain
TSPO. Each radioligand was readily prepared by 11C-methylation
of an N-desmethyl precursor and was found to give
a high proportion of TSPO-specific binding in monkey brain. One of
these radioligands, [11C]7, the direct 4-azaisostere
of 1, presents many radioligand properties that are superior
to those reported for [11C]1, including higher
affinity, lower lipophilicity, and stable quantifiable PET signal.
Importantly, 7 was also found to show very low sensitivity
to the human SNP rs6971 in vitro. Therefore, [11C]7 now warrants evaluation in human subjects with PET to assess
its utility for imaging TSPO in human brain, irrespective of subject
genotype.
Collapse
Affiliation(s)
- Paolo Zanotti-Fregonara
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Yi Zhang
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Kimberly J. Jenko
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Robert L. Gladding
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Sami S. Zoghbi
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Masahiro Fujita
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Gianluca Sbardella
- Department
of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | - Sabrina Castellano
- Department
of Pharmacy, University of Salerno, 84084 Fisciano (SA), Italy
| | - Sabrina Taliani
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Claudia Martini
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Robert B. Innis
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| | - Federico Da Settimo
- Department
of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Victor W. Pike
- Molecular
Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892-0001, United States
| |
Collapse
|
23
|
Liu CH, Sastre A, Conroy R, Seto B, Pettigrew RI. NIH workshop on clinical translation of molecular imaging probes and technology--meeting report. Mol Imaging Biol 2014; 16:595-604. [PMID: 24833042 PMCID: PMC4161932 DOI: 10.1007/s11307-014-0746-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A workshop on "Clinical Translation of Molecular Imaging Probes and Technology" was held August 2, 2013 in Bethesda, Maryland, organized and supported by the National Institute of Biomedical Imaging and Bioengineering (NIBIB). This workshop brought together researchers, clinicians, representatives from pharmaceutical companies, molecular probe developers, and regulatory science experts. Attendees met to talk over current challenges in the discovery, validation, and translation of molecular imaging (MI) probes for key clinical applications. Participants also discussed potential strategies to address these challenges. The workshop consisted of 4 sessions, with 14 presentations and 2 panel discussions. Topics of discussion included (1) challenges and opportunities for clinical research and patient care, (2) advances in molecular probe design, (3) current approaches used by industry and pharmaceutical companies, and (4) clinical translation of MI probes. In the presentations and discussions, there were general agreement that while the barriers for validation and translation of MI probes remain high, there are pressing clinical needs and development opportunities for targets in cardiovascular, cancer, endocrine, neurological, and inflammatory diseases. The strengths of different imaging modalities, and the synergy of multimodality imaging, were highlighted. Participants also underscored the continuing need for close interactions and collaborations between academic and industrial partners, and federal agencies in the imaging probe development process.
Collapse
Affiliation(s)
- Christina H Liu
- National Institute of Biomedical Imaging and Bioengineering, 6707 Democracy Blvd., Suite 200, Bethesda, MD, 20892, USA,
| | | | | | | | | |
Collapse
|
24
|
Amhaoul H, Staelens S, Dedeurwaerdere S. Imaging brain inflammation in epilepsy. Neuroscience 2014; 279:238-52. [DOI: 10.1016/j.neuroscience.2014.08.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 08/27/2014] [Accepted: 08/27/2014] [Indexed: 01/15/2023]
|
25
|
Callaghan PD, Wimberley CA, Rahardjo GL, Berghofer PJ, Pham TQ, Jackson T, Zahra D, Bourdier T, Wyatt N, Greguric I, Howell NR, Siegele R, Pastuovic Z, Mattner F, Loc’h C, Gregoire MC, Katsifis A. Comparison of in vivo binding properties of the 18-kDa translocator protein (TSPO) ligands [18F]PBR102 and [18F]PBR111 in a model of excitotoxin-induced neuroinflammation. Eur J Nucl Med Mol Imaging 2014; 42:138-51. [DOI: 10.1007/s00259-014-2895-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2014] [Accepted: 08/13/2014] [Indexed: 12/22/2022]
|
26
|
Ribeiro MJ, Vercouillie J, Debiais S, Cottier JP, Bonnaud I, Camus V, Banister S, Kassiou M, Arlicot N, Guilloteau D. Could (18) F-DPA-714 PET imaging be interesting to use in the early post-stroke period? EJNMMI Res 2014; 4:28. [PMID: 25006546 PMCID: PMC4077629 DOI: 10.1186/s13550-014-0028-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/07/2014] [Indexed: 12/13/2022] Open
Abstract
Background Cerebral stroke is a severe and frequent condition that requires rapid and reliable diagnosis. If administered shortly after the first symptoms manifest themselves, IV thrombolysis has been shown to increase the functional prognosis by restoring brain reperfusion. However, a better understanding of the pathophysiology of stroke should help to identify potential new therapeutic targets. Stroke is known to induce an inflammatory brain reaction that involves overexpression of the 18-kDa translocator protein (TSPO) in glial cells and infiltrated leukocytes, which can be visualised by positron emission tomography (PET). We aimed to evaluate post-stroke neuroinflammation using the PET TSPO radioligand 18 F-DPA-714. Methods Nine patients underwent 18 F-DPA-714 PET and magnetic resonance imaging (MRI) between 8 and 18 days after the ictus. Co-registration of MRI and PET images was used to define three volumes of interest (VOIs): core infarction, contralateral region, and cerebellum ipsilateral to the stroke lesion. Time activity curves were obtained from each VOI, and ratios of mean and maximum activities between the VOIs were calculated. Results We observed an increased uptake of 18 F-DPA-714 co-localised with the infarct tissue and extension beyond the region corresponding to the damage in the blood brain barrier. No correlation was identified between 18 F-DPA-714 uptake and infarct volume. 18 F-DPA-714 uptake in ischemic lesion (mainly associated with TSPO expression in the infarct area and in the surrounding neighbourhood) slowly decreased from 10 min pi to the end of the PET acquisition, remaining higher than that in both contralateral region and ipsilateral cerebellum. Conclusion Our results show that 18 F-DPA-714 uptake after acute ischemia is mainly associated with TSPO expression in the infarct area and in the surrounding neighbourhood. We also demonstrated that the kinetics of 18 F-DPA-714 differs in injured tissue compared to normal tissue. Therefore, 18 F-DPA-714 may be useful in assessing the extent of neuroinflammation associated with acute stroke and could also help to predict clinical outcomes and functional recovery, as well as to assess therapeutic strategies, such as the use of neuroprotective/anti-inflammatory drugs.
