1
|
Saha LK, Wakasugi M, Akter S, Prasad R, Wilson SH, Shimizu N, Sasanuma H, Huang SYN, Agama K, Pommier Y, Matsunaga T, Hirota K, Iwai S, Nakazawa Y, Ogi T, Takeda S. Topoisomerase I-driven repair of UV-induced damage in NER-deficient cells. Proc Natl Acad Sci U S A 2020; 117:14412-14420. [PMID: 32513688 PMCID: PMC7321995 DOI: 10.1073/pnas.1920165117] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Nucleotide excision repair (NER) removes helix-destabilizing adducts including ultraviolet (UV) lesions, cyclobutane pyrimidine dimers (CPDs), and pyrimidine (6-4) pyrimidone photoproducts (6-4PPs). In comparison with CPDs, 6-4PPs have greater cytotoxicity and more strongly destabilizing properties of the DNA helix. It is generally believed that NER is the only DNA repair pathway that removes the UV lesions as evidenced by the previous data since no repair of UV lesions was detected in NER-deficient skin fibroblasts. Topoisomerase I (TOP1) constantly creates transient single-strand breaks (SSBs) releasing the torsional stress in genomic duplex DNA. Stalled TOP1-SSB complexes can form near DNA lesions including abasic sites and ribonucleotides embedded in chromosomal DNA. Here we show that base excision repair (BER) increases cellular tolerance to UV independently of NER in cancer cells. UV lesions irreversibly trap stable TOP1-SSB complexes near the UV damage in NER-deficient cells, and the resulting SSBs activate BER. Biochemical experiments show that 6-4PPs efficiently induce stable TOP1-SSB complexes, and the long-patch repair synthesis of BER removes 6-4PPs downstream of the SSB. Furthermore, NER-deficient cancer cell lines remove 6-4PPs within 24 h, but not CPDs, and the removal correlates with TOP1 expression. NER-deficient skin fibroblasts weakly express TOP1 and show no detectable repair of 6-4PPs. Remarkably, the ectopic expression of TOP1 in these fibroblasts led them to completely repair 6-4PPs within 24 h. In conclusion, we reveal a DNA repair pathway initiated by TOP1, which significantly contributes to cellular tolerance to UV-induced lesions particularly in malignant cancer cells overexpressing TOP1.
Collapse
Affiliation(s)
- Liton Kumar Saha
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, 606-8501 Kyoto, Japan
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Mitsuo Wakasugi
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 920-1192 Kanazawa, Japan
| | - Salma Akter
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, 606-8501 Kyoto, Japan
| | - Rajendra Prasad
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC 27709
| | - Naoto Shimizu
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, 606-8501 Kyoto, Japan
| | - Hiroyuki Sasanuma
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, 606-8501 Kyoto, Japan
| | - Shar-Yin Naomi Huang
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Keli Agama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892
| | - Tsukasa Matsunaga
- Laboratory of Human Molecular Genetics, Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, 920-1192 Kanazawa, Japan
| | - Kouji Hirota
- Department of Chemistry, Tokyo Metropolitan University, 192-0397 Tokyo, Japan
| | - Shigenori Iwai
- Biological Chemistry Group, Graduate School of Engineering Science, Osaka University, 565-0871 Osaka, Japan
| | - Yuka Nakazawa
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, 464-8601 Nagoya, Japan
| | - Tomoo Ogi
- Department of Genetics, Research Institute of Environmental Medicine, Nagoya University, 464-8601 Nagoya, Japan
| | - Shunichi Takeda
- Department of Radiation Genetics, Kyoto University, Graduate School of Medicine, 606-8501 Kyoto, Japan;
| |
Collapse
|
2
|
Functional dissection of proliferating-cell nuclear antigens (1 and 2) in human malarial parasite Plasmodium falciparum: possible involvement in DNA replication and DNA damage response. Biochem J 2015; 470:115-29. [PMID: 26251451 DOI: 10.1042/bj20150452] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 06/22/2015] [Indexed: 11/17/2022]
Abstract
Eukaryotic PCNAs (proliferating-cell nuclear antigens) play diverse roles in nucleic acid metabolism in addition to DNA replication. Plasmodium falciparum, which causes human malaria, harbours two PCNA homologues: PfPCNA1 and PfPCNA2. The functional role of two distinct PCNAs in the parasite still eludes us. In the present study, we show that, whereas both PfPCNAs share structural and biochemical properties, only PfPCNA1 functionally complements the ScPCNA mutant and forms distinct replication foci in the parasite, which PfPCNA2 fails to do. Although PfPCNA1 appears to be the primary replicative PCNA, both PfPCNA1 and PfPCNA2 participate in an active DDR (DNA-damage-response) pathway with significant accumulation in the parasite upon DNA damage induction. Interestingly, PfPCNA genes were found to be regulated not at the transcription level, but presumably at the protein stability level upon DNA damage. Such regulation of PCNA has not been shown in eukaryotes before. Moreover, overexpression of PfPCNA1 and PfPCNA2 in the parasite confers a survival edge on the parasite in a genotoxic environment. This is the first evidence of a PfPCNA-mediated DDR in the parasite and gives new insights and rationale for the presence of two PCNAs as a parasite survival strategy and its probable success.
