1
|
Wang J, Shang J, Yu S, Lin M, Gong X, Liu X, Liu Z, Wang F. Self-Adaptive Activation of DNAzyme Nanoassembly for Synergistically Combined Gene Therapy. Angew Chem Int Ed Engl 2025; 64:e202417363. [PMID: 39415359 DOI: 10.1002/anie.202417363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/12/2024] [Accepted: 10/12/2024] [Indexed: 10/18/2024]
Abstract
DNAzyme represents a promising gene silencing toolbox yet is obstructed by the poor substrate accessibility in specific cells. Herein, a compact DNA nanoassembly, incorporating multimeric therapeutic DNAzyme, was prepared for selective delivery of gene-silencing DNAzyme with requisite cofactors and auxiliary chemo-drugs. By virtue of the sequence-conservative duplex-specific nuclease, the endogenous miRNA catalyzes the successive and site-specific cleavage of DNA nanoassembly substrate (nominated as the localized RNA walking machine) and thus ensures the liberation/activation of therapeutic agents with high accuracy and efficacy. The miR-10b-stimulated DNAzyme was designed to downregulate the TWIST transcription factor, an upstream promotor of miR-10b, thus acquiring the self-sufficient downregulation of TWIST/miR-10b signaling nodes (self-adaptive negative feedback loop) for abrogating tumor metastasis and chemo-resistance issues.
Collapse
Affiliation(s)
- Jing Wang
- College of Chemistry and Molecular Sciences, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, 430072, Wuhan, P. R. China
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), Hubei University, 430062, Wuhan, P. R. China
| | - Jinhua Shang
- College of Chemistry and Molecular Sciences, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, 430072, Wuhan, P. R. China
| | - Shanshan Yu
- College of Chemistry and Molecular Sciences, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, 430072, Wuhan, P. R. China
| | - Mengru Lin
- College of Chemistry and Molecular Sciences, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, 430072, Wuhan, P. R. China
| | - Xue Gong
- College of Chemistry and Molecular Sciences, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, 430072, Wuhan, P. R. China
| | - Xiaoqing Liu
- College of Chemistry and Molecular Sciences, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, 430072, Wuhan, P. R. China
| | - Zhihong Liu
- College of Health Science and Engineering, Key Laboratory for the Synthesis and Application of Organic Functional Molecules (Ministry of Education), Hubei University, 430062, Wuhan, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Department of Gastroenterology, Zhongnan Hospital of Wuhan University, Wuhan University, 430072, Wuhan, P. R. China
| |
Collapse
|
2
|
Morton KS, Wahl AK, Meyer JN. The effect of common paralytic agents used for fluorescence imaging on redox tone and ATP levels in Caenorhabditis elegans. PLoS One 2024; 19:e0292415. [PMID: 38669260 PMCID: PMC11051652 DOI: 10.1371/journal.pone.0292415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Accepted: 03/30/2024] [Indexed: 04/28/2024] Open
Abstract
One aspect of Caenorhabditis elegans that makes it a highly valuable model organism is the ease of use of in vivo genetic reporters, facilitated by its transparent cuticle and highly tractable genetics. Despite the rapid advancement of these technologies, worms must be paralyzed for most imaging applications, and few investigations have characterized the impacts of common chemical anesthetic methods on the parameters measured, in particular biochemical measurements such as cellular energetics and redox tone. Using two dynamic reporters, QUEEN-2m for relative ATP levels and reduction-oxidation sensitive GFP (roGFP) for redox tone, we assess the impact of commonly used chemical paralytics. We report that no chemical anesthetic is entirely effective at doses required for full paralysis without altering redox tone or ATP levels, and that anesthetic use alters the detected outcome of rotenone exposure on relative ATP levels and redox tone. We also assess the use of cold shock, commonly used in combination with physical restraint methods, and find that cold shock does not alter either ATP levels or redox tone. In addition to informing which paralytics are most appropriate for research in these topics, we highlight the need for tailoring the use of anesthetics to different endpoints and experimental questions. Further, we reinforce the need for developing less disruptive paralytic methods for optimal imaging of dynamic in vivo reporters.