Collapse
Affiliation(s)
- Maria-Joao Ribeiro
- Université François Rabelais de Tours, Tours, UMR-S930, France ; Inserm U930, University of Tours, Tours 37000, France ; CHRU Tours, Tours 37000, France ; CIC-IT INSERM 806 Ultrasons et Radiopharmaceutiques, Tours, France ; Service de Médecine Nucléaire, Hôpital Bretonneau, 2, Boulevard Tonnellé, Tours CEDEX 37044, France
| | - Johnny Vercouillie
- Université François Rabelais de Tours, Tours, UMR-S930, France ; Inserm U930, University of Tours, Tours 37000, France
| | | | - Jean-Philippe Cottier
- Université François Rabelais de Tours, Tours, UMR-S930, France ; Inserm U930, University of Tours, Tours 37000, France ; CHRU Tours, Tours 37000, France
| | | | - Vincent Camus
- Université François Rabelais de Tours, Tours, UMR-S930, France ; Inserm U930, University of Tours, Tours 37000, France ; CHRU Tours, Tours 37000, France ; CIC INSERM 202, Tours, France
| | - Samuel Banister
- School of Chemistry, University of Sydney, Sydney 2006, New South Wales, Australia ; Brain and Mind Research Institute, Sydney 2050, New South Wales, Australia
| | - Michael Kassiou
- School of Chemistry, University of Sydney, Sydney 2006, New South Wales, Australia ; Brain and Mind Research Institute, Sydney 2050, New South Wales, Australia ; Discipline of Medical Radiation Sciences, University of Sydney, Sydney 2006, New South Wales, Australia
| | - Nicolas Arlicot
- Université François Rabelais de Tours, Tours, UMR-S930, France ; Inserm U930, University of Tours, Tours 37000, France ; CHRU Tours, Tours 37000, France
| | - Denis Guilloteau
- Université François Rabelais de Tours, Tours, UMR-S930, France ; Inserm U930, University of Tours, Tours 37000, France ; CHRU Tours, Tours 37000, France ; CIC-IT INSERM 806 Ultrasons et Radiopharmaceutiques, Tours, France ; CIC INSERM 202, Tours, France
| |
Collapse
|
27
|
Moon BS, Kim BS, Park C, Jung JH, Lee YW, Lee HY, Chi DY, Lee BC, Kim SE. [18F]Fluoromethyl-PBR28 as a Potential Radiotracer for TSPO: Preclinical Comparison with [11C]PBR28 in a Rat Model of Neuroinflammation. Bioconjug Chem 2014; 25:442-50. [DOI: 10.1021/bc400556h] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Byung Seok Moon
- Department
of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Bom Sahn Kim
- Department
of Nuclear Medicine, Ewha Womans University Medical Center, Seoul, Korea
| | - Chansoo Park
- Department
of Chemistry, Sogang University, Seoul, Korea
| | - Jae Ho Jung
- Department
of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Youn Woo Lee
- Department
of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ho-Young Lee
- Department
of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Dae Yoon Chi
- Department
of Chemistry, Sogang University, Seoul, Korea
| | - Byung Chul Lee
- Department
of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
- Advanced Institutes of Convergence Technology, Suwon, Korea
| | - Sang Eun Kim
- Department
of Nuclear Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seoul, Korea
- Advanced Institutes of Convergence Technology, Suwon, Korea
- Department
of Transdisciplinary Studies, Graduate School of Convergence Science
and Technology, Seoul National University, Seoul, Korea
| |
Collapse
|
28
|
Matthews PM, Comley R. Advances in the molecular imaging of multiple sclerosis. Expert Rev Clin Immunol 2014; 5:765-77. [DOI: 10.1586/eci.09.66] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Abstract
Neuroinflammation plays a central role in a variety of neurological diseases, including stroke, multiple sclerosis, Alzheimer’s disease, and malignant CNS neoplasms, among many other. Different cell types and molecular mediators participate in a cascade of events in the brain that is ultimately aimed at control, regeneration and repair, but leads to damage of brain tissue under pathological conditions. Non-invasive molecular imaging of key players in the inflammation cascade holds promise for identification and quantification of the disease process before it is too late for effective therapeutic intervention. In this review, we focus on molecular imaging techniques that target inflammatory cells and molecules that are of interest in neuroinflammation, especially those with high translational potential. Over the past decade, a plethora of molecular imaging agents have been developed and tested in animal models of (neuro)inflammation, and a few have been translated from bench to bedside. The most promising imaging techniques to visualize neuroinflammation include MRI, positron emission tomography (PET), single photon emission computed tomography (SPECT), and optical imaging methods. These techniques enable us to image adhesion molecules to visualize endothelial cell activation, assess leukocyte functions such as oxidative stress, granule release, and phagocytosis, and label a variety of inflammatory cells for cell tracking experiments. In addition, several cell types and their activation can be specifically targeted in vivo, and consequences of neuroinflammation such as neuronal death and demyelination can be quantified. As we continue to make progress in utilizing molecular imaging technology to study and understand neuroinflammation, increasing efforts and investment should be made to bring more of these novel imaging agents from the “bench to bedside.”