Collapse
|
3
|
Beppu T, Ishida Y. Detection of S Phase Cells with an Antibody to Proliferating Cell Nuclear Antigen (PCNA). J Histotechnol 2013. [DOI: 10.1179/his.1994.17.4.325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
4
|
Lagerwerf S, Vrouwe MG, Overmeer RM, Fousteri MI, Mullenders LHF. DNA damage response and transcription. DNA Repair (Amst) 2011; 10:743-50. [PMID: 21622031 DOI: 10.1016/j.dnarep.2011.04.024] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A network of DNA damage surveillance systems is triggered by sensing of DNA lesions and the initiation of a signal transduction cascade that activates genome-protection pathways including nucleotide excision repair (NER). NER operates through coordinated assembly of repair factors into pre- and post-incision complexes. Recent work identifies RPA as a key regulator of the transition from dual incision to repair-synthesis in UV-irradiated non-cycling cells, thereby averting the generation of unprocessed repair intermediates. These intermediates could lead to recombinogenic events and trigger a persistent ATR-dependent checkpoint signaling. It is now evident that DNA damage signaling is not limited to NER proficient cells. ATR-dependent checkpoint activation also occurs in UV-exposed non-cycling repair deficient cells coinciding with the formation of endonuclease APE1-mediated DNA strand breaks. In addition, the encounter of elongating RNA polymerase II (RNAPIIo) with DNA damage lesions and its persistent stalling provides a strong DNA damage signaling leading to cell cycle arrest, apoptosis and increased mutagenesis. The mechanism underlying the strong and strand specific induction of UV-induced mutations in NER deficient cells has been recently resolved by the finding that gene transcription itself increases UV-induced mutagenesis in a strand specific manner via increased deamination of cytosines. The cell removes the RNAPIIo-blocking DNA lesions by transcription-coupled repair (TC-NER) without displacement of the DNA damage stalled RNAPIIo. Deficiency in TC-NER associates with mutations in the CSA and CSB genes giving rise to the rare human disorder Cockayne syndrome (CS). CSB functions as a repair coupling factor to attract NER proteins, chromatin remodelers and the CSA-E3-ubiquitin ligase complex to the stalled RNAPIIo; CSA is dispensable for attraction of NER proteins, yet in cooperation with CSB is required to recruit XAB2, the nucleosomal binding protein HMGN1 and TFIIS. The molecular mechanisms by which these proteins bring about efficient TC-NER and trigger signaling after transcription arrest remain elusive; particularly the role of chromatin remodeling in TC-NER needs to be clarified in the context of anticipated structural changes that allow repair and transcription restart.
Collapse
Affiliation(s)
- Saskia Lagerwerf
- Department of Toxicogenetics, Leiden University Medical Center, 2333 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
5
|
Vrouwe MG, Pines A, Overmeer RM, Hanada K, Mullenders LHF. UV-induced photolesions elicit ATR-kinase-dependent signaling in non-cycling cells through nucleotide excision repair-dependent and -independent pathways. J Cell Sci 2011; 124:435-46. [PMID: 21224401 DOI: 10.1242/jcs.075325] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Activation of signaling pathways by UV radiation is a key event in the DNA damage response and initiated by different cellular processes. Here we show that non-cycling cells proficient in nucleotide excision repair (NER) initiate a rapid but transient activation of the damage response proteins p53 and H2AX; by contrast, NER-deficient cells display delayed but persistent signaling and inhibition of cell cycle progression upon release from G0 phase. In the absence of repair, UV-induced checkpoint activation coincides with the formation of single-strand DNA breaks by the action of the endonuclease Ape1. Although temporally distinct, activation of checkpoint proteins in NER-proficient and NER-deficient cells depends on a common pathway involving the ATR kinase. These data reveal that damage signaling in non-dividing cells proceeds via NER-dependent and NER-independent processing of UV photolesions through generation of DNA strand breaks, ultimately preventing the transition from G1 to S phase.
Collapse
Affiliation(s)
- Mischa G Vrouwe
- Department of Toxicogenetics, Leiden University Medical Center, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
6
|
Jensen A, Mullenders LHF. Transcription factor IIS impacts UV-inhibited transcription. DNA Repair (Amst) 2010; 9:1142-50. [PMID: 20729154 DOI: 10.1016/j.dnarep.2010.08.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2010] [Revised: 07/08/2010] [Accepted: 08/03/2010] [Indexed: 11/25/2022]
Abstract
Inhibition of transcription elongation can cause severe developmental and neurological abnormalities notably manifested by the rare recessive progeroid disorder Cockayne syndrome (CS). DNA alterations can cause permanent blocks to an elongating RNA polymerase II (RNAPII) leading to transcriptional arrest. Abrogation of transcription arrest requires removal of transcription blocking lesions through transcription-coupled nucleotide excision repair (TC-NER) a process defective in CS. Transcription elongation factor IIS (TFIIS) has been found to localize with the TC-NER complex after cellular exposure to UV-C light and in vitro addition of TFIIS to a damage arrested RNAPII causes transcript shortening. Hence default TFIIS activity might mimic or contribute to the severe phenotype of Cockayne syndrome. Here we show that down regulation of TFIIS by siRNA treatment of human cells lead to impaired RNA synthesis recovery and elevated levels of hyper-phosphorylated RNAPII after UV-irradiation. TFIIS knock down does not affect TC-NER, the reappearance of hypo-phosphorylated RNAPII post-UV-irradiation, UV sensitivity or the p53 damage response. These findings reveal a role for TFIIS in transcription recovery and re-establishment of the balance between hypo- and hyper-phosphorylated RNAPII after DNA damage repair.
Collapse
Affiliation(s)
- Anne Jensen
- Department of Toxicogenetics, Leiden University Medical Center, The Netherlands
| | | |
Collapse
|
7
|
Chapter 6 Application of New Methods for Detection of DNA Damage and Repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 277:217-51. [DOI: 10.1016/s1937-6448(09)77006-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Kaneko T, Tahara S, Tanno M, Taguchi T. Age-related changes in the induction of DNA polymerases in rat liver by gamma-ray irradiation. Mech Ageing Dev 2002; 123:1521-8. [PMID: 12425958 DOI: 10.1016/s0047-6374(02)00119-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
DNA polymerase activities related to DNA repair were examined in the livers of young (6-month-old) and aged (27-month-old) rats irradiated with gamma-rays. The activity of DNA polymerase alpha was little changed in the livers of gamma-ray-irradiated rats, while DNA polymerases beta and gamma were induced in the livers of young and aged rats exposed by gamma-ray irradiation. These enzymes were induced from 2 to 6 h after irradiation of young and aged rats, respectively, although the induction in aged rats was weak. DNA polymerase beta activity in the livers of young rats irradiated with gamma-rays was 2-fold that in aged rats. Similarly, DNA polymerase gamma activity in the livers of young rats subjected to gamma-ray irradiation was 3-fold that in aged rats. The induction of proliferating cell nuclear antigen (PCNA) in the livers of aged rats irradiated with gamma-rays was also delayed compared with young rats. These results indicate that the decline in repair activity in aged rats leads to the accumulation of oxidative damage and DNA mutations in aged tissues.