Collapse
Affiliation(s)
- Katherine S. Morton
- Nicholas School of Environment, Duke University, Durham, North Carolina, United States of America
| | - Ashlyn K. Wahl
- Nicholas School of Environment, Duke University, Durham, North Carolina, United States of America
| | - Joel N. Meyer
- Nicholas School of Environment, Duke University, Durham, North Carolina, United States of America
| |
Collapse
|
3
|
Morton KS, Wahl AK, Meyer JN. The effect of common paralytic agents used for fluorescence imaging on redox tone and ATP levels in Caenorhabditis elegans. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.21.558750. [PMID: 37790339 PMCID: PMC10543010 DOI: 10.1101/2023.09.21.558750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
One aspect of Caenorhabditis elegans that makes it a highly valuable model organism is the ease of use of in vivo genetic reporters, facilitated by its transparent cuticle and highly tractable genetics. Despite the rapid advancement of these technologies, worms must be paralyzed for most imaging applications, and few investigations have characterized the impacts of common chemical anesthetic methods on the parameters measured, in particular biochemical measurements such as cellular energetics and redox tone. Using two dynamic reporters, QUEEN-2m for relative ATP levels and reduction-oxidation sensitive GFP (roGFP) for redox tone, we assess the impact of commonly used chemical paralytics. We report that no chemical anesthetic is entirely effective at doses required for full paralysis without altering redox tone or ATP levels, though 100 mM 2,3-Butadione monoxime appears to be the least problematic. We also assess the use of cold shock, commonly used in combination with physical restraint methods, and find that cold shock does not alter either ATP levels or redox tone. In addition to informing which paralytics are most appropriate for research in these topics, we highlight the need for tailoring the use of anesthetics to different endpoints and experimental questions. Further, we reinforce the need for developing less disruptive paralytic methods for optimal imaging of dynamic in vivo reporters.
Collapse
Affiliation(s)
| | | | - Joel N Meyer
- Duke University Nicholas School of the Environment
| |
Collapse
|
4
|
Mbuayama KR, Taute H, Strӧmstedt AA, Bester MJ, Gaspar ARM. Antifungal activity and mode of action of synthetic peptides derived from the tick OsDef2 defensin. J Pept Sci 2021; 28:e3383. [PMID: 34866278 DOI: 10.1002/psc.3383] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/28/2021] [Accepted: 11/08/2021] [Indexed: 01/29/2023]
Abstract
Candida albicans is the principal opportunistic fungal pathogen in nosocomial settings and resistance to antifungal drugs is on the rise. Antimicrobial peptides from natural sources are promising novel therapeutics against C. albicans. OsDef2 defensin was previously found to be active against only Gram-positive bacteria, whereas derived fragments Os and its cysteine-free analogue, Os-C, are active against Gram-positive and Gram-negative bacteria at low micromolar concentrations. In this study, OsDef2-derived analogues and fragments were screened for anticandidal activity with the aim to identify peptides with antifungal activity and in so doing obtain a better understanding of the structural requirements for activity and modes of action. Os, Os-C and Os(11-22)NH2 , a Os-truncated carboxy-terminal-amidated fragment, had the most significant antifungal activities, with minimum fungicidal concentrations (MFCs) in the micromolar range (6-28 μM). C. albicans killing was rapid and occurred within 30-60 min. Further investigations showed all three peptides interacted with cell wall derived polysaccharides while both Os and Os(11-22)NH2 permeabilized fungal liposomes. Confocal laser scanning microscopy confirmed that Os-C and Os(11-22)NH2 could enter the cytosol of live cells and subsequent findings suggest that the uptake of Os and Os-C, in contrast to Os(11-22)NH2 , is energy dependent. Although Os, Os-C and Os(11-22)NH2 induced the production of reactive oxygen species (ROS), co-incubation with ascorbic acid revealed that only ROS generated by Os-C and to a lesser extent Os(11-22)NH2 resulted in cell death. Overall, Os, Os-C and Os(11-22)NH2 are promising candidacidal agents.