Collapse
Affiliation(s)
- Benjamin Pulli
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| | - John W Chen
- Center for Systems Biology and Department of Radiology, Massachusetts General Hospital and Harvard Medical School, 185 Cambridge Street, Boston, MA 02114, USA
| |
Collapse
|
30
|
Suridjan I, Rusjan PM, Voineskos AN, Selvanathan T, Setiawan E, Strafella AP, Wilson AA, Meyer JH, Houle S, Mizrahi R. Neuroinflammation in healthy aging: a PET study using a novel Translocator Protein 18kDa (TSPO) radioligand, [(18)F]-FEPPA. Neuroimage 2013; 84:868-75. [PMID: 24064066 DOI: 10.1016/j.neuroimage.2013.09.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/05/2013] [Accepted: 09/12/2013] [Indexed: 11/18/2022] Open
Abstract
One of the cellular markers of neuroinflammation is increased microglia activation, characterized by overexpression of mitochondrial 18kDa Translocator Protein (TSPO). TSPO expression can be quantified in-vivo using the positron emission tomography (PET) radioligand [(18)F]-FEPPA. This study examined microglial activation as measured with [(18)F]-FEPPA PET across the adult lifespan in a group of healthy volunteers. We performed genotyping for the rs6971 TS.PO gene polymorphism to control for the known variability in binding affinity. Thirty-three healthy volunteers (age range: 19-82years; 22 high affinity binders (HAB), 11 mixed affinity binders (MAB)) underwent [(18)F]-FEPPA PET scans, acquired on the High Resolution Research Tomograph (HRRT) and analyzed using a 2-tissue compartment model. Regression analyses were performed to examine the effect of age adjusting for genetic status on [(18)F]-FEPPA total distribution volumes (VT) in the hippocampus, temporal, and prefrontal cortex. We found no significant effect of age on [(18)F]-FEPPA VT (F (1,30)=0.918; p=0.346), and a significant effect of genetic polymorphism (F (1,30)=8.767; p=0.006). This is the first in-vivo study to evaluate age-related changes in TSPO binding, using the new generation TSPO radioligands. Increased neuroinflammation, as measured with [(18)F]-FEPPA PET was not associated with normal aging, suggesting that healthy elderly individuals may serve as useful benchmark against patients with neurodegenerative disorders where neuroinflammation may be present.
Collapse
Affiliation(s)
- I Suridjan
- Research Imaging Centre, Centre for Addiction and Mental Health, 250 College Street, M5T 1R8, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Molecular imaging of microglial activation in amyotrophic lateral sclerosis. PLoS One 2012; 7:e52941. [PMID: 23300829 PMCID: PMC3534121 DOI: 10.1371/journal.pone.0052941] [Citation(s) in RCA: 175] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2012] [Accepted: 11/22/2012] [Indexed: 02/04/2023] Open
Abstract
There is growing evidence of activated microglia and inflammatory processes in the cerebral cortex in amyotrophic lateral sclerosis (ALS). Activated microglia is characterized by increased expression of the 18 kDa translocator protein (TSPO) in the brain and may be a useful biomarker of inflammation. In this study, we evaluated neuroinflammation in ALS patients using a radioligand of TSPO, 18F-DPA-714. Ten patients with probable or definite ALS (all right-handed, without dementia, and untreated by riluzole or other medication that might bias the binding on the TSPO), were enrolled prospectively and eight healthy controls matched for age underwent a PET study. Comparison of the distribution volume ratios between both groups were performed using a Mann-Whitney’s test. Significant increase of distribution of volume ratios values corresponding to microglial activation was found in the ALS sample in primary motor, supplementary motor and temporal cortex (p = 0.009, p = 0.001 and p = 0.004, respectively). These results suggested that the cortical uptake of 18F-DPA-714 was increased in ALS patients during the “time of diagnosis” phase of the disease. This finding might improve our understanding of the pathophysiology of ALS and might be a surrogate marker of efficacy of treatment on microglial activation.
Collapse
|
32
|
Politis M, Su P, Piccini P. Imaging of microglia in patients with neurodegenerative disorders. Front Pharmacol 2012; 3:96. [PMID: 22661951 PMCID: PMC3361961 DOI: 10.3389/fphar.2012.00096] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Accepted: 05/01/2012] [Indexed: 01/13/2023] Open
Abstract
Microglia constitute the main immune defense in the central nervous system. In response to neuronal injury, microglia become activated, acquire phagocytic properties, and release a wide range of pro-inflammatory mediators that are essential for the annihilation of the neuronal insult. Although the role of microglial activation in acute neuronal damage is well defined, the pathophysiological processes underlying destructive or protective role to neurons following chronic exposure to microglial activation is still a subject of debate. It is likely that chronic exposure induces detrimental effects by promoting neuronal death through the release of neurotoxic factors. Positron emission tomography (PET) imaging with the use of translocator protein (TSPO) radioligands provides an in vivo tool for tracking the progression and severity of neuroinflammation in neurodegenerative disease. TSPO expression is correlated to the extent of microglial activation and the measurement of TSPO uptake in vivo with PET is a useful indicator of active disease. Although understanding of the interaction between radioligands and TSPO is not completely clear, there is a wide interest in application of TSPO imaging in neurodegenerative disease. In this article, we aim to review the applications of in vivo microglia imaging in neurodegenerative disorders such as Parkinson's disease, Huntington's disease, Dementias, and Multiple Sclerosis.
Collapse
Affiliation(s)
- Marios Politis
- Division of Experimental Medicine, Faculty of Medicine, Centre for Neuroscience, Hammersmith Hospital, Imperial College London London, UK
| | | | | |
Collapse
|
33
|
Venneti S, Lopresti BJ, Wiley CA. Molecular imaging of microglia/macrophages in the brain. Glia 2012; 61:10-23. [PMID: 22615180 DOI: 10.1002/glia.22357] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Accepted: 04/30/2012] [Indexed: 01/08/2023]
Abstract
Neuroinflammation perpetuates neuronal damage in many neurological disorders. Activation of resident microglia and infiltration of monocytes/macrophages contributes to neuronal injury and synaptic damage. Noninvasive imaging of these cells in vivo provides a means to monitor progression of disease as well as assess efficacies of potential therapeutics. This review provides an overview of positron emission tomography (PET) and magnetic resonance (MR) imaging of microglia/macrophages in the brain. We describe the rationale behind PET imaging of microglia/macrophages with ligands that bind to translocator protein-18 kDa (TSPO). We discuss the prototype TSPO radioligand [(11)C]PK11195, its limitations, and the development of newer TSPO ligands as PET imaging agents. PET imaging agents for targets other than TSPO are emerging, and we outline the potential of these agents for imaging brain microglia/macrophage activity in vivo. Finally, we briefly summarize advances in MR imaging of microglia/macrophages using iron oxide nanoparticles and ultra-small super paramagnetic particles that are phagocytosed. Despite many technical advances, more sensitive agents are required to be useful indicators of neuroinflammation in brain.
