1
|
Neuroprotective effect of histamine H3 receptor blockade on methamphetamine-induced cognitive impairment in mice. Pharmacol Biochem Behav 2023; 222:173512. [PMID: 36572112 DOI: 10.1016/j.pbb.2022.173512] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 11/30/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Methamphetamine (METH) exposure is commonly believed to result in cognitive impairment. Histamine H3 receptor (H3R) antagonists reportedly have potential applications for treating cognitive impairment accompanied by various neuropsychiatric disorders. The present study aimed to investigate the effect of H3R blockade by Thioperamide (THIO) on METH-induced cognitive impairment and the underlying mechanism. METHODS In Experiment 1, C57BL/6 mice received daily injections of saline or 5 mg/kg METH for 5 consecutive days. The Novel Object Recognition (NOR) and Morris water maze (MWM) tasks were used to assess cognitive functions of mice. H3R protein expression and apoptosis were subsequently measured in the hippocampus. In Experiment 2, HT22 cells were first treated with ddH2O or 3 mM METH. The cell survival rate and H3R protein level were subsequently assessed. In Experiment 3, the animals were first treated with saline or 20 mg/kg THIO for 7 days, followed by co-administration of either saline or 5 mg/kg METH for an additional 5 days. The remaining experiments were carried out in the same manner as Experiment 1. In Experiment 4, HT22 cells were pretreated with either ddH2O or 5 mM THIO for 2 h, followed by ddH2O or 3 mM METH treatment for an additional 12 h. The remaining experiments were carried out in the same manner as Experiment 2. In Experiment 5, the changes in MEK1/2, p-MEK1/2, ERK1/2 and p-ERK1/2 protein levels were examined in the hippocampus of all mice from Experiment 3 and HT22 cells from Experiment 4. RESULTS METH-treated mice showed significantly worsened NOR and MWM performance, along with markably hippocampal apoptosis. A significantly lower cell survival rate was observed in METH-treated HT22 cells. Increased levels of H3R protein were found in both METH-treated mice and HT22 cells. THIO significantly improved METH-induced cognitive impairment in mice and toxicity in HT22 cells. METH significantly increased the level of p-MEK1/2 and p-ERK1/2 proteins in the hippocampus of mice and HT22 cells, which was reversed by THIO pretreatment. CONCLUSION Our findings reveal that H3R blockade by THIO yields a neuroprotective effect against METH-induced cognitive impairment in mice and toxicity in HT22 cells via the raf-MEK-ERK signaling pathway.
Collapse
|
2
|
Samelisant (SUVN-G3031), a potent, selective and orally active histamine H3 receptor inverse agonist for the potential treatment of narcolepsy: pharmacological and neurochemical characterisation. Psychopharmacology (Berl) 2021; 238:1495-1511. [PMID: 33550481 DOI: 10.1007/s00213-021-05779-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023]
Abstract
RATIONALE Samelisant (SUVN-G3031) is a potent and selective histamine H3 receptor (H3R) inverse agonist with good brain penetration and oral bioavailability. OBJECTIVES Pharmacological and neurochemical characterisation to support the utility of Samelisant (SUVN-G3031) in the treatment of sleep-related disorders like narcolepsy. METHODS Samelisant (SUVN-G3031) was tested in rat brain microdialysis studies for evaluation of modulation in histamine, dopamine and norepinephrine. Sleep EEG studies were carried out in orexin knockout mice to study the effects of Samelisant (SUVN-G3031) on the sleep-wake cycle and cataplexy. RESULTS Samelisant (SUVN-G3031) has a similar binding affinity towards human (hH3R; Ki = 8.7 nM) and rat (rH3R; Ki = 9.8 nM) H3R indicating no inter-species differences. Samelisant (SUVN-G3031) displays inverse agonist activity and it exhibits very high selectivity towards H3R. Samelisant (SUVN-G3031) treatment in mice produced a dose-dependent increase in tele-methylhistamine levels indicating the activation of histaminergic neurotransmission. Apart from increasing the levels of histamine, Samelisant (SUVN-G3031) also modulates dopamine and norepinephrine levels in the cerebral cortex while it has no effects on dopamine levels in the striatum or nucleus accumbens. Treatment with Samelisant (SUVN-G3031; 10 and 30 mg/kg, p.o.) produced a significant increase in wakefulness with a concomitant decrease in NREM sleep in orexin knockout mice subjected to sleep EEG. Samelisant (SUVN-G3031) also produced a significant decrease in Direct REM sleep onset (DREM) episodes, demonstrating its anticataplectic effects in an animal model relevant to narcolepsy. Modulation in cortical levels of histamine, norepinephrine and dopamine provides the neurochemical basis for wake-promoting and anticataplectic effects observed in orexin knockout mice. CONCLUSIONS Pre-clinical studies of Samelisant (SUVN-G3031) provide a strong support for utility in the treatment of sleep-related disorders related to EDS and is currently being evaluated in a phase 2 proof of concept study in the USA for the treatment of narcolepsy with and without cataplexy.
Collapse
|
3
|
Yue XF, Wang AZ, Hou YP, Fan K. Effects of propofol on sleep architecture and sleep-wake systems in rats. Behav Brain Res 2021; 411:113380. [PMID: 34033853 DOI: 10.1016/j.bbr.2021.113380] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 05/17/2021] [Accepted: 05/20/2021] [Indexed: 10/21/2022]
Abstract
Previous studies have shown that the synchronization of electroencephalogram (EEG) signals is found during propofol-induced general anesthesia, which is similar to that of slow-wave sleep (SWS). However, a complete understanding is lacking in terms of the characteristics of EEG changes in rats after propofol administration and whether propofol acts through natural sleep circuits. Here, we examined the characteristics of EEG patterns induced by intraperitoneal injection of propofol in rats. We found that high (10 mg/kg) and medium (5 mg/kg) doses of propofol induced a cortical EEG of low-frequency, high-amplitude activity with rare electromyographic activity and markedly shortened sleep latency. The high dose of propofol increased deep slow-wave sleep (SWS2) to 4 h, as well as the number of large SWS2 bouts (>480 s), their mean duration and the peak of the power density curve in the delta range of 0.75-3.25 Hz. After the medium dose of propofol, the total number of wakefulness, light slow-wave sleep (SWS1) and SWS2 episodes increased, whereas the mean duration of wakefulness decreased. The high dose of propofol significantly increased c-fos expression in the ventrolateral preoptic nucleus (VLPO) sleep center and decreased the number of c-fos-immunoreactive neurons in wake-related systems including the tuberomammillary nucleus (TMN), perifornical nucleus (PeF), lateral hypothalamic nucleus (LH), ventrolateral periaqueductal gray (vPAG) and supramammillary region (SuM). These results indicated that the high dose of propofol produced high-quality sleep by increasing SWS2, whereas the medium dose produced fragmented and low-quality sleep by disrupting the continuity of wakefulness. Furthermore, sleep-promoting effects of propofol are correlated with activation of the VLPO cluster and inhibition of the TMN, PeF, LH, vPAG and SuM.
Collapse
Affiliation(s)
- Xiao-Fang Yue
- Department of Neurology, Shanghai Jiao Tong University, Affiliated Sixth People' s Hospital, NO. 222, Huanhuxisan Road, Shanghai, 201306, PR China
| | - Ai-Zhong Wang
- Department of Anesthesiology, Shanghai Jiao Tong University, Affiliated Sixth People' s Hospital, NO. 222, Huanhuxisan Road, Shanghai, 201306, PR China
| | - Yi-Ping Hou
- Department of Neuroscience, Anatomy, Histology, and Embryology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Sciences, Lanzhou University, Lanzhou, PR China.
| | - Kun Fan
- Department of Anesthesiology, Shanghai Jiao Tong University, Affiliated Sixth People' s Hospital, NO. 222, Huanhuxisan Road, Shanghai, 201306, PR China.
| |
Collapse
|
4
|
Lai YY, Hsieh KC, Cheng YH, Chew KT, Nguyen D, Ramanathan L, Siegel JM. Striatal histamine mechanism in the pathogenesis of restless legs syndrome. Sleep 2020; 43:5610750. [PMID: 31671173 PMCID: PMC8491621 DOI: 10.1093/sleep/zsz223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 03/07/2019] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Restless legs syndrome (RLS) has been hypothesized to be generated by abnormal striatal dopamine transmission. Dopaminergic drugs are effective for the treatment of RLS. However, long-term use of dopaminergic drugs causes adverse effects. We used iron-deficient (ID) and iron-replacement (IR) rats to address the neuropathology of RLS and to determine if a histamine H3 receptor (H3R) antagonist might be a useful treatment. Histamine H3R antagonists have been shown to decrease motor activity. METHODS Control and ID rats were surgically implanted with electrodes for polysomnographic recording. After 3 days of baseline polysomnographic recordings, rats were systemically injected with the H3R agonist, α-methylhistamine, and antagonist, thioperamide. Recordings were continued after drug injection. Striatal H3R levels from control, ID, and IR rats were determined by western blots. Blood from control, ID, and IR rats was collected for the measurement of hematocrit levels. RESULTS α-Methylhistamine and thioperamide increased and decreased motor activity, respectively, in control rats. In ID rats, α-methylhistamine had no effect on motor activity, whereas thioperamide decreased periodic leg movement (PLM) in sleep. Sleep-wake states were not significantly altered under any conditions. Striatal H3R levels were highest in ID rats, moderate to low in IR rats, and lowest in control rats. Striatal H3R levels were also found to positively and negatively correlate with PLM in sleep and hematocrit levels, respectively. CONCLUSIONS A striatal histamine mechanism may be involved in ID anemia-induced RLS. Histamine H3R antagonists may be useful for the treatment of RLS.