Collapse
Affiliation(s)
- Takao Kaneko
- Redox Regulation Research Group, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan.
| | | | | | | |
Collapse
|
9
|
Dogliotti E, Fortini P, Pascucci B, Parlanti E. The mechanism of switching among multiple BER pathways. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2002; 68:3-27. [PMID: 11554307 DOI: 10.1016/s0079-6603(01)68086-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
To preserve genomic beta DNA from common endogenous and exogenous base and sugar damage, cells are provided with multiple base excision repair (BER) pathways: the DNA polymerase (Pol) beta-dependent single nucleotide BER and the long-patch (2-10 nt) BER that requires PCNA. It is a challenge to identify the factors that govern the mechanism of switching among these pathways. One of these factors is the type of DNA damage induced in DNA. By using different model lesions we have shown that base damages (like hypoxanthine and 1, N6-ethenoadenine) excised by monofunctional DNA glycosylases are repaired via both single-nucleotide and long-patch BER, while lesions repaired by a bifunctional DNA glycosylase (like 7,8-dihydro-8-oxoguanine) are repaired mainly by single-nucleotide BER. The presence of a genuine 5' nucleotide, as in the case of cleavage by a bifunctional DNA glycosylase-beta lyase, would then minimize the strand displacement events. Another key factor in the selection of the BER branch is the relative level of cellular polymerases. While wild-type embryonic mouse fibroblast cell lines repair abasic sites predominantly via single-nucleotide replacement reactions (80% of the repair events), cells homozygous for a deletion in the Pol beta gene repair these lesions exclusively via long-patch BER. Following treatment with methylmethane sulfonate, these mutant cells accumulate DNA single-strand breaks in their genome in keeping with the fact that repair induced by monofunctional alkylating agents goes predominantly via single-nucleotide BER. Since the long-patch BER is strongly stimulated by PCNA, the cellular content of this cell-cycle regulated factor is also extremely effective in driving the repair reaction to either BER branch. These findings raise the interesting possibility that different BER pathways might be acting as a function of the cell cycle stage.
Collapse
Affiliation(s)
- E Dogliotti
- Laboratory of Comparative Toxicology and Ecotoxicology, Istituto Superiore di Sanità, Viale Regina Elena 299, 00161 Rome, Italy
| | | | | | | |
Collapse
|
10
|
Katsumi S, Kobayashi N, Imoto K, Nakagawa A, Yamashina Y, Muramatsu T, Shirai T, Miyagawa S, Sugiura S, Hanaoka F, Matsunaga T, Nikaido O, Mori T. In situ visualization of ultraviolet-light-induced DNA damage repair in locally irradiated human fibroblasts. J Invest Dermatol 2001; 117:1156-61. [PMID: 11710927 DOI: 10.1046/j.0022-202x.2001.01540.x] [Citation(s) in RCA: 103] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have developed a novel method that uses a microfilter mask to produce ultraviolet-induced DNA lesions in localized areas of the cell nucleus. This technique allows us to visualize localized DNA repair in situ using immunologic probes. Two major types of DNA photoproducts [cyclobutane pyrimidine dimers and (6-4) photoproducts] were indeed detected in several foci per nucleus in normal human fibroblasts. They were repaired at those localized sites at different speeds, indicating that DNA photoproducts remain in relatively fixed nuclear positions during repair. A nucleotide excision repair protein, proliferating cell nuclear antigen, was recruited to the sites of DNA damage within 30 min after ultraviolet exposure. The level of proliferating cell nuclear antigen varied with DNA repair activity and diminished within 24 h. In contrast, almost no proliferating cell nuclear antigen fluorescence was observed within 3 h in xeroderma pigmentosum fibroblasts, which could not repair either type of photolesion. These results demonstrate that this technique is useful for visualizing the normal nucleotide excision repair process in vivo. Interestingly, however, in xeroderma pigmentosum cells, proliferating cell nuclear antigen appeared at ultraviolet damage sites after a delay and persisted as late as 72 h after ultraviolet exposure. This result suggests that this technique is also valuable for examining an incomplete or stalled nucleotide excision repair process caused by the lack of a single functional nucleotide excision repair protein. Thus, the technique provides a powerful approach to understanding the temporal and spatial interactions between DNA damage and damage-binding proteins in vivo.
Collapse
Affiliation(s)
- S Katsumi
- Radioisotope Research Center, Department of Dermatology, Nara Medical University, Kashihara, Nara, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Kannouche P, Mauffrey P, Pinon-Lataillade G, Mattei MG, Sarasin A, Daya-Grosjean L, Angulo JF. Molecular cloning and characterization of the human KIN17 cDNA encoding a component of the UVC response that is conserved among metazoans. Carcinogenesis 2000; 21:1701-10. [PMID: 10964102 DOI: 10.1093/carcin/21.9.1701] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
We describe the cloning and characterization of the human KIN17 cDNA encoding a 45 kDa zinc finger nuclear protein. Previous reports indicated that mouse kin17 protein may play a role in illegitimate recombination and in gene regulation. Furthermore, overproduction of mouse kin17 protein inhibits the growth of mammalian cells, particularly the proliferation of human tumour-derived cells. We show here that the KIN17 gene is remarkably conserved during evolution. Indeed, the human and mouse kin17 proteins are 92.4% identical. Furthermore, DNA sequences from fruit fly and filaria code for proteins that are 60% identical to the mammalian kin17 proteins, indicating conservation of the KIN17 gene among metazoans. The human KIN17 gene, named (HSA)KIN17, is located on human chromosome 10 at p15-p14. The (HSA)KIN17 RNA is ubiquitously expressed in all the tissues and organs examined, although muscle, heart and testis display the highest levels. UVC irradiation of quiescent human primary fibroblasts increases (HSA)KIN17 RNA with kinetics similar to those observed in mouse cells, suggesting that up-regulation of the (HSA)KIN17 gene after UVC irradiation is a conserved response in mammalian cells. (HSA)kin17 protein is concentrated in intranuclear focal structures in proliferating cells as judged by indirect immunofluorescence. UVC irradiation disassembles (HSA)kin17 foci in cycling cells, indicating a link between the intranuclear distribution of (HSA)kin17 protein and the DNA damage response.