Collapse
Affiliation(s)
- Sriram Venneti
- Department of Cancer Biology and Genetics, Memorial Sloan-Kettering Cancer Center, New York, New York, USA.
| | | | | |
Collapse
|
34
|
Jučaite A, Cselényi Z, Arvidsson A, Ahlberg G, Julin P, Varnäs K, Stenkrona P, Andersson J, Halldin C, Farde L. Kinetic analysis and test-retest variability of the radioligand [11C](R)-PK11195 binding to TSPO in the human brain - a PET study in control subjects. EJNMMI Res 2012; 2:15. [PMID: 22524272 PMCID: PMC3350394 DOI: 10.1186/2191-219x-2-15] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2012] [Accepted: 04/23/2012] [Indexed: 12/02/2022] Open
Abstract
Background Positron-emission tomography and the radioligand [11C](R)-PK11195 have been used for the imaging of the translocator protein (TSPO) and applied to map microglia cells in the brain in neuropsychiatric disorders. [11C](R)-PK11195 binding has been quantified using reference region approaches, with the reference defined anatomically or using unsupervised or supervised clustering algorithms. Kinetic compartment modelling so far has not been presented. In the present test-retest study, we examine the characteristics of [11C](R)-PK11195 binding in detail, using the classical compartment analysis with a metabolite-corrected arterial input function. Methods [11C](R)-PK11195 binding was examined in six control subjects at two separate occasions, 6 weeks apart. Results of one-tissue and two-tissue compartment models (1TCM, 2TCM) were compared using the Akaike criteria and F-statistics. The reproducibility of binding potential (BPND) estimates was evaluated by difference in measurements (error in percent) and intraclass correlation coefficients (ICCs). Results [11C](R)-PK11195 binding could be described by 2TCM which was the preferred model. Measurement error (in percent) indicated good reproducibility in large brain regions (mean error: whole brain 4%, grey matter 5%), but not in smaller subcortical regions (putamen 25%, caudate 55%). The ICC values were moderate to low, highest for the white matter (0.73), whole brain and thalamus (0.57), and cortical grey matter (0.47). Sizeable [11C](R)-PK11195 BPND could be identified throughout the human brain (range 1.11 to 2.21). Conclusions High intra-subject variability of [11C](R)-PK11195 binding limits longitudinal monitoring of TSPO changes. The interpretation of [11C](R)-PK11195 binding by 2TCM suggests that the presence of specific binding to TSPO cannot be excluded at physiological conditions.
Collapse
Affiliation(s)
- Aurelija Jučaite
- AstraZeneca Global Clinical Development, Södertälje 151 85, Sweden.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Virdee K, Cumming P, Caprioli D, Jupp B, Rominger A, Aigbirhio FI, Fryer TD, Riss PJ, Dalley JW. Applications of positron emission tomography in animal models of neurological and neuropsychiatric disorders. Neurosci Biobehav Rev 2012; 36:1188-216. [PMID: 22342372 DOI: 10.1016/j.neubiorev.2012.01.009] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 01/26/2012] [Accepted: 01/31/2012] [Indexed: 01/08/2023]
Abstract
Positron emission tomography (PET) provides dynamic images of the biodistribution of radioactive tracers in the brain. Through application of the principles of compartmental analysis, tracer uptake can be quantified in terms of specific physiological processes such as cerebral blood flow, cerebral metabolic rate, and the availability of receptors in brain. Whereas early PET studies in animal models of brain diseases were hampered by the limited spatial resolution of PET instruments, dedicated small-animal instruments now provide molecular images of rodent brain with resolution approaching 1mm, the theoretic limit of the method. Major applications of PET for brain research have consisted of studies of animal models of neurological disorders, notably Parkinson's disease (PD), Alzheimer's disease (AD), and Huntington's disease (HD), stroke, epilepsy and traumatic brain injury; these studies have particularly benefited from selective neurochemical lesion models (PD), and also transgenic rodent models (AD, HD). Due to their complex and uncertain pathophysiologies, corresponding models of neuropsychiatric disorders have proven more difficult to establish. Historically, there has been an emphasis on PET studies of dopamine transmission, as assessed with a range of tracers targeting dopamine synthesis, plasma membrane transporters, and receptor binding sites. However, notable recent breakthroughs in molecular imaging include the development of greatly improved tracers for subtypes of serotonin, cannabinoid, and metabotropic glutamate receptors, as well as noradrenaline transporters, amyloid-β and neuroinflammatory changes. This article reviews the considerable recent progress in preclinical PET and discusses applications relevant to a number of neurological and neuropsychiatric disorders in humans.
Collapse
Affiliation(s)
- Kanwar Virdee
- Behavioural and Clinical Neuroscience Institute, University of Cambridge, Cambridge, CB2 3EB, UK
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mattner F, Bandin DL, Staykova M, Berghofer P, Gregoire MC, Ballantyne P, Quinlivan M, Fordham S, Pham T, Willenborg DO, Katsifis A. Evaluation of [¹²³I]-CLINDE as a potent SPECT radiotracer to assess the degree of astroglia activation in cuprizone-induced neuroinflammation. Eur J Nucl Med Mol Imaging 2011; 38:1516-28. [PMID: 21484375 DOI: 10.1007/s00259-011-1784-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 03/01/2011] [Indexed: 10/18/2022]
Abstract
PURPOSE The purpose of this study was to assess the feasibility and sensitivity of the high-affinity translocator protein (TSPO) ligand [(123)I]-CLINDE in imaging TSPO changes in vivo and characterise and compare astroglial and TSPO changes in the cuprizone model of demyelination and remyelination in C57BL/6 mice. METHODS C57BL/6 mice were fed with cuprizone for 4 weeks to induce demyelination followed by 2-4 weeks of standard diet (remyelination). Groups of mice were followed by in vivo single photon emission computed tomography (SPECT)/CT imaging using [(123)I]-CLINDE and uptake correlated with biodistribution, autoradiography, immunohistochemistry, immunofluorescence and real-time polymerase chain reaction (RT-PCR). RESULTS The uptake of [(123)I]-CLINDE in the brain as measured by SPECT imaging over the course of treatment reflects the extent of the physiological response, with significant increases observed during demyelination followed by a decrease in uptake during remyelination. This was confirmed by autoradiography and biodistribution studies. A positive correlation between TSPO expression and astrogliosis was found and both activated astrocytes and microglial cells expressed TSPO. [(123)I]-CLINDE uptake reflects astrogliosis in brain structures such as corpus callosum, caudate putamen, medium septum and olfactory tubercle as confirmed by both in vitro and in vivo results. CONCLUSION The dynamics in the cuprizone-induced astroglial and TSPO changes, observed by SPECT imaging, were confirmed by immunofluorescence, RT-PCR and autoradiography. The highly specific TSPO radioiodinated ligand CLINDE can be used as an in vivo marker for early detection and monitoring of a variety of neuropathological conditions using noninvasive brain imaging techniques.