Collapse
Affiliation(s)
- Yuan-Yang Lai
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA
| | - Kung-Chiao Hsieh
- Veterans Administration Greater Los Angeles HealthCare System (VAGLAHS), Sepulveda, Los Angeles, CA
| | - Yu-Hsuan Cheng
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA
| | - Keng-Tee Chew
- Veterans Administration Greater Los Angeles HealthCare System (VAGLAHS), Sepulveda, Los Angeles, CA
| | - Darian Nguyen
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA
| | - Lalini Ramanathan
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA
| | - Jerome M Siegel
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, CA.,Veterans Administration Greater Los Angeles HealthCare System (VAGLAHS), Sepulveda, Los Angeles, CA
| |
Collapse
|
5
|
Nirogi R, Shinde A, Mohammed AR, Badange RK, Reballi V, Bandyala TR, Saraf SK, Bojja K, Manchineella S, Achanta PK, Kandukuri KK, Subramanian R, Benade V, Palacharla RC, Jayarajan P, Pandey S, Jasti V. Discovery and Development of N-[4-(1-Cyclobutylpiperidin-4-yloxy)phenyl]-2-(morpholin-4-yl)acetamide Dihydrochloride (SUVN-G3031): A Novel, Potent, Selective, and Orally Active Histamine H 3 Receptor Inverse Agonist with Robust Wake-Promoting Activity. J Med Chem 2019; 62:1203-1217. [PMID: 30629436 DOI: 10.1021/acs.jmedchem.8b01280] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A series of chemical optimizations guided by in vitro affinity at a histamine H3 receptor (H3R), physicochemical properties, and pharmacokinetics in rats resulted in identification of N-[4-(1-cyclobutyl-piperidin-4-yloxy)phenyl]-2-(morpholin-4-yl)acetamide dihydrochloride (17v, SUVN-G3031) as a clinical candidate. Compound 17v is a potent (hH3R Ki = 8.73 nM) inverse agonist at H3R with selectivity over other 70 targets, Compound 17v has adequate oral exposures and favorable elimination half-lives both in rats and dogs. It demonstrated high receptor occupancy and marked wake-promoting effects with decreased rapid-eye-movement sleep in orexin-B saporin lesioned rats supporting its potential therapeutic utility in treating human sleep disorders. It had no effect on the locomotor activity at doses several fold higher than its efficacious dose. It is devoid of hERG and phospholipidosis issues. Phase-1 evaluation for safety, tolerability, and pharmacokinetics, and long-term safety studies in animals have been successfully completed without any concern for further development.
Collapse
Affiliation(s)
- Ramakrishna Nirogi
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Anil Shinde
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Abdul Rasheed Mohammed
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Rajesh Kumar Badange
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Veena Reballi
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Thrinath Reddy Bandyala
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Sangram Keshari Saraf
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Kumar Bojja
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Sravanthi Manchineella
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Pramod Kumar Achanta
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Kiran Kumar Kandukuri
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Ramkumar Subramanian
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Vijay Benade
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Raghava Choudary Palacharla
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Pradeep Jayarajan
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Santoshkumar Pandey
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| | - Venkat Jasti
- Discovery Research, Suven Life Sciences Ltd , Serene Chambers, Road-5, Avenue-7 , Banjara Hills, Hyderabad 500 034 , India
| |
Collapse
|
6
|
Histamine may contribute to vortioxetine's procognitive effects; possibly through an orexigenic mechanism. Prog Neuropsychopharmacol Biol Psychiatry 2016; 68:25-30. [PMID: 26945513 DOI: 10.1016/j.pnpbp.2016.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/24/2016] [Accepted: 03/01/2016] [Indexed: 01/06/2023]
Abstract
Vortioxetine is a novel multimodal antidepressant that acts as a serotonin (5-HT)3, 5-HT7, and 5-HT1D receptor antagonist; 5-HT1B receptor partial agonist; 5-HT1A receptor agonist; and 5-HT transporter inhibitor in vitro. In preclinical and clinical studies vortioxetine demonstrates positive effects on cognitive dysfunction. Vortioxetine's effect on cognitive function likely involves the modulation of several neurotransmitter systems. Acute and chronic administration of vortioxetine resulted in changes in histamine concentrations in microdialysates collected from the rat prefrontal cortex and ventral hippocampus. Based on these results and a literature review of the current understanding of the interaction between the histaminergic and serotonergic systems and the role of histamine on cognitive function, we hypothesize that vortioxetine through an activation of the orexinergic system stimulates the tuberomammilary nucleus and enhances histaminergic neurotransmission, which contributes to vortioxetine's positive effects on cognitive function.
Collapse
|
7
|
Schlicker E, Kathmann M. Role of the Histamine H 3 Receptor in the Central Nervous System. Handb Exp Pharmacol 2016; 241:277-299. [PMID: 27787717 DOI: 10.1007/164_2016_12] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2022]
Abstract
The Gi/o protein-coupled histamine H3 receptor is distributed throughout the central nervous system including areas like cerebral cortex, hippocampus and striatum with the density being highest in the posterior hypothalamus, i.e. the area in which the histaminergic cell bodies are located. In contrast to the other histamine receptor subtypes (H1, H2 and H4), the H3 receptor is located presynaptically and shows a constitutive activity. In detail, H3 receptors are involved in the inhibition of histamine release (presynaptic autoreceptor), impulse flow along the histaminergic neurones (somadendritic autoreceptor) and histamine synthesis. Moreover, they occur as inhibitory presynaptic heteroreceptors on serotoninergic, noradrenergic, dopaminergic, glutamatergic, GABAergic and perhaps cholinergic neurones. This review shows for four functions of the brain that the H3 receptor represents a brake against the wake-promoting, anticonvulsant and anorectic effect of histamine (via postsynaptic H1 receptors) and its procognitive activity (via postsynaptic H1 and H2 receptors). Indeed, H1 agonists and H3 inverse agonists elicit essentially the same effects, at least in rodents; these effects are opposite in direction to those elicited by brain-penetrating H1 receptor antagonists in humans. Although the benefit for H3 inverse agonists for the symptomatic treatment of dementias is inconclusive, several members of this group have shown a marked potential for the treatment of disorders associated with excessive daytime sleepiness. In March 2016, the European Commission granted a marketing authorisation for pitolisant (WakixR) (as the first representative of the H3 inverse agonists) for the treatment of narcolepsy.
Collapse
Affiliation(s)
- Eberhard Schlicker
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany.
| | - Markus Kathmann
- Institut für Pharmakologie und Toxikologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Sigmund-Freud-Strasse 25, 53127, Bonn, Germany
| |
Collapse
|
8
|
Parmentier R, Zhao Y, Perier M, Akaoka H, Lintunen M, Hou Y, Panula P, Watanabe T, Franco P, Lin JS. Role of histamine H1-receptor on behavioral states and wake maintenance during deficiency of a brain activating system: A study using a knockout mouse model. Neuropharmacology 2015; 106:20-34. [PMID: 26723880 DOI: 10.1016/j.neuropharm.2015.12.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/10/2015] [Accepted: 12/14/2015] [Indexed: 10/22/2022]
Abstract
Using knockout (KO) mice lacking the histamine (HA)-synthesizing enzyme (histidine decarboxylase, HDC), we have previously shown the importance of histaminergic neurons in maintaining wakefulness (W) under behavioral challenges. Since the central actions of HA are mediated by several receptor subtypes, it remains to be determined which one(s) could be responsible for such a role. We have therefore compared the cortical-EEG, sleep and W under baseline conditions or behavioral/pharmacological stimuli in littermate wild-type (WT) and H1-receptor KO (H1-/-) mice. We found that H1-/- mice shared several characteristics with HDC KO mice, i.e. 1) a decrease in W after lights-off despite its normal baseline daily amount; 2) a decreased EEG slow wave sleep (SWS)/W power ratio; 3) inability to maintain W in response to behavioral challenges demonstrated by a decreased sleep latency when facing various stimuli. These effects were mediated by central H1-receptors. Indeed, in WT mice, injection of triprolidine, a brain-penetrating H1-receptor antagonist increased SWS, whereas ciproxifan (H3-receptor antagonist/inverse agonist) elicited W; all these injections had no effect in H1-/- mice. Finally, H1-/- mice showed markedly greater changes in EEG power (notably in the 0.8-5 Hz band) and sleep-wake cycle than in WT mice after application of a cholinergic antagonist or an indirect agonist, i.e., scopolamine or physostigmine. Hence, the role of HA in wake-promotion is largely ensured by H1-receptors. An upregulated cholinergic system may account for a quasi-normal daily amount of W in HDC or H1-receptor KO mice and likely constitutes a major compensatory mechanism when the brain is facing deficiency of an activating system. This article is part of the Special Issue entitled 'Histamine Receptors'.
Collapse
Affiliation(s)
- Régis Parmentier
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France
| | - Yan Zhao
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France; Department of Physiology, Zhongshan Medical College, Sun Yat-Sen University, Guangzhou, China
| | - Magali Perier
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France
| | - Hideo Akaoka
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France
| | - Minnamaija Lintunen
- Department of Anatomy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Yiping Hou
- Department of Neuroscience, Anatomy, Histology & Embryology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Pertti Panula
- Department of Anatomy and Neuroscience Center, University of Helsinki, Helsinki, Finland
| | - Takeshi Watanabe
- Unit for Immune Surveillance Research, Research Center for Allergy and Immunology, RIKEN Institute, Tsurumi-ku, Yokohama, Japan
| | - Patricia Franco
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France
| | - Jian-Sheng Lin
- Waking Team, Integrative Physiology of the Brain Arousal Systems, CRNL, INSERM-U1028, CNRS UMR5292, School of Medicine, Claude Bernard University, Lyon, France.
| |
Collapse
|
9
|
Muindi F, Colas D, Ikeme J, Ruby NF, Heller HC. Loss of Melanopsin Photoreception and Antagonism of the Histamine H3 Receptor by Ciproxifan Inhibit Light-Induced Sleep in Mice. PLoS One 2015; 10:e0128175. [PMID: 26083020 PMCID: PMC4471207 DOI: 10.1371/journal.pone.0128175] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/24/2015] [Indexed: 12/17/2022] Open
Abstract
Light has direct effects on sleep and wakefulness causing arousal in diurnal animals and sleep in nocturnal animals. In the present study, we assessed the modulation of light-induced sleep by melanopsin and the histaminergic system by exposing mice to millisecond light flashes and continuous light respectively. First, we show that the induction of sleep by millisecond light flashes is dose dependent as a function of light flash number. We found that exposure to 60 flashes of light occurring once every 60 seconds for 1-h (120-ms of total light over an hour) induced a similar amount of sleep as a continuous bright light pulse. Secondly, the induction of sleep by millisecond light flashes was attenuated in the absence of melanopsin when animals were presented with flashes occurring every 60 seconds over a 3-h period beginning at ZT13. Lastly, the acute administration of a histamine H3 autoreceptor antagonist, ciproxifan, blocked the induction of sleep by a 1-h continuous light pulse during the dark period. Ciproxifan caused a decrease in NREMS delta power and an increase in theta activity during both sleep and wake periods respectively. The data suggest that some form of temporal integration occurs in response to millisecond light flashes, and that this process requires melanopsin photoreception. Furthermore, the pharmacological data suggest that the increase of histaminergic neurotransmission is sufficient to attenuate the light-induced sleep response during the dark period.
Collapse
Affiliation(s)
- Fanuel Muindi
- Department of Biology, Stanford University, Stanford, California, United States of America
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
- * E-mail:
| | - Damien Colas
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Jesse Ikeme
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - Norman F. Ruby
- Department of Biology, Stanford University, Stanford, California, United States of America
| | - H. Craig Heller
- Department of Biology, Stanford University, Stanford, California, United States of America
| |
Collapse
|
10
|
Buchanan GF, Smith HR, MacAskill A, Richerson GB. 5-HT2A receptor activation is necessary for CO2-induced arousal. J Neurophysiol 2015; 114:233-43. [PMID: 25925320 DOI: 10.1152/jn.00213.2015] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 04/29/2015] [Indexed: 11/22/2022] Open
Abstract
Hypercapnia-induced arousal from sleep is an important protective mechanism pertinent to a number of diseases. Most notably among these are the sudden infant death syndrome, obstructive sleep apnea and sudden unexpected death in epilepsy. Serotonin (5-HT) plays a significant role in hypercapnia-induced arousal. The mechanism of 5-HT's role in this protective response is unknown. Here we sought to identify the specific 5-HT receptor subtype(s) involved in this response. Wild-type mice were pretreated with antagonists against 5-HT receptor subtypes, as well as antagonists against adrenergic, cholinergic, histaminergic, dopaminergic, and orexinergic receptors before challenge with inspired CO2 or hypoxia. Antagonists of 5-HT(2A) receptors dose-dependently blocked CO2-induced arousal. The 5-HT(2C) receptor antagonist, RS-102221, and the 5-HT1A receptor agonist, 8-OH-DPAT, attenuated but did not completely block CO2-induced arousal. Blockade of non-5-HT receptors did not affect CO2-induced arousal. None of these drugs had any effect on hypoxia-induced arousal. 5-HT2 receptor agonists were given to mice in which 5-HT neurons had been genetically eliminated during embryonic life (Lmx1b(f/f/p)) and which are known to lack CO2-induced arousal. Application of agonists to 5-HT(2A), but not 5-HT(2C), receptors, dose-dependently restored CO2-induced arousal in these mice. These data identify the 5-HT(2A) receptor as an important mediator of CO2-induced arousal and suggest that, while 5-HT neurons can be independently activated to drive CO2-induced arousal, in the absence of 5-HT neurons and endogenous 5-HT, 5-HT receptor activation can act in a permissive fashion to facilitate CO2-induced arousal via another as yet unidentified chemosensor system.
Collapse
Affiliation(s)
- Gordon F Buchanan
- Department of Neurology, Yale University, New Haven, Connecticut; Veteran's Affairs Medical Center, West Haven, Connecticut; Department of Neurology, University of Iowa, Iowa City, Iowa;
| | - Haleigh R Smith
- Department of Neurology, Yale University, New Haven, Connecticut
| | - Amanda MacAskill
- University of Glasgow School of Medicine, Glasgow, Scotland, United Kingdom
| | - George B Richerson
- Department of Neurology, Yale University, New Haven, Connecticut; Department of Neurology, University of Iowa, Iowa City, Iowa; Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa; and Veteran's Affairs Medical Center, Iowa City, Iowa
| |
Collapse
|
11
|
Sundvik M, Panula P. Interactions of the orexin/hypocretin neurones and the histaminergic system. Acta Physiol (Oxf) 2015; 213:321-33. [PMID: 25484194 DOI: 10.1111/apha.12432] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Revised: 10/26/2014] [Accepted: 12/01/2014] [Indexed: 12/28/2022]
Abstract
Histaminergic and orexin/hypocretin systems are components in the brain wake-promoting system. Both are affected in the sleep disorder narcolepsy, but the role of histamine in narcolepsy is unclear. The histaminergic neurones are activated by the orexin/hypocretin system in rodents, and the development of the orexin/hypocretin neurones is bidirectionally regulated by the histaminergic system in zebrafish. This review summarizes the current knowledge of the interactions of these two systems in normal and pathological conditions in humans and different animal models.
Collapse
Affiliation(s)
- M. Sundvik
- Institute of Biomedicine, Anatomy, and Neuroscience center; University of Helsinki; Helsinki Finland
| | - P. Panula
- Institute of Biomedicine, Anatomy, and Neuroscience center; University of Helsinki; Helsinki Finland
| |
Collapse
|
12
|
Krystal AD, Richelson E, Roth T. Review of the histamine system and the clinical effects of H1 antagonists: Basis for a new model for understanding the effects of insomnia medications. Sleep Med Rev 2013; 17:263-72. [DOI: 10.1016/j.smrv.2012.08.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2011] [Revised: 08/09/2012] [Accepted: 08/09/2012] [Indexed: 11/27/2022]
|
13
|
Hudzik TJ, Basso A, Boyce-Rustay JM, Bracken W, Browman KE, Drescher K, Esbenshade TA, Loberg LI, Lynch JJ, Brioni JD. Assessment of the abuse liability of ABT-288, a novel histamine H₃ receptor antagonist. Psychopharmacology (Berl) 2013; 228:187-97. [PMID: 23455597 DOI: 10.1007/s00213-013-3027-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 02/04/2013] [Indexed: 11/29/2022]
Abstract
RATIONALE Histamine H3 receptor antagonists, such as ABT-288, have been shown to possess cognitive-enhancing and wakefulness-promoting effects. On the surface, this might suggest that H3 antagonists possess psychomotor stimulant-like effects and, as such, may have the potential for abuse. OBJECTIVES The aim of the present study was to further characterize whether ABT-288 possesses stimulant-like properties and whether its pharmacology gives rise to abuse liability. METHODS The locomotor-stimulant effects of ABT-288 were measured in mice and rats, and potential development of sensitization was addressed. Drug discrimination was used to assess amphetamine-like stimulus properties, and drug self-administration was used to evaluate reinforcing effects of ABT-288. The potential development of physical dependence was also studied. RESULTS ABT-288 lacked locomotor-stimulant effects in both rats and mice. Repeated administration of ABT-288 did not result in cross-sensitization to the stimulant effects of d-amphetamine in mice, suggesting that there is little overlap in circuitries upon which the two drugs interact for motor activity. ABT-288 did not produce amphetamine-like discriminative stimulus effects in drug discrimination studies nor was it self-administered by rats trained to self-administer cocaine. There were no signs of physical dependence upon termination of repeated administration of ABT-288 for 30 days. CONCLUSIONS The sum of these preclinical data, the first of their kind applied to H3 antagonists, indicates that ABT-288 is unlikely to possess a high potential for abuse in the human population and suggests that H3 antagonists, as a class, are similar in this regard.
Collapse
Affiliation(s)
- Thomas J Hudzik
- Department of Preclinical Safety-Development Sciences, AbbVie, Inc., 1 N. Waukegan Rd., North Chicago, IL 60064, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
This review summarizes the brain mechanisms controlling sleep and wakefulness. Wakefulness promoting systems cause low-voltage, fast activity in the electroencephalogram (EEG). Multiple interacting neurotransmitter systems in the brain stem, hypothalamus, and basal forebrain converge onto common effector systems in the thalamus and cortex. Sleep results from the inhibition of wake-promoting systems by homeostatic sleep factors such as adenosine and nitric oxide and GABAergic neurons in the preoptic area of the hypothalamus, resulting in large-amplitude, slow EEG oscillations. Local, activity-dependent factors modulate the amplitude and frequency of cortical slow oscillations. Non-rapid-eye-movement (NREM) sleep results in conservation of brain energy and facilitates memory consolidation through the modulation of synaptic weights. Rapid-eye-movement (REM) sleep results from the interaction of brain stem cholinergic, aminergic, and GABAergic neurons which control the activity of glutamatergic reticular formation neurons leading to REM sleep phenomena such as muscle atonia, REMs, dreaming, and cortical activation. Strong activation of limbic regions during REM sleep suggests a role in regulation of emotion. Genetic studies suggest that brain mechanisms controlling waking and NREM sleep are strongly conserved throughout evolution, underscoring their enormous importance for brain function. Sleep disruption interferes with the normal restorative functions of NREM and REM sleep, resulting in disruptions of breathing and cardiovascular function, changes in emotional reactivity, and cognitive impairments in attention, memory, and decision making.
Collapse
Affiliation(s)
- Ritchie E Brown
- Laboratory of Neuroscience, VA Boston Healthcare System and Harvard Medical School, Brockton, Massachusetts 02301, USA
| | | | | | | | | |
Collapse
|
15
|
Sundvik M, Kudo H, Toivonen P, Rozov S, Chen YC, Panula P. The histaminergic system regulates wakefulness and orexin/hypocretin neuron development via histamine receptor H1 in zebrafish. FASEB J 2011; 25:4338-47. [PMID: 21885652 DOI: 10.1096/fj.11-188268] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The histaminergic and hypocretin/orexin (hcrt) neurotransmitter systems play crucial roles in alertness/wakefulness in rodents. We elucidated the role of histamine in wakefulness and the interaction of the histamine and hcrt systems in larval zebrafish. Translation inhibition of histidine decarboxylase (hdc) with morpholino oligonucleotides (MOs) led to a behaviorally measurable decline in light-associated activity, which was partially rescued by hdc mRNA injections and mimicked by histamine receptor H1 (Hrh1) antagonist pyrilamine treatment. Histamine-immunoreactive fibers targeted the dorsal telencephalon, an area that expresses histamine receptors hrh1 and hrh3 and contains predominantly glutamatergic neurons. Tract tracing with DiI revealed that projections from dorsal telencephalon innervate the hcrt and histaminergic neurons. Translation inhibition of hdc decreased the number of hcrt neurons in a Hrh1-dependent manner. The reduction was rescued by overexpression of hdc mRNA. hdc mRNA injection alone led to an up-regulation of hcrt neuron numbers. These results suggest that histamine is essential for the development of a functional and intact hcrt system and that histamine has a bidirectional effect on the development of the hcrt neurons. In summary, our findings provide evidence that these two systems are linked both functionally and developmentally, which may have important implications in sleep disorders and narcolepsy. development via histamine receptor H1 in zebrafish.
Collapse
Affiliation(s)
- Maria Sundvik
- Neuroscience Center and Institute of Biomedicine, Anatomy, Faculty of Medicine, P.O.B. 63, 00014 University of Helsinki, Haartmaninkatu 8, 00290 Helsinki, Finland
| | | | | | | | | | | |
Collapse
|
16
|
Sharma BK, Singh P, Shekhawat M, Sarbhai K, Prabhakar YS. Modelling of serotonin reuptake inhibitory and histamine H₃antagonistic activity of piperazine and diazepane amides: QSAR rationales for co-optimization of the activity profiles. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2011; 22:365-383. [PMID: 21598199 DOI: 10.1080/1062936x.2011.569895] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Selective human serotonin reuptake transporter (hSERT) inhibition is the first line of treatment to deal with the depression. In clinical practice for managing depression, the stimulants are co-prescribed to overcome cognitive impairment and fatigue. Recently, histamine H(3) antagonists with serotonin reuptake inhibition activity have been proposed as alternative approach for the treatment of depression. In this context, a QSAR study of hSERT inhibitory and H(3) antagonistic activity of piperazine and diazepane amide derivatives has been carried out using the combinatorial protocol in multiple linear regression (CP-MLR) with 0D- to 2D-Dragon descriptors. The derived QSAR models have provided a rational approach for the development of new piperazine and diazepane amide derivatives as hSERT inhibitors and H(3) antagonists. In a concomitant partial least-squares (PLS) analysis of the hSERT and histamine H(3) activities, the fraction contributions of identified descriptors revealed their importance in modulating these activities. The PLS analysis of other biological endpoints, namely hNET, hDAT, and histamine H(3) activity in functional assay (H(3)pA(2)) of these analogues with the identified descriptors has further highlighted their scope in modulating these activities.
Collapse
Affiliation(s)
- B K Sharma
- Department of Chemistry, S. K. Government College, Sikar-332 001, Rajasthan, India.
| | | | | | | | | |
Collapse
|
17
|
Thakkar MM. Histamine in the regulation of wakefulness. Sleep Med Rev 2010; 15:65-74. [PMID: 20851648 DOI: 10.1016/j.smrv.2010.06.004] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2010] [Revised: 06/13/2010] [Accepted: 06/15/2010] [Indexed: 11/26/2022]
Abstract
The histaminergic system is exclusively localized within the posterior hypothalamus with projection to almost all the major regions of the central nervous system. Strong and consistent evidence exist to suggest that histamine, acting via H₁ and/or H₃ receptor has a pivotal role in the regulation of sleep-wakefulness. Administration of histamine or H₁ receptor agonists induces wakefulness, whereas administration of H₁ receptor antagonists promotes sleep. The H₃ receptor functions as an auto-receptor and regulates the synthesis and release of histamine. Activation of H₃ receptor reduces histamine release and promotes sleep. Conversely, blockade of H₃ receptor promotes wakefulness. Histamine release in the hypothalamus and other target regions is highest during wakefulness. The histaminergic neurons display maximal activity during the state of high vigilance, and cease their activity during non-rapid eye movement (NREM) and rapid eye movement (REM) sleep. The cerebrospinal levels of histamine are reduced in diseased states where hypersomnolence is a major symptom. The histamine deficient L-histidine decarboxylase knockout (HDC KO) mice display sleep fragmentation and increased REM sleep during the light period along with profound wakefulness deficit at dark onset, and in novel environment. Similar results have been obtained when histamine neurons are lesioned. These studies strongly implicate the histaminergic neurons of the TMN to play a critical role in the maintenance of high vigilance state during wakefulness.
Collapse
Affiliation(s)
- Mahesh M Thakkar
- Neurology, University of Missouri, Harry S. Truman Memorial Veterans Hospital, Research, Room A023, 800 Hospital Drive, Columbia, MO 65210, USA.
| |
Collapse
|
18
|
Motawaj M, Burban A, Davenas E, Gbahou F, Faucard R, Morisset S, Arrang JM. Le système histaminergique : une cible pour de nouveaux traitements des deficits cognitifs. Therapie 2010; 65:415-22. [DOI: 10.2515/therapie/2010058] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2010] [Accepted: 04/27/2010] [Indexed: 11/20/2022]
|
19
|
Xu A, Sakurai E, Kuramasu A, Zhang J, Li J, Okamura N, Zhang D, Yoshikawa T, Watanabe T, Yanai K. Roles of Hypothalamic Subgroup Histamine and Orexin Neurons on Behavioral Responses to Sleep Deprivation Induced by the Treadmill Method in Adolescent Rats. J Pharmacol Sci 2010; 114:444-53. [DOI: 10.1254/jphs.10177fp] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
20
|
Guo RX, Anaclet C, Roberts JC, Parmentier R, Zhang M, Guidon G, Buda C, Sastre JP, Feng JQ, Franco P, Brown SH, Upton N, Medhurst AD, Lin JS. Differential effects of acute and repeat dosing with the H3 antagonist GSK189254 on the sleep-wake cycle and narcoleptic episodes in Ox-/- mice. Br J Pharmacol 2009; 157:104-17. [PMID: 19413575 DOI: 10.1111/j.1476-5381.2009.00205.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Histamine H3 receptor antagonists are currently being evaluated in clinical trials for a number of central nervous system disorders including narcolepsy. These agents can increase wakefulness (W) in cats and rodents following acute administration, but their effects after repeat dosing have not been reported previously. EXPERIMENTAL APPROACH EEG and EMG recordings were used to investigate the effects of acute and repeat administration of the novel H3 antagonist GSK189254 on the sleep-wake cycle in wild-type (Ox+/+) and orexin knockout (Ox-/-) mice, the latter being genetically susceptible to narcoleptic episodes. In addition, we investigated H3 and H1 receptor expression in this model using radioligand binding and autoradiography. KEY RESULTS In Ox+/+ and Ox-/- mice, acute administration of GSK189254 (3 and 10 mg x kg(-1) p.o.) increased W and decreased slow wave and paradoxical sleep to a similar degree to modafinil (64 mg x kg(-1)), while it reduced narcoleptic episodes in Ox-/- mice. After twice daily dosing for 8 days, the effect of GSK189254 (10 mg x kg(-1)) on W in both Ox+/+ and Ox-/- mice was significantly reduced, while the effect on narcoleptic episodes in Ox-/- mice was significantly increased. Binding studies revealed no significant differences in H3 or H1 receptor expression between Ox+/+ and Ox-/- mice. CONCLUSIONS AND IMPLICATIONS These studies provide further evidence to support the potential use of H3 antagonists in the treatment of narcolepsy and excessive daytime sleepiness. Moreover, the differential effects observed on W and narcoleptic episodes following repeat dosing could have important implications in clinical studies.
Collapse
Affiliation(s)
- R X Guo
- INSERM/UCBL-U628, Integrated Physiology of Brain Arousal Systems, Department of Experimental Medicine, Faculty of Medicine, Claude Bernard University, Lyon Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Parmentier R, Kolbaev S, Klyuch BP, Vandael D, Lin JS, Selbach O, Haas HL, Sergeeva OA. Excitation of histaminergic tuberomamillary neurons by thyrotropin-releasing hormone. J Neurosci 2009; 29:4471-83. [PMID: 19357273 PMCID: PMC3198719 DOI: 10.1523/jneurosci.2976-08.2009] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2008] [Revised: 03/04/2009] [Accepted: 03/05/2009] [Indexed: 11/21/2022] Open
Abstract
The histaminergic tuberomamillary nucleus (TMN) controls arousal and attention, and the firing of TMN neurons is state-dependent, active during waking, silent during sleep. Thyrotropin-releasing hormone (TRH) promotes arousal and combats sleepiness associated with narcolepsy. Single-cell reverse-transcription-PCR demonstrated variable expression of the two known TRH receptors in the majority of TMN neurons. TRH increased the firing rate of most (ca 70%) TMN neurons. This excitation was abolished by the TRH receptor antagonist chlordiazepoxide (CDZ; 50 mum). In the presence of tetrodotoxin (TTX), TRH depolarized TMN neurons without obvious change of their input resistance. This effect reversed at the potential typical for nonselective cation channels. The potassium channel blockers barium and cesium did not influence the TRH-induced depolarization. TRH effects were antagonized by inhibitors of the Na(+)/Ca(2+) exchanger, KB-R7943 and benzamil. The frequency of GABAergic spontaneous IPSCs was either increased (TTX-insensitive) or decreased [TTX-sensitive spontaneous IPSCs (sIPSCs)] by TRH, indicating a heterogeneous modulation of GABAergic inputs by TRH. Facilitation but not depression of sIPSC frequency by TRH was missing in the presence of the kappa-opioid receptor antagonist nor-binaltorphimine. Montirelin (TRH analog, 1 mg/kg, i.p.) induced waking in wild-type mice but not in histidine decarboxylase knock-out mice lacking histamine. Inhibition of histamine synthesis by (S)-alpha-fluoromethylhistidine blocked the arousal effect of montirelin in wild-type mice. We conclude that direct receptor-mediated excitation of rodent TMN neurons by TRH demands activation of nonselective cation channels as well as electrogenic Na(+)/Ca(2+) exchange. Our findings indicate a key role of the brain histamine system in TRH-induced arousal.
Collapse
Affiliation(s)
- Regis Parmentier
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
- Inserm, U628, Physiologie Intégrée du Système d'Éveil, 69373 Lyon Cedex 08, France
| | - Sergej Kolbaev
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| | - Boris P. Klyuch
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| | - David Vandael
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| | - Jian-Sheng Lin
- Inserm, U628, Physiologie Intégrée du Système d'Éveil, 69373 Lyon Cedex 08, France
| | - Oliver Selbach
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| | - Helmut L. Haas
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| | - Olga A. Sergeeva
- Department of Neurophysiology, Heinrich Heine University, D-40001 Duesseldorf, Germany, and
| |
Collapse
|
22
|
Abstract
Histamine is a transmitter in the nervous system and a signaling molecule in the gut, the skin, and the immune system. Histaminergic neurons in mammalian brain are located exclusively in the tuberomamillary nucleus of the posterior hypothalamus and send their axons all over the central nervous system. Active solely during waking, they maintain wakefulness and attention. Three of the four known histamine receptors and binding to glutamate NMDA receptors serve multiple functions in the brain, particularly control of excitability and plasticity. H1 and H2 receptor-mediated actions are mostly excitatory; H3 receptors act as inhibitory auto- and heteroreceptors. Mutual interactions with other transmitter systems form a network that links basic homeostatic and higher brain functions, including sleep-wake regulation, circadian and feeding rhythms, immunity, learning, and memory in health and disease.
Collapse
Affiliation(s)
- Helmut L Haas
- Institute of Neurophysiology, Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | |
Collapse
|
23
|
Le S, Gruner JA, Mathiasen JR, Marino MJ, Schaffhauser H. Correlation between ex vivo receptor occupancy and wake-promoting activity of selective H3 receptor antagonists. J Pharmacol Exp Ther 2008; 325:902-9. [PMID: 18305012 DOI: 10.1124/jpet.107.135343] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2025] Open
Abstract
The histamine H3 receptor (H3R) modulates the release of neurotransmitters that are involved in vigilance, cognition, and sleep-wake regulation. H3R antagonism has been proposed as a novel approach to the treatment of cognitive and attention deficit as well as sleep disorders. It is apparent that H3R antagonists produce pharmacological effects in preclinical animal models across a wide dose range. Several H3R antagonists were reported to be effective at producing cognitive enhancing effects at low doses, while producing robust wake enhancement at higher doses. To better understand the effect of H3R antagonists across a broad dose range, an ex vivo receptor binding assay has been used to estimate the degree of H3R occupancy in vivo. The H3R antagonists ciproxifan, thioperamide, GSK189254 (6-[(3-cyclobutyl-2,3,4,5-tetrahydro-1H-3-benzazepin-7-yl)oxy]-N-methyl-3-pyridinecarboxamide hydrochloride), and ABT-239 ([4-(2-{2-[(2R)-2-methylpyrrolidinyl]ethyl}-benzofuran-5-yl)benzonitrile) produced wake-promoting activity in vivo and a dose-dependent inhibition of H3R binding ex vivo. For ciproxifan, thioperamide, and GSK189254, a relatively low level of cumulative wake activity was linearly correlated with up to 80% of the receptor occupancy. In contrast, an abrupt break from linearity and a robust increase of waking activity was observed at doses that produce greater than 80% occupancy. Our results suggest a relatively small increase of waking activity at low levels of receptor occupancy that may be consistent with reported enhancement of attention and cognitive function. Robust waking activity at higher levels of H3R occupancy may be mechanistically different from activities at low levels of H3R occupancy.
Collapse
Affiliation(s)
- Siyuan Le
- World Wide Discovery Research, CNS Biology, Cephalon, Inc., 145 Brandywine Parkway, West Chester, PA 19380, USA.
| | | | | | | | | |
Collapse
|
24
|
Ly KS, Letavic MA, Keith JM, Miller JM, Stocking EM, Barbier AJ, Bonaventure P, Lord B, Jiang X, Boggs JD, Dvorak L, Miller KL, Nepomuceno D, Wilson SJ, Carruthers NI. Synthesis and biological activity of piperazine and diazepane amides that are histamine H3 antagonists and serotonin reuptake inhibitors. Bioorg Med Chem Lett 2008; 18:39-43. [DOI: 10.1016/j.bmcl.2007.11.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2007] [Revised: 11/05/2007] [Accepted: 11/07/2007] [Indexed: 11/24/2022]
|
25
|
Barbier AJ, Aluisio L, Lord B, Qu Y, Wilson SJ, Boggs JD, Bonaventure P, Miller K, Fraser I, Dvorak L, Pudiak C, Dugovic C, Shelton J, Mazur C, Letavic MA, Carruthers NI, Lovenberg TW. Pharmacological characterization of JNJ-28583867, a histamine H3 receptor antagonist and serotonin reuptake inhibitor. Eur J Pharmacol 2007; 576:43-54. [PMID: 17765221 DOI: 10.1016/j.ejphar.2007.08.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2007] [Revised: 08/06/2007] [Accepted: 08/07/2007] [Indexed: 11/30/2022]
Abstract
Wake-promoting agents such as modafinil are used in the clinic as adjuncts to antidepressant therapy in order to alleviate lethargy. The wake-promoting action of histamine H(3) receptor antagonists has been evidenced in numerous animal studies. They may therefore be a viable strategy for use as an antidepressant therapy in conjunction with selective serotonin reuptake inhibitors. JNJ-28583867 (2-Methyl-4-(4-methylsulfanyl-phenyl)-7-(3-morpholin-4-yl-propoxy)-1,2,3,4-tetrahydro-isoquinoline) is a selective and potent histamine H(3) receptor antagonist (K(i)=10.6 nM) and inhibitor of the serotonin transporter (SERT) (K(i)=3.7 nM), with 30-fold selectivity for SERT over the dopamine and norepinephrine transporters. After subcutaneous administration, JNJ-28583867 occupied both the histamine H(3) receptor and the SERT in rat brain at low doses (<1 mg/kg). JNJ-28583867 blocked imetit-induced drinking (3-10 mg/kg i.p.), confirming in vivo functional activity at the histamine H(3) receptor and also significantly increased cortical extracellular levels of serotonin at doses of 0.3 mg/kg (s.c.) and higher. Smaller increases in cortical extracellular levels of norepinephrine and dopamine were also observed. JNJ-28583867 (3-30 mg/kg p.o.) showed antidepressant-like activity in the mouse tail suspension test. JNJ-28583867 (1-3 mg/kg s.c.) caused a dose-dependent increase in the time spent awake mirrored by a decrease in NREM. Concomitantly, JNJ-28583867 produced a potent suppression of REM sleep from the dose of 1 mg/kg onwards. JNJ-28583867 has good oral bioavailability in the rat (32%), a half-life of 6.9 h and a C(max) of 260 ng/ml after 10 mg/kg p.o. In summary, JNJ-28583867 is a combined histamine H(3) receptor antagonist-SERT inhibitor with in vivo efficacy in biochemical and behavioral models of depression and wakefulness.
Collapse
Affiliation(s)
- Ann J Barbier
- Johnson & Johnson Pharmaceutical Research & Development, L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Soya A, Song YH, Kodama T, Honda Y, Fujiki N, Nishino S. CSF histamine levels in rats reflect the central histamine neurotransmission. Neurosci Lett 2007; 430:224-9. [PMID: 18077091 DOI: 10.1016/j.neulet.2007.11.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2007] [Revised: 10/26/2007] [Accepted: 11/01/2007] [Indexed: 10/22/2022]
Abstract
Reduced cerebrospinal fluid (CSF) histamine levels were found in human hypersomnia. To evaluate the functional significance of changes in CSF histamine levels, we measured the levels in rats across 24h, after the administration of wake-promoting compounds modafinil, amphetamine, and thioperamide, and after sleep deprivation and food deprivation. Thioperamide significantly increased CSF histamine levels with little effects on locomotor activation. Both modafinil and amphetamine markedly increased the locomotor activity, but had no effects on histamine. The levels are high during active period and are markedly elevated by sleep deprivation, but not by food deprivation. Our study suggests that CSF histamine levels in rats reflect the central histamine neurotransmission and vigilance state changes, providing deeper insight into the human data.
Collapse
Affiliation(s)
- Atsushi Soya
- Sleep and Circadian Neurobiology Laboratory, Center for Narcolepsy, Psychiatry and Behavioral Sciences, Stanford University, 1201 Welch Road, Palo Alto, CA 94304, USA
| | | | | | | | | | | |
Collapse
|
27
|
Letavic MA, Stocking EM, Barbier AJ, Bonaventure P, Boggs JD, Lord B, Miller KL, Wilson SJ, Carruthers NI. Benzylamine histamine H3 antagonists and serotonin reuptake inhibitors. Bioorg Med Chem Lett 2007; 17:4799-803. [PMID: 17616397 DOI: 10.1016/j.bmcl.2007.06.061] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2007] [Accepted: 06/18/2007] [Indexed: 11/15/2022]
Abstract
The design, synthesis, and in vitro activity of a series of novel 5-ethynyl-2-aryloxybenzylamine-based histamine H(3) ligands that are also serotonin reuptake transporters is described.
Collapse
Affiliation(s)
- Michael A Letavic
- Johnson & Johnson Pharmaceutical Research & Development LLC, 3210 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Keith JM, Barbier AJ, Wilson SJ, Miller K, Boggs JD, Fraser IC, Mazur C, Lovenberg TW, Carruthers NI. Dual serotonin transporter inhibitor/histamine H3 antagonists: development of rigidified H3 pharmacophores. Bioorg Med Chem Lett 2007; 17:5325-9. [PMID: 17765543 DOI: 10.1016/j.bmcl.2007.08.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2007] [Revised: 08/06/2007] [Accepted: 08/08/2007] [Indexed: 10/22/2022]
Abstract
A series of tetrahydroisoquinolines acting as dual serotonin transporter inhibitor/histamine H(3) antagonists is described. The introduction of polar aromatic spacers as part of the histamine H(3) pharmacophore was explored. A convergent synthesis of the final products allowing late stage introduction of the aromatic side chain was developed. In vitro and in vivo data are discussed.
Collapse
Affiliation(s)
- John M Keith
- Johnson & Johnson Pharmaceutical Research and Development L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Arrang JM. Le récepteur H3 de l’histamine : une cible pour de nouveaux traitements des troubles de l’éveil et de la cognition. ANNALES PHARMACEUTIQUES FRANÇAISES 2007; 65:275-84. [PMID: 17652997 DOI: 10.1016/s0003-4509(07)90047-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The histamine H3 receptor was identified in the 80's by our group as a presynaptic autoreceptor inhibiting histamine synthesis and release in the rat brain. Sixteen years later, cloning of the related human H3 receptor revealed the existence of isoforms, species pharmacological differences and a high constitutive (spontaneous) activity of the receptor. All these molecular findings have to be taken into account for optimizing aimed at clinical applications ligands. H3 receptor inverse agonists, by increasing histamine neuron activity, promote arousal and enhance cognitive performances. Pharmaceutical firms have shown considerable interest for this new class of drugs and many programmes of clinical development of H3 receptor inverse agonists for the treatment of arousal and cognitive disorders are presently being conducted.
Collapse
Affiliation(s)
- J-M Arrang
- Inserm, Unité de neurobiologie et pharmacologie moléculaire (U 573), Centre Paul Broca, 2 ter, rue d'Alésia F 75014 Paris.
| |
Collapse
|
30
|
Lin JS. Brain structures and mechanisms involved in the control of cortical activation and wakefulness, with emphasis on the posterior hypothalamus and histaminergic neurons. Sleep Med Rev 2007; 4:471-503. [PMID: 17210278 DOI: 10.1053/smrv.2000.0116] [Citation(s) in RCA: 200] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Wakefulness is a functional brain state that allows the performance of several "high brain functions", such as diverse behavioural, cognitive and emotional activities. Present knowledge at the whole animal or cellular level suggests that the maintenance of the cerebral cortex in this highly complex state necessitates the convergent and divergent activity of an ascending network within a large reticular zone, extending from the medulla to the forebrain and involving four major subcortical structures (the thalamus, basal forebrain, posterior hypothalamus and brainstem monoaminergic nuclei), their integral interconnections and several neurotransmitters, such as glutamate, acetylcholine, histamine and noradrenaline. In this mini-review, the importance of the thalamus, basal forebrain and brainstem monoaminergic neurons in wake control is briefly summarized, before turning our attention to the posterior hypothalamus and histaminergic neurons, which have been far less studied. Classical and recent experimental data are summarized, supporting the hypothesis that (1) the posterior hypothalamus constitutes one of the brain ascending activating systems and plays an important role in waking; (2) this function is mediated, in part, by histaminergic neurons, which constitute one of the excitatory sources for cortical activation during waking; (3) the mechanisms of histaminergic arousal involve both the ascending and descending projections of histaminergic neurons and their interactions with diverse neuronal populations, such as neurons in the pre-optic area and cholinergic neurons; and (4) other widespread-projecting neurons in the posterior hypothalamus also contribute to the tonic cortical activation during wakefulness and/or paradoxical sleep.
Collapse
Affiliation(s)
- J S Lin
- INSERM U480, Department of Experimental Medicine, Faculty of Medicine, Claude Bernard University, Rockefeller 69373, Lyon, France
| |
Collapse
|
31
|
Keith JM, Gomez LA, Wolin RL, Barbier AJ, Wilson SJ, Boggs JD, Mazur C, Fraser IC, Lord B, Aluisio L, Lovenberg TW, Carruthers NI. Pyrrolidino-tetrahydroisoquinolines as potent dual H3 antagonist and serotonin transporter inhibitors. Bioorg Med Chem Lett 2007; 17:2603-7. [PMID: 17317177 DOI: 10.1016/j.bmcl.2007.01.106] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2007] [Revised: 01/30/2007] [Accepted: 01/31/2007] [Indexed: 11/19/2022]
Abstract
A series of novel and potent pyrrolidino-tetrahydroisoquinolines with dual histamine H(3) antagonist/serotonin transporter inhibitor activity is described. A highly regio- and diastereoselective synthesis of the pyrrolidino-tetrahydroisoquinoline core involving acid mediated ring-closure of an acetophenone intermediate followed by reduction with NaCNBH(3) was developed. In vitro and in vivo data are discussed.