Collapse
Affiliation(s)
- P Kannouche
- Laboratoire de Génétique de la Radiosensibilité, Département de Radiobiologie et de Radiopathologie, Direction des Sciences du Vivant, Centre d'Etudes de Fontenay-aux-Roses, CEA, 92265 Fontenay-aux-Roses, France
| | | | | | | | | | | | | |
Collapse
|
12
|
Svetlova M, Nikiforov A, Solovjeva L, Pleskach N, Tomilin N, Hanawalt PC. Reduced extractability of the XPA DNA repair protein in ultraviolet light-irradiated mammalian cells. FEBS Lett 1999; 463:49-52. [PMID: 10601636 DOI: 10.1016/s0014-5793(99)01592-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The XPA protein is essential for both of the known modes of nucleotide excision repair (NER) in human cells: transcription-coupled repair (TCR) and global genome repair (GGR). In TCR, this protein is thought to be recruited to lesion sites in DNA at which RNA polymerase II is blocked and in GGR, by direct recognition of damages by repair protein complex containing XPC/HR23B or DNA damage-binding protein. However, details of the recruitment of the XPA protein in vivo are unknown. It was shown earlier that a portion of another NER protein, PCNA, which is completely extractable from non-S-phase mammalian nuclei, becomes insoluble after ultraviolet (UV) light irradiation and cannot be extracted by methanol or buffer containing Triton X-100. In the present study, we have found that UV light irradiation of human or Chinese hamster cells leads to decrease of extractability of the XPA protein by Triton X-100. Maximal insolubilization of the XPA protein is observed 1-4 h after irradiation but it is not detectable by 22 h. This effect is dose-dependent for UV light from 2.5 to 15 J/m(2) and is unaffected by the pre-treatment of cells with sodium butyrate, an inhibitor of histone deacetylation. The UV light-induced insolubilization of the XPA protein was also observed in two lines of Cockayne syndrome complementation group A cells, indicating that the effect is not dependent upon TCR. The results are discussed in relation to possible mechanisms of NER.
Collapse
Affiliation(s)
- M Svetlova
- Institute of Cytology of the Russian Academy of Sciences, 194064, St. Petersburg, Russia
| | | | | | | | | | | |
Collapse
|
13
|
Tanno M, Taguchi T. Proliferating cell nuclear antigen in normal and regenerating rat livers. Exp Mol Pathol 1999; 67:192-200. [PMID: 10600401 DOI: 10.1006/exmp.1999.2281] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Immunohistochemical analysis using proliferating cell nuclear antigen (PCNA) antibody shows a negligible number of cells stained in normal liver, but much higher numbers in regenerating liver 24 and 48 h after surgery. We also verified different results by biochemical analysis. Two forms of PCNA, L type (eluted at low concentrations of KCl from a phosphocellulose column) and H type (eluted at high KCl concentrations), were observed in the nucleoplasm of regenerating livers 24 and 48 h after surgery. Treatment of the H type fraction with nuclease caused the H type to disappear and the amount of L type to increase. PCNAs in the cytoplasm are P type (eluted in the pass through fraction) and L type. Surprisingly, the total amounts of P type and L type in cytoplasmic extracts are comparable to those of L type and H type in the nucleoplasm. These results suggest that newly synthesized PCNA is immediately converted into the P and L complex forms. The P type and some of the L type that lacks a nuclear localization signal remain in the cytoplasm; the rest of the L type with a nuclear localization signal is transferred into the nuclei. Then, some of the L type in the nucleoplasm forms the H type, which binds to DNA. These three types of PCNA are also found in significant amounts in the nucleoplasm and cytoplasm of normal rat liver despite its nonproliferating state.
Collapse
Affiliation(s)
- M Tanno
- Department of Nuclear Medicine and Radiological Sciences, Tokyo Metropolitan Geriatric Hospital, Japan
| | | |
Collapse
|
14
|
Balajee AS, Dianova I, Bohr VA. Oxidative damage-induced PCNA complex formation is efficient in xeroderma pigmentosum group A but reduced in Cockayne syndrome group B cells. Nucleic Acids Res 1999; 27:4476-82. [PMID: 10536158 PMCID: PMC148732 DOI: 10.1093/nar/27.22.4476] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Proliferating cell nuclear antigen (PCNA), a processivity factor for DNA polymerases delta and epsilon, is essential for both DNA replication and repair. PCNA is required in the resynthesis step of nucleotide excision repair (NER). After UV irradiation, PCNA translocates into an insoluble protein complex, most likely associated with the nuclear matrix. It has not previously been investigated in vivo whether PCNA complex formation also takes place after oxidative stress. In this study, we have examined the involvement of PCNA in the repair of oxidative DNA damage. PCNA complex formation was studied in normal human cells after treatment with hydrogen peroxide, which generates a variety of oxidative DNA lesions. PCNA was detected by two assays, immunofluorescence and western blot analyses. We observed that PCNA redistributes from a soluble to a DNA-bound form during the repair of oxidative DNA damage. PCNA complex formation was analyzed in two human natural mutant cell lines defective in DNA repair: xeroderma pigmentosum group A (XP-A) and Cockayne syndrome group B (CS-B). XP-A cells are defective in overall genome NER while CS-B cells are defective only in the preferential repair of active genes. Immunofluorescent detection of PCNA complex formation was similar in normal and XP-A cells, but was reduced in CS-B cells. Consistent with this observation, western blot analysis in CS-B cells showed a reduction in the ratio of PCNA relocated as compared to normal and XP-A cells. The efficient PCNA complex formation observed in XP-A cells following oxidative damage suggests that formation of PCNA-dependent repair foci may not require the XPA gene product. The reduced PCNA complex formation observed in CS-B cells suggests that these cells are defective in the processing of oxidative DNA damage.