Collapse
Affiliation(s)
- Filomena Mattner
- ANSTO LifeSciences, Australian Nuclear Science and Technology Organisation, New Illawarra Rd, Lucas Heights, Sydney, NSW 2234, Australia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Imaging Brain Microglial Activation Using Positron Emission Tomography and Translocator Protein-Specific Radioligands. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 101:19-39. [DOI: 10.1016/b978-0-12-387718-5.00002-x] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
38
|
Pike VW, Taliani S, Lohith TG, Owen DRJ, Pugliesi I, Da Pozzo E, Hong J, Zoghbi SS, Gunn RN, Parker CA, Rabiner EA, Fujita M, Innis RB, Martini C, Da Settimo F. Evaluation of novel N1-methyl-2-phenylindol-3-ylglyoxylamides as a new chemotype of 18 kDa translocator protein-selective ligand suitable for the development of positron emission tomography radioligands. J Med Chem 2010; 54:366-73. [PMID: 21133364 DOI: 10.1021/jm101230g] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A novel series of N(1)-methyl-(2-phenylindol-3-yl)glyoxylamides, 19-31, designed in accordance with our previously reported pharmacophore/topological model, showed high affinity for the 18 kDa translocator protein (TSPO) and paved the way for developing a new radiolabeled probe. Thus ligand 31, N,N-di-n-propyl-(N(1)-methyl-2-(4'-nitrophenyl)indol-3-yl)glyoxylamide, featuring the best combination of affinity and lipophilicity, was labeled with carbon-11 for evaluation with positron emission tomography (PET) in monkey. After intravenous injection, [(11)C]31 entered brain to give a high proportion of TSPO-specific binding. These findings augur well for the future application of [(11)C]31 in humans. Consequently, the binding of 31 to human TSPO was tested on samples of brain membranes from deceased subjects who through ethically approved in vitro study had previously been established to be high-affinity binders (HABs), mixed-affinity binders (MABs), or low-affinity binders (LABs) for the known TSPO ligand, PBR28 (2). 31 showed high affinity for HABs, MABs, and LABs. In conclusion, [(11)C]31 represents a promising new chemotype for developing novel TSPO radioligands as biomarkers of neuroinflammation.
Collapse
Affiliation(s)
- Victor W Pike
- Molecular Imaging Branch, National Institute of Mental Health, National Institutes of Health, Bethesda, Maryland 20892, United States.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Arlicot N, Petit E, Katsifis A, Toutain J, Divoux D, Bodard S, Roussel S, Guilloteau D, Bernaudin M, Chalon S. Detection and quantification of remote microglial activation in rodent models of focal ischaemia using the TSPO radioligand CLINDE. Eur J Nucl Med Mol Imaging 2010; 37:2371-80. [PMID: 20814674 DOI: 10.1007/s00259-010-1598-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 08/09/2010] [Indexed: 01/09/2023]
Abstract
PURPOSE Neuroinflammation is involved in stroke pathophysiology and might be imaged using radioligands targeting the 18 kDa translocator protein (TSPO). METHODS We studied microglial reaction in brain areas remote from the primary lesion site in two rodent models of focal cerebral ischaemia (permanent or transient) using [125I]-CLINDE, a promising TSPO single photon emission computed tomography radioligand. RESULTS In a mouse model of permanent middle cerebral artery occlusion (MCAO), ex vivo autoradiographic studies demonstrated, besides in the ischaemic territory, accumulation of [125I]-CLINDE in the ipsilateral thalamus with a binding that progressed up to 3 weeks after MCAO. [125I]-CLINDE binding markedly decreased in animals pre-injected with either unlabelled CLINDE or PK11195, while no change was observed with flumazenil pre-treatment, demonstrating TSPO specificity. In rats subjected to transient MCAO, [125I]-CLINDE binding in the ipsilateral thalamus and substantia nigra pars reticulata (SNr) was significantly higher than that in contralateral tissue. Moreover, [125I]-CLINDE binding in the thalamus and SNr was quantitatively correlated to the ischaemic volume assessed by MRI in the cortex and striatum, respectively. CONCLUSION Clinical consequences of secondary neuronal degeneration in stroke might be better treated thanks to the discrimination of neuronal processes using in vivo molecular imaging and potent TSPO radioligands like CLINDE to guide therapeutic interventions.
Collapse
Affiliation(s)
- Nicolas Arlicot
- UMR Inserm U 930, CNRS ERL 3106, Université François Rabelais de Tours, CHRU de Tours, Tours, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Martín A, Boisgard R, Thézé B, Van Camp N, Kuhnast B, Damont A, Kassiou M, Dollé F, Tavitian B. Evaluation of the PBR/TSPO radioligand [(18)F]DPA-714 in a rat model of focal cerebral ischemia. J Cereb Blood Flow Metab 2010; 30:230-41. [PMID: 19794397 PMCID: PMC2949091 DOI: 10.1038/jcbfm.2009.205] [Citation(s) in RCA: 149] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2009] [Revised: 09/02/2009] [Accepted: 09/06/2009] [Indexed: 12/23/2022]
Abstract
Focal cerebral ischemia leads to an inflammatory reaction involving an overexpression of the peripheral benzodiazepine receptor (PBR)/18-kDa translocator protein (TSPO) in the cerebral monocytic lineage (microglia and monocyte) and in astrocytes. Imaging of PBR/TSPO by positron emission tomography (PET) using radiolabeled ligands can document inflammatory processes induced by cerebral ischemia. We performed in vivo PET imaging with [(18)F]DPA-714 to determine the time course of PBR/TSPO expression over several days after induction of cerebral ischemia in rats. In vivo PET imaging showed significant increase in DPA (N,N-diethyl-2-(2-(4-(2-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5-a]pyrimidin-3-yl)acetamide) uptake on the injured side compared with that in the contralateral area on days 7, 11, 15, and 21 after ischemia; the maximal binding value was reached 11 days after ischemia. In vitro autoradiography confirmed these in vivo results. In vivo and in vitro [(18)F]DPA-714 binding was displaced from the lesion by PK11195 and DPA-714. Immunohistochemistry showed increased PBR/TSPO expression, peaking at day 11 in cells expressing microglia/macrophage antigens in the ischemic area. At later times, a centripetal migration of astrocytes toward the lesion was observed, promoting the formation of an astrocytic scar. These results show that [(18)F]DPA-714 provides accurate quantitative information of the time course of PBR/TSPO expression in experimental stroke.