Collapse
Affiliation(s)
- John M Keith
- Johnson & Johnson Pharmaceutical Research and Development L.L.C., 3210 Merryfield Row, La Jolla, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Letavic MA, Keith JM, Ly KS, Barbier AJ, Boggs JD, Wilson SJ, Lord B, Lovenberg TW, Carruthers NI. Novel naphthyridines are histamine H3 antagonists and serotonin reuptake transporter inhibitors. Bioorg Med Chem Lett 2007; 17:2566-9. [PMID: 17307358 DOI: 10.1016/j.bmcl.2007.02.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Revised: 02/01/2007] [Accepted: 02/02/2007] [Indexed: 11/26/2022]
Abstract
A series of novel tetrahydronaphthyridine-based histamine H(3) ligands that have serotonin reuptake transporter inhibitor activity is described. The 1,2,3,4-tetrahydro-2,6-naphthyridine scaffold is assembled via the addition of a nitrostyrene to a metalated pyridine followed by reduction and cyclization to form the naphthyridine. In vitro biological data for these novel compounds are discussed.
Collapse
Affiliation(s)
- Michael A Letavic
- Johnson & Johnson Pharmaceutical Research & Development L.L.C., 3210 Merryfield Row, San Diego, CA 92121-1126, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Parmentier R, Anaclet C, Guhennec C, Brousseau E, Bricout D, Giboulot T, Bozyczko-Coyne D, Spiegel K, Ohtsu H, Williams M, Lin JS. The brain H3-receptor as a novel therapeutic target for vigilance and sleep–wake disorders. Biochem Pharmacol 2007; 73:1157-71. [PMID: 17288995 DOI: 10.1016/j.bcp.2007.01.002] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2006] [Revised: 11/28/2006] [Accepted: 01/03/2007] [Indexed: 11/26/2022]
Abstract
Brain histaminergic neurons play a prominent role in arousal and maintenance of wakefulness (W). H(3)-receptors control the activity of histaminergic neurons through presynaptic autoinhibition. The role of H(3)-receptor antagonists/inverse agonists (H(3)R-antagonists) in the potential therapy of vigilance deficiency and sleep-wake disorders were studied by assessing their effects on the mouse cortical EEG and sleep-wake cycle in comparison to modafinil and classical psychostimulants. The H(3)R-antagonists, thioperamide and ciproxifan increased W and cortical EEG fast rhythms and, like modafinil, but unlike amphetamine and caffeine, their waking effects were not accompanied by sleep rebound. Conversely, imetit (H(3)R-agonist) enhanced slow wave sleep and dose-dependently attenuated ciproxifan-induced W, indicating that the effects of both ligands involve H(3)-receptor mechanisms. Additional studies using knockout (KO) mice confirmed the essential role of H(3)-receptors and histamine-mediated transmission in the wake properties of H(3)R-antagonists. Thus ciproxifan produced no increase in W in either histidine-decarboxylase (HDC, histamine-synthesizing enzyme) or H(1)- or H(3)-receptor KO-mice whereas its waking effects persisted in H(2)-receptor KO-mice. These data validate the hypothesis that H(3)R-antagonists, through disinhibition of H(3)-autoreceptors, enhancing synaptic histamine that in turn activates postsynaptic H(1)-receptors promoting W. Interestingly amphetamine and modafinil, despite their potent arousal effects, appear unlikely to depend on histaminergic mechanism as their effects still occurred in HDC KO-mice. The present study thus distinguishes two classes of wake-improving agents: the first acting through non-histaminergic mechanisms and the second acting via histamine and supports brain H(3)-receptors as potentially novel therapeutic targets for vigilance and sleep-wake disorders.
Collapse
Affiliation(s)
- R Parmentier
- INSERM-U628, Department of Experimental Medicine, Faculty of Medicine, Claude Bernard University, 69373 Lyon, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Keith JM, Gomez LA, Barbier AJ, Wilson SJ, Boggs JD, Lord B, Mazur C, Aluisio L, Lovenberg TW, Carruthers NI. Pyrrolidino-tetrahydroisoquinolines bearing pendant heterocycles as potent dual H3 antagonist and serotonin transporter inhibitors. Bioorg Med Chem Lett 2007; 17:4374-7. [PMID: 17583504 DOI: 10.1016/j.bmcl.2007.03.043] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2007] [Revised: 03/12/2007] [Accepted: 03/13/2007] [Indexed: 11/22/2022]
Abstract
A series of novel and potent 6-heteroaryl-pyrrolidino-tetrahydroisoquinolines with dual histamine H(3) antagonist/serotonin transporter inhibitor activity is described. In vitro and in vivo data are discussed.
Collapse
Affiliation(s)
- John M Keith
- Johnson & Johnson Pharmaceutical Research & Development L.L.C., 3210 Merryfield Row, La Jolla, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Keith JM, Gomez LA, Letavic MA, Ly KS, Jablonowski JA, Seierstad M, Barbier AJ, Wilson SJ, Boggs JD, Fraser IC, Mazur C, Lovenberg TW, Carruthers NI. Dual serotonin transporter/histamine H3 ligands: Optimization of the H3 pharmacophore. Bioorg Med Chem Lett 2007; 17:702-6. [PMID: 17107798 DOI: 10.1016/j.bmcl.2006.10.089] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Revised: 10/26/2006] [Accepted: 10/26/2006] [Indexed: 10/24/2022]
Abstract
A series of tetrahydroisoquinolines acting as dual histamine H3/serotonin transporter ligands is described. A highly regio-selective synthesis of the tetrahydroisoquinoline core involving acid mediated ring-closure of an acetophenone intermediate followed by reduction with NaCNBH3 was developed. In vitro and in vivo data are discussed.
Collapse
Affiliation(s)
- John M Keith
- Johnson & Johnson Pharmaceutical Research and Development LLC, 3210 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Letavic MA, Keith JM, Jablonowski JA, Stocking EM, Gomez LA, Ly KS, Miller JM, Barbier AJ, Bonaventure P, Boggs JD, Wilson SJ, Miller KL, Lord B, McAllister HM, Tognarelli DJ, Wu J, Abad MC, Schubert C, Lovenberg TW, Carruthers NI. Novel tetrahydroisoquinolines are histamine H3 antagonists and serotonin reuptake inhibitors. Bioorg Med Chem Lett 2007; 17:1047-51. [PMID: 17127059 DOI: 10.1016/j.bmcl.2006.11.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2006] [Revised: 11/07/2006] [Accepted: 11/10/2006] [Indexed: 10/23/2022]
Abstract
A series of novel 4-aryl-1,2,3,4-tetrahydroisoquinoline-based histamine H(3) ligands that also have serotonin reuptake transporter inhibitor activity is described. The synthesis, in vitro biological data, and select pharmacokinetic data for these novel compounds are discussed.
Collapse
Affiliation(s)
- Michael A Letavic
- Johnson & Johnson Pharmaceutical Research and Development L.L.C., 3210 Merryfield Row, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Dvorak CA, Apodaca R, Barbier AJ, Berridge CW, Wilson SJ, Boggs JD, Xiao W, Lovenberg TW, Carruthers NI. 4-Phenoxypiperidines: Potent, Conformationally Restricted, Non-Imidazole Histamine H3Antagonists. J Med Chem 2005; 48:2229-38. [PMID: 15771465 DOI: 10.1021/jm049212n] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Two new series of 4-(1-alkyl-piperidin-4-yloxy)-benzonitriles and 4-(1-isopropyl-piperidin-4-yloxy)-benzylamines have been prepared. In vitro activity was determined at the recombinant human H(3) receptor and several members of these new series were found to be potent H(3) antagonists. The present compounds contain a 4-phenoxypiperidine core, which behaves as a conformationally restricted version of the 3-amino-1-propanol moiety common to the many previously described non-imidazole histamine H(3) ligands. One selected member of the new series, 4-[4-(1-isopropyl-piperidin-4-yloxy)-benzyl]-morpholine (13g), was found to be a potent, highly selective H(3) receptor antagonist with in vivo efficacy in a rat EEG model of wakefulness at doses as low as 1 mg/kg sc.
Collapse
Affiliation(s)
- Curt A Dvorak
- Johnson & Johnson Pharmaceutical Research and Development, L.L.C., 3210 Merryfield Row, San Diego, California 92121, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Passani MB, Lin JS, Hancock A, Crochet S, Blandina P. The histamine H3 receptor as a novel therapeutic target for cognitive and sleep disorders. Trends Pharmacol Sci 2004; 25:618-25. [PMID: 15530639 DOI: 10.1016/j.tips.2004.10.003] [Citation(s) in RCA: 173] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Histamine H3 receptor pharmacology, functions and biochemistry are far from being fully understood; however, progress is being made. Activation of this Gi/GO-protein-coupled receptor affects cognition, the sleep-wake cycle, obesity and epilepsy, which are physiological and pathological conditions that are the main focus of research into the therapeutic potential of selective H3 receptor ligands. This heterogeneity of targets can be reconciled partially by the fact that the histamine system constitutes one of the most important brain-activating systems and that H3 receptors regulate the activity of histamine and other neurotransmitter systems. Furthermore, the H3 receptor shows functional constitutive activity, polymorphisms in humans and rodents with a differential distribution of splice variants in the CNS, and potential coupling to different intracellular signal transduction mechanisms. In light of the genetic, pharmacological and functional complexity of the H3 receptor, the importance of the histamine system as a therapeutic target to control the sleep-wake cycle and cognitive disorders will be discussed.
Collapse
Affiliation(s)
- Maria Beatrice Passani
- Dipartimento di Farmacologia Preclinica e Clinica, Universitá di Firenze, Viale Pieraccini 6, 50139 Firenze, Italy
| | | | | | | | | |
Collapse
|
39
|
Barbier AJ, Berridge C, Dugovic C, Laposky AD, Wilson SJ, Boggs J, Aluisio L, Lord B, Mazur C, Pudiak CM, Langlois X, Xiao W, Apodaca R, Carruthers NI, Lovenberg TW. Acute wake-promoting actions of JNJ-5207852, a novel, diamine-based H3 antagonist. Br J Pharmacol 2004; 143:649-61. [PMID: 15466448 PMCID: PMC1575430 DOI: 10.1038/sj.bjp.0705964] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2004] [Revised: 07/13/2004] [Accepted: 07/21/2004] [Indexed: 11/08/2022] Open
Abstract
1 1-[4-(3-piperidin-1-yl-propoxy)-benzyl]-piperidine (JNJ-5207852) is a novel, non-imidazole histamine H3 receptor antagonist, with high affinity at the rat (pKi=8.9) and human (pKi=9.24) H3 receptor. JNJ-5207852 is selective for the H3 receptor, with negligible binding to other receptors, transporters and ion channels at 1 microm. 2 JNJ-5207852 readily penetrates the brain tissue after subcutaneous (s.c.) administration, as determined by ex vivo autoradiography (ED50 of 0.13 mg kg(-1) in mice). In vitro autoradiography with 3H-JNJ-5207852 in mouse brain slices shows a binding pattern identical to that of 3H-R-alpha-methylhistamine, with high specific binding in the cortex, striatum and hypothalamus. No specific binding of 3H-JNJ-5207852 was observed in brains of H3 receptor knockout mice. 3 In mice and rats, JNJ-5207852 (1-10 mg kg(-1) s.c.) increases time spent awake and decreases REM sleep and slow-wave sleep, but fails to have an effect on wakefulness or sleep in H3 receptor knockout mice. No rebound hypersomnolence, as measured by slow-wave delta power, is observed. The wake-promoting effects of this H3 receptor antagonist are not associated with hypermotility. 4 A 4-week daily treatment of mice with JNJ-5207852 (10 mg kg(-1) i.p.) did not lead to a change in body weight, possibly due to the compound being a neutral antagonist at the H3 receptor. 5 JNJ-5207852 is extensively absorbed after oral administration and reaches high brain levels. 6 The data indicate that JNJ-5207852 is a novel, potent and selective H3 antagonist with good in vitro and in vivo efficacy, and confirm the wake-promoting effects of H3 receptor antagonists.
Collapse
Affiliation(s)
- A J Barbier
- Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, U.S.A
| | - C Berridge
- Department of Psychology, University of Wisconsin, WI, U.S.A
| | - C Dugovic
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, U.S.A
| | - A D Laposky
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL, U.S.A
| | - S J Wilson
- Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, U.S.A
| | - J Boggs
- Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, U.S.A
| | - L Aluisio
- Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, U.S.A
| | - B Lord
- Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, U.S.A
| | - C Mazur
- Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, U.S.A
| | - C M Pudiak
- Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, U.S.A
| | - X Langlois
- Johnson & Johnson Pharmaceutical Research and Development, LLC, Beerse, Belgium
| | - W Xiao
- Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, U.S.A
| | - R Apodaca
- Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, U.S.A
| | - N I Carruthers
- Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, U.S.A
| | - T W Lovenberg
- Johnson & Johnson Pharmaceutical Research and Development, LLC, 3210 Merryfield Row, San Diego, CA 92121, U.S.A
| |
Collapse
|
40
|
Chu M, Huang ZL, Qu WM, Eguchi N, Yao MH, Urade Y. Extracellular histamine level in the frontal cortex is positively correlated with the amount of wakefulness in rats. Neurosci Res 2004; 49:417-20. [PMID: 15236867 DOI: 10.1016/j.neures.2004.05.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 05/11/2004] [Indexed: 11/27/2022]
Abstract
Histaminergic neurons have been strongly implicated in the regulation of wakefulness by activating cortical neurons. However, little is known about histamine release in the cortex during sleep-wake stages. In this study, we monitored the extracellular histamine level in the frontal cortex by in vivo microdialysis coupled with electroencephalogram and electromyogram recordings in freely moving rats. The histamine release was 3.8 times higher during wake episodes than during sleep episodes, being positively correlated (r = 0.845) with the time spent in wakefulness. These findings indicate that the histamine release in the cortex is strongly related to the sleep-wake cycle.
Collapse
Affiliation(s)
- Min Chu
- Department of Pharmacology, Shanghai Medical College of Fudan University, Shanghai 200032, PR China
| | | | | | | | | | | |
Collapse
|
41
|
Witkin JM, Nelson DL. Selective histamine H3 receptor antagonists for treatment of cognitive deficiencies and other disorders of the central nervous system. Pharmacol Ther 2004; 103:1-20. [PMID: 15251226 DOI: 10.1016/j.pharmthera.2004.05.001] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Evidence exists to implicate the monoamine histamine in the control of arousal and cognitive functions. Antagonists of H(3) receptors are postsynaptic and presynaptic modulators of neural transmission in a variety of neuronal circuits relevant to cognition. Accumulating neuroanatomical, neurochemical, pharmacological, and behavioral data support the idea that H(3) receptor antagonists may function to improve cognitive performances in disease states (e.g., Alzheimer's disease and mild cognitive impairment states). Thus, H(3) receptor antagonists have been shown to increase performance in attention and memory tests in nonhuman experiments and prevent the degradation in performances produced by scopolamine, MK-801, or age. In contrast, agonists of the H(3) receptor generally produce cognitive impairing effects in animal models. The role of H(3) receptors in these behavioral effects is substantiated by data indicating a central origin for their effects, the selectivity of some of the H(3) receptor antagonists studied, and the pharmacological modification of effects of H(3) receptor antagonists by selective H(3) receptor agonists. Data and issues that challenge the potential role for H(3) receptor antagonists in cognitive processes are also critically reviewed. H(3) receptor antagonists may also have therapeutic value in the management of obesity, pain, sleep disorders, schizophrenia, and attention deficit hyperactivity disorder.
Collapse
Affiliation(s)
- J M Witkin
- Neuroscience Discovery Research, Lilly Research Laboratories, Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN 46285-0510, USA.
| | | |
Collapse
|
42
|
Vanni-Mercier G, Gigout S, Debilly G, Lin JS. Waking selective neurons in the posterior hypothalamus and their response to histamine H3-receptor ligands: an electrophysiological study in freely moving cats. Behav Brain Res 2003; 144:227-41. [PMID: 12946612 DOI: 10.1016/s0166-4328(03)00091-3] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Neurons which discharge selectively during waking (waking selective) have been found in the tuberomamillary nucleus (TM) and adjacent areas of the posterior hypothalamus. Although they share some electrophysiological properties with aminergic neurons, there is no direct evidence that they are histaminergic. We have recorded from posterior hypothalamic neurons during the sleep-wake cycle in freely moving cats, and investigated the effects on waking selective neurons of specific ligands of histaminergic H3-receptors, which autoregulate the activity of histaminergic neurons. Two types of neurons were seen. Waking selective neurons, termed "waking-on (W-on)," were located exclusively within the TM and adjacent areas, and discharged at a low regular rate during waking (1.71-2.97 Hz), decreased firing during light slow wave sleep (SWS), became silent during deep SWS and paradoxical sleep (PS) and resumed their activity on, or a few seconds before, awakening. "Waking-related" neurons, located in an area dorsal to the TM, displayed a similar, although less regular, low rate of firing (1.74-5.41 Hz) and a similar discharge profile during the sleep-wake cycle; however, unlike "W-on" neurons, they did not completely stop firing during deep SWS and PS. Intramuscular (i.m.) injection of ciproxifan (an H3-receptor antagonist, 1mg/kg), significantly increased the discharge rate of W-on neurons and induced c-fos expression in histamine-immunoreactive neurons, whereas i.m. injection of imetit (an H3-receptor agonist, 1mg/kg) or microinjection of alpha-methylhistamine (another H3-receptor agonist, 0.025-0.1 microg/0.2 microl) in the vicinity of these cells significantly decreased their discharge rate. Moreover, the effect of the antagonist was reversed by the agonists and vice versa. In contrast, "waking-related" neurons were unaffected by these H3-receptor ligands. These data provide evidence for the histaminergic nature of "W-on" neurons and their role in cortical desynchronization during waking, and highlight the heterogeneity of posterior hypothalamic neuronal populations, which might serve different functions during the wakefulness.
Collapse
Affiliation(s)
- G Vanni-Mercier
- INSERM U480, Département de Médecine Expérimentale, Université Claude Bernard, 8, Avenue Rockefeller, 69373 Lyon Cedex 08, France.
| | | | | | | |
Collapse
|
43
|
Lamberty Y, Margineanu DG, Dassesse D, Klitgaard H. H3 agonist immepip markedly reduces cortical histamine release, but only weakly promotes sleep in the rat. Pharmacol Res 2003; 48:193-8. [PMID: 12798672 DOI: 10.1016/s1043-6618(03)00094-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Presynaptic H3 receptors exert negative control on brain histamine synthesis and release and may thereby play a key role in the control of the sleep/wake cycle. This suggests that pharmacological stimulation by H3 receptor agonists may potentially decrease wakefulness and induce sleep. This study reports the effect of a potent and selective H3 agonist, immepip, on EEG assessed sleep/wake phases in Sprague-Dawley rats at doses that significantly modulate brain histamine release. Immepip injected intraperitoneally (i.p.) at 5 or 10 mg kg(-1) induced a sustained decrease in cortical histamine efflux as measured by in vivo microdialysis. In a separate experiment, rats were prepared for EEG/EMG recording and evaluated during the dark phase of their light/dark cycle. The results showed that the same i.p. doses of 5 and 10 mg kg(-1) of immepip was devoid of any significant impact on the sleep/wake phases (active awake, drowsiness and slow wave sleep), except for a slight, albeit significant, decrease in sleep onset latency. These results reveal that a marked H3 receptor agonist-mediated reduction in cortical histamine release is not corroborated by a significant sleep promoting effect and therefore question the hypnotic potential of H3 agonists.
Collapse
Affiliation(s)
- Yves Lamberty
- UCB Pharma, Preclinical CNS Research, Chemin du Foriest, B-1420, Braine-l'Alleud, Belgium.
| | | | | | | |
Collapse
|
44
|
Matsuo SI, Jang IS, Nabekura J, Akaike N. alpha 2-Adrenoceptor-mediated presynaptic modulation of GABAergic transmission in mechanically dissociated rat ventrolateral preoptic neurons. J Neurophysiol 2003; 89:1640-8. [PMID: 12626630 DOI: 10.1152/jn.00491.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The ventrolateral preoptic nucleus (VLPO) is a key nucleus involved in the homeostatic regulation of sleep-wakefulness. Little is known, however, about the cellular mechanisms underlying its role in sleep regulation and how the neurotransmitters, such as GABA and noradrenaline (NA), are involved. In the present study we investigated GABAergic transmission to acutely dissociated VLPO neurons using an enzyme-free, mechanical dissociation procedure in which functional terminals remained adherent and we investigated how this GABAergic transmission was modulated by NA. As previously reported in slices, NA hyperpolarized multipolar VLPO neurons and depolarized bipolar VLPO neurons. NA also inhibited the release of GABA onto multipolar VLPO neurons but had no effect on GABAergic transmission to bipolar neurons. The inhibition of release was mediated by presynaptic alpha(2) adrenoceptors coupled to N-ethylmaleimide (NEM)-sensitive G-proteins which appeared to act via inhibition of adenylate cyclase and subsequent decreases in protein kinase A activity. The inhibition of GABA release did not, however, involve an inhibition of external Ca(2+) influx. The results indicate that all VLPO neurons contain GABAergic inputs and that the different morphological subgroups of VLPO neurons are correlated not only to different postsynaptic responses to NA but also to different presynaptic NA responses. Furthermore our results demonstrate an additional mechanism by which NA can modulate the excitability of multipolar VLPO neurons which may have important implications for its role in regulating sleep/wakefulness.
Collapse
Affiliation(s)
- Shin-Ichiro Matsuo
- Cellular and System Physiology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | |
Collapse
|
45
|
Strecker RE, Nalwalk J, Dauphin LJ, Thakkar MM, Chen Y, Ramesh V, Hough LB, McCarley RW. Extracellular histamine levels in the feline preoptic/anterior hypothalamic area during natural sleep-wakefulness and prolonged wakefulness: an in vivo microdialysis study. Neuroscience 2002; 113:663-70. [PMID: 12150786 DOI: 10.1016/s0306-4522(02)00158-6] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Increased activity of the histaminergic neurons of the posterior hypothalamus has been implicated in the facilitation of behavioral wakefulness. Recent evidence of reciprocal projections between the sleep-active neurons of the preoptic/anterior hypothalamus and the histaminergic neurons of the tuberomammillary nucleus suggests that histaminergic innervation of the preoptic/anterior hypothalamic area may be of particular importance in the wakefulness-promoting properties of histamine. To test this possibility, we used microdialysis sample collection in the preoptic/anterior hypothalamic area of cats during natural sleep-wakefulness cycles, 6 h of sleep deprivation induced by gentle handling/playing, and recovery sleep. Samples were analyzed by a sensitive radioenzymatic assay. Mean basal levels of histamine in microdialysate during periods of wakefulness (1.155+/-0.225 pg/microl) did not vary during the 6 h of sleep deprivation. However, during the different sleep states, dramatic changes were observed in the extracellular histamine levels of preoptic/anterior hypothalamic area: wakefulness>non-rapid eye movement sleep>rapid eye movement sleep. Levels of histamine during rapid eye movement sleep were lowest (0.245+/-0.032 pg/microl), being significantly lower than levels during non-rapid eye movement sleep (0.395+/-0.081 pg/microl) and being only 21% of wakefulness levels. This pattern of preoptic/anterior hypothalamic area extracellular histamine levels across the sleep-wakefulness cycle closely resembles the reported single unit activity of histaminergic neurons. However, the invariance of histamine levels during sleep deprivation suggests that changes in histamine level do not relay information about sleep drive to the sleep-promoting neurons of the preoptic/anterior hypothalamic area.
Collapse
Affiliation(s)
- R E Strecker
- Department of Psychiatry, VA Boston Healthcare System and Harvard Medical School, Research, 151C, 940 Belmont Street, Brockton, MA 02301, USA.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Anatomical, physiological, and pharmacological characteristics of histidine decarboxylase knock-out mice: evidence for the role of brain histamine in behavioral and sleep-wake control. J Neurosci 2002. [PMID: 12196593 DOI: 10.1523/jneurosci.22-17-07695.2002] [Citation(s) in RCA: 287] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The hypothesis that histaminergic neurons are involved in brain arousal is supported by many studies. However, the effects of the selective long-term abolition of histaminergic neurons on the sleep-wake cycle, indispensable in determining their functions, remain unknown. We have compared brain histamine(HA)-immunoreactivity and the cortical-EEG and sleep-wake cycle under baseline conditions or after behavioral or pharmacological stimuli in wild-type (WT) and knock-out mice lacking the histidine decarboxylase gene (HDC-/-). HDC-/-mice showed an increase in paradoxical sleep, a decrease in cortical EEG power in theta-rhythm during waking (W), and a decreased EEG slow wave sleep/W power ratio. Although no major difference was noted in the daily amount of spontaneous W, HDC-/-mice showed a deficit of W at lights-off and signs of somnolence, as demonstrated by a decreased sleep latencies after various behavioral stimuli, e.g., WT-mice placed in a new environment remained highly awake for 2-3 hr, whereas HDC-/-mice fell asleep after a few minutes. These effects are likely to be attributable to lack of HDC and thus of HA. In WT mice, indeed, intraperitoneal injection of alpha-fluoromethylhistidine (HDC-inhibitor) caused a decrease in W, whereas injection of ciproxifan (HA-H3 receptor antagonist) elicited W. Both injections had no effect in HDC-/-mice. Moreover, PCR and immunohistochemistry confirmed the absence of the HDC gene and brain HA-immunoreactive neurons in the HDC-/-mice. These data indicate that disruption of HA-synthesis causes permanent changes in the cortical-EEG and sleep-wake cycle and that, at moments when high vigilance is required (lights off, environmental change em leader ), mice lacking brain HA are unable to remain awake, a prerequisite condition for responding to behavioral and cognitive challenges. We suggest that histaminergic neurons also play a key role in maintaining the brain in an awake state faced with behavioral challenges.
Collapse
|
47
|
Toyota H, Dugovic C, Koehl M, Laposky AD, Weber C, Ngo K, Wu Y, Lee DH, Yanai K, Sakurai E, Watanabe T, Liu C, Chen J, Barbier AJ, Turek FW, Fung-Leung WP, Lovenberg TW. Behavioral characterization of mice lacking histamine H(3) receptors. Mol Pharmacol 2002; 62:389-97. [PMID: 12130692 DOI: 10.1124/mol.62.2.389] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Brain histamine H(3) receptors are predominantly presynaptic and serve an important autoregulatory function for the release of histamine and other neurotransmitters. They have been implicated in a variety of brain functions, including arousal, locomotor activity, thermoregulation, food intake, and memory. The recent cloning of the H(3) receptor in our laboratory has made it possible to create a transgenic line of mice devoid of H(3) receptors. This paper provides the first description of the H(3) receptor-deficient mouse (H(3)(-/-)), including molecular and pharmacologic verification of the receptor deletion as well as phenotypic screens. The H(3)(-/-) mice showed a decrease in overall locomotion, wheel-running behavior, and body temperature during the dark phase but maintained normal circadian rhythmicity. H(3)(-/-) mice were insensitive to the wake-promoting effects of the H(3) receptor antagonist thioperamide. We also observed a slightly decreased stereotypic response to the dopamine releaser, methamphetamine, and an insensitivity to the amnesic effects of the cholinergic receptor antagonist, scopolamine. These data indicate that the H(3) receptor-deficient mouse represents a valuable model for studying histaminergic regulation of a variety of behaviors and neurotransmitter systems, including dopamine and acetylcholine.
Collapse
Affiliation(s)
- Hiroshi Toyota
- Johnson & Johnson Pharmaceutical Research and Development, San Diego, California 92121, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Stark H, Arrang JM, Ligneau X, Garbarg M, Ganellin CR, Schwartz JC, Schunack W. The histamine H3 receptor and its ligands. PROGRESS IN MEDICINAL CHEMISTRY 2002; 38:279-308. [PMID: 11774797 DOI: 10.1016/s0079-6468(08)70096-1] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Affiliation(s)
- H Stark
- Freie Universität Berlin, Institut für Pharmazie, Königin-Luise-Strasse 2 + 4, 14195 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
49
|
Vohora D, Pal SN, Pillai KK. Histamine and selective H3-receptor ligands: a possible role in the mechanism and management of epilepsy. Pharmacol Biochem Behav 2001; 68:735-741. [PMID: 11526971 DOI: 10.1016/s0091-3057(01)00474-9] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The interaction of selective histamine H3-receptor agonist R(alpha)-methyl-histamine (RAMH) and antagonist thioperamide (THP) with some antiepileptic drugs [AED; phenytoin (PHT), carbamazepine (CBZ), sodium valproate (SVP), and gabapentin (GBP)] was studied on seizures induced by maximal electroshock (MES) and pentylenetetrazole (PTZ) in mice. It was found that subeffective dose of THP in combination with the subeffective doses of PHT and GBP provided protection against MES and/or PTZ-induced seizures. Further, RAMH reversed the protection afforded by either PHT or GBP on MES and/or PTZ seizures. In another set of experiments, the histamine content was measured in the whole brain and in different brain regions including cerebral cortex, hypothalamus, brain stem and cerebellum following convulsant (MES and PTZ) and AED treatment. It was seen that while MES exhibited a tendency to enhance brain histamine levels, PTZ showed the opposite effect. AEDs either increased (PHT and GBP) or decreased (SVP) brain histamine content in different regions to varying degrees. The results indicate a role for histamine in seizures and in the action of AEDs and suggest that selective H3-receptor antagonists may prove to be of value as adjuncts to conventional AEDs.
Collapse
Affiliation(s)
- D Vohora
- Department of Pharmacology, Faculty of Pharmacy, Hamdard University, New Delhi, India.
| | | | | |
Collapse
|
50
|
Abstract
Histamine-releasing neurons are located exclusively in the TM of the hypothalamus, from where they project to practically all brain regions, with ventral areas (hypothalamus, basal forebrain, amygdala) receiving a particularly strong innervation. The intrinsic electrophysiological properties of TM neurons (slow spontaneous firing, broad action potentials, deep after hyperpolarisations, etc.) are extremely similar to other aminergic neurons. Their firing rate varies across the sleep-wake cycle, being highest during waking and lowest during rapid-eye movement sleep. In contrast to other aminergic neurons somatodendritic autoreceptors (H3) do not activate an inwardly rectifying potassium channel but instead control firing by inhibiting voltage-dependent calcium channels. Histamine release is enhanced under extreme conditions such as dehydration or hypoglycemia or by a variety of stressors. Histamine activates four types of receptors. H1 receptors are mainly postsynaptically located and are coupled positively to phospholipase C. High densities are found especially in the hypothalamus and other limbic regions. Activation of these receptors causes large depolarisations via blockade of a leak potassium conductance, activation of a non-specific cation channel or activation of a sodium-calcium exchanger. H2 receptors are also mainly postsynaptically located and are coupled positively to adenylyl cyclase. High densities are found in hippocampus, amygdala and basal ganglia. Activation of these receptors also leads to mainly excitatory effects through blockade of calcium-dependent potassium channels and modulation of the hyperpolarisation-activated cation channel. H3 receptors are exclusively presynaptically located and are negatively coupled to adenylyl cyclase. High densities are found in the basal ganglia. These receptors mediated presynaptic inhibition of histamine release and the release of other neurotransmitters, most likely via inhibition of presynaptic calcium channels. Finally, histamine modulates the glutamate NMDA receptor via an action at the polyamine binding site. The central histamine system is involved in many central nervous system functions: arousal; anxiety; activation of the sympathetic nervous system; the stress-related release of hormones from the pituitary and of central aminergic neurotransmitters; antinociception; water retention and suppression of eating. A role for the neuronal histamine system as a danger response system is proposed.
Collapse
Affiliation(s)
- R E Brown
- Institut für Neurophysiologie, Heinrich-Heine-Universität, D-40001, Düsseldorf, Germany.
| | | | | |
Collapse
|