1
|
Tian Y, Wu LH, Chung FZ. High Throughput 96-Well Plate Assay for Receptor-Mediated Phosphatidylinositol Turnover. ACTA ACUST UNITED AC 2016. [DOI: 10.1177/108705719700200207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The G-protein coupled receptor family represents a large number of neurotransmitter receptors. Among the diverse signal transduction pathways mediated via G-proteins, phospholipase C mediated phosphatidylinositol hydrolysis represents one of the best characterized signal transduction mechanisms. Accordingly, the measurement of agonist-induced phosphatidylinositol turnover has been used as a convenient functional assay for receptor activation. Assays currently used for this purpose, however, are not suitable for high throughput screening. In this article, an improved technique using 96-well microtiter plate format for measuring phosphatidylinositol turnover is introduced. Anion exchange columns were prepared on fiber glass 96-well multiscreen filter plate. Separation and detection of released inositol phosphates were conducted in a 96-well format. Cells expressing certain neurotransmitter receptors were challenged with agonists and the receptor-mediated PI turnover was measured by the new technique and the results obtained were compared to that obtained from traditional assays. The results indicate that the 96-well assay is 10 to 20 times more efficient than the traditional method and is, furthermore, suitable for high throughput drug screening. Our data also indicate that this method is particularly useful for characterizing multiple antagonists by Schild analysis.
Collapse
Affiliation(s)
- Ye Tian
- Department of Molecular Biology, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, MI 48105-1047
| | - Lan-Hsin Wu
- Department of Molecular Biology, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, MI 48105-1047
| | - Fu-Zon Chung
- Department of Molecular Biology, Parke-Davis Pharmaceutical Research, Division of Warner-Lambert Company, Ann Arbor, MI 48105-1047
| |
Collapse
|
2
|
Werkman TR, Mccreary AC, Kruse CG, Wadman WJ. NK3 receptors mediate an increase in firing rate of midbrain dopamine neurons of the rat and the guinea pig. Synapse 2011; 65:814-26. [DOI: 10.1002/syn.20908] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Accepted: 12/05/2010] [Indexed: 11/08/2022]
|
3
|
Abstract
Described in this unit are methods for obtaining, preparing, and testing smooth muscle preparations bearing tachykinin receptors to study the agonist or antagonist properties of test compounds. Concentration-response curves to agonists are constructed to measure their ability to produce smooth muscle contractions and thus evaluate the potency and efficacy of the agonists. Antagonists are tested for their ability to shift the agonist concentration-response curve and to calculate their potency. Two different protocols are described for each of the three tachykinin receptors (NK(1), NK(2), and NK(3)). The NK(1) receptor assays use guinea pig ileum longitudinal muscle myenteric plexus (GPI) and rat urinary bladder (RUB), the NK(2) receptor assays use isolated endothelium-deprived rabbit pulmonary artery (RPA) and hamster trachea (HT), and the NK(3) receptor assays use GPI and rat portal vein (RPV).
Collapse
|
4
|
Malherbe P, Kratzeisen C, Marcuz A, Zenner MT, Nettekoven MH, Ratni H, Wettstein JG, Bissantz C. Identification of a Critical Residue in the Transmembrane Domain 2 of Tachykinin Neurokinin 3 Receptor Affecting the Dissociation Kinetics and Antagonism Mode of Osanetant (SR 142801) and Piperidine-Based Structures. J Med Chem 2009; 52:7103-12. [DOI: 10.1021/jm900948q] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Gwynne RM, Bornstein JC. Electrical stimulation of the mucosa evokes slow EPSPs mediated by NK1 tachykinin receptors and by P2Y1 purinoceptors in different myenteric neurons. Am J Physiol Gastrointest Liver Physiol 2009; 297:G179-86. [PMID: 19407213 PMCID: PMC2711761 DOI: 10.1152/ajpgi.90700.2008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Slow excitatory postsynaptic potentials (EPSPs) in enteric neurons arise from diverse sources, but which neurotransmitters mediate specific types of slow EPSPs is unclear. We investigated transmitters and receptors mediating slow EPSPs in myenteric neurons evoked by electrical stimulation of the mucosa in guinea pig small intestine. Segments of ileum or jejunum were dissected to allow access to the myenteric plexus adjacent to intact mucosa, in vitro. AH and S neurons were impaled with conventional intracellular electrodes. Trains of stimuli delivered to the mucosa evoked slow EPSPs in AH neurons that were blocked or depressed by the neurokinin-1 (NK1) tachykinin antagonist SR140333 (100 nM) in 10 of 11 neurons; the NK3 tachykinin receptor antagonist SR142801 (100 nM) had no effect on slow EPSPs in seven of nine AH neurons. Single pulses to the mucosa evoked fast EPSPs and slow depolarizations in S neurons. The depolarizations were divided into intermediate (durations 300-900 ms) or slow (durations 1.3-9 s) EPSPs. The slow EPSPs were blocked by pyridoxal phosphate-6-axophenyl-2-4-disulfonic acid (30 microM, N = 3) or the specific P2Y(1) antagonist MRS 2179 (10 microM, N = 6) and were predominantly in anally projecting S neurons that were immunoreactive for nitric oxide synthase (NOS). In contrast, intermediate EPSPs were predominantly evoked in NOS-negative neurons; these were abolished by MRS 2179 (N = 8). Thus activation of pathways running from the mucosa excites three different types of slow EPSP in myenteric neurons, which are mediated by either a tachykinin (NK1, AH neurons) or a purine nucleotide (P2Y(1), S neurons).
Collapse
Affiliation(s)
- Rachel M. Gwynne
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | - Joel C. Bornstein
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
6
|
De Man JG, De Winter BY, De Schepper HU, Herman AG, Pelckmans PA. Differential role of tachykinin NK3 receptors on cholinergic excitatory neurotransmission in the mouse stomach and small intestine. Br J Pharmacol 2008; 155:1195-1203. [PMID: 18806817 PMCID: PMC2607211 DOI: 10.1038/bjp.2008.357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2008] [Revised: 07/25/2008] [Accepted: 08/12/2008] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND AND PURPOSE Tachykinin NK(3) receptors are widely expressed in the mouse gastrointestinal tract but their functional role in enteric neuromuscular transmission remains unstudied in this species. We investigated the involvement of NK(3) receptors in cholinergic neurotransmission in the mouse stomach and small intestine. EXPERIMENTAL APPROACH Muscle strips of the mouse gastric fundus and ileum were mounted in organ baths for tension recordings. Effects of NK(3) agonists and antagonists were studied on contractions to EFS of enteric nerves and to carbachol. KEY RESULTS EFS induced frequency-dependent tetrodotoxin-sensitive contractions, which were abolished by atropine. The cholinergic contractions to EFS in the stomach were enhanced by the NK(3) antagonist SR142801, but not affected by the NK(3) agonist senktide or neurokinin B. The cholinergic contractions to EFS in the small intestine were not affected by SR142801, but dose-dependently inhibited by senktide and neurokinin B. This inhibitory effect was prevented by SR142801 but not by hexamethonium. SR142801, senktide or neurokinin B did not induce any response per se in the stomach and small intestine and did not affect contractions to carbachol. CONCLUSIONS AND IMPLICATIONS NK(3) receptors modulate cholinergic neurotransmission differently in the mouse stomach and small intestine. Blockade of NK(3) receptors enhanced cholinergic transmission in the stomach but not in the intestine. Activation of NK(3) receptors inhibited cholinergic transmission in the small intestine but not in the stomach. This indicates a physiological role for NK(3) receptors in mouse stomach contractility and a pathophysiological role in mouse intestinal contractility.
Collapse
Affiliation(s)
- J G De Man
- Faculty of Medicine, Laboratory of Experimental Medicine and Paediatrics, Division of Gastroenterology, University of Antwerp, Universiteitsplein 1, Antwerp, Belgium.
| | | | | | | | | |
Collapse
|
7
|
Malherbe P, Bissantz C, Marcuz A, Kratzeisen C, Zenner MT, Wettstein JG, Ratni H, Riemer C, Spooren W. Me-talnetant and osanetant interact within overlapping but not identical binding pockets in the human tachykinin neurokinin 3 receptor transmembrane domains. Mol Pharmacol 2008; 73:1736-50. [PMID: 18308898 DOI: 10.1124/mol.107.042754] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025] Open
Abstract
Recent clinical trials have indicated that neurokinin 3 receptor antagonists (S)-(+)-N-{{3-[1-benzoyl-3-(3,4-dichlorophenyl)-piperidin-3-yl]prop-1-yl}-4-phenylpiperidin-4-yl}-N-methylacetamine (SR142801; osanetant) and (S)-(-)-N-(alpha-ethylbenzyl)-3-hydroxy-2-phenylquinoline-4-carboxamide (SB223412; talnetant) may treat symptoms of schizophrenia. Using site-directed mutagenesis, rhodopsin-based modeling, [(3)H](S)-(-)-N-(alpha-ethylbenzyl)-3-methoxy-2-phenylquinoline-4-carboxamide (Me-talnetant) and [(3)H]osanetant binding, and functional Schild analyses, we have demonstrated the important molecular determinants of neurokinin B (NKB), Me-talnetant, and osanetant binding pockets. The residues Asn138(2.57), Asn142(2.61), Leu232(45.49), Tyr315(6.51), Phe342(7.39), and Met346(7.43) were found to be crucial for the NKB binding site. We observed that the M134(2.53)A, V169(3.36)M, F342(7.39)M, and S341(7.38)I/F342(7.39)M mutations resulted in the complete loss of [(3)H]Metalnetant and [(3)H]osanetant binding affinities and also abolished their functional potencies in an NKB-evoked accumulation of [(3)H]inositol phosphates assay, whereas the mutations V95(1.42)A, N142(2.61)A, Y315(6.51)F, and M346(7.43)A behaved differently between the interacting modes of two antagonists. V95(1.42)A and M346(7.43)A significantly decreased the affinity and potency of Me-talnetant. Y315(6.51)F, although not affecting Me-talnetant, led to a significant decrease in affinity and potency of osanetant. The mutation N142(2.61)A, which abolished the potency and affinity of osanetant, led to a significant increase in the affinity and potency of Me-talnetant. The proposed docking mode was further validated using (S)-2-(3,5-bis-trifluoromethyl-phenyl)-N-[4-(4-fluoro-2-methyl-phenyl)-6-((S)-4-methanesulfonyl-3-methyl-piperazin-1-yl)-pyridin-3-yl]-N-methyl-isobutyramide (RO49085940), from another chemical class. It is noteworthy that the mutation F342(7.39)A caused an 80-fold gain of RO4908594 binding affinity, but the same mutation resulted in the complete loss of the affinity of Me-talnetant and partial loss of the affinity of osanetant. These observations show that the binding pocket of Me-talnetant and osanetant are overlapping, but not identical. Taken together, our data are consistent with the proposed docking modes where Me-talnetant reaches deeply into the pocket formed by transmembrane (TM)1, -2, and -7, whereas osanetant fills the pocket TM3, -5, and -6 with its phenyl-piperidine moiety.
Collapse
Affiliation(s)
- Pari Malherbe
- F. Hoffmann-La Roche Ltd., Bldg. 69/333, CH-4070 Basel, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
8
|
de Man JG, Boeckx S, Anguille S, de Winter BY, de Schepper HU, Herman AG, Pelckmans PA. Functional study on TRPV1-mediated signalling in the mouse small intestine: involvement of tachykinin receptors. Neurogastroenterol Motil 2008; 20:546-556. [PMID: 18194153 DOI: 10.1111/j.1365-2982.2007.01064.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Afferent nerves in the gut not only signal to the central nervous system but also provide a local efferent-like effect. This effect can modulate intestinal motility and secretion and is postulated to involve the transient receptor potential of the vanilloid type 1 (TRPV1). By using selective TRPV1 agonist and antagonists, we studied the efferent-like effect of afferent nerves in the isolated mouse jejunum. Mouse jejunal muscle strips were mounted in organ baths for isometric tension recordings. Jejunal strips contracted to the TRPV1 agonist capsaicin. Contractions to capsaicin showed rapid tachyphylaxis and were insensitive to tetrodotoxin, hexamethonium, atropine or L-nitroarginine. Capsaicin did not affect contractions to electrical stimulation of enteric motor nerves and carbachol. Tachykinin NK1, NK2 and NK3 receptor blockade by RP67580, nepadutant plus SR-142801 reduced contractions to capsaicin to a similar degree as contractions to substance P. The effect of the TRPV1 antagonists capsazepine, SB-366791, iodo-resiniferatoxin (iodo-RTX) and N-(4-tertiarybutylphenyl)-4-(3-cholorphyridin-2-yl)tetrahydropyrazine-1(2H)-carbox-amide (BCTC) was studied. Capsazepine inhibited contractions not only to capsaicin but also those to carbachol. SB-366791 reduced contractions both to capsaicin and carbachol. Iodo-RTX partially inhibited the contractions to capsaicin without affecting contractions to carbachol. BCTC concentration-dependently inhibited and at the highest concentration used, abolished the contractions to capsaicin without affecting those to carbachol. From these results, we conclude that activation of TRPV1 in the mouse intestine induces a contraction that is mediated by tachykinins most likely released from afferent nerves. The TRPV1-mediated contraction does not involve activation of intrinsic enteric motor nerves. Of the TRPV1 antagonists tested, BCTC combined strong TRPV1 antagonism with TRPV1 selectivity.
Collapse
Affiliation(s)
- J G de Man
- Division of Gastroenterology, Faculty of Medicine, University of Antwerp, Antwerp, Belgium.
| | | | | | | | | | | | | |
Collapse
|
9
|
Losco PE, Leach MW, Sinha D, Davis P, Schmahai TJ, Nomier A, Kakkar T, Reyderman L, Lynch ME. Administration of an antagonist of neurokinin receptors 1, 2, and 3 results in reproductive tract changes in beagle dogs, but not rats. Toxicol Pathol 2007; 35:310-22. [PMID: 17366326 DOI: 10.1080/01926230701198766] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
SCH 206272, an antagonist of neurokinin receptors 1, 2, and 3, was administered orally by gavage for 1 month to 8- to 10-month-old dogs at doses of 0, 15, 30, or 60 mg/kg, and to 6-week-old rats at doses of 0, 30, 100, or 300 mg/kg. The most important changes occurred in the reproductive tract of the dogs at all doses. Absolute and relative group mean organ weights for the testes, prostate gland, epididymides, ovaries, and uterus were 33-86% lower than concurrent controls in groups receiving SCH 206272. Organ weight changes were not dose-related. Microscopic changes that correlated with the organ weight changes occurred in all groups receiving SCH 206272. For males, they included minimal to severe atrophy of the testes, epididymides, and prostate gland. In addition, the epididymides exhibited severe oligospermia or aspermia, minimal epithelial apoptosis and mild epithelial vacuolation. In female dogs, the ovaries and uteri appeared immature. Microscopic changes were similar in incidence and severity in dogs receiving 30 or 60 mg/kg, but were slightly less in dogs receiving 15 mg/kg. In contrast, similar findings were not observed in the reproductive tract of male or female rats, despite overlapping systemic, hypothalamic, and pituitary gland concentrations of SCH 206272.