Collapse
Affiliation(s)
- Abraham Martín
- INSERM U803, Orsay, France
- CEA, DSV, FBM, SHFJ, Laboratoire Imagerie Moléculaire Expérimentale, Orsay, France
| | - Raphaël Boisgard
- INSERM U803, Orsay, France
- CEA, DSV, FBM, SHFJ, Laboratoire Imagerie Moléculaire Expérimentale, Orsay, France
| | - Benoit Thézé
- INSERM U803, Orsay, France
- CEA, DSV, FBM, SHFJ, Laboratoire Imagerie Moléculaire Expérimentale, Orsay, France
| | - Nadja Van Camp
- INSERM U803, Orsay, France
- CEA, DSV, FBM, SHFJ, Laboratoire Imagerie Moléculaire Expérimentale, Orsay, France
| | - Bertrand Kuhnast
- CEA, DSV, FBM, SHFJ, Laboratoire Imagerie Moléculaire Expérimentale, Orsay, France
| | - Annelaure Damont
- CEA, DSV, FBM, SHFJ, Laboratoire Imagerie Moléculaire Expérimentale, Orsay, France
| | - Michael Kassiou
- University of Sydney, Sydney, New South Wales, Australia
- Discipline of Medical Radiation Sciences, University of Sydney, Sydney, New South Wales, Australia
- School of Chemistry, University of Sydney, Sydney, New South Wales, Australia
| | - Frédéric Dollé
- CEA, DSV, FBM, SHFJ, Laboratoire Imagerie Moléculaire Expérimentale, Orsay, France
| | - Bertrand Tavitian
- INSERM U803, Orsay, France
- CEA, DSV, FBM, SHFJ, Laboratoire Imagerie Moléculaire Expérimentale, Orsay, France
| |
Collapse
|
41
|
Stevenson L, Tavares AAS, Brunet A, McGonagle FI, Dewar D, Pimlott SL, Sutherland A. New iodinated quinoline-2-carboxamides for SPECT imaging of the translocator protein. Bioorg Med Chem Lett 2009; 20:954-7. [PMID: 20045646 DOI: 10.1016/j.bmcl.2009.12.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Revised: 12/14/2009] [Accepted: 12/14/2009] [Indexed: 11/17/2022]
Abstract
With the aim of developing new SPECT imaging agents for the translocator protein (TSPO), a small library of iodinated quinoline-2-carboxamides have been prepared and tested for binding affinity with TSPO. N,N-Diethyl-3-iodomethyl-4-phenylquinoline-2-carboxamide was found to have excellent affinity (K(i) 12.0 nM), comparable to that of the widely used TSPO imaging agent PK11195.
Collapse
Affiliation(s)
- Louise Stevenson
- WestCHEM, Department of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | | | | | | | | | |
Collapse
|
42
|
Kreisl WC, Fujita M, Fujimura Y, Kimura N, Jenko KJ, Kannan P, Hong J, Morse CL, Zoghbi SS, Gladding RL, Jacobson S, Oh U, Pike VW, Innis RB. Comparison of [(11)C]-(R)-PK 11195 and [(11)C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: Implications for positron emission tomographic imaging of this inflammation biomarker. Neuroimage 2009; 49:2924-32. [PMID: 19948230 DOI: 10.1016/j.neuroimage.2009.11.056] [Citation(s) in RCA: 229] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 11/10/2009] [Accepted: 11/23/2009] [Indexed: 11/26/2022] Open
Abstract
UNLABELLED Ten percent of humans lack specific binding of [(11)C]PBR28 to 18 kDa translocator protein (TSPO), a biomarker for inflammation. "Non-binders" have not been reported using another TSPO radioligand, [(11)C]-(R)-PK 11195, despite its use for more than two decades. This study asked two questions: (1) What is the cause of non-binding to PBR28? and (2) Why has this phenomenon not been reported using [(11)C]-(R)-PK 11195? METHODS Five binders and five non-binders received whole-body imaging with both [(11)C]-(R)-PK 11195 and [(11)C]PBR28. In vitro binding was performed using leukocyte membranes from binders and non-binders and the tritiated versions of the ligand. Rhesus monkeys were imaged with [(11)C]-(R)-PK 11195 at baseline and after blockade of TSPOs. RESULTS Using [(11)C]PBR28, uptake in all five organs with high densities of TSPO (lung, heart, brain, kidney, and spleen) was 50% to 75% lower in non-binders than in binders. In contrast, [(11)C]-(R)-PK 11195 distinguished binders and non-binders in only heart and lung. For the in vitro assay, [(3)H]PBR28 had more than 10-fold lower affinity to TSPO in non-binders than in binders. The in vivo specific binding of [(11)C]-(R)-PK 11195 in monkey brain was approximately 80-fold lower than that reported for [(11)C]PBR28. CONCLUSIONS Based on binding of [(3)H]PK 11195 to leukocyte membranes, both binders and non-binders express TSPO. Non-binding to PBR28 is caused by its low affinity for TSPO in non-binders. Non-binding may be differentially expressed in organs of the body. The relatively low in vivo specific binding of [(11)C]-(R)-PK 11195 may have obscured its detection of non-binding in peripheral organs.