Collapse
Affiliation(s)
- A S Balajee
- Laboratory of Molecular Genetics, National Institute on Aging, National Institute of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
15
|
Miura M. Detection of chromatin-bound PCNA in mammalian cells and its use to study DNA excision repair. JOURNAL OF RADIATION RESEARCH 1999; 40:1-12. [PMID: 10408173 DOI: 10.1269/jrr.40.1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Compelling evidence indicates that proliferating cell nuclear antigen (PCNA) is an indispensable factor not only in DNA replication but in nucleotide excision repair (NER), alternative pathway of base excision repair (BER), and mismatch repair. The common function of PCNA in each of these is to assist in the initiation of DNA synthesis by providing a scaffolding clamp as a trimer catalyzed by RF-C at the 3'-OH terminus of a nascent DNA strand, to which DNA polymerase delta or epsilon can bind. Interestingly, DNA synthesis is reported to be ingeniously inhibited in replication, but not in NER owing to the interaction with CDKN1A (formerly known as p21/WAF1/CIP1). Furthermore, several proteins, XPG, FEN1, and DNA ligase I, recently were shown to competitively bind to the same region of PCNA, the interdomain connector loop, to which DNA polymerase delta or epsilon also binds. PCNA therefore seems to have a regulatory role in these DNA transactions. The in vitro reconstituted experimental system has been a powerful tool to obtain these lines of evidence, but another approach, immunofluorescence studies, also has been a contributor. In fact, the involvement of PCNA in DNA replication, NER, and BER has for the first time been indicated by a unique method that makes visible only in vivo chromatin-bound PCNA. The usefulness of this method and the importance of cooperative studies done with in vitro and in vivo experimental systems is discussed in terms of DNA excision repair.
Collapse
Affiliation(s)
- M Miura
- Department of Dental Radiology and Radiation Research, Faculty of Dentistry, Tokyo Medical and Dental University, Japan.
| |
Collapse
|
16
|
Balajee AS, May A, Dianova I, Bohr VA. Efficient PCNA complex formation is dependent upon both transcription coupled repair and genome overall repair. Mutat Res 1998; 409:135-46. [PMID: 9875289 DOI: 10.1016/s0921-8777(98)00051-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The protein proliferating cell nuclear antigen (PCNA) is an auxiliary factor for DNA polymerase delta and is involved in the resynthesis step of nucleotide excision repair (NER). After UV irradiation of quiescent cells, PCNA forms an insoluble complex with nuclear substructures. We have investigated associations between NER and its subcomponent pathway, transcription coupled repair (TCR) on PCNA complex formation using genetically related hamster cell lines with different repair characteristics. In DNA repair proficient cells, the PCNA complex was readily detectable within 30 min after UV irradiation by both immunofluorescence and western blot analyses. This complex formation after UV occurs efficiently in quiescent cells. In UV5 (human XP-D homolog) and UV 24 (human XP-B homolog) cells, which are totally deficient in NER, the PCNA complex was not detectable at 30 min after UV. The PCNA complex formation is restored to normal levels in UV5 cells after transfection with the human XPD gene, encoding a subunit of the basal transcription factor, TFIIH. In UV61 (Human CS-B homolog) cells, that are defective only in transcription coupled repair (TCR) of cyclobutane pyrimidine dimers (CPDs), the rate of PCNA complex formation was 2-fold slower than in repair proficient cells. This defect was complemented by transfection of the CSB gene into the UV61 cells. We thus conclude that efficient PCNA complex formation after UV is dependent upon both the NER and TCR pathways in hamster cells. The association of several other DNA repair proteins including XPA, RPA, TFIIH and p53 with the insoluble PCNA complex in UV treated cells suggests a central role for PCNA in different steps of NER.
Collapse
Affiliation(s)
- A S Balajee
- Laboratory of Molecular Genetics, National Institute on Aging, NIH, Baltimore, MD 21224, USA
| | | | | | | |
Collapse
|
17
|
Rudolph P, Tronnier M, Menzel R, Möller M, Parwaresch R. Enhanced expression of Ki-67, topoisomerase IIalpha, PCNA, p53 and p21WAF1/Cip1 reflecting proliferation and repair activity in UV-irradiated melanocytic nevi. Hum Pathol 1998; 29:1480-7. [PMID: 9865836 DOI: 10.1016/s0046-8177(98)90019-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
To investigate the effect of ultraviolet (UV) irradiation on the expression of cell cycle-associated proteins, melanocytic nevi from healthy volunteers were partially covered, irradiated with a defined UV dose, and excised 1 week thereafter. The irradiated and the protected parts were examined separately by conventional microscopy and immunohistochemistry using the antibodies Ki-S11 (Ki-67), Ki-S7 (topoisomerase IIalpha), PC10 (proliferating cell nuclear antigen [PCNA]), DO-7 (p53), 6B6 (p21WAF1/Cip1), and the melanocytic marker HMB-45. DNA nick-end labeling was used as a marker of apoptosis. Irradiation resulted in morphological changes and increased HMB-45 reactivity. Proliferation, as assessed by Ki-67 and topoisomerase IIalpha expression, was also clearly enhanced in the UV-exposed areas. This was confirmed by the appearance of occasional mitotic figures. PCNA expression levels markedly exceeded those of the proliferation markers and did not correlate with the latter in most cases. p21 immunolabeling indices were also consistently augmented after UV exposure; hence it is likely that growth-inhibitory mechanisms partly compensate for the proliferative impulse, and the disproportional rise in PCNA expression probably reflects DNA repair activity. Enhanced p53 immunostaining in four cases suggests that the induction of p21 after irradiation may be p53 mediated, whereas no concomitant apoptotic events were observed. We conclude that UV light can stimulate the proliferative activity of melanocytes in melanocytic nevi, but that simultaneously cell cycle inhibitors are activated to permit DNA repair.