Collapse
|
10
|
Cialdai C, Tramontana M, Patacchini R, Lecci A, Catalani C, Catalioto RM, Meini S, Valenti C, Altamura M, Giuliani S, Maggi CA. MEN15596, a novel nonpeptide tachykinin NK2 receptor antagonist. Eur J Pharmacol 2006; 549:140-8. [PMID: 16979621 DOI: 10.1016/j.ejphar.2006.08.021] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 07/31/2006] [Accepted: 08/18/2006] [Indexed: 10/24/2022]
Abstract
The pharmacological profile of MEN15596 or (6-methyl-benzo[b]thiophene-2-carboxylic acid [1-(2-phenyl-1R-{[1-(tetrahydropyran-4-ylmethyl)-piperidin-4-ylmethyl]-carbamoyl}-ethylcarbamoyl)-cyclopentyl]-amide), a novel potent and selective tachykinin NK2 receptor antagonist endowed with oral activity, is described. At the human recombinant tachykinin NK2 receptor, MEN15596 showed subnanomolar affinity (pKi 10.1) and potently antagonized (pKB 9.1) the neurokinin A-induced intracellular calcium release. MEN15596 selectivity for the tachykinin NK2 receptor was assessed by binding studies at the recombinant tachykinin NK1 (pKi 6.1) and NK3 (pKi 6.4) receptors, and at a number of 34 molecular targets including receptors, transporters and ion channels. In isolated smooth muscle preparations MEN15596 showed a marked species selectivity at the tachykinin NK2 receptor with the highest antagonist potency in guinea-pig colon, human and pig bladder (pKB 9.3, 9.2 and 8.8, respectively) whereas it was three orders of magnitude less potent in the rat and mouse urinary bladder (pKB 6.3 and 5.8, respectively). In agreement with binding experiments, MEN15596 showed low potency in blocking selective NK1 or NK3 receptor agonist-induced contractions of guinea-pig ileum preparations (pA2<or=6). In anaesthetized guinea-pigs, MEN15596 inhibited in a dose-related and persistent manner colon contractions induced by the selective tachykinin NK2 receptor agonist, [betaAla8]neurokinin A(4-10) (3 nmol/kg i.v.), either after intravenous (ED50 0.18 micromol/kg), intraduodenal (ED50 3.16 micromol/kg) or oral administration (10-30 micromol/kg) without affecting, at 3 micromol/kg, i.v., the colonic contractions produced by the NK1 receptor selective agonist [Sar9]substance P sulfone (3 nmol/kg i.v.). In addition MEN15596 was effective in inhibiting bronchoconstriction produced by i.v. administration of [betaAla8]neurokinin A(4-10). Overall the results indicate that MEN15596 is a potent and selective tachykinin NK2 receptor antagonist possessing high affinity and potency for guinea-pig, pig and human receptor, long duration of action in in vivo experiments and good oral bioavailability.
Collapse
Affiliation(s)
- Cecilia Cialdai
- Pharmacology Department, Menarini Ricerche S.p.A, via Rismondo 12A, I-50131, Florence, Italy
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Geber C, Mang CF, Kilbinger H. Facilitation and inhibition by capsaicin of cholinergic neurotransmission in the guinea-pig small intestine. Naunyn Schmiedebergs Arch Pharmacol 2005; 372:277-83. [PMID: 16328494 DOI: 10.1007/s00210-005-0021-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2005] [Accepted: 10/17/2005] [Indexed: 11/30/2022]
Abstract
The effects of capsaicin on [3H]acetylcholine release and muscle contraction were studied on the myenteric plexus-longitudinal muscle preparation of the guinea-pig ileum preincubated with [3H]choline. Capsaicin concentration-dependently increased both basal [3H]acetylcholine release (pEC50 7.0) and muscle tone (pEC50 6.1). The facilitatory effects of capsaicin were antagonized by 1 microM capsazepine (pK (B) 7.0 and 7.6), and by the combined blockade of NK1 and NK3 tachykinin receptors with the antagonists CP99994 plus SR142801 (each 0.1 microM). This suggests that stimulation by capsaicin of TRPV1 receptors on primary afferent fibres causes a release of tachykinins which, in turn, mediate via NK1 and NK3 receptors an increase in acetylcholine release. The capsaicin-induced acetylcholine release was significantly enhanced by the NO synthase inhibitor L-NG-nitroarginine (100 microM). This indicates that tachykinins released from sensory neurons also stimulate nitrergic neurons and thus lead, via NO release, to inhibition of acetylcholine release. Capsaicin concentration-dependently reduced the electrically-evoked [3H]acetylcholine release (pEC50 6.4) and twitch contractions (pEC50 5.9). The inhibitory effects were not affected by either capsazepine, NK1 and NK3 receptor antagonists, the cannabinoid CB1 antagonist SR141716A or by L-NG-nitroarginine. Desensitization of TRPV1 receptors by a short exposure to 3 microM capsaicin abolished the facilitatory responses to a subsequent administration, but did not modify the inhibitory effects. In summary, capsaicin has a dual effect on cholinergic neurotransmission. The facilitatory effect is indirect and involves tachykinin release and excitation of NK1 and NK3 receptors on cholinergic neurons. The inhibition of acetylcholine release may be due to a decrease of Ca2+ influx into cholinergic neurons.
Collapse
Affiliation(s)
- Christian Geber
- Institut für Pharmakologie, Universität Mainz, 55131, Mainz, Germany
| | | | | |
Collapse
|
12
|
Monro RL, Bornstein JC, Bertrand PP. Slow excitatory post-synaptic potentials in myenteric AH neurons of the guinea-pig ileum are reduced by the 5-hydroxytryptamine7 receptor antagonist SB 269970. Neuroscience 2005; 134:975-86. [PMID: 16009503 DOI: 10.1016/j.neuroscience.2005.05.006] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Revised: 04/22/2005] [Accepted: 05/03/2005] [Indexed: 01/21/2023]
Abstract
Serotonin (5-HT) is a key modulator of neuronal excitability in the central and peripheral nervous system. In the enteric nervous system, 5-HT causes a slow depolarization in the intrinsic sensory neurons, but the receptor responsible for this has not been correlated with known gene products. The aim of this study was to determine whether the newly characterized 5-HT7 receptor may participate in the 5-HT-mediated depolarization of, and synaptic transmission to, the intrinsic sensory neurons of the guinea-pig ileum. Intracellular electrophysiological recordings were made from intrinsic sensory neurons identified as myenteric AH neurons from guinea-pig ileum. 5-HT (5 microM) applied to the cell body evoked both a fast depolarization (5-HT3 mediated) and/or a slow depolarization (5-HT1P-like). The 5-HT1/5/7 receptor agonist 5-carboxamidotryptamine (5-CT) (5 microM) evoked only a slow depolarization. When the fast depolarization evoked by 5-HT was blocked with granisetron (1 microM, 5-HT3 receptor antagonist), only a slow depolarization remained; this was abolished by the 5-HT7 receptor antagonist SB 269970 (1 microM, control: 14+/-2 mV, granisetron+SB 269970: -1+/-2 mV). The slow depolarization evoked by 5-CT was also significantly reduced by SB 269970 (control: 14+/-1 mV, SB 269970: 5+/-2 mV) suggesting a 5-HT7 receptor was activated by exogenous application of 5-CT and 5-HT. Slow excitatory postsynaptic potentials evoked by stimulating descending neural pathways (containing serotonergic fibers) were reduced by SB 269970 (control: 8+/-3 mV, SB 269970: 3+/-1 mV). However, SB 269970 had no effect on slow excitatory postsynaptic potentials evoked by stimulation of circumferential (tachykinergic) pathways (control: 7+/-1 mV, SB 269970: 6+/-1 mV). These data are consistent with the presence on enteric AH neurons of functional 5-HT7 receptors that participate in slow synaptic transmission.
Collapse
Affiliation(s)
- R L Monro
- Department of Physiology, University of Melbourne, Parkville 3010, Victoria, Australia.
| | | | | |
Collapse
|
13
|
Barthó L, Benkó R, Patacchini R, Pethö G, Holzer-Petsche U, Holzer P, Lázár Z, Undi S, Illényi L, Antal A, Horváth OP. Effects of capsaicin on visceral smooth muscle: a valuable tool for sensory neurotransmitter identification. Eur J Pharmacol 2005; 500:143-57. [PMID: 15464028 DOI: 10.1016/j.ejphar.2004.07.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2004] [Indexed: 11/27/2022]
Abstract
Studying the visceral effects of the sensory stimulant capsaicin is a useful and relatively simple tool of neurotransmitter identification and has been used for this purpose for approximately 25 years in the authors' and other laboratories. We believe that conclusions drawn from experiments on visceral preparations may have an impact on studies dealing with the central endings of primary afferent neurons, i.e. research on nociception at the spinal level. The present review concentrates on the effects of capsaicin--through the transient receptor potential vanilloid receptor type 1 (TRPV1) receptor--on innervated gastrointestinal, respiratory and genitourinary smooth muscle preparations. Tachykinins and calcitonin gene-related peptide (CGRP) are the most widely accepted transmitters to mediate "local efferent" effects of capsaicin-sensitive nerves in tissues taken from animals. Studies more and more frequently indicate a supra-additive interaction of various types of tachykinin receptors (tachykinin NK(1), NK(2), NK(3) receptors) in the excitatory effects of capsaicin. There is also evidence for a mediating role of ATP, acting on P(2) purinoceptors. Non-specific inhibitory actions of capsaicin-like drugs have to be taken into consideration while designing experiments with these drugs. Results obtained on human tissues may be sharply different from those of animal preparations. Capsaicin potently inhibits tone and movements of human intestinal preparations, an effect mediated by nitric oxide (NO) and/or vasoactive intestinal polypeptide.
Collapse
Affiliation(s)
- Lorand Barthó
- Department of Pharmacology and Pharmacotherapy, Division of Pharmacodynamics, University Medical School of Pécs, Pécs, Hungary.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Johnson PJ, Bornstein JC. Neurokinin-1 and -3 receptor blockade inhibits slow excitatory synaptic transmission in myenteric neurons and reveals slow inhibitory input. Neuroscience 2004; 126:137-47. [PMID: 15145080 DOI: 10.1016/j.neuroscience.2004.03.021] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/18/2004] [Indexed: 11/24/2022]
Abstract
Recent studies have shown that tachykinins mediate slow synaptic transmission to myenteric AH (afterhyperpolarising) neurons via neurokinin-3 receptors (NK(3)R). This study investigated a similar role for neurokinin-1 receptors (NK(1)R) and compared the effect of selective receptor antagonists on non-cholinergic slow excitatory post-synaptic potentials (EPSPs) recorded in myenteric AH neurons of the guinea-pig ileum. Slow EPSPs evoked by electrical stimulation of circumferentially oriented presynaptic nerves were mimicked by application of senktide, an NK(3)R agonist. [Sar(9),Met(O(2))(11)]-substance P, an NK(1)R agonist, depolarised a smaller number of neurons. SR142801, a selective NK(3)R antagonist (100 nM), inhibited slow EPSPs and responses to senktide, but had no effect on depolarisations evoked by forskolin, an activator of adenylate cyclase. SR140333, a selective NK(1)R antagonist, inhibited slow EPSPs in a subset of neurons and blocked responses to [Sar(9),Met(O(2))(11)]-substance P, but not to senktide or forskolin. Slow EPSPs that were predominantly mediated by NK(1)R had significantly shorter latencies than those due to activation of NK(3)R. After blockade of slow EPSPs, slow hyperpolarizing responses to presynaptic nerve stimulation were revealed in one-third of neurons. These events, which were associated with a decrease in input resistance and blocked by tetrodotoxin, were equated with slow inhibitory postsynaptic potentials. They were abolished by the 5-hydroxytryptamine(1A) receptor antagonist 1-(2-methoxyphenyl)-4-[4-(2-phthalimido)butyl]-piperazine (NAN-190), but unaffected by phentolamine, an alpha-adrenoceptor antagonist. In conclusion, these results provide the first direct evidence that NK(1)R mediate some slow excitatory synaptic input to myenteric AH neurons, and suggest that NK(1)R and NK(3)R activate distinct signal transduction pathways. These results also demonstrate that slow inhibitory synaptic transmission, which may be mediated by 5-hydroxytryptamine, is more prevalent in the myenteric plexus than previously indicated.
Collapse
Affiliation(s)
- P J Johnson
- Department of Physiology, University of Melbourne, Parkville, Victoria 3010, Australia.
| | | |
Collapse
|
15
|
Patak E, Pennefather JN, Fleming A, Story ME. Functional characterization of tachykinin NK1 receptors in the mouse uterus. Br J Pharmacol 2002; 137:1247-54. [PMID: 12466234 PMCID: PMC1573619 DOI: 10.1038/sj.bjp.0704996] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Contractility studies were undertaken to determine the nature of the receptors mediating responses to tachykinins in uteri of oestrogen-treated mice. 2. In the presence of thiorphan (3 microM), captopril (10 microM), and bestatin (10 microM), substance P (SP), neurokinin A (NKA) and neurokinin B (NKB) produced concentration-related contractions of uterine preparations. The order of potency was SP > or =NKA>NKB. 3. Neither atropine (0.1 microM) nor l-NOLA (100 microM), nor indomethacin (10 microM) alone or in combination with either ranitidine (10 microM) or mepyramine (10 microM), affected responses to SP. These findings indicate that SP actions are not mediated or modulated through the release of acetylcholine, nitric oxide, prostanoids or histamine. 4. In the presence of peptidase inhibitors, the tachykinin NK(1) receptor-selective agonist [Sar(9)Met(O(2))(11)]SP, produced a concentration-dependent contractile effect. The tachykinin NK(2) and NK(3) receptor-selective agonists [Lys(5)MeLeu(9)Nle(10)]NKA(4-10) and [MePhe(7)]NKB were relatively inactive. The potencies of SP analogues in which Glu replaced Gln(5) and/or Gln(6) were similar to that of SP. 5. The tachykinin NK(1) receptor-selective antagonist, SR140333 (10 nM), alone or combined with the tachykinin NK(2) receptor-selective antagonist, SR48968 (10 nM), shifted log concentration curves to SP, NKA and NKB to the right. SR140333 (10 nM) reduced the effect of [Sar(9)Met(O(2))(11)]SP. SR48968 did not affect responses to SP or [Sar(9)Met(O(2))(11)]SP, but reduced the effect of higher concentrations of NKA and shifted the log concentration-response curve to NKB to the right. The tachykinin NK(3) receptor-selective antagonist, SR 142801 (0.3 microM), had little effect on responses to SP and NKB. 6. We conclude that the tachykinin NK(1) receptor mediates contractile effects of SP, NKA and NKB and [Sar(9)Met(O(2))(11)]SP in myometrium from the oestrogen-primed mouse. The tachykinin NK(2) receptor may also participate in the responses to NKA and NKB.