Collapse
Affiliation(s)
- Kabuzi R Mbuayama
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| | - Helena Taute
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Adam A Strӧmstedt
- Pharmacognosy, Department of Pharmaceutical Biosciences, Uppsala University, Uppsala, Sweden
| | - Megan J Bester
- Department of Anatomy, Faculty of Health Sciences, University of Pretoria, Pretoria, South Africa
| | - Anabella R M Gaspar
- Department of Biochemistry, Genetics and Microbiology, Faculty of Natural and Agricultural Sciences, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
5
|
Correa W, Brandenburg J, Behrends J, Heinbockel L, Reiling N, Paulowski L, Schwudke D, Stephan K, Martinez-de-Tejada G, Brandenburg K, Gutsmann T. Inactivation of Bacteria by γ-Irradiation to Investigate the Interaction with Antimicrobial Peptides. Biophys J 2019; 117:1805-1819. [PMID: 31676134 DOI: 10.1016/j.bpj.2019.10.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 09/30/2019] [Accepted: 10/08/2019] [Indexed: 11/27/2022] Open
Abstract
The activity of antimicrobial peptides (AMPs) has been investigated extensively using model membranes composed of phospholipids or lipopolysaccharides in aqueous environments. However, from a biophysical perspective, there is a large scientific interest regarding the direct interaction of membrane-active peptides with whole bacteria. Working with living bacteria limits the usability of experimental setups and the interpretation of the resulting data because of safety risks and the overlap of active and passive effects induced by AMPs. We killed or inactivated metabolic-active bacteria using γ-irradiation or sodium azide, respectively. Microscopy, flow cytometry, and SYTOX green assays showed that the cell envelope remained intact to a high degree at the minimal bactericidal dose. Furthermore, the tumor-necrosis-factor-α-inducing activity of the lipopolysaccharides and the chemical lipid composition was unchanged. Determining the binding capacity of AMPs to the bacterial cell envelope by calorimetry is difficult because of an overlapping of the binding heat and metabolic activities of the bacteria-induced by the AMPs. The inactivation of all active processes helps to decipher the complex thermodynamic information. From the isothermal titration calorimetry (ITC) results, we propose that the bacterial membrane potential (Δψ) is possibly an underestimated modulator of the AMP activity. The negative surface charge of the outer leaflet of the outer membrane of Gram-negative bacteria is already neutralized by peptide concentrations below the minimal inhibitory concentration. This proves that peptide aggregation on the bacterial membrane surface plays a decisive role in the degree of antimicrobial activity. This will not only enable many biophysical approaches for the investigation between bacteria and membrane-active peptides in the future but will also make it possible to compare biophysical parameters of active and inactive bacteria. This opens up new possibilities to better understand the active and passive interaction processes between AMPs and bacteria.
Collapse
Affiliation(s)
- Wilmar Correa
- Division of Biophysics, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany.
| | - Julius Brandenburg
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Jochen Behrends
- Fluorescence Cytometry Department, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | | | - Norbert Reiling
- Microbial Interface Biology, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Laura Paulowski
- Division of Biophysics, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Dominik Schwudke
- Bioanalytical Chemistry, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Kerstin Stephan
- Division of Biophysics, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | | | - Klaus Brandenburg
- Brandenburg Antiinfektiva GmbH, c/o Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| | - Thomas Gutsmann
- Division of Biophysics, Priority Research Area Infections, Research Center Borstel, Leibniz Lung Center, Borstel, Germany
| |
Collapse
|
6
|
Mahneva O, Caplan SL, Ivko P, Dawson-Scully K, Milton SL. NO/cGMP/PKG activation protects Drosophila cells subjected to hypoxic stress. Comp Biochem Physiol C Toxicol Pharmacol 2019; 223:106-114. [PMID: 31150868 DOI: 10.1016/j.cbpc.2019.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 05/22/2019] [Accepted: 05/23/2019] [Indexed: 01/28/2023]
Abstract
The anoxia-tolerant fruit fly, Drosophila melanogaster, has routinely been used to examine cellular mechanisms responsible for anoxic and oxidative stress resistance. Nitric oxide (NO), an important cellular signaling molecule, and its downstream activation of cGMP-dependent protein kinase G (PKG) has been implicated as a protective mechanism against ischemic injury in diverse animal models from insects to mammals. In Drosophila, increased PKG signaling results in increased survival of animals exposed to anoxic stress. To determine if activation of the NO/cGMP/PKG pathway is protective at the cellular level, the present study employed a pharmacological protocol to mimic hypoxic injury in Drosophila S2 cells. The commonly used S2 cell line was derived from a primary culture of late stage (20-24 h old) Drosophila melanogaster embryos. Hypoxic stress was induced by exposure to either sodium azide (NaN3) or cobalt chloride (CoCl2). During chemical hypoxic stress, NO/cGMP/PKG activation protected against cell death and this mechanism involved modulation of downstream mitochondrial ATP-sensitive potassium ion channels (mitoKATP). The cellular protection afforded by NO/cGMP/PKG activation during ischemia-like stress may be an adaptive cytoprotective mechanism and modulation of this signaling cascade could serve as a potential therapeutic target for protection against hypoxia or ischemia-induced cellular injury.
Collapse
Affiliation(s)
- Olena Mahneva
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | - Stacee Lee Caplan
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | - Polina Ivko
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| | - Sarah L Milton
- Department of Biological Sciences, Florida Atlantic University, 777 Glades Road, Boca Raton, FL 33431, USA.
| |
Collapse
|
7
|
Krasnopeeva E, Lo CJ, Pilizota T. Single-Cell Bacterial Electrophysiology Reveals Mechanisms of Stress-Induced Damage. Biophys J 2019; 116:2390-2399. [PMID: 31174851 PMCID: PMC6588726 DOI: 10.1016/j.bpj.2019.04.039] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Revised: 04/06/2019] [Accepted: 04/17/2019] [Indexed: 01/01/2023] Open
Abstract
An electrochemical gradient of protons, or proton motive force (PMF), is at the basis of bacterial energetics. It powers vital cellular processes and defines the physiological state of the cell. Here, we use an electric circuit analogy of an Escherichia coli cell to mathematically describe the relationship between bacterial PMF, electric properties of the cell membrane, and catabolism. We combine the analogy with the use of bacterial flagellar motor as a single-cell "voltmeter" to measure cellular PMF in varied and dynamic external environments (for example, under different stresses). We find that butanol acts as an ionophore and functionally characterize membrane damage caused by the light of shorter wavelengths. Our approach coalesces noninvasive and fast single-cell voltmeter with a well-defined mathematical framework to enable quantitative bacterial electrophysiology.
Collapse
Affiliation(s)
- Ekaterina Krasnopeeva
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom
| | - Chien-Jung Lo
- Department of Physics and Graduate Institute of Biophysics, National Central University, Jhongli, Taiwan, Republic of China
| | - Teuta Pilizota
- Centre for Synthetic and Systems Biology, Institute of Cell Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
8
|
Gong Z, Karlsson AJ. Translocation of cell-penetrating peptides into Candida fungal pathogens. Protein Sci 2017; 26:1714-1725. [PMID: 28556271 DOI: 10.1002/pro.3203] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Revised: 05/18/2017] [Accepted: 05/19/2017] [Indexed: 12/31/2022]
Abstract
Cell-penetrating peptides (CPPs) are small peptides capable of crossing cellular membranes while carrying molecular cargo. Although they have been widely studied for their ability to translocate nucleic acids, small molecules, and proteins into mammalian cells, studies of their interaction with fungal cells are limited. In this work, we evaluated the translocation of eleven fluorescently labeled peptides into the important human fungal pathogens Candida albicans and C. glabrata and explored the mechanisms of translocation. Seven of these peptides (cecropin B, penetratin, pVEC, MAP, SynB, (KFF)3 K, and MPG) exhibited substantial translocation (>80% of cells) into both species in a concentration-dependent manner, and an additional peptide (TP-10) exhibiting strong translocation into only C. glabrata. Vacuoles were involved in translocation and intracellular trafficking of the peptides in the fungal cells and, for some peptides, escape from the vacuoles and localization in the cytosol were correlated to toxicity toward the fungal cells. Endocytosis was involved in the translocation of cecropin B, MAP, SynB, MPG, (KFF)3 K, and TP-10, and cecropin B, penetratin, pVEC, and MAP caused membrane permeabilization during translocation. These results indicate the involvement of multiple translocation mechanisms for some CPPs. Although high levels of translocation were typically associated with toxicity of the peptides toward the fungal cells, SynB was translocated efficiently into Candida cells at concentrations that led to minimal toxicity. Our work highlights the potential of CPPs in delivering antifungal molecules and other bioactive cargo to Candida pathogens.
Collapse
Affiliation(s)
- Zifan Gong
- Department of Chemical and Biomolecular Engineering, University of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College Park, Maryland, 20742
| | - Amy J Karlsson
- Department of Chemical and Biomolecular Engineering, University of Maryland, 2113 Chemical and Nuclear Engineering Building (#090), College Park, Maryland, 20742
| |
Collapse
|
9
|
Caplan SL, Zheng B, Dawson-Scully K, White CA, West LM. Pseudopterosin A: Protection of Synaptic Function and Potential as a Neuromodulatory Agent. Mar Drugs 2016; 14:md14030055. [PMID: 26978375 PMCID: PMC4820309 DOI: 10.3390/md14030055] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/28/2016] [Accepted: 03/04/2016] [Indexed: 01/07/2023] Open
Abstract
Natural products have provided an invaluable source of inspiration in the drug discovery pipeline. The oceans are a vast source of biological and chemical diversity. Recently, this untapped resource has been gaining attention in the search for novel structures and development of new classes of therapeutic agents. Pseudopterosins are group of marine diterpene glycosides that possess an array of potent biological activities in several therapeutic areas. Few studies have examined pseudopterosin effects during cellular stress and, to our knowledge, no studies have explored their ability to protect synaptic function. The present study probes pseudopterosin A (PsA) for its neuromodulatory properties during oxidative stress using the fruit fly, Drosophila melanogaster. We demonstrate that oxidative stress rapidly reduces neuronal activity, resulting in the loss of neurotransmission at a well-characterized invertebrate synapse. PsA mitigates this effect and promotes functional tolerance during oxidative stress by prolonging synaptic transmission in a mechanism that differs from scavenging activity. Furthermore, the distribution of PsA within mammalian biological tissues following single intravenous injection was investigated using a validated bioanalytical method. Comparable exposure of PsA in the mouse brain and plasma indicated good distribution of PsA in the brain, suggesting its potential as a novel neuromodulatory agent.
Collapse
Affiliation(s)
- Stacee Lee Caplan
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | - Bo Zheng
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, GA 30602, USA.
| | - Ken Dawson-Scully
- Department of Biological Sciences, Florida Atlantic University, Boca Raton, FL 33431, USA.
| | - Catherine A White
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, GA 30602, USA.
| | - Lyndon M West
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, The University of Georgia, Athens, GA 30602, USA.
- Department of Chemistry and Biochemistry, Florida Atlantic University, Boca Raton, FL 33431, USA.
| |
Collapse
|
10
|
Abstract
The F1F0-ATP synthase (EC 3.6.1.34) is a remarkable enzyme that functions as a rotary motor. It is found in the inner membranes of Escherichia coli and is responsible for the synthesis of ATP in response to an electrochemical proton gradient. Under some conditions, the enzyme functions reversibly and uses the energy of ATP hydrolysis to generate the gradient. The ATP synthase is composed of eight different polypeptide subunits in a stoichiometry of α3β3γδεab2c10. Traditionally they were divided into two physically separable units: an F1 that catalyzes ATP hydrolysis (α3β3γδε) and a membrane-bound F0 sector that transports protons (ab2c10). In terms of rotary function, the subunits can be divided into rotor subunits (γεc10) and stator subunits (α3β3δab2). The stator subunits include six nucleotide binding sites, three catalytic and three noncatalytic, formed primarily by the β and α subunits, respectively. The stator also includes a peripheral stalk composed of δ and b subunits, and part of the proton channel in subunit a. Among the rotor subunits, the c subunits form a ring in the membrane, and interact with subunit a to form the proton channel. Subunits γ and ε bind to the c-ring subunits, and also communicate with the catalytic sites through interactions with α and β subunits. The eight subunits are expressed from a single operon, and posttranscriptional processing and translational regulation ensure that the polypeptides are made at the proper stoichiometry. Recent studies, including those of other species, have elucidated many structural and rotary properties of this enzyme.
Collapse
|
11
|
Masi E, Ciszak M, Santopolo L, Frascella A, Giovannetti L, Marchi E, Viti C, Mancuso S. Electrical spiking in bacterial biofilms. J R Soc Interface 2015; 12:20141036. [PMID: 25392401 DOI: 10.1098/rsif.2014.1036] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In nature, biofilms are the most common form of bacterial growth. In biofilms, bacteria display coordinated behaviour to perform specific functions. Here, we investigated electrical signalling as a possible driver in biofilm sociobiology. Using a multi-electrode array system that enables high spatio-temporal resolution, we studied the electrical activity in two biofilm-forming strains and one non-biofilm-forming strain. The action potential rates monitored during biofilm-forming bacterial growth exhibited a one-peak maximum with a long tail, corresponding to the highest biofilm development. This