Collapse
MESH Headings
- Adult
- Antigens, Neoplasm
- Apoptosis/radiation effects
- Biomarkers, Tumor/metabolism
- Cell Division/radiation effects
- Cyclin-Dependent Kinase Inhibitor p21
- Cyclins/metabolism
- DNA Repair
- DNA Topoisomerases, Type II/metabolism
- DNA, Neoplasm/metabolism
- DNA-Binding Proteins
- Humans
- In Situ Nick-End Labeling
- Isoenzymes/metabolism
- Keratinocytes/metabolism
- Keratinocytes/pathology
- Keratinocytes/radiation effects
- Ki-67 Antigen/metabolism
- Melanocytes/radiation effects
- Middle Aged
- Neoplasms, Radiation-Induced/genetics
- Neoplasms, Radiation-Induced/metabolism
- Neoplasms, Radiation-Induced/pathology
- Nevus, Pigmented/genetics
- Nevus, Pigmented/metabolism
- Nevus, Pigmented/pathology
- Proliferating Cell Nuclear Antigen/metabolism
- Skin Neoplasms/genetics
- Skin Neoplasms/metabolism
- Skin Neoplasms/pathology
- Tumor Suppressor Protein p53/metabolism
- Ultraviolet Rays
Collapse
Affiliation(s)
- P Rudolph
- Department of Pathology and the Lymph Node Registry, German Society of Pathology, at the University of Kiel
| | | | | | | | | |
Collapse
|
18
|
Martini E, Roche DM, Marheineke K, Verreault A, Almouzni G. Recruitment of phosphorylated chromatin assembly factor 1 to chromatin after UV irradiation of human cells. J Cell Biol 1998; 143:563-75. [PMID: 9813080 PMCID: PMC2148138 DOI: 10.1083/jcb.143.3.563] [Citation(s) in RCA: 146] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The subcellular distribution and posttranslational modification of human chromatin assembly factor 1 (CAF-1) have been investigated after UV irradiation of HeLa cells. In an asynchronous cell population only a subfraction of the two large CAF-1 subunits, p150 and p60, were found to exist in a chromatin-associated fraction. This fraction is most abundant during S phase in nonirradiated cells and is much reduced in G2 cells. After UV irradiation, the chromatin-associated form of CAF-1 dramatically increased in all cells irrespective of their position in the cell cycle. Such chromatin recruitment resembles that seen for PCNA, a DNA replication and repair factor. The chromatin-associated fraction of p60 was predominantly hypophosphorylated in nonirradiated G2 cells. UV irradiation resulted in the rapid recruitment to chromatin of phosphorylated forms of the p60 subunit. Furthermore, the amount of the p60 and p150 subunits of CAF-1 associated with chromatin was a function of the dose of UV irradiation. Consistent with these in vivo observations, we found that the amount of CAF-1 required to stimulate nucleosome assembly during the repair of UV photoproducts in vitro depended upon both the number of lesions and the phosphorylation state of CAF-1. The recruitment of CAF-1 to chromatin in response to UV irradiation of human cells described here supports a physiological role for CAF-1 in linking chromatin assembly to DNA repair.
Collapse
Affiliation(s)
- E Martini
- Institut Curie, Research Section Unité Mixte de Recherche, 144 du Centre National de la Recherche Scientifique, 75231 Paris Cedex 05, France
| | | | | | | | | |
Collapse
|
19
|
Abstract
Replication of the two template strands at eukaryotic cell DNA replication forks is a highly coordinated process that ensures accurate and efficient genome duplication. Biochemical studies, principally of plasmid DNAs containing the Simian Virus 40 origin of DNA replication, and yeast genetic studies have uncovered the fundamental mechanisms of replication fork progression. At least two different DNA polymerases, a single-stranded DNA-binding protein, a clamp-loading complex, and a polymerase clamp combine to replicate DNA. Okazaki fragment synthesis involves a DNA polymerase-switching mechanism, and maturation occurs by the recruitment of specific nucleases, a helicase, and a ligase. The process of DNA replication is also coupled to cell-cycle progression and to DNA repair to maintain genome integrity.
Collapse
Affiliation(s)
- S Waga
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | |
Collapse
|
20
|
Prosperi E. Multiple roles of the proliferating cell nuclear antigen: DNA replication, repair and cell cycle control. PROGRESS IN CELL CYCLE RESEARCH 1998; 3:193-210. [PMID: 9552415 DOI: 10.1007/978-1-4615-5371-7_15] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The proliferating cell nuclear antigen (PCNA), the auxiliary protein of DNA polymerase delta and epsilon, is involved in DNA replication and repair. This protein forms a homotrimeric structure which, encircling DNA, loads the polymerase on the DNA template. A role for PCNA in the cell cycle control is recognised on the basis of the interaction with cyclins, cyclin-dependent kinases (cdks) and the cdk-inhibitor p21 waf1/cip1/sdi1 protein. Association with the growth-arrest and DNA-damage inducible proteins gadd45 and MyD118, further demonstrates the role of PCNA as a component of the cell cycle control apparatus.
Collapse
Affiliation(s)
- E Prosperi
- Dipartimento di Biologia Animale, Università di Pavia, Italy
| |
Collapse
|
21
|
Maser RS, Monsen KJ, Nelms BE, Petrini JH. hMre11 and hRad50 nuclear foci are induced during the normal cellular response to DNA double-strand breaks. Mol Cell Biol 1997; 17:6087-96. [PMID: 9315668 PMCID: PMC232458 DOI: 10.1128/mcb.17.10.6087] [Citation(s) in RCA: 371] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We previously identified a conserved multiprotein complex that includes hMre11 and hRad50. In this study, we used immunofluorescence to investigate the role of this complex in DNA double-strand break (DSB) repair. hMre11 and hRad50 form discrete nuclear foci in response to treatment with DSB-inducing agents but not in response to UV irradiation. hMre11 and hRad50 foci colocalize after treatment with ionizing radiation and are distinct from those of the DSB repair protein, hRad51. Our data indicate that an irradiated cell is competent to form either hMre11-hRad50 foci or hRad51 foci, but not both. The multiplicity of hMre11 and hRad50 foci is much higher in the DSB repair-deficient cell line 180BR than in repair-proficient cells. hMre11-hRad50 focus formation is markedly reduced in cells derived from ataxia-telangiectasia patients, whereas hRad51 focus formation is markedly increased. These experiments support genetic evidence from Saccharomyces cerevisiae indicating that Mre11-Rad50 have roles distinct from that of Rad51 in DSB repair. Further, these data indicate that hMre11-hRad50 foci form in response to DNA DSBs and are dependent upon a DNA damage-induced signaling pathway.