Collapse
Affiliation(s)
- Eva Patak
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Jocelyn N Pennefather
- Department of Pharmaceutical Biology and Pharmacology, Victorian College of Pharmacy, Parkville, Victoria 3052, Australia
- Author for correspondence:
| | - Anna Fleming
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| | - Margot E Story
- Department of Pharmacology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
16
|
Ryckmans T, Balançon L, Berton O, Genicot C, Lamberty Y, Lallemand B, Pasau P, Pirlot N, Quéré L, Talaga P. First dual NK(1) antagonists-serotonin reuptake inhibitors: synthesis and SAR of a new class of potential antidepressants. Bioorg Med Chem Lett 2002; 12:261-4. [PMID: 11755367 DOI: 10.1016/s0960-894x(01)00727-2] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Compounds combining NK(1) antagonism and serotonin reuptake inhibition are described, and potentially represent a new generation of antidepressants. Compound 24 displays good affinities for both the NK(1) receptor and the serotonin reuptake site (32 and 25 nM, respectively).
Collapse
Affiliation(s)
- Thomas Ryckmans
- Chemical Research, R&D, UCB Pharma SA, Chemin du Foriest, B-1420 Braine-l'Alleud, Belgium.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Hay DWP, Giardina GAM, Griswold DE, Underwood DC, Kotzer CJ, Bush B, Potts W, Sandhu P, Lundberg D, Foley JJ, Schmidt DB, Martin LD, Kilian D, Legos JJ, Barone FC, Luttmann MA, Grugni M, Raveglia LF, Sarau HM. Nonpeptide tachykinin receptor antagonists. III. SB 235375, a low central nervous system-penetrant, potent and selective neurokinin-3 receptor antagonist, inhibits citric acid-induced cough and airways hyper-reactivity in guinea pigs. J Pharmacol Exp Ther 2002; 300:314-23. [PMID: 11752131 DOI: 10.1124/jpet.300.1.314] [Citation(s) in RCA: 67] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this report the in vitro and in vivo pharmacological and pharmacokinetic profile of (-)-(S)-N-(alpha-ethylbenzyl)-3-(carboxymethoxy)-2-phenylquinoline-4-carboxamide (SB 235375), a low central nervous system (CNS)-penetrant, human neurokinin-3 (NK-3) receptor (hNK-3R) antagonist, is described. SB 235375 inhibited (125)I-[MePhe(7)]-neurokinin B (NKB) binding to membranes of Chinese hamster ovary (CHO) cells expressing the hNK-3R (CHO-hNK-3R) with a K(i) = 2.2 nM and antagonized competitively NKB-induced Ca(2+) mobilization in human embryonic kidney (HEK) 293 cells expressing the hNK-3R (HEK 293-hNK-3R) with a K(b) = 12 nM. SB 235375 antagonized senktide (NK-3R)-induced contractions in rabbit isolated iris sphincter (pA(2) = 8.1) and guinea pig ileal circular smooth muscles (pA(2) = 8.3). SB 235375 was selective for the hNK-3R compared with hNK-1 (K(i) > 100,000 nM) and hNK-2 receptors (K(i) = 209 nM), and was without effect, at 1 microM, in 68 other receptor, enzyme, and ion channel assays. Intravenous SB 235375 produced a dose-related inhibition of miosis induced by i.v. senktide in the rabbit (ED(50) of 0.56 mg/kg). Intraperitoneal SB 235375 (10-30 mg/kg) inhibited citric acid-induced cough and airways hyper-reactivity in guinea pigs. In mice oral SB 235375 (3-30 mg/kg) was without significant effect on the behavioral responses induced by intracerebral ventricular administration of senktide. Pharmacokinetic evaluation in the mouse and rat revealed that oral SB 235375 was well absorbed systemically but did not effectively cross the blood-brain barrier. The preclinical profile of SB 235375, encompassing high affinity, selectivity, oral activity, and low CNS penetration, suggests that it is an appropriate tool compound to define the pathophysiological roles of the NK-3Rs in the peripheral nervous system.
Collapse
Affiliation(s)
- Douglas W P Hay
- GlaxoSmithKline, Department of Pulmonary Biology, King of Prussia, Pennsylvania 19406, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Bellucci F, Carini F, Catalani C, Cucchi P, Lecci A, Meini S, Patacchini R, Quartara L, Ricci R, Tramontana M, Giuliani S, Maggi CA. Pharmacological profile of the novel mammalian tachykinin, hemokinin 1. Br J Pharmacol 2002; 135:266-74. [PMID: 11786503 PMCID: PMC1573107 DOI: 10.1038/sj.bjp.0704443] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2001] [Revised: 09/21/2001] [Accepted: 10/17/2001] [Indexed: 11/09/2022] Open
Abstract
1. The effects of the novel mammalian tachykinin, hemokinin 1 (HEK-1), have been investigated by radioligand binding and functional in vitro and in vivo experiments. 2. Similar to SP (K(i)=0.13 nM), HEK-1 inhibited in a concentration-dependent manner and with high affinity [(3)H]-substance P (SP) binding to human NK(1) receptor (K(i)=0.175 nM) while its affinity for [(125)I]-neurokinin A (NKA) binding at human NK(2) receptor was markedly lower (K(i)=560 nM). 3. In isolated bioassays HEK-1 was a full agonist at tachykinin NK(1), NK(2) and NK(3) receptors. In the rat urinary bladder (RUB) HEK-1 was about 3 fold less potent than SP. In the rabbit pulmonary artery (RPA) HEK-1 and in the guinea-pig ileum (GPI), HEK-1 was about 500 fold less potent than NKA and NKB, respectively. 4. The responses to HEK-1 were antagonized by GR 82334 in RUB (pK(B)=5.6+/-0.07), by nepadutant in RPA (pK(B)=8.6+/-0.04) and by SR 142801 in GPI (pK(B)=9.0+/-0.2) with apparent affinities comparable to that measured against tachykinin NK(1), NK(2) and NK(3) receptor-selective agonists, respectively. 5. Intravenous HEK-1 produced dose-related decrease of blood pressure in anaesthetized guinea-pigs (ED(50)=0.1 nmol kg(-1)) and salivary secretion in anaesthetized rats (ED(50)=6 nmol kg(-1)) with potencies similar to that of SP. All these effects were blocked by the selective tachykinin NK(1) receptor antagonist, SR 140333. 6. We conclude that HEK-1 is a full agonist at tachykinin NK(1), NK(2) and NK(3) receptors, possesses a remarkable selectivity for NK(1) as compared to NK(2) or NK(3) receptors and acts in vivo experiments with potency similar to that of SP.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Binding Sites
- Binding, Competitive
- Blood Pressure/drug effects
- CHO Cells
- Cricetinae
- Dose-Response Relationship, Drug
- Guinea Pigs
- Heart Rate/drug effects
- Ileum/drug effects
- Ileum/physiology
- Male
- Muscle, Smooth/drug effects
- Muscle, Smooth/physiology
- Protein Precursors/pharmacology
- Pulmonary Artery/drug effects
- Pulmonary Artery/physiology
- Rabbits
- Radioligand Assay
- Rats
- Rats, Wistar
- Receptors, Neurokinin-1/agonists
- Receptors, Neurokinin-1/metabolism
- Receptors, Neurokinin-2/agonists
- Receptors, Neurokinin-2/metabolism
- Receptors, Neurokinin-3/agonists
- Receptors, Neurokinin-3/metabolism
- Receptors, Tachykinin/agonists
- Receptors, Tachykinin/metabolism
- Saliva/metabolism
- Salivation/drug effects
- Salivation/physiology
- Sequence Homology, Amino Acid
- Tachykinins/pharmacology
- Urinary Bladder/drug effects
- Urinary Bladder/physiology
Collapse
Affiliation(s)
- Francesca Bellucci
- Department of Pharmacology, Menarini Ricerche S.p.A., via Rismondo 12A, I-50131, Florence, Italy
| | - Francesca Carini
- Department of Pharmacology, Menarini Ricerche S.p.A., via Rismondo 12A, I-50131, Florence, Italy
| | - Claudio Catalani
- Department of Pharmacology, Menarini Ricerche S.p.A., via Rismondo 12A, I-50131, Florence, Italy
| | - Paola Cucchi
- Department of Pharmacology, Menarini Ricerche S.p.A., via Rismondo 12A, I-50131, Florence, Italy
| | - Alessandro Lecci
- Department of Pharmacology, Menarini Ricerche S.p.A., via Rismondo 12A, I-50131, Florence, Italy
| | - Stefania Meini
- Department of Pharmacology, Menarini Ricerche S.p.A., via Rismondo 12A, I-50131, Florence, Italy
| | - Riccardo Patacchini
- Department of Pharmacology, Menarini Ricerche S.p.A., via Rismondo 12A, I-50131, Florence, Italy
| | - Laura Quartara
- Department of Chemistry, Menarini Ricerche S.p.A., via Rismondo 12A, I-50131, Florence, Italy
| | - Renzo Ricci
- Department of Chemistry, Menarini Ricerche S.p.A., via Rismondo 12A, I-50131, Florence, Italy
| | - Manuela Tramontana
- Department of Pharmacology, Menarini Ricerche S.p.A., via Rismondo 12A, I-50131, Florence, Italy
| | - Sandro Giuliani
- Department of Pharmacology, Menarini Ricerche S.p.A., via Rismondo 12A, I-50131, Florence, Italy
| | - Carlo Alberto Maggi
- Department of Pharmacology, Menarini Ricerche S.p.A., via Rismondo 12A, I-50131, Florence, Italy
| |
Collapse
|
19
|
Rodziewicz-Motowidło S, Lesner A, Łegowska A, Czaplewski C, Liwo A, Rolka K, Patacchini R, Quartara L. Synthesis, activity on NK-3 tachykinin receptor and conformational solution studies of scyliorhinin II analogs modified at position 16. THE JOURNAL OF PEPTIDE RESEARCH : OFFICIAL JOURNAL OF THE AMERICAN PEPTIDE SOCIETY 2001; 58:159-72. [PMID: 11532075 DOI: 10.1034/j.1399-3011.2001.00886.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Two analogs of a tachykinin family peptides - scyliorhinin II (ScyII): [Aib(16)]ScyII and [Sar(16)]ScyII were synthesized by the solid-phase method using Fmoc chemistry. Conformational studies in water and DMSO-d(6) on these peptides were performed using a combination of two-dimensional NMR and theoretical conformational analysis. The solution structure of the peptides studied is interpreted as an equilibrium of several conformers with different statistical weights. The structure of [Sar(16)]ScyII in water appeared to be more flexible, especially in the C-terminal fragment. A better defined structure for this analog was obtained in DMSO-d(6), in which the analysis resulted in a family of conformers with similar shapes. Some of these conformers were characterized by the presence of a 3(10)-helix in the N-terminal fragment and middle part of the molecule. The introduction of the Aib residue in position 16 significantly rigidifies the structure. For [Aib(16)]ScyII in both solvent systems very similar populations of conformations were obtained which are characterized by the presence of a 3(10)-helix in the 13-18 fragment. A common structural motif was found in conformationally constrained Cys(7)-Cys(13) fragment, which resembles the Greek letter 'omega'. The differences in the solution structure of the C-terminal fragment of the peptides studied are responsible for their specificity. [Aib(16)]ScyII showed 25% the agonistic activity of selective NK-3 agonist - senktide, but it also showed antagonist effect vs. this peptide, whereas [Sar(16)]ScyII appeared to be a full agonist of NK-3 tachykinin receptor.
Collapse
|
20
|
Alex G, Kunze WA, Furness JB, Clerc N. Comparison of the effects of neurokinin-3 receptor blockade on two forms of slow synaptic transmission in myenteric AH neurons. Neuroscience 2001; 104:263-9. [PMID: 11311548 DOI: 10.1016/s0306-4522(01)00064-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
AH neurons are intrinsic sensory neurons of the intestine that exhibit two types of slow synaptic event: slow excitatory postsynaptic potentials which increase their excitability for about 2-4 min, and sustained slow postsynaptic excitation which can persist for several hours, and may be involved in long-term changes in the sensitivity of the intestine to sensory stimuli. The effects of the neurokinin-3 tachykinin receptor antagonist, SR142801, on these two types of synaptic event in AH neurons of the myenteric ganglia of guinea-pig small intestine were compared. Slow excitatory postsynaptic potentials were evoked by stimulation of synaptic inputs at 10-20 Hz for 1s, and sustained slow postsynaptic excitation was evoked by stimulation of inputs at 1Hz for 4 min. SR142801 (1microM) reduced the amplitude of the slow excitatory postsynaptic potential to 26% of control, and also reduced the increase in input resistance and the extent of anode break excitation associated with the slow excitatory postsynaptic potential. In contrast, SR142801 did not reduce the increase in excitability, the increase in input resistance or the depolarisation that occur during the sustained slow postsynaptic excitation. SR142801 did not change the resting membrane potential or the resting input resistance. We conclude that tachykinins, acting through neurokinin-3 receptors, are involved in the generation of the slow excitatory postsynaptic potential, but not in the sustained slow postsynaptic excitation, and that the release of transmitters from synaptic inputs to AH neurons is frequency coded.
Collapse
Affiliation(s)
- G Alex
- Department of Anatomy and Cell Biology, University of Melbourne, VIC 3052, Parkville, Australia
| | | | | | | |
Collapse
|
21
|
Fry B, Reifsteck A, Hoover DB, Williams CA. NK(3) receptors in the feline nucleus tractus solitarius are not involved with the muscle pressor response. Neuropeptides 2001; 35:154-61. [PMID: 11884205 DOI: 10.1054/npep.2001.0858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Isometric muscle contractions cause an increase in mean arterial pressure and heart rate. Previously, we showed that substance P (SP) is released from sites in the feline medial nucleus tractus solitarius (mNTS) in response to isometric muscle contractions, and that it most likely interacted with NK(1) tachykinin receptors at these sites. This study was undertaken to determine whether other tachykinin receptors in this area of the brainstem are involved with the muscle pressor response. Receptor autoradiography, using [(125)I]Bolton-Hunter SP and [(125)I] [MePhe(7)] neurokinin B to label NK(1) and NK(3) receptors, respectively, indicated that NK(3) tachykinin receptors are as abundant as NK(1) and NK(3) receptors, respectively, indicated that NK(3) tachykinin receptors are as abundant as NK(1) receptors in this region of the feline brainstem Injections of the specific NK(3) receptor antagonist, SR 142801 (0.1 to 10 microM) into the mNTS did not modify the pressor response or the heart rate response to isometric muscle contractions. Injection of SR142801 into the NTS prior to the injection of the NK(1) antagonist, GR82334 did not affect the action of GR82334 to attenuate the muscle pressor reflex. We conclude that NK(3) receptors in the NTS are not involved with the regulation of cardiovascular function during activation of the muscle pressor response.
Collapse
Affiliation(s)
- B Fry
- Department of Physiology, College of Medicine, East Tennessee State University, Johnson City 37614-0576, USA
| | | | | | | |
Collapse
|
22
|
Tonini M, Spelta V, De Ponti F, De Giorgio R, D'Agostino G, Stanghellini V, Corinaldesi R, Sternini C, Crema F. Tachykinin-dependent and -independent components of peristalsis in the guinea pig isolated distal colon. Gastroenterology 2001; 120:938-945. [PMID: 11231947 DOI: 10.1053/gast.2001.22526] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
BACKGROUND & AIMS In the intestine, tachykinins regulate motility by participating in neuromuscular and neuro-neuronal transmission. The aim of this study was to test the hypothesis that colonic propulsion is regulated by an interplay between tachykinergic and cholinergic transmission. METHODS Propulsion was elicited by intraluminal distention of a thin rubber balloon, which traveled from the oral to the anal end of guinea pig isolated distal colon segments. The overall contribution of endogenous tachykinins to colonic propulsion was examined by blocking NK1, NK2, and NK3 receptors simultaneously. RESULTS NK2-receptor blockade by MEN 11420 inhibited propulsion, whereas blockade of NK(1) by SR 140333 or of NK3 receptors by SR 142801 had minor effects on motility. Blockade of muscarinic or nicotinic receptors by hyoscine or hexamethonium decelerated peristalsis up to propulsion arrest. In the presence of partial muscarinic receptor blockade, the NK1-receptor antagonist SR 140333 and the NK2-receptor antagonist MEN 11420 markedly inhibited propulsion. Propulsion was also inhibited by the NK3-receptor antagonist SR 142801 in the presence of partial nicotinic receptor blockade. The simultaneous administration of the 3 tachykinin antagonists inhibited propulsion by 50%. CONCLUSIONS This study demonstrates the existence of an interplay between tachykinergic and cholinergic pathways during peristalsis and the importance of endogenous tachykinins acting at multiple receptor sites in the control of colonic propulsion.
Collapse
Affiliation(s)
- M Tonini
- Department of Internal Medicine and Therapeutics, Division of Clinical and Experimental Pharmacology, University of Pavia, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Fromy B, Merzeau S, Abraham P, Saumet JL. Mechanisms of the cutaneous vasodilator response to local external pressure application in rats: involvement of CGRP, neurokinins, prostaglandins and NO. Br J Pharmacol 2000; 131:1161-71. [PMID: 11082124 PMCID: PMC1572441 DOI: 10.1038/sj.bjp.0703685] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Local pressure-induced vasodilation (PIV) is a neural vasodilator response to non-nociceptive externally applied pressure in the skin, previously described in humans. We first determined whether PIV exists in rats and depends on capsaicin-sensitive fibres as it does in humans. We then examined the mediators involved in the efferent pathway of PIV. 2. Cutaneous blood flow was measured by laser Doppler flowmetry during 11.1 Pa s(-1) increases in local applied pressure in anaesthetized rats. The involvement of capsaicin-sensitive fibres in PIV was tested in rats treated neonatally with capsaicin. To antagonize CGRP, neurokinin-1, -2, or -3 receptors, different groups of rats were treated with CGRP(8 - 37), SR140333, SR48968 or SR142801, respectively. Prostaglandins involvement was tested with indomethacin treatment. To inhibit nitric oxide synthase (NOS) activity or specific neuronal NOS, rats were treated with N(G)-nitro-L-arginine or 7-nitroindazole, respectively. 3. PIV was found in rats, as in humans. PIV was abolished by neonatal treatment with capsaicin and by administration of CGRP(8 - 37) but remained unchanged with SR140333, SR48968 and SR142801 treatments. Prostaglandin inhibition resulted in a significant decrease in PIV. Inhibition of NOS abolished PIV, whereas inhibition of neuronal NOS caused a diminution of PIV. 4. These data suggest that PIV depends on capsaicin-sensitive fibres in rats, as in humans. It appears that CGRP plays a major role in the PIV, whereas neurokinins have no role. Furthermore, PIV involves a contribution from prostaglandins and depends on endothelial NO, whereas neuronal NO has a smaller role.
Collapse
Affiliation(s)
- Bérengère Fromy
- Laboratoire de Physiologie, Faculté de Médecine d'Angers, F-49045 Angers, cedex France
| | - Sandra Merzeau
- Laboratoire de Physiologie, Faculté de Médecine d'Angers, F-49045 Angers, cedex France
| | - Pierre Abraham
- Laboratoire de Physiologie, Faculté de Médecine d'Angers, F-49045 Angers, cedex France
| | - Jean-Louis Saumet
- Laboratoire de Physiologie, Faculté de Médecine d'Angers, F-49045 Angers, cedex France
- Author for correspondence:
| |
Collapse
|
24
|
Kerr KP. Effects of tachykinin receptor agonists and antagonists on the guinea-pig isolated oesophagus. Clin Exp Pharmacol Physiol 2000; 27:934-8. [PMID: 11071313 DOI: 10.1046/j.1440-1681.2000.03364.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. Vagal nerve stimulation of the guinea-pig isolated oesophagus produced a triphasic tetrodotoxin (TTX)-sensitive contractile response. The third phase, which was resistant to ganglion blocking drugs, was selectively abolished by capsaicin, suggesting the involvement of one or more neuropeptides released from afferent neurons. Receptors on cholinergic neurons were subsequently activated because the response was atropine sensitive. Contractile responses resulting from exogenous substance P were abolished by atropine and TTX and enhanced by physostigmine. These findings suggest that the third phase may be mediated by the action of a substance P-like neuropeptide released from sensory nerve endings that subsequently activated cholinergic neurons. 2. The tachykinin receptors in the body of the guinea-pig oesophagus were characterized by determining the relative agonist potencies of natural tachykinins as well as tachykinin receptor-selective analogues. Antagonist affinities were also determined. The results indicated the presence of both NK2 and NK3 receptors. In addition, the effects of a cocktail of peptidase inhibitors (captopril, thiorphan and amastatin) on responses to various tachykinins and synthetic analogues were determined. The results indicate that one or more peptidases are present in this preparation. 3. Experiments using various tachykinin receptor antagonists were performed to determine whether the activation of tachykinin receptors played a role in the mediation of the third phase of the response to vagal nerve stimulation. While this response was unaffected by NK1 and NK2 receptor-selective antagonists, it was only partially inhibited (23%) by the NK3 receptor antagonist SR 142801. Thus, in the guinea-pig oesophagus, it appears that NK3 receptors play only a minor role in mediating a contractile response when afferent neurons are excited by vagal nerve stimulation.
Collapse
Affiliation(s)
- K P Kerr
- Department of Pharmaceutical Biology and Pharmacology, Victorian College of Pharmacy, Monash University, Parkville, Australia.
| |
Collapse
|
25
|
Daoui S, Naline E, Lagente V, Emonds-Alt X, Advenier C. Neurokinin B- and specific tachykinin NK(3) receptor agonists-induced airway hyperresponsiveness in the guinea-pig. Br J Pharmacol 2000; 130:49-56. [PMID: 10780997 PMCID: PMC1572035 DOI: 10.1038/sj.bjp.0703278] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The aim of this study was to determine whether neurokinin B (NKB) or specific agonists of tachykinin NK(3) receptors, [MePhe(7)]NKB and senktide, were able to induce airway hyperresponsiveness in guinea-pigs. The effects of these compounds were compared to those of substance P (SP), neurokinin A (NKA) and the preferential tachykinin NK(1) ([Sar(9), Met(0(2))(11)]SP) or NK(2) ([betaAla(8)]NKA (4-10)) receptor agonists. 2. In guinea-pigs pretreated with phosphoramidon (10(-4) M aerosol for 10 min) and salbutamol (8.7x10(-3) M for 10 min), all tachykinins administrated by aerosol (3x10(-7) to 10(-4) M) induced airway hyperresponsiveness 24 h later, displayed by an exaggerated response to the bronchoconstrictor effect of acetylcholine (i.v.). The rank order of potency was: [betaAla(8)]NKA (4-10)>NKA=NKB=senktide=[MePhe(7)]NKB=[Sar(9),Met(0(2))(11)]SP>SP. 3. Airway hyperresponsiveness induced by [MePhe(7)]NKB was prevented by the tachykinin NK(3) (SR 142801) and NK(2) (SR 48968) receptor antagonists. 4. Bronchoconstriction induced by tachykinins administered by aerosol was also determined. SP, NKA, NKB and the tachykinin NK(1) and NK(2) receptor agonist induced bronchoconstriction. The rank order of potency was: NKA=[betaAla(8)]NKA (4-10)>NKB=SP=[Sar(9), Met(0(2))(11)]SP. Under similar conditions, and for concentrations which induce airway hyperresponsiveness, senktide and [MePhe(7)]NKB failed to induce bronchoconstriction. 5. It is concluded that tachykinin NK(3)-receptor stimulation can induce airway hyperresponsiveness and that this effect is not related to the ability of tachykinins to induce bronchoconstriction.
Collapse
Affiliation(s)
- Samira Daoui
- Laboratoire de Pharmacologie, Faculté de Médecine Paris-Ouest, 15 Rue de l'Ecole de Médecine, F75006 Paris , France
| | - Emmanuel Naline
- Laboratoire de Pharmacologie, Faculté de Médecine Paris-Ouest, 15 Rue de l'Ecole de Médecine, F75006 Paris , France
| | - Vincent Lagente
- Inserm U456, Laboratoire de Pharmacologie, Faculté de Pharmacie, Rennes, France
| | | | - Charles Advenier
- Laboratoire de Pharmacologie, Faculté de Médecine Paris-Ouest, 15 Rue de l'Ecole de Médecine, F75006 Paris , France
- Author for correspondence:
| |
Collapse
|
26
|
Couture R, Toma N, Barbot L. SR142801 behaves as a tachykinin NK-3 receptor agonist on a spinal nociceptive reflex in the rat. Life Sci 2000; 66:51-65. [PMID: 10658924 DOI: 10.1016/s0024-3205(99)00561-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Effects of two commonly used tachykinin NK-3 receptor antagonists (SR 142801 and R820) intrathecally (i.t.) administered were assessed in the rat tail-flick test. SR142801 and its (R)-enantiomer SR142806 (1.3, 6.5 and 65 nmol) were found as potent as senktide and [MePhe7]NKB (NK-3 selective agonists) to induce transient antinociceptive effects. Naloxone (10 microg) and R820 (6.5 nmol) blocked reversibly the responses to 6.5 nmol senktide, [MePhe7]NKB, SR142801 and SR142806 when administered i.t. 15 min earlier. However, the antinociceptive responses induced by SR142801 and SR142806 were not affected by i.t. pretreatments with NK-1 (6.5 nmol SR140333) and NK-2 (6.5 nmol SR48968) receptor antagonists. In control experiments, the NK-1 and NK-2 antagonists prevented the hyperalgesic effects to NK-1 ([Sar9,Met(O2)11]SP) and NK-2 ([beta-Ala8] NKA(4-10)) receptor agonists (6.5 nmol i.t.), respectively. R820 had no direct effect on nociceptive threshold and failed to alter angiotensin II-induced antinociception. The data suggest that the antinociceptive effect of SR142801 is due to an agonist effect at NK-3 receptor in the rat spinal cord that involves a local opioid mechanism. These results can be best explained by the existence of inter-species NK-3 receptor subtypes.
Collapse
Affiliation(s)
- R Couture
- Department of Physiology, Faculty of Medicine, Université de Montréal, Québec, Canada.
| | | | | |
Collapse
|
27
|
Mazzone SB, Geraghty DP. Respiratory actions of tachykinins in the nucleus of the solitary tract: characterization of receptors using selective agonists and antagonists. Br J Pharmacol 2000; 129:1121-31. [PMID: 10725260 PMCID: PMC1571949 DOI: 10.1038/sj.bjp.0703172] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The respiratory response to microinjection of tachykinins and analogues into the commissural nucleus of the solitary tract (cNTS) of urethane-anaesthetized rats was investigated in the presence and absence of selective tachykinin NK(1), NK(2) and NK(3) antagonists (RP 67580, SR 48968 and SR 142801, respectively). 2. All tachykinins, except for the selective NK(2) agonist, [Nle(10)]-NKA(4-10), increased tidal volume (VT). The rank potency order of naturally-occurring tachykinins was neurokinin A (NKA)> or =substance P (SP)>>NKB, whereas the rank order for selective analogues was senktide> or = septide>> [Sar(9),Met(O(2))(11)]-SP>>[Nle(10)]-NKA(4-10). Septide (NK(1)-selective) and senktide (NK(3)-selective) were 22 fold more potent (pD(2) approximately 12) at stimulating VT than SP (pD(2) approximately 10.5). 3. Tachykinin agonists produced varying degrees of respiratory slowing, independent of changes in VT. At doses producing maximum stimulation of VT, agonists induced either a mild (<10 breaths min(-1) decrease; SP and septide), moderate (10 - 25 breaths min(-1) decrease; NKA, NKB and [Sar(9),Met(O(2)]-SP) or severe ( approximately 40 breaths min(-1) decrease; senktide) bradypnoea. [Nle(10)]-NKA(4-10) produced a dose-dependent bradypnoea without affecting VT. 4. RP 67580 significantly attenuated the VT response to SP (33 pmol) and NKA (10 pmol) but not NKB (100 pmol). In the presence of RP 67580, the mild bradypnoeic response to NKB was significantly enhanced whereas SP and NKA induced a bradyapnea which was not observed in the absence of RP 67580. SR 48968 had no effect on the VT response to SP or NKB, markedly enhanced the VT response to NKA and completely blocked the bradypnoeic response to [Nle(10)]-NKA(4-10). Only SR142801 attenuated the VT response to NKB. 5. The present data suggest that all three tachykinin receptors (NK(1), NK(2) and NK(3)) are present in the cNTS and are involved in the central control of respiration.
Collapse
Affiliation(s)
- Stuart B Mazzone
- School of Biomedical Science, University of Tasmania, P.O. Box 320, Launceston, Tasmania 7250, Australia
| | - Dominic P Geraghty
- School of Biomedical Science, University of Tasmania, P.O. Box 320, Launceston, Tasmania 7250, Australia
- Author for correspondence:
| |
Collapse
|
28
|
Kerr KP, Mitchelson F, Coupar IM. Tachykinins play a minor role in mediating the third phase of the contractile response to vagal nerve stimulation of the guinea-pig oesophagus. Neuropeptides 2000; 34:12-7. [PMID: 10688963 DOI: 10.1054/npep.1999.0780] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The aim of this study was to determine whether tachykinin receptors might be involved in the mediation of the atropine- and capsaicin-sensitive third phase of a triphasic contractile response to vagal nerve stimulation of the guinea-pig isolated oesophagus. The third phase was inhibited 23.3 +/- 1.7% (P< 0.001, n = 5) and 30. 8 +/- 9.0% (P< 0.05, n = 5) by the NK(3)receptor antagonist, SR 142 801 (0.1 and 1 microM respectively). SR 142 801 (0.1 and 1 microM) had no significant effect on the response to a submaximal concentration of acetylcholine (0.1 mM, n = 4). The third phase was not significantly affected by NK(1)or NK(2)receptor antagonists. Thus, in the guinea-pig oesophagus, it appears that while NK(1)and NK(2)receptors are not involved, NK(3)receptors play a minor role in mediating a contractile response when afferent neurones are excited by vagal nerve stimulation.
Collapse
Affiliation(s)
- K P Kerr
- Department of Pharmaceutical Biology and Pharmacology, Monash University, Victorian College of Pharmacy, Victoria, Australia.
| | | | | |
Collapse
|
29
|
Medhurst AD, Hirst WD, Jerman JC, Meakin J, Roberts JC, Testa T, Smart D. Molecular and pharmacological characterization of a functional tachykinin NK3 receptor cloned from the rabbit iris sphincter muscle. Br J Pharmacol 1999; 128:627-36. [PMID: 10516642 PMCID: PMC1571693 DOI: 10.1038/sj.bjp.0702854] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
1. A functional tachykinin NK3 receptor was cloned from the rabbit iris sphincter muscle and its distribution investigated in ocular tissues. 2. Standard polymerase chain reaction (PCR) techniques were used to clone a full length rabbit NK3 receptor cDNA consisting of 1404 nucleotides. This cDNA encoded a protein of 467 amino acids with 91 and 87% homology to the human and rat NK3 receptors respectively. 3. In CHO-K1 cells transiently expressing the recombinant rabbit NK3 receptor, the relative order of potency of NKB>>NKA>/=SP to displace [125I]-[MePhe7]-NKB binding and to increase intracellular calcium, together with the high affinity of NK3 selective agonists (e.g. senktide, [MePhe7]-NKB) and antagonists (e.g. SR 142801, SB 223412) in both assays was consistent with NK3 receptor pharmacology. In binding and functional experiments, agonist concentration response curves were shallow (0.7 - 0.8), suggesting the possibility of multiple affinity states of the receptor. 4. Quantitative real time PCR analysis revealed highest expression of rabbit NK3 receptor mRNA in iris sphincter muscle, lower expression in retina and iris dilator muscle, and no expression in lens and cornea. In situ hybridization histochemistry revealed discrete specific localization of NK3 receptor mRNA in the iris muscle and associated ciliary processes. Discrete specific labelling of NK3 receptors with the selective NK3 receptor agonist [125I]-[MePhe7]-NKB was also observed in the ciliary processes using autoradiography. 5. Our study reveals a high molecular similarity between rabbit and human NK3 receptor mRNAs, as predicted from previous pharmacological studies, and provide the first evidence that NK3 receptors are precisely located on ciliary processes in the rabbit eye. In addition, there could be two affinity states of the receptor which may correspond to the typical and 'atypical' NK3 receptor subtypes previously reported.
Collapse
Affiliation(s)
- A D Medhurst
- Department of Neuroscience Research, SmithKline Beecham Pharmaceuticals, Third Avenue, Harlow, Essex, CM19 5AW.
| | | | | | | | | | | | | |
Collapse
|
30
|
Fisher L, Pennefather JN. Tachykinin receptors mediating contractions of oestrogen-primed rat uterus: classification using non-peptide antagonists. Clin Exp Pharmacol Physiol 1999; 26:729-35. [PMID: 10499163 DOI: 10.1046/j.1440-1681.1999.03119.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
1. The aim of the present study was to characterize the tachykinin receptors mediating contractions of the uterus from the oestrogen-primed rat. Apparent pKB values versus mammalian tachykinins and some subtype-selective agonists were determined for the non-peptide NK1, NK2 and NK3 receptor antagonists SR 140333, SR 48968 and SR 142801, respectively. 2. Apparent pKB values for SR 48968 tested at concentrations of 3, 10 and 30 nmol/L versus neurokinin (NKA, [Lys5MeLeu9Nle10] NKA(4-10) and [Nle10] NKA(4-10) were 8.79, 9.44 and 9.33, respectively, indicating activation of an NK2 receptor and, in the case of NKA, the possible activation of an additional receptor subtype. SR 48968 (30 nmol/L) did not affect responses to NKB (1 mumol/L), senktide (30 nmol/L), substance P (SP; 100 nmol/L) or [Sar9Met(O2)11] SP (100 nmol/L), indicating its selectivity at this concentration. 3. SR 140333 (1-100 nmol/L) reduced the effects of the NK1-preferring agonists SP and [Sar9Met(O2)11] SP, indicating the presence of NK1 receptors. The pKB estimate versus [Sar9Met(O2)11] was 9.01. SR 140333 (100 nmol/L) did not affect responses to NK2 and NK3 receptor-preferring agonists. 4. SR 142801 (100 nmol/L to 1 mumol/L) produced small rightward shifts in the log concentration-response curves to NKB, yielding an apparent pKB value of 7.0. At 1 mumol/L, SR 142801 reduced responses to the NK2 agonists, suggesting some non-selectivity at this concentration. 5. Taken together, these data provide strong evidence that tachykinin-induced contractions of the uterus of the oestrogen-primed rat are mediated by NK2 receptors, with some contribution from NK1 receptors.
Collapse
Affiliation(s)
- L Fisher
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | |
Collapse
|
31
|
Moodley N, Lau WA, Pennefather JN, Story ME, Fisher L. NK2 receptors mediate tachykinin-induced contractions of rat uterus during the oestrous cycle. Eur J Pharmacol 1999; 376:53-60. [PMID: 10440089 DOI: 10.1016/s0014-2999(99)00359-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
We examined tachykinin-induced contractions of uteri from rats during the oestrous cycle. The potencies of substance P, neurokinin A, neurokinin B and the tachykinin NK2 receptor-selective agonist, [Lys5, MeLeu9, Nle10] neurokinin A-(4-10), and of the non-peptide tachykinin NK1, NK2 and NK3 receptor antagonists (S)1-[2-[3-(3,4-dichlorophenyl)-1-(3-isopropoxyphenylacetyl)pip eridin-3-yl]ethyl]-4phenyl-1-azonia-bicyclo[2.2.2]octane (SR 140333), (S)-N-methyl-N [4-(4-acetylamino-4-phenylpiperidino)-2-(3,4-dichlorophenyl)butyl]benzam ide (SR 48968) and (S)-(N)-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl)piperidin-3-yl)prop yl)-4-phenylpiperidin-4-yl)-N-methylacetamide (SR 142801), were examined. The relative agonist potencies, i.e., [Lys5, MeLeu9, Nle10] neurokinin A-(4-10) > or = neurokinin A > neurokinin B > or = substance P were similar in preparations from rats in dioestrus/metoestrus and those in proestrus/oestrus. Apparent pK(B) values for SR 48968 versus neurokinin A and [Lys5, MeLeu9, Nle10] neurokinin A-(4-10), were 9.9 and 9.2, respectively, indicating activation of an NK2 receptor. SR 140333 (10 nM) produced only a small rightward shift of the log concentration-response curve to substance P. SR 48968 (3 nM), but not SR 142801 (100-300 nM) reduced the effect of neurokinin B. These data indicate that in the rat tachykinin-induced contractions of the uteri during the oestrous cycle are mediated primarily by tachykinin NK2 receptors, and that fluctuations in ovarian hormonal levels during the oestrous cycle have little influence on the uterine response to tachykinins.
Collapse
Affiliation(s)
- N Moodley
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
32
|
Barthó L, Lénárd L, Lázár Z, Maggi CA. Connections between P2 purinoceptors and capsaicin-sensitive afferents in the intestine and other tissues. Eur J Pharmacol 1999; 375:203-10. [PMID: 10443576 DOI: 10.1016/s0014-2999(99)00253-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Relations between P2 purinoceptors and capsaicin-sensitive sensory neurons include an excitatory action of P2 purinoceptor agonists on spinal afferent neurons, as well as release of ATP from afferents at their central and peripheral endings, and a possible participation of ATP in nociception and/or in 'local efferent' responses mediated by sensory nerves at the periphery. The present paper briefly summarizes available evidence on these interrelations. Ample evidence shows that ATP and other P2 purinoceptor agonists can activate primary afferent neurons, through P2X3 receptors and probably other purinoceptors as well, but evidence for an involvement of P2 purinoceptors in nociception or in 'local efferent' responses due to activation of primary afferents is, at best, circumstantial. The possibility is also dealt with that P2 purinoceptor activation may cause small intestinal contraction with the mediation of capsaicin-sensitive sensory neurons and that the motor response to capsaicin in this tissue may involve the release of a P2 purinoceptor stimulant from sensory nerves. Our data show that cholinergic contractions of the guinea-pig ileum in response to the P2 purinoceptor agonist alpha,beta-methylene ATP (alpha,beta-meATP) are blocked by atropine, but not by in vitro capsaicin pretreatment (which completely blocks the contractile action of capsaicin). Cholinergic ileum contractions due to capsaicin (2 microM) are insensitive to suramin (a P2 purinoceptor antagonist; 100 microM). In the presence of antagonists acting at tachykinin NK1 and NK2 receptors, however, suramin (100 microM) causes a significant inhibition of the capsaicin-evoked contraction. These data indicate that capsaicin-sensitive nerves are not involved in the excitatory effect of alpha,beta-methylene ATP on myenteric neurons. On the other hand, ATP is probably involved in the 'non-tachykininergic' component of the capsaicin-induced excitatory response of the small intestine. ATP may originate from sensory neurons and probably acts as activator of myenteric nerves.
Collapse
Affiliation(s)
- L Barthó
- Department of Pharmacology and Pharmacotherapy, University Medical School of Pécs, Hungary.
| | | | | | | |
Collapse
|
33
|
Neunlist M, Dobreva G, Schemann M. Characteristics of mucosally projecting myenteric neurones in the guinea-pig proximal colon. J Physiol 1999; 517 ( Pt 2):533-46. [PMID: 10332100 PMCID: PMC2269343 DOI: 10.1111/j.1469-7793.1999.0533t.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
1. Using retrograde tracing with 1,1'-didodecyl-3,3,3', 3'-tetramethylindocarbocyanine perchlorate (DiI) in combination with electrophysiological and immunohistochemical techniques we determined the properties of the putative intrinsic primary afferent myenteric neurones with mucosal projections in the guinea-pig proximal colon. 2. Eighty-four out of eighty-five DiI-labelled myenteric neurones were AH neurones with a late after-hyperpolarization. Thirty-three per cent of them exhibited atropine- and tetrodotoxin-resistant spontaneously occurring hyperpolarizing potentials (SHPs) during which the membrane resistance and excitability decreased. 3. DiI-labelled AH neurones had multipolar Dogiel type II morphology, primarily of the dendritic type. Sixty-one per cent of the neurones were immunoreactive for choline acetyltransferase (ChAT) and calbindin (Calb) and 23 % were ChAT positive but Calb negative. 4. DiI-labelled neurones did not receive fast excitatory postsynaptic potentials but 94 % (34/36) received slow excitatory postsynaptic potentials (sEPSPs). The neurokinin-3 (NK-3) agonist (MePhe7)-NKB but not the NK-1 agonist [(SAR9,Met(O2)11]-SP mimicked this response. The NK-3 receptor antagonist SR 142801 (1 microM) significantly decreased the amplitude and duration of the sEPSPs; the NK-1 receptor antagonist CP-99,994 (1 microM) was ineffective. Atropine (0.5 microM) increased the duration but not the amplitude of the sEPSPs. 5. Microejection of 100 mM sodium butyrate onto the neurones induced in 90 % of the DiI-labelled neurones a transient depolarization associated with an increased excitability. In neurones with SHPs sodium butyrate evoked, additionally, a late onset hyperpolarization. Perfusion of 0.1-10 mM sodium butyrate induced a dose-dependent increase in neuronal excitability. Sodium butyrate was ineffective when applied directly onto the mucosa. 6. Mucosally projecting myenteric neurones of the colon are multipolar AH neurones with NK-3-mediated slow EPSPs and somal butyrate sensitivity.
Collapse
Affiliation(s)
- M Neunlist
- School of Veterinary Medicine, Department of Physiology, Bischofsholer Damm 15/102, 30173 Hannover, Germany
| | | | | |
Collapse
|
34
|
Barthó L, Lénárd L, Patacchini R, Halmai V, Wilhelm M, Holzer P, Maggi CA. Tachykinin receptors are involved in the "local efferent" motor response to capsaicin in the guinea-pig small intestine and oesophagus. Neuroscience 1999; 90:221-8. [PMID: 10188948 DOI: 10.1016/s0306-4522(98)00459-x] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The sensory neuron stimulant drug capsaicin stimulates primary afferent nerve endings in the guinea-pig small intestine, which in turn activate myenteric cholinergic neurons by an unknown mechanism. The tachykinins substance P and neurokinin A are present in primary afferent neurons. This study was performed to assess the possible involvement of endogenous tachykinins acting via neurokinin-1, neurokinin-2 and neurokinin-3 receptors in the contractile effect of capsaicin in the isolated guinea-pig ileum and oesophagus by using the receptor-specific antagonists GR 82334 (3 microM) for neurokinin-1 receptors, MEN 10627 (3 microM; ileum) or MEN 11420 (1 microM; oesophagus) for neurokinin-2 receptors and SR 142801 (0.1 microM) for neurokinin-3 receptors. In the ileum, the peak contraction evoked by capsaicin (2 microM) was not reduced when tachykinin neurokinin-1, neurokinin-2 or neurokinin-3 receptors were blocked separately, whereas an inhibition of neurokinin-3 receptors diminished the area under the curve of the capsaicin response. A combined blockade of neurokinin-1 and neurokinin-3 receptors significantly depressed the effect of capsaicin; the amplitude of the contractile response was 53.3+/-3.7% of the maximal longitudinal spasm in control preparations, whereas in the presence of GR 82334 plus SR 142801 it reached only 27.6+/-5% (P<0.001, Kruskal-Wallis test; n=9 and 10, respectively). Also, the area under the curve of the contractile response to capsaicin was more than 85% lower in the group of preparations treated with GR 82334 plus SR 142801 than in the control group (P<0.001). Including a neurokinin-2 blocker in the combination did not produce any further inhibition. A concomitant tachyphylaxis to substance P (natural neurokinin-1 receptor stimulant) and the neurokinin-3 receptor agonist senktide (5 and 1 microM, respectively) also reduced the contractile effect of capsaicin. In the oesophagus, capsaicin (1 microM) induced biphasic contractions which were strongly inhibited by atropine (1 microM) or capsaicin pretreatment (1 microM for 10 min). Here again, a blockade of tachykinin neurokinin-1, neurokinin-2 or neurokinin-3 receptors separately failed to inhibit the response to capsaicin, whereas a combined blockade of any two tachykinin receptors caused a partial inhibition. The reduction of the contractile effect of capsaicin was strongest when all three tachykinin receptors were blocked. In seven control preparations, peaks for the first and second phases of contraction reached 35.3+/-3.7% and 20+/-3.2% of maximal longitudinal spasm; the corresponding values in the presence of a combination of GR 82334, MEN 11420 and SR 142801 were 7.5+/-0.8% and 9.1+/-2.2%, respectively (n=6, P<0.001 and 0.05, respectively). Tetrodotoxin (0.5 microM) practically abolished the contractile effect of capsaicin in both tissues studied. It is concluded that an interplay of neuronal tachykinin neurokinin-1 and neurokinin-3 receptors (ileum) and neurokinin-1, neurokinin-2 and neurokinin-3 receptors (oesophagus) is involved in the contractile action of capsaicin, probably in mediating excitation of myenteric neurons by tachykinins released from primary afferents. In both tissues, there also seems to be a non-tachykininergic component of the capsaicin-induced contraction.
Collapse
Affiliation(s)
- L Barthó
- Department of Pharmacology and Pharmacotherapy, University Medical School of Pécs, Hungary
| | | | | | | | | | | | | |
Collapse
|
35
|
Coudoré-Civiale MA, Courteix C, Eschalier A, Fialip J. Effect of tachykinin receptor antagonists in experimental neuropathic pain. Eur J Pharmacol 1998; 361:175-84. [PMID: 9865506 DOI: 10.1016/s0014-2999(98)00722-5] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The intrathecal effect of 0.1 to 10 microg of RP-67,580 (3aR,7aR)-7,7-diphenyl-2[1-imino-2(2-methoxyphenyl)-ethyl]++ +perhydroisoindol-4-one hydrochloride, CP-96,345 (2S,3S)-cis-(2(diphenylmethyl)-N-[(2-methoxyphenyl) methyl]-1-azabicyclo[2.2.2]octan-3-amine), SR-140,333 (S)-(1-¿2-[3-(3,4-dichlorophenyl)- 1-(3-isopropoxyphenylacetyl)piperidin-3-yl]ethyl¿-4-phenyl-1 -azonia-bicyclo[2.2.2.]-octane,chloride), all neurokinin (NK)1-receptor antagonists, SR-48,968 (S)-N-methyl-N[4-(4-acetylamino-4-[phenylpiperidino)-2-(3,4-dichlorophen yl)-butyl]benzamide, a tachykinin NK2 receptor antagonist and SR-142,801 (S)-(N)-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl) piperidin-3-yl)propyl)-4-phenylpiperidin-4-yl)-N-methyl acetamide, a tachykinin NK3 receptor antagonist, and of their respective inactive enantiomers on thresholds of vocalization due to a mechanical stimulus in mononeuropathic (sciatic nerve ligature) and diabetic rats, was examined. The tachykinin NK1 and the NK2 receptor antagonists were antinociceptive in both models, with a higher effect of the former in diabetic rats. The tachykinin NK3 receptor antagonist was weakly effective in diabetic rats only. This indicates a differential involvement of the tachykinins according to the model of neuropathic pain, suggesting a potential role for tachykinin receptor antagonists in the treatment of neuropathic pain.
Collapse
Affiliation(s)
- M A Coudoré-Civiale
- Equipe NPPUA (NeuroPsychoPharmacologie, Université d'Auvergne), Laboratoire de Pharmacologie, Faculté de Pharmacie, Clermont-Ferrand, France.
| | | | | | | |
Collapse
|
36
|
Thorbøll JE, Bindslev N, Hansen MB, Schmidt P, Skadhauge E. Functional characterisation of tachykinin receptors mediating ion transport in porcine jejunum. Eur J Pharmacol 1998; 359:271-9. [PMID: 9832399 DOI: 10.1016/s0014-2999(98)00650-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
In the present study, tachykinin receptors (designated NK 1, NK2 and NK3) involved in regulation of ion transport in porcine jejunum were characterised. Stripped tissue preparations were mounted in Ussing chambers and short-circuited. Substance P produced a concentration dependent increase in short-circuit current, the relationship showing a double sigmoidal form. The non-peptide NK1 receptor antagonist, CP 99,994 ((2S,3S)-3-(2-methoxybenzyl)amino-2-phenylpiperidine), caused a dextral shift of the first sigmoidal response, indicating the involvement of an NK1 receptor. This was further supported by a concentration-dependent response of the NK1 receptor agonist [Sar9Met(O2)11]substance P with an EC50 value of 235.0+/-53.9 nM. Increasing concentrations of CP 99,994 (0.1, 0.3 and 1 microM) produced a parallel dextral shift of the [Sar9Met(O2)11]substance P curve with a slope of the Schild regression significantly different from unity (1.59). The neurokinin A concentration-response curve, with an EC50 value of 68.87+/-16.23 nM, was not significantly changed by the non-peptide NK2 receptor antagonist SR 48,968 ((S)-N-methyl-N-(4-(4-acetylamino-4-phenylpiperidino)-2-(3,4-dichlorophe nyl)butyl)bezamide). In additional studies, the peptide NK2 receptor antagonists, GR 94,800 (PhCO-Ala-Ala-DTrp-Phe-DPro-Pro-NleNH2) and PD 147,714 ((2,3-diOMeZ)-(S)Trp(S)alphaMePheGlyNH2), did not change the response to neurokinin A. However, CP 99,994 totally inhibited neurokinin A responses at 0.5 microM and above. The NK2 receptor agonist, [beta-Ala8]neurokinin A-(4-10), caused only an increase in short-circuit current in microM concentrations, whereas the NK3 receptor agonist, senktide, did not elicit a response. These results indicate, that substance P and neurokinin A mediate ion transport in porcine jejunum through NK1 receptors. However, tachykinins seem to activate another receptor. Two active conformers of the NK1 receptor might be present.
Collapse
Affiliation(s)
- J E Thorbøll
- Department of Anatomy and Physiology, The Royal Veterinary and Agricultural University, Frederiksberg, Denmark.
| | | | | | | | | |
Collapse
|
37
|
Mazelin L, Theodorou V, More J, Emonds-Alt X, Fioramonti J, Bueno L. Comparative effects of nonpeptide tachykinin receptor antagonists on experimental gut inflammation in rats and guinea-pigs. Life Sci 1998; 63:293-304. [PMID: 9698038 DOI: 10.1016/s0024-3205(98)00271-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Previous studies have shown tachykinins implicated in gut inflammation. The aim of this work was to evaluate the effect of treatments with tachykinin NK1, NK2, and NK3 selective receptor antagonists on the development of gut inflammation induced by trinitrobenzenesulfonic acid (TNBS) in rats and guinea-pigs. On day 0, rats and guinea-pigs received an intraluminal instillation of TNBS/ethanol (40 mg/kg). Each group was daily treated with intraperitoneally injected NK1 (SR 140333; 0.3 mg/kg/day), NK2 (SR 48968; 5 mg/kg/day), or NK3 (SR 142801; 1, 5, or 10 mg/kg/day) receptor antagonists or their vehicle. On day 4, inflammatory levels were evaluated by measuring gut permeability, myeloperoxidase activity, macro- and microscopic damage scores. In TNBS treated rats, daily administration of SR 140333 (0.3 mg/kg/day) and SR 48968 (5 mg/kg/day) reduced colonic inflammation. In TNBS treated guinea-pigs, daily administration of SR 48968 (5 mg/kg/day) and SR 142801 (at 5 and 10 mg/kg/day) attenuated significantly ileal injury. These results suggest that non-peptide tachykinin receptor antagonists are potent anti-inflammatory agents on gut inflammation in rats and guinea-pigs. However, their activity depends upon the animal species and type of receptor considered.
Collapse
Affiliation(s)
- L Mazelin
- Department of Pharmacology, Institut National de la Recherche Agronomique, Toulouse, France
| | | | | | | | | | | |
Collapse
|
38
|
Patacchini R, De Giorgio R, Barthó L, Barbara G, Corinaldesi R, Maggi CA. Evidence that tachykinins are the main NANC excitatory neurotransmitters in the guinea-pig common bile duct. Br J Pharmacol 1998; 124:1703-11. [PMID: 9756387 PMCID: PMC1565562 DOI: 10.1038/sj.bjp.0701999] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Application of electrical field stimulation (EFS; trains of 10 Hz, 0.25 ms pulse width, supramaximal voltage for 60 s) to the guinea-pig isolated common bile duct pretreated with atropine (1 microM), produced a slowly-developing contraction ('on' response) followed by a quick phasic 'off' contraction ('off peak' response) and a tonic response ('off late' response), averaging 16+/-2, 73+/-3 and 20+/-4% of the maximal contraction to KCl (80 mM), n=20 each, respectively. Tetrodotoxin (1 microM; 15 min before) abolished the overall response to EFS (n 8). Neither in vitro capsaicin pretreatment (10 microM for 15 min), nor guanethidine (3 microM, 60 min before) affected the excitatory response to EFS (n 5 each), showing that neither primary sensory neurons, nor sympathetic nerves were involved. Nomega-nitro-L-arginine (L-NOARG, 100 microM, 60 min before) or naloxone (10 microM, 30 min before) significantly enhanced the 'on' response (294+/-56 and 205+/-25% increase, respectively; n=6-8, P<0.01) to EFS. The combined administration of L-NOARG and naloxone produced additive enhancing effects (655+/-90% increase of the 'on' component, n = 6, P<0.05). The tachykinin NK2 receptor-selective antagonist MEN 11420 (1 microM) almost abolished both the 'on' and 'off late' responses (P<0.01: n=5 each) to EFS, and reduced the 'off-peak' contraction by 55+/-8% (n=5, P<0.01). The subsequent administration of the tachykinin NK1 receptor-selective antagonist GR 82334 (1 microM) and of the tachykinin NK3 receptor-selective antagonist SR 142801 (30 nM), in the presence of MEN 11420 (1 microM), did not produce any further inhibition of the response to EFS (P>0.05; n=5 each). At 3 microM, GR 82334 significantly reduced (by 68+/-9%, P<0.05, n=6) the 'on' response to EFS. The contractile 'off peak' response to EFS observed in the presence of both MEN 11420 and GR 82334 (3 microM each) was abolished (P<0.01; n=6) by the administration of the P2 purinoceptor antagonist pyridoxalphosphate-6-azophenyl-2',4'-disulphonic acid (PPADS, 30 microM). PPADS (30 microM) selectively blocked (75+/-9 and 50+/-7% inhibition, n = 4 each) the contractile responses produced by 100 and 300 microM ATP. Tachykinin-containing nerve fibres were detected by using immunohistochemical techniques in all parts of the bile duct, being distributed to the muscle layer and lamina propria of mucosa. In the terminal part of the duct (ampulla) some labelled ganglion cells were observed. In conclusion, this study shows that in the guinea-pig terminal biliary tract tachykinins, released from intrinsic neuronal elements, are the main NANC excitatory neurotransmitters, which act by stimulating tachykinin NK2 (and possibly NK1) receptors. ATP is also involved as excitatory neurotransmitter. Nitric oxide and opioids act as inhibitory mediators/modulators in this preparation.
Collapse
Affiliation(s)
- R Patacchini
- Pharmacology Department, Menarini Ricerche SpA, Florence, Italy
| | | | | | | | | | | |
Collapse
|
39
|
Johnson PJ, Bornstein JC, Burcher E. Roles of neuronal NK1 and NK3 receptors in synaptic transmission during motility reflexes in the guinea-pig ileum. Br J Pharmacol 1998; 124:1375-84. [PMID: 9723948 PMCID: PMC1565526 DOI: 10.1038/sj.bjp.0701967] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. The role of NK1 and NK3 receptors in synaptic transmission between myenteric neurons during motility reflexes in the guinea-pig ileum was investigated by recording intracellularly the reflex responses of the circular muscle to distension or compression of the mucosal villi. Experiments were performed in a three-chambered organ bath that enabled drugs to be selectively applied to different sites along the reflex pathways. 2. When applied in the recording chamber, an NK1 receptor antagonist, SR140333 (100 nM), reduced by 40-50% the amplitudes of inhibitory junction potentials (i.j.ps) evoked in the circular muscle by activation of descending reflex pathways. This effect was abolished when synaptic transmission in the stimulus region was blocked with physiological saline containing 0.1 mM Ca2+ plus 10 mM Mg2+, leaving only the component of the descending reflex pathway conducted via long anally directed collaterals of intrinsic sensory neurons. 3. SR140333 (100 nM) had no effect on descending reflex i.j.ps when applied to the stimulus region. Ascending reflexes were also unaffected by SR140333 in the stimulus region or between the stimulus and recording sites. 4. Septide (10 nM), an NK1 receptor agonist, enhanced descending reflexes by 30-60% when in the recording chamber. [Sar9,Met(O2)11]substance P had no effect at 10 nM, but potentiated distension-evoked reflexes at 100 nM. 5. A selective NK3 receptor antagonist, SR142801 (100 nM), when applied to the stimulus region, reduced the amplitude of descending reflex responses to compression by 40%, but had no effect on responses to distension. SR142801 (100 nM) had no effect when applied to other regions of the descending reflex pathways. 6. SR142801 (100 nM) only inhibited ascending reflexes when applied at the recording site. However, after nicotinic transmission in the stimulus region was blocked, SR142801 (100 nM) at this site reduced responses to compression. 7. Contractions of the circular muscle of isolated rings of ileum evoked by low concentrations of septide, but not [Sar9,Met(O2)11]substance P, were potentiated by tetrodotoxin (300 nM). 8. Contractile responses evoked by an NK3 receptor agonist, senktide, were non-competitively inhibited by SR142801. After excitatory neuromuscular transmission was blocked, senktide produced inhibitory responses that were also antagonised by SR142801, but to a lesser extent and in an apparently competitive manner. 9. These results indicate that tachykinins acting via NK1 receptors partly mediate transmission to inhibitory motor neurons. NK3 receptors play a role in transmission from intrinsic sensory neurons and from ascending interneurons to excitatory motor neurons during motility reflexes.
Collapse
Affiliation(s)
- P J Johnson
- Department of Physiology, University of Melbourne, Parkville, Victoria, Australia
| | | | | |
Collapse
|
40
|
Daoui S, Cognon C, Naline E, Emonds-Alt X, Advenier C. Involvement of tachykinin NK3 receptors in citric acid-induced cough and bronchial responses in guinea pigs. Am J Respir Crit Care Med 1998; 158:42-8. [PMID: 9655705 DOI: 10.1164/ajrccm.158.1.9705052] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Aerosolized citric acid induces several pulmonary effects including bronchoconstriction, airway inflammation, and cough. Evidence from the use of tachykinin NK1 and NK2 receptor antagonists, as well as chronic treatment with high doses of capsaicin, have suggested that these effects are mediated through the release of tachykinins from sensory nerve endings. In the present study, we have investigated the effects of a tachykinin NK3 receptor antagonist, SR 142801 (osanetant), on cough, bronchoconstriction, and bronchial hyperresponsiveness induced by aerosolized citric acid (0.4 M) in guinea pigs. SR 142801, at 0.3 and 1 mg . kg-1 by intraperitoneal route, significantly inhibited cough in conscious guinea pigs by 57 +/- 3 and 62 +/- 10% (n = 8), respectively. In anaesthetized guinea pigs, it failed to inhibit the bronchoconstriction induced by citric acid when given alone but abolished it when combined with the tachykinin NK2 receptor antagonist, SR 48968 (saredutant). In guinea pigs pretreated with thiorphan (1 mg . kg-1), aerosolized citric acid (0.4 M, 1 h) induced airway hyperresponsiveness 24 h later, displayed by an exaggerated response to the bronchoconstrictor effect of acetylcholine. A microvascular leakage hypersensitivity also occurred and was demonstrated by a potentiation of the plasma protein extravasation from bronchial vessels induced by histamine. When given once intraperitoneally at 1 mg . kg-1 30 min before the citric acid exposure, SR 142801 inhibited both hyperresponsiveness to acetylcholine and the potentiation of histamine-induced increase in microvascular permeability. The results suggest that tachykinin NK3 receptors are involved in citric acid-induced effects on airways.
Collapse
Affiliation(s)
- S Daoui
- Laboratoire de Pharmacologie, Faculté de Médecine Paris-Ouest, 15 rue de l'Ecole de Médecine, 75006 Paris, France
| | | | | | | | | |
Collapse
|
41
|
McLean PG, Garcia-Villar R, Fioramonti J, Buéno L. Effects of tachykinin receptor antagonists on the rat jejunal distension pain response. Eur J Pharmacol 1998; 345:247-52. [PMID: 9592022 DOI: 10.1016/s0014-2999(98)00040-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Distension of the rat intestine causes a cardiovascular response which is indicative of nociception. Since tachykinins are involved in nociception, we tested the effect of neurokinin receptor antagonists against the distension-induced response. The jejunal distension-induced depressor responses were inhibited in a dose-dependent fashion by CP 99,994 (+)-(2S,3S)-3-(2-methoxybenzylamino)-2-phenylpiperidine, tachykinin NK1 receptor antagonist, ED50 = 0.8 mg/kg) and SR 48968 (S)-N-methyl-N[4-(4-acetylamino-4-phenylpiperidino)-2-(3,4-dichloropheny l)butyl]benzamide, tachykinin NK2 receptor antagonist, ED50 = 0.7 mg/kg). SR 142801 (S)-(N)-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl)piperidin-3-yl)prop yl)-4-phenylpiperidin-4-yl)-N-methylacetamide, tachykinin NK3 receptor antagonist, 0.3-10 mg/kg) did not significantly affect the depressor responses to jejunal distension. In addition, CP 99,994 (3 mg/kg) and SR 48968 (3 and 10 mg/kg) reduced sensitivity to distension as revealed by a 2.7-fold (CP 99.994, 3 mg/kg), 2.6-fold (SR 48968, 3 mg/kg) and 4.7-fold (SR 48968, 10 mg/kg) increase in the threshold pressure. Intestinal compliance was not affected by the antagonists. In conclusion, these results suggest that tachykinin NK1 and NK2 but not NK3 receptors are possibly involved in the rat jejunal distension pain response.
Collapse
Affiliation(s)
- P G McLean
- Department of Pharmacology-Toxicology, INRA, Toulouse, France
| | | | | | | |
Collapse
|
42
|
Catalioto RM, Criscuoli M, Cucchi P, Giachetti A, Gianotti D, Giuliani S, Lecci A, Lippi A, Patacchini R, Quartara L, Renzetti AR, Tramontana M, Arcamone F, Maggi CA. MEN 11420 (Nepadutant), a novel glycosylated bicyclic peptide tachykinin NK2 receptor antagonist. Br J Pharmacol 1998; 123:81-91. [PMID: 9484857 PMCID: PMC1565144 DOI: 10.1038/sj.bjp.0701587] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
1. The pharmacological profile was studied of MEN 11420, or cyclo[[Asn(beta-D-GlcNAc)-Asp-Trp-Phe-Dap-Leu]cyclo(2beta-5beta )], a glycosylated derivative of the potent, selective, conformationally-constrained tachykinin NK2 receptor antagonist MEN 10627 (cyclo(Met-Asp-Trp-Phe-Dap-Leu)cyclo(2beta-5beta)). 2. MEN 11420 competitively bound with high affinity to the human NK2 receptor stably transfected in CHO cells, displacing radiolabelled [125I]-neurokinin A and [3H]-SR 48968 with Ki values of 2.5+/-0.7 nM (n = 6) and 2.6+/-0.4 nM (n = 3), respectively. 3. MEN 11420 showed negligible binding affinity (pIC50 < 6) at 50 different receptors (including tachykinin NK1 and NK3 receptors) and ion channels. 4. In the rabbit isolated pulmonary artery and rat urinary bladder MEN 11420 potently and competitively antagonized tachykinin NK2 receptor-mediated contractions (pK(B) = 8.6+/-0.07, n = 10, and 9.0+/-0.04, n = 12; Schild plot slope = -1.06 (95% c.l. = -1.3; -0.8) and -1.17 (95% c.l. = -1.3; -1.0), respectively). MEN 11420 produced an insurmountable antagonism at NK2 receptors in the hamster trachea and mouse urinary bladder. However, in both preparations, the effect of MEN 11420 was reverted by washout and an apparent pK(B) of 10.2+/-0.14, n = 9, and 9.8+/-0.15, n = 9, was calculated in the hamster trachea and mouse urinary bladder, respectively. 5. MEN 11420 showed low affinity (pK(B) < 6) at guinea-pig and rat tachykinin NK1 (guinea-pig ileum and rat urinary bladder) and NK3 (guinea-pig ileum and rat portal vein) receptors. On the whole, the affinities (potency and selectivity) showed by MEN 11420 for different tachykinin receptors, measured either in binding or in functional bioassays, were similar to those shown by the parent compound, MEN 10627. 6. The in vivo antagonism of the contractions produced by [betaAla8]neurokinin A(4-10) (1 nmol kg(-1)) was observed after intravenous (dose range: 1-10 nmol kg(-1)), intranasal (3-10 nmol kg(-1)), intrarectal (30-100 nmol kg(-1)) and intraduodenal (100-300 nmol kg(-1)) administration of MEN 11420. MEN 11420 was more potent (about 10 fold) and longer lasting than its parent compound MEN 10627, possibly due to a greater metabolic stability. 7. A dose of MEN 11420 (100 nmol kg(-1), i.v.), that produced potent and long lasting inhibition of the contraction of the rat urinary bladder induced by challenge with the NK2 selective receptor agonist [betaAla8]neurokinin A(4-10) (10-300 nmol kg(-1)), was without effect on the responses produced by the NK1 receptor selective agonist [Sar9]substance P sulphone (1-10 nmol kg(-1)). 8. These findings indicate that MEN 11420 is a potent and selective tachykinin NK2 receptor antagonist. The introduction of a sugar moiety did not produce major changes in the affinity profile of this antagonist as compared to MEN 10627, but markedly improved its in vivo potency and duration of action. With these characteristics, MEN 11420 is a suitable candidate for studying the pathophysiological significance of tachykinin NK2 receptors in humans.
Collapse
Affiliation(s)
- R M Catalioto
- Department of Pharmacology, Menarini Ricerche S.p.A, Firenze, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Patacchini R, Barthó L, Maggi CA. Characterization of receptors mediating contraction induced by tachykinins in the guinea-pig isolated common bile duct. Br J Pharmacol 1997; 122:1633-8. [PMID: 9422808 PMCID: PMC1565116 DOI: 10.1038/sj.bjp.0701560] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. We studied the effect of the natural tachykinins and of synthetic agonists selective for the tachykinin NK1, NK2 and NK3 receptors, on the motility of guinea-pig isolated common bile duct longitudinally-oriented smooth muscle. 2. All the tachykinins tested (both natural and synthetic) produced a concentration-dependent contractile response of the guinea-pig isolated common bile duct: these effects underwent a marked tachyphylaxis, especially the responses elicited by NK1 and NK3 receptor-selective agonists. 3. Among the natural tachykinins neurokinin B (EC50 = 3.2 nM; 95% c.l. = 2.0-5.1; n = 4) was the most potent, being about 40 and 25 fold more potent than substance P (EC50 = 121.6 nM; 95% c.l. = 94-157; P < 0.01; n = 4) and neurokinin A (EC50 = 83.4 nM; 95% c.l. = 62-112; P < 0.01; n = 4), respectively. Among the synthetic analogues the NK3 receptor-selective agonist senktide (EC50 = 1.1 nM; 95% c.l. = 0.7-1.8; n = 8) was the most potent, being about 120, 110 and 20 fold more potent than [Sar9]substance P sulfone (NK1 receptor-selective) (EC50 = 130.4 nM; 95% c.l. = 99-172; P < 0.01; n = 8), [beta Ala8]NKA (4-10) (NK2 receptor-selective) (EC50 = 120.1 nM; 95% c.l. = 95-151; P < 0.01; n = 8) and septide (NK1 receptor-selective) (EC50 = 22.6 nM; 95% c.l. = 18-28; P < 0.01; n = 8), respectively. All tachykinins (natural or synthetic receptor agonists) produced a similar Emax, averaging about 50% of that produced by KCl (80 mM). 4. Atropine (1 microM) did not affect the responses to either NK1 or NK2 receptor-selective agonists, whereas it reduced the Emax of senktide by about 50%, without affecting its potency (EC50). Tetrodotoxin (1 microM) totally blocked senktide-induced contractions, as did the combined pretreatment with atropine plus the tachykinin NK1 and NK2 receptor-selective antagonists GR 82334 and MEN 11420 (1 microM each), respectively. 5. GR 82334 (1 microM) blocked with apparent competitive kinetics septide- (apparent pKB = 7.46 +/- 0.10; n = 5) and [Sar9]substance P sulfone- (apparent pKB = 6.80 +/- 0.04; n = 4) induced contractions. MEN 11420 (30-300 nM), a novel potent NK2 receptor antagonist, potently antagonized [beta Ala8]NKA (4-10), with competitive kinetics (pKB = 8.25 +/- 0.08; n = 12: Schild plot slope = -0.90; 95% c.l. = -1.4; -0.35). The NK3 receptor-selective antagonist SR 142801 (30 nM) produced insurmountable antagonism of the senktide-induced contractions (Emax inhibited by 64%). None of the above antagonists, tested at the highest concentrations employed against tachykinins, affected the concentration-response curve to methacholine (0.1-300 microM). 6. We conclude that tachykinins produce contraction of the guinea-pig isolated common bile duct by stimulating NK1, NK2 and NK3 receptors. The responses obtained by activating NK1 and NK2 receptors are atropine-resistant. The contraction obtained by stimulating NK3 receptors is totally neurogenic, being mediated by the release of endogenous acetylcholine and tachykinins; the latter act, in turn, on postjunctional tachykinin NK1/NK2 receptors. The role of the NK3 receptor as prejunctional mediator of the excitatory transmission operated by tachykinins is discussed.
Collapse
Affiliation(s)
- R Patacchini
- Pharmacology Department, Menarini Ricerche SpA, Florence, Italy
| | | | | |
Collapse
|
44
|
Cellier E, Barbot L, Regoli D, Couture R. Cardiovascular and behavioural effects of intracerebroventricularly administered tachykinin NK3 receptor antagonists in the conscious rat. Br J Pharmacol 1997; 122:643-54. [PMID: 9375960 PMCID: PMC1564991 DOI: 10.1038/sj.bjp.0701435] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. In the conscious rat, three tachykinin NK3 receptor antagonists, namely SR142801 ((S)-(N)-(1-(3-(1-benzoyl-3-(3,4-dichlorophenyl)piperidin-3-yl)pro pyl)-4-phenylpiperidin-4-yl)-N-methylacetamide), R820 (3-indolylcarbonyl-Hyp-Phg-N(Me)-Bzl) and R486 (H-Asp-Ser-Phe-Trp-beta-Ala-Leu-Met-NH2) were assessed against the intracerebroventricular (i.c.v.) effects induced by senktide, a selective NK3 receptor agonist, on mean arterial blood pressure (MAP), heart rate (HR) and motor behaviour. 2. Senktide (10-650 pmol per animal; i.c.v; n = 4-16) at the lowest dose caused a significant fall in MAP (-10 +/- 6 mmHg), while at the highest doses (100 and 650 pmol), senktide caused a rise in MAP (9 +/- 3 and 12 +/- 1 mmHg, respectively) when compared to vehicle. The intermediate doses (25 and 65 pmol) had no effect on MAP. The highest two doses caused a tachycardia of 62 +/- 15 and 88 +/- 8 beats min(-1), respectively. The dose of 65 pmol had a biphasic effect on HR, an initial bradycardia of 47 +/- 12 beats min(-1) followed by a tachycardia of 46 +/- 14 beats min(-1). The lowest doses caused either a rise of 52 +/- 10 beats min(-1) (25 pmol) or no effect (10 pmol) on HR. All doses of senktide caused similar increases in face washing, sniffing and wet dog shakes except at the dose of 100 pmol, when wet dog shakes were more than double those observed with the other doses. 3. The antagonist SR142801 (100 pmol -65 nmol per animal; i.c.v.; n = 6-8) caused increases in MAP at the highest two doses (6.5 and 65 nmol) while HR, dose-dependently, increased (23 +/- 6 to 118 +/- 26 beats min[-1]) and the onset dose-dependently decreased. The (R)-enantiomer, SR142806 (100 pmol - 65 nmol per animal; i.c.v.; n = 6-8) only caused rises in MAP (13 +/- 2 mmHg) and HR (69 +/- 11 beats min[-1]) at the highest dose. These drugs had no apparent effect on behaviour, except for the highest dose of SR142801 which increased sniffing. The antagonist R820 (650 pmol - 6.5 nmol per animal; i.c.v.; n = 6) had no effect on MAP or HR and only increased sniffing behaviour at 6.5 nmol. At 650 pmol (n = 6), R486 had no effect on any variable, but at 3.25 nmol, i.c.v. (n = 4) a delayed tachycardia and a significant increase in all behavioural variables were observed. 4. The cardiovascular responses induced by 6.5 nmol SR142801 and 25 pmol senktide were inhibited by R820 (6.5 nmol, 5 min earlier i.c.v.). In contrast, R820 failed to affect the central cardiovascular and behavioural responses induced by 10 pmol [Sar9, Met(O2)11]substance P, a NK1 receptor selective agonist. The senktide-induced behavioural changes were not inhibited by R820 (6.5 nmol, i.c.v.) while R486 (650 pmol, i.c.v.) blocked both the cardiovascular and behavioural responses to 25 pmol senktide. A mixture of antagonists for NK1 (RP67580; 6.5 nmol) and NK2 (SR48968; 6.5 nmol) receptors injected i.c.v. did not affect the cardiovascular response to SR142801. Cross-desensitization was shown between the central responses to SR142801 and senktide, but not between SR142801 and [Sar9, Met(O2)11]substance P. 5. The antagonists SR142801 and SR142806 (6.5-650 nmol kg(-1); n = 5-7), given i.v., did not evoke any cardiovascular or behavioural changes, except a delayed bradycardia for SR142806 (650 nmol kg[-1]), and also failed to inhibit the increase in MAP evoked by senktide (4 nmol kg(-1), i.v.). However, at the highest dose, both drugs slightly reduced the senktide-induced tachycardia. 6. Although the present data are consistent with the in vitro pharmacological bioassays and binding data, showing that SR142801 is a poor antagonist at rat peripheral NK3 receptors, they suggest that SR142801 has a partial agonist action at these receptors centrally. A separation of the cardiovascular and behavioural effects mediated by central NK3 receptor activation was achieved with SR142801 and R820 but not with R486. These results could be explained by the existence of NK3 receptor subtypes in the rat or by the differential activation and inhibition of the same receptor protein linked to the production of different second messengers. Differences in the pharmacokinetic or pharmacodynamic properties of the antagonists cannot be excluded at this time.
Collapse
Affiliation(s)
- E Cellier
- Department of Physiology, Faculty of Medicine, Université de Montréal, Québec, Canada
| | | | | | | |
Collapse
|
45
|
Hardwick JC, Mawe GM, Parsons RL. Tachykinin-induced activation of non-specific cation conductance via NK3 neurokinin receptors in guinea-pig intracardiac neurones. J Physiol 1997; 504 ( Pt 1):65-74. [PMID: 9350618 PMCID: PMC1159936 DOI: 10.1111/j.1469-7793.1997.065bf.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
1. Whole mount preparations from guinea-pig hearts were used to characterize the receptors and ionic mechanisms mediating the substance P (SP)-induced depolarization of parasympathetic postganglionic neurones of the cardiac ganglion. 2. Measurement of the amplitude of depolarization in response to superfusion of different tachykinin agonists (neurokinins A (NKA) and B (NKB), SP, and senktide) gave a rank-order potency of NKB = senktide > NKA > SP, indicating involvement of an NK3 receptor. The use of the selective tachykinin receptor antagonists SR 140333, SR 48986, and SR 142801 demonstrated that only the NK3 receptor antagonist SR 142801 inhibited the SP-induced depolarization. 3. The SP-induced depolarization was not inhibited by Ba2+, TEA, or niflumic acid, or altered by reduced Cl- solutions, but was attenuated in reduced Na+ solutions. Single electrode voltage clamp studies demonstrated that the SP-induced inward current increased in amplitude at more negative potentials, had a reversal potential of approximately 0 mV, and was reduced in amplitude in reduced Na+ solutions. 4. We conclude that the SP-induced depolarization in guinea-pig postganglionic parasympathetic neurones of the cardiac ganglion is due to NK3-mediated activation of a non-selective cation conductance.
Collapse
Affiliation(s)
- J C Hardwick
- Department of Anatomy and Neurobiology, University of Vermont, Burlington 05405, USA
| | | | | |
Collapse
|
46
|
Santos AR, Calixto JB. Further evidence for the involvement of tachykinin receptor subtypes in formalin and capsaicin models of pain in mice. Neuropeptides 1997; 31:381-9. [PMID: 9308027 DOI: 10.1016/s0143-4179(97)90075-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The intradermal (i.d.) injection of NK1 receptor antagonists GR 82334 and FK 888 (1-50 pmol/paw), in association with formalin, produced graded inhibition of the early but not the late phase of the formalin test. The NK2, SR 48968 and NK3 SR 142801 receptor antagonists (1-50 pmol/paw) were effective in inhibiting both phases of the formalin model. Co-injection of NK1, (FK 888, GR 82334), NK2 (SR 48968) or NK3 (SR 142801) receptor antagonists with capsaicin dose-dependently attenuated capsaicin-induced licking. In addition, all antagonists were more efficacious when compared with response in the formalin test. The antinociception caused by i.d. injection of the NK3 receptor antagonist SR 142801 against both phases of the formalin test, but not that of NK1 and NK2 receptor antagonists, was significantly reversed by intraperitoneal (i.p.) injection of naloxone (5 mg/kg). Intracerebroventricular (i.c.v.) injection of NK1, NK2 or NK3 receptor antagonists (15-500 pmol/site), all produced significant and dose-dependent inhibition of both phases of the formalin and capsaicin tests. With the exception of the response of SR 48968, which was equipotent in both models of nociception, FK 888, GR 82334 and SR 142801 were about 2-25-fold less potent at the ID50 level against the capsaicin-induced pain. The antinociception caused by i.c.v. injection of NK1, NK2 or NK3 receptor antagonists was reversed by i.p. injection of naloxone (5 mg/kg). These results indicate that tachykinin receptor antagonists, acting through NK1, NK2 and NK3 receptors, produce powerful antinociception when injected i.d. or by i.c.v. route against both formalin- and capsaicin-induced licking, being more efficacious against the latter model of nociception. The action of NK3 receptor antagonist given i.d. was mediated through an opioid mechanism sensitive to naloxone. However, when injected i.c.v., the antinociception caused by NK1, NK2 or NK3 receptor antagonists was largely reversed by naloxone when assessed in the formalin test, suggesting a distinct mechanism of action.
Collapse
Affiliation(s)
- A R Santos
- Department of Pharmacology, CCB, Universidade Federal de Santa Catarina, Florianópolis-SC, Brazil
| | | |
Collapse
|
47
|
Maggi CA, Catalioto RM, Criscuoli M, Cucchi P, Giuliani S, Lecci A, Lippi A, Meini S, Patacchini R, Renzetti AR, Santicioli P, Tramontana M, Zagorodnyuk V, Giachetti A. Tachykinin receptors and intestinal motility. Can J Physiol Pharmacol 1997. [DOI: 10.1139/y97-067] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Vilain P, Emonds-Alt X, Le Fur G, Brelière JC. Tachykinin-induced contractions of the guinea pig ileum longitudinal smooth muscle: tonic and phasic muscular activities. Can J Physiol Pharmacol 1997. [DOI: 10.1139/y97-052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Nalivaiko E, Michaud JC, Soubrié P, Le Fur G, Feltz P. Tachykinin neurokinin-1 and neurokinin-3 receptor-mediated responses in guinea-pig substantia nigra: an in vitro electrophysiological study. Neuroscience 1997; 78:745-57. [PMID: 9153655 DOI: 10.1016/s0306-4522(96)00625-2] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The effects of tachykinin receptor agonists and antagonists were investigated using intra- and extracellular recordings on spontaneously firing nigral neurons in guinea-pig brain slices. In 70 of 76 electrophysiologically identified dopaminergic neurons, a concentration-dependent increase in firing rate was induced by the selective neurokinin-3 tachykinin agonist senktide and by the natural tachykinin agonists neurokinin B and substance P, with EC50 values of 14.7, 31.2 and 12200 nM respectively. These responses were inhibited in a concentration- and time-dependent manner by the selective non-peptide neurokinin-3 receptor antagonist SR 142801 (1-100 nM; n=23), but neither by its S-enantiomer SR 142806 (100 nM; n=4) nor by selective antagonists of neurokinin-1 (SR 140333) or neurokinin-2 (SR 48968) receptors (both at 100 nM; n=3). The selective neurokinin-1 agonist [Sar9,Met(O2)11]substance P (30-100 nM; n=23) and the selective neurokinin-2 agonist [Nle10]neurokinin A(4-10)(30-100 nM; n=13) were without any effect on dopaminergic cells. In 13 of 21 electrophysiologically identified, presumably GABAergic neurons located in the pars compacta of the substantia nigra, excitatory responses were evoked concentration dependently by substance P and [Sar9,Met(O2)11]substance P, with EC50 values of 18.6 and 41.9 nM respectively. These responses were inhibited by SR 140333 (100 nM; n=3), but neither by its R-enantiomer SR 140603 nor by SR 142801 (both at 100 nM; n=3). Senktide and [Nle10]neurokinin A(4-10) (both at 30-100 nM; n=10) were without effect on these presumed GABAergic neurons. A small population (12%) of pars compacta neurons was insensitive to any of the three selective tachykinin agonists. In the nigral pars reticulata, 12 neurons were recorded which had an electrophysiological profile similar to that of presumed GABAergic neurons in the pars compacta. Of these 12 cells, seven did not respond to any of the selective tachykinin agonists tested, while five were excited by senktide in a concentration-dependent manner (EC50=98.5 nM). Although this value was significantly higher than that found for dopaminergic neurons in the pars compacta, senktide-evoked responses were inhibited by SR 142801 (100 nM; n=3). We conclude that, in the guinea-pig substantia nigra, tachykinins evoke excitatory responses in both dopaminergic and non-dopaminergic neurons; however, the sensitivity to tachykinin agonists (neurokinin-1 versus neurokinin-3) depends on both neuronal type and localization.
Collapse
|
50
|
Maggi CA, Giuliani S, Santicioli P. CGRP potentiates excitatory transmission to the circular muscle of guinea-pig colon. REGULATORY PEPTIDES 1997; 69:127-36. [PMID: 9226396 DOI: 10.1016/s0167-0115(97)00006-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
We aimed to assess whether calcitonin gene-related peptide (CGRP) can modulate the release of tachykinins which are the main nonadrenergic noncholinergic (NANC) excitatory transmitters to the circular muscle of the guinea-pig proximal colon. In organ bath experiments, electrical field stimulation (EFS) in the presence of atropine (1 microM) and guanethidine (3 microM) evoked twitch phasic NANC contractions which were abolished by the combined administration of tachykinin NK1 and NK2 receptor antagonists. Human alphaCGRP (CGRP, 1-100 nM) produced a concentration-dependent potentiation of the amplitude of the NANC contractions induced by EFS while salmon calcitonin (up to 1 microM) had no effect. The potentiating effect of CGRP was unaffected by in vitro capsaicin pretreatment (10 microM for 15 min), peptidase inhibitors (captopril, bestatin and thiorphan, 1 microM each), apamin (0.3 microM) plus L-nitroarginine (L-NOARG, 100 microM) and by the CGRP1 receptor antagonist, the C-terminal fragment CGRP(8-37) (1 microM). The NK2 receptor antagonist MEN 10627 which, when administered alone, had only a partial inhibitory effect on the amplitude of NANC twitches, concentration-dependently (10 nM-1 microM) inhibited the potentiating effect of CGRP. CGRP (1-100 nM) produced a concentration-dependent potentiation of the atropine-sensitive cholinergic contractions evoked by EFS in the presence of guanethidine and of tachykinin NK1 and NK2 receptor antagonists. Similar to the effect of CGRP, application of capsaicin (0.1-1 microM) potentiated the amplitude of the NANC contraction to EFS, an effect undergoing complete desensitization upon a second application of the drug. CGRP (0.1 microM) did not affect the contractile action of a submaximally effective concentration of neurokinin A (2 nM) while it inhibited that induced by substance P (2 nM). In sucrose gap, single pulse EFS in the presence of atropine (1 microM) and guanethidine (3 microM) induced an inhibitory junction potential (i.j.p.) and a small excitatory junction potential (e.j.p.). CGRP (0.1 microM) produced membrane hyperpolarization and relaxation without affecting i.j.p. amplitude but concomitantly increased the e.j.p. amplitude to induce a contraction in correspondence to each electrical pulse. In the presence of the NK1 receptor antagonist, GR 82334 (3 microM), the membrane hyperpolarization and relaxation produced by CGRP and the EFS-evoked i.j.p. were unaffected, while the potentiating effect of CGRP on the EFS-evoked NANC e.j.p. and the corresponding contraction were abolished. We conclude that, in addition to the previously characterized direct smooth muscle relaxant action via CGRP1 receptors (Maggi et al. Regulatory Peptides 61, 27-36, 1996), CGRP also induces a remarkable potentiation of excitatory neurotransmission to the circular muscle of the guinea-pig colon via CGRP2 receptors. The latter effect, documented in this study, is evidenced on both the atropine-sensitive and the atropine-resistant (tachykinin-mediated) components of excitatory transmission: this effect does not involve mediator(s) release from capsaicin-sensitive primary afferent nerves, nor inhibition of peptide degradation or modulation of NANC inhibitory transmission.
Collapse
Affiliation(s)
- C A Maggi
- Pharmacology Department, Menarini Ricerche, Florence, Italy
| | | | | |
Collapse
|