Collapse
Affiliation(s)
- William C Kreisl
- Molecular Imaging Branch, National Institute of Mental Health, Bethesda, MD, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Yanamoto K, Yamasaki T, Kumata K, Yui J, Odawara C, Kawamura K, Hatori A, Inoue O, Yamaguchi M, Suzuki K, Zhang MR. Evaluation of N-benzyl-N-[11C]methyl-2- (7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide ([11C]DAC) as a novel translocator protein (18 kDa) radioligand in kainic acid-lesioned rat. Synapse 2009; 63:961-71. [PMID: 19593823 DOI: 10.1002/syn.20678] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The aim of this study was to evaluate N-benzyl-N-[11C]methyl-2-(7-methyl-8-oxo-2-phenyl-7,8-dihydro-9H-purin-9-yl)acetamide ([11C]DAC) as a new translocator protein (18 kDa) [TSPO, formerly known as the peripheral-type benzodiazepine receptor (PBR)] positron emission tomography (PET) ligand in normal mice and unilateral kainic acid (KA)-lesioned rats. DAC is a derivative of AC-5216, which is a potent and selective PET ligand for the clinical investigation of TSPO. The binding affinity and selectivity of DAC for TSPO were similar to those of AC-5216, and DAC was less lipophilic than AC-5216. The distribution pattern of [11C]DAC was in agreement with TSPO distribution in rodents. No radioactive metabolite of [11C]DAC was found in the mouse brain, although it was metabolized rapidly in mouse plasma. Using small-animal PET, we examined the in vivo binding of [11C]DAC for TSPO in KA-lesioned rats. [11C]DAC and [11C]AC-5216 exhibited similar brain uptake in the lesioned and nonlesioned striatum, respectively. The binding of [11C]DAC to TSPO was increased significantly in the lesioned striatum, and [(11)C]DAC showed good contrast between the lesioned and nonlesioned striatum (the maximum ratio was about threefold). In displacement experiments, the uptake of [11C]DAC in the lesioned striatum was eventually blocked using an excess of either unlabeled DAC or PK11195 injected. [11C]DAC had high in vivo specific binding to TSPO in the injured rat brain. Therefore, [11C]DAC is a useful PET ligand for TSPO imaging, and its specific binding to TSPO is suitable as a new biomarker for brain injury.
Collapse
Affiliation(s)
- Kazuhiko Yanamoto
- Department of Molecular Probes, Molecular Imaging Center, National Institute of Radiological Sciences, 4-9-1 Anagawa, Inage-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Miyoshi M, Ito H, Arakawa R, Takahashi H, Takano H, Higuchi M, Okumura M, Otsuka T, Kodaka F, Sekine M, Sasaki T, Fujie S, Seki C, Maeda J, Nakao R, Zhang MR, Fukumura T, Matsumoto M, Suhara T. Quantitative analysis of peripheral benzodiazepine receptor in the human brain using PET with (11)C-AC-5216. J Nucl Med 2009; 50:1095-101. [PMID: 19525461 DOI: 10.2967/jnumed.109.062554] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
UNLABELLED Peripheral benzodiazepine receptor (PBR) is upregulated in activated glial cells and is therefore a useful biomarker for inflammation in the brain and neurodegenerative disorders. We developed a new PET radioligand, (11)C-AC-N-benzyl-N-ethyl-2-(7-methyl-8-oxo-2-pheyl-7,8-dihydro-9H-purin-9-yl)acetamide ((11)C-AC-5216), that allows the imaging and quantification of PBRs in monkey and mouse brains. The aim of this study was to evaluate a quantification method of (11)C-AC-5216 binding in the human brain. METHODS A 90-min dynamic PET scan was obtained for each of 12 healthy men after an intravenous injection of (11)C-AC-5216. Regions of interest were drawn on several brain regions. Binding potential, compared with nondisplaceable uptake (BP(ND)), was calculated by a nonlinear least-squares fitting (NLS) method with the 2-tissue-compartment model, and total volume of distribution (V(T)) was estimated by NLS and graphical analysis methods. RESULTS BP(ND) was highest in the thalamus (4.6 +/- 1.0) and lowest in the striatum (3.5 +/- 0.7). V(T) obtained by NLS or graphical analysis showed regional distribution similar to BP(ND). However, there was no correlation between BP(ND) and V(T) because of the interindividual variation of K(1)/k(2). BP(ND) obtained with data from a scan time of 60 min was in good agreement with that from a scan time of 90 min (r = 0.87). CONCLUSION Regional distribution of (11)C-AC-5216 was in good agreement with previous PET studies of PBRs in the human brain. BP(ND) is more appropriate for estimating (11)C-AC-5216 binding than is V(T) because of the interindividual variation of K(1)/k(2). (11)C-AC-5216 is a promising PET ligand for quantifying PBR in the human brain.
Collapse
Affiliation(s)
- Michie Miyoshi
- Molecular Neuroimaging Group, Molecular Imaging Center, National Institute of Radiological Sciences, Inage-ku, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Venneti S, Wiley CA, Kofler J. Imaging microglial activation during neuroinflammation and Alzheimer's disease. J Neuroimmune Pharmacol 2009; 4:227-43. [PMID: 19052878 PMCID: PMC2682630 DOI: 10.1007/s11481-008-9142-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Accepted: 11/17/2008] [Indexed: 01/07/2023]
Abstract
Microglial activation is an important pathogenic component of neurodegenerative disease processes. This state of increased inflammation is associated not only with neurotoxic consequences but also neuroprotective effects, e.g., phagocytosis and clearance of amyloid in Alzheimer's disease. In addition, activation of microglia appears to be one of the major mechanisms of amyloid clearance following active or passive immunotherapy. Imaging techniques may provide a minimally invasive tool to elucidate the complexities and dynamics of microglial function and dysfunction in aging and neurodegenerative diseases. Imaging microglia in vivo in live subjects by confocal or two/multiphoton microscopy offers the advantage of studying these cells over time in their native environment. Imaging microglia in human subjects by positron emission tomography scanning with translocator protein-18 kDa ligands can offer a measure of the inflammatory process and a means of detecting progression of disease and efficacy of therapeutics over time.
Collapse
Affiliation(s)
- Sriram Venneti
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, 3400 Spruce St, 6.093 Founders Building, Philadelphia, PA 19104, USA e-mail:
| | - Clayton A. Wiley
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-506, Pittsburgh, PA 15213, USA
| | - Julia Kofler
- Department of Pathology, University of Pittsburgh School of Medicine, 200 Lothrop Street, A-506, Pittsburgh, PA 15213, USA
| |
Collapse
|
46
|
Gulyás B, Makkai B, Kása P, Gulya K, Bakota L, Várszegi S, Beliczai Z, Andersson J, Csiba L, Thiele A, Dyrks T, Suhara T, Suzuki K, Higuchi M, Halldin C. A comparative autoradiography study in post mortem whole hemisphere human brain slices taken from Alzheimer patients and age-matched controls using two radiolabelled DAA1106 analogues with high affinity to the peripheral benzodiazepine receptor (PBR) system. Neurochem Int 2009; 54:28-36. [DOI: 10.1016/j.neuint.2008.10.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 10/01/2008] [Indexed: 10/21/2022]
|
47
|
Cosenza-Nashat M, Zhao ML, Suh HS, Morgan J, Natividad R, Morgello S, Lee SC. Expression of the translocator protein of 18 kDa by microglia, macrophages and astrocytes based on immunohistochemical localization in abnormal human brain. Neuropathol Appl Neurobiol 2008; 35:306-28. [PMID: 19077109 DOI: 10.1111/j.1365-2990.2008.01006.x] [Citation(s) in RCA: 350] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
AIMS Microglia are involved in neurodegeneration, are prime targets for anti-inflammatory therapy and are potential biomarkers of disease progression. For example, positron emission tomography imaging employing radioligands for the mitochondrial translocator protein of 18 kDa (TSPO, formerly known as the peripheral benzodiazepine receptor) is being scrutinized to detect neuroinflammation in various diseases. TSPO is presumably present in activated microglia, but may be present in other neural cells. METHODS We sought to elucidate the protein expression in normal human central nervous system, several neurological diseases (HIV encephalitis, Alzheimer's disease, multiple sclerosis and stroke) and simian immunodeficiency virus encephalitis by performing immunohistochemistry with two anti-TSPO antibodies. RESULTS Although the overall parenchymal staining was minimal in normal brain, endothelial and smooth muscle cells, subpial glia, intravascular monocytes and ependymal cells were TSPO-positive. In disease states, elevated TSPO was present in parenchymal microglia, macrophages and some hypertrophic astrocytes, but the distribution of TSPO varied depending on the disease, disease stage and proximity to the lesion or relation to infection. Staining with the two antibodies correlated well in white matter, but one antibody also stained cortical neurones. Quantitative analysis demonstrated a significant increase in TSPO in the white matter of HIV encephalitis compared with brains without encephalitis. TSPO expression was also increased in simian immunodeficiency virus encephalitis. CONCLUSIONS This report provides the first comprehensive immunohistochemical analysis of the expression of TSPO. The results are useful for informing the usage of positron emission tomography as an imaging modality and have an impact on the potential use of TSPO as an anti-inflammatory pharmacological target.
Collapse
Affiliation(s)
- M Cosenza-Nashat
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
The positron emission tomography ligand DAA1106 binds with high affinity to activated microglia in human neurological disorders. J Neuropathol Exp Neurol 2008; 67:1001-10. [PMID: 18800007 DOI: 10.1097/nen.0b013e318188b204] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Chronic microglial activation is an important component of many neurological disorders, and imaging activated microglia in vivo will enable the detection and improved treatment of neuroinflammation. 1-(2-chlorphenyl)-N-methyl-N-(1-methylpropyl)-3-isoquinoline-carbox-amide (PK11195), a peripheral benzodiazepine receptor ligand, has been used to image neuroinflammation, but the extent to which PK11195 binding distinguishes activated microglia and reactive astrocytes is unclear. Moreover, PK11195 may lack sufficient sensitivity for detecting mild neuroinflammation. We hypothesized that N-(2,5-dimethoxybenzyl)-N-(4-fluoro-2-phenoxyphenyl) acetamide (DAA1106), a new ligand that binds specifically to peripheral benzodiazepine receptor, binds to activated microglia in human neurological diseases with higher affinity than does PK11195. We therefore compared the pharmacological binding properties of [3H](R)-PK11195 and [3H]DAA1106 in postmortem tissues from patients with cerebral infarcts, amyotrophic lateral sclerosis, Alzheimer disease, frontotemporal dementia, and multiple sclerosis (n=10 each). In all diseases, [3H]DAA1106 showed a higher binding affinity as reflected by lower dissociation constant (KD) values than that of [3H](R)-PK11195. Moreover, specific binding of both ligands correlated with the presence of activated microglia identified by immunohistochemistry in situ. We conclude that 1) ligands that bind peripheral benzodiazepine receptor mainly label activated microglia in human neurological disorders and that 2) DAA1106 may possess binding characteristics superior to those of PK11195, which may be beneficial for in vivo positron emission tomography imaging.
Collapse
|
49
|
Nuclear imaging of neuroinflammation: a comprehensive review of [11C]PK11195 challengers. Eur J Nucl Med Mol Imaging 2008; 35:2304-19. [DOI: 10.1007/s00259-008-0908-9] [Citation(s) in RCA: 324] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Accepted: 07/17/2008] [Indexed: 12/22/2022]
|
50
|
Benavides J, Dubois A, Scatton B. Peripheral type benzodiazepine binding sites as a tool for the detection and quantification of CNS injury. ACTA ACUST UNITED AC 2008; Chapter 7:Unit7.16. [PMID: 18428526 DOI: 10.1002/0471142301.ns0716s09] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The concentration of peripheral type benzodiazepine binding sites (PTBS) in the brain parenchyma is greatly increased following brain lesions, reflecting the glial reaction and/or presence of hematogenous cells. Thus, PTBS density is a sensitive and reliable marker of brain injury in a large number of experimental models (ischemia, trauma, excitotoxic lesions, brain tumors) and equivalent human neuropathological conditions. PTBS density can be measured using specific radioligands and a conventional binding technique, or by quantitative autoradiography in tissue sections.
Collapse
|