Collapse
Affiliation(s)
- R S Maser
- Laboratory of Genetics, University of Wisconsin Medical School, Madison 53706, USA
| | | | | | | |
Collapse
|
22
|
Bouayadi K, van der Leer-van Hoffen A, Balajee AS, Natarajan AT, van Zeeland AA, Mullenders LH. Enzymatic activities involved in the DNA resynthesis step of nucleotide excision repair are firmly attached to chromatin. Nucleic Acids Res 1997; 25:1056-63. [PMID: 9023118 PMCID: PMC146546 DOI: 10.1093/nar/25.5.1056] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
In this study the role of nuclear architecture in nucleotide excision repair (NER) was investigated by gentle dismantling of the cell and probing the capability of chromatin to carry out repair in vitro. The rationale behind this approach is that compartmentalization of NER at nuclear structures would make the enzymatic activities refractory to extraction by buffers that solubilize cellular membranes. In order to obtain intact chromatin primary human fibroblasts were encapsulated in agarose microbeads and lysed in isotonic buffers containing the non-ionic detergent Triton X-100. Under these conditions the majority of cellular proteins diffuse out of the beads, but the remaining chromatin is able to replicate and to transcribe DNA in the presence of triphosphates and Mg2+. UV irradiation of confluent repair-proficient human fibroblasts prior to lysis stimulated the incorporation of deoxynucleotide triphosphates in Triton X-100-isolated chromatin, even under stringent lysis conditions. In addition, experiments with UV-sensitive xeroderma pigmentosum (complementation groups A and C) and Cockayne's syndrome fibroblasts (complementation group A) revealed that this repair synthesis was due to global genome repair activity. Transcription-coupled repair was only detectable in cells permeabilized by streptolysin O (SLO). Repair synthesis in Triton X-100-isolated chromatin amounted to 15% of the total repair synthesis as measured in SLO-permeabilized cells. To allow the detection of these activities in vitro, presynthesis complexes have to be formed in intact cells, indicating that chromatin from Triton X-100-lysed cells is unable to initiate NER in vitro. Our data indicate that the components involved in the resynthesis step of NER are tightly associated with chromatin. A substantial fraction of total proliferating cell nuclear antigen (PCNA), which is required for the resynthesis step in NER, has been reported to become Triton X-100 non-extractable and tightly associated with nuclear structures after UV irradiation of cells. We propose that Triton X-100-resistant repair synthesis might be mediated by this chromatin-bound fraction of total PCNA.
Collapse
Affiliation(s)
- K Bouayadi
- MGC-Department of Radiation Genetics and Chemical Mutagenesis, Leiden University, Leiden, The Netherlands
| | | | | | | | | | | |
Collapse
|
23
|
Crook JM, Bahadur YA, Robertson SJ, Perry GA, Esche BA. Evaluation of radiation effect, tumor differentiation, and prostate specific antigen staining in sequential prostate biopsies after external beam radiotherapy for patients with prostate carcinoma. Cancer 1997. [DOI: 10.1002/(sici)1097-0142(19970101)79:1<81::aid-cncr12>3.0.co;2-2] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
24
|
Abstract
To clarify the effect of aging on rat liver regeneration, we compared proliferating cell nuclear antigen (PCNA) levels in control and regenerating livers from young and aged rats 48 h after partial hepatectomy. The nucleoplasm and cytoplasm from regenerating livers of 2-month and 24 month-old rats were fractionated by phosphocellulose column chromatography, aliquots of fractions were transferred to nitrocellulose filters and the amounts of PCNA in each fraction were measured by an immunostaining method. Two forms of PCNA, L type (eluted at low concentrations of KC1) and H type (eluted at high KC1 concentrations) were observed in the nucleoplasm from both control and regenerating young rat liver. On the other hand, the cytoplasm contained P type (eluted in the pass-through fraction), L type and H type PCNA. In control liver from aged rats, three types of PCNA in the cytoplasm and two types in the nucleoplasm were present at decreased levels. In regenerating liver from young rats, the increases in L type in the cytoplasm and H type in the nucleoplasm were remarkable. However, none of the three PCNA types increased significantly during liver regeneration in aged rats. Treatment with DNase resulted in the disappearance of the H type with a concomitant increase in the P and L types. These results suggest that the H type is a complex form consisting of the P and L types of PCNA and DNA. These results suggest that the increase in the L type in the cytoplasm reflects newly synthesized PCNA production for cellular proliferation and that the increase in the H type in the nucleoplasm is a reflection of binding to DNA and the fundamental role of PCNA itself in liver regeneration in young rats. On the other hand, there was little increase in any of the three types in regenerating liver from 24-month-old rats. Thus, PCNA content may be closely related to the decrease in the rate of cellular proliferation in aged animals.
Collapse
Affiliation(s)
- M Tanno
- Department of Nuclear Medicine and Radiological Sciences, Tokyo Metropolitan Geriatric Hospital, Japan
| | | | | |
Collapse
|
25
|
Miura M, Sasaki T. Effect of XPA gene mutations on UV-induced immunostaining of PCNA in fibroblasts from xeroderma pigmentosum group A patients. Mutat Res 1996; 364:51-6. [PMID: 8814338 DOI: 10.1016/0921-8777(96)00021-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We have investigated the relationship between XPA gene mutations and PCNA complex formation in the nucleotide excision repair (NER) process utilizing cells derived from various xeroderma pigmentosum group A (XP-A) patients. The PCNA complex formation was detected by PCNA immunostaining following methanol fixation. Results indicated that UV-induced PCNA staining at early stages was well correlated to the function of XPA protein and provided evidence that XPA protein-related recognition step was tightly linked to PCNA-associated events in the NER process in vivo.
Collapse
Affiliation(s)
- M Miura
- Department of Dental Radiology and Radiation Research, Faculty of Dentistry, Tokyo Medical and Dental University, Japan
| | | |
Collapse
|
26
|
Li R, Hannon GJ, Beach D, Stillman B. Subcellular distribution of p21 and PCNA in normal and repair-deficient cells following DNA damage. Curr Biol 1996; 6:189-99. [PMID: 8673466 DOI: 10.1016/s0960-9822(02)00452-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The p21 protein binds to both cyclin-dependent kinases (Cdks) and the proliferating cell nuclear antigen (PCNA). In mammalian cells, DNA damage results in an increase in the level of p53 protein, which stimulates expression of the gene encoding p21, which in turn leads to an inhibition of Cdk activity. Biochemical studies have shown that the direct interaction between p21 and PCNA blocks the latter's function in DNA replication but not in DNA repair. In addition to the p53-dependent damage response, the stimulation of quiescent cells with serum can also cause a p53-independent elevation in p21 gene expression. It is not clear, however, whether the induction of p21 protein under these two circumstances serves the same purpose. In this study, we have investigated the kinetics of p21 induction by DNA damage and serum stimulation and the consequent effects on cell-cycle progression. Using both normal and repair-deficient human cells, we have also analyzed the nuclear distribution of p21 in relation to that of PCNA. RESULTS In vivo immunofluorescence staining experiments indicate that, following UV damage, DNA repair is not inhibited by the presence of a large amount of p21 protein in the nucleus; in contrast, cells undergoing DNA replication during S phase contain very low amounts of p21. The addition of serum induced a transitory elevation of p21 levels, whereas UV damage to cells resulted in a sustained, high level of p21 that was more tightly associated with the nuclear structure. Interestingly, cells deficient in global nucleotide excision-repair displayed a distinct pattern of detergent-insoluble p21 that co-localized with PCNA. CONCLUSIONS The in vivo studies presented here, which are consistent with our previous findings in vitro, indicate that p21 has a differential effect on DNA replication and DNA repair, and that the induction of p21 by serum and DNA damage may have different consequences. Furthermore, the co-localization of p21 and PCNA in the nucleus of normal and repair-deficient human cells indicates that p21 and PCNA interact during post-damage events.
Collapse
Affiliation(s)
- R Li
- Cold Spring Harbor Laboratory, New York 11724, USA
| | | | | | | |
Collapse
|
27
|
Minamide S, Naora H, Adachi M, Okano A, Naora H. Apoptosis as a mechanism of skin renewal: Le(y)-antigen expression is involved in an early event of a cell's commitment to apoptosis. Histochem Cell Biol 1995; 103:339-43. [PMID: 7543813 DOI: 10.1007/bf01457808] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Skin renewal is a typical example of the active participation of a cell in its own death process. Cells arising from mitotic activity in the stratum germinativum of the epidermis continuously migrate upwards to the stratum corneum, where dead cells are eventually desquamated. Recent studies have suggested that apoptosis is involved in the dynamic process of skin renewal. However, this still remains to be further elucidated. In this paper, we investigated the involvement of apoptosis in the skin renewal process. Changes in the morphology of cells in different epidermal layers were compared with histochemical analyses of the extent of DNA fragmentation, as determined by nick end-labelling, and of the reactivities to a monoclonal antibody directed to Le(y)-antigen, difucosylated type 2 chain determinant, which has a close association with apoptosis, and to a monoclonal antibody directed to the proliferating cell nuclear antigen. The results show that apoptosis proceeds concomitantly with cell movement in the epidermis. It seems likely that commitment of a cell to death by apoptosis occurs in the epidermal tissue immediately after completion of cell proliferation, and that Le(y)-antigen expression may be involved in the entire apoptotic process including this early event.
Collapse
Affiliation(s)
- S Minamide
- Japan Immunoresearch Laboratories, Gunma Prefecture
| | | | | | | | | |
Collapse
|
28
|
Nakazawa K, Nakazawa H, Collombel C, Damour O. Keratinocyte extracellular matrix-mediated regulation of normal human melanocyte functions. PIGMENT CELL RESEARCH 1995; 8:10-8. [PMID: 7792251 DOI: 10.1111/j.1600-0749.1995.tb00769.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Active roles of cell-cell interaction between melanocytes and neighboring keratinocytes for the regulation of melanocyte functions in the skin have been suggested. We examined substantial regulatory mechanisms of keratinocyte extracellular matrix (kECMs) for normal human melanocyte functions without direct cell-cell contact. We specially devised kECMs from proliferating or differentiating keratinocytes and further treated them with environmental stimulus ultraviolet B (UVB) for skin pigmentary system. Normal human melanocytes (NHM) were cultured on the various keratinocyte ECMs and initially the effects of the kECMs upon melanocyte morphology (dendrite formation and extension), growth, melanin production and expressions of pigmentation-associated protein (MEL-5) and proliferation-associated protein (proliferating cell nuclear antigen; PCNA/cyclin) were studied. Then we compared the effects of these cell-matrix interactions with those of direct melanocyte-keratinocyte, cell-cell contact in co-culture on melanocyte functions. Melanocytes cultured on any types of the kECMs that were tested significantly extended dendrites more than that on plastic cell culture dish without kECM (control). Melanocytes cultured on any types of the kECMs that were tested significantly extended dendrites more than that on plastic cell culture dish without kECM (control). Melanocytes cultured on the kECM prepared from UVB irradiated differentiating keratinocytes resulted in 219% increase in the number of dendrites. The growth of melanocytes on kECMs was also stimulated up to 280% of control. The kECM produced by proliferating keratinocytes had a more significant effect on the growth than kECM from differentiating keratinocytes. This melanocyte growth stimulating effect was decreased with kECM from UVB treated differentiating keratinocytes. The melanin content per melanocyte was constant on any of the kECMs.(ABSTRACT TRUNCATED AT 250 WORDS)
Collapse
Affiliation(s)
- K Nakazawa
- Skin Substitutes Laboratory, CNRS-URA 1341, Edouard Herriot Hospital, Lyon, France
| | | | | | | |
Collapse
|
29
|
|
30
|
Zeng X, Jiang Y, Zhang S, Hao H, Lee M. DNA polymerase delta is involved in the cellular response to UV damage in human cells. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36709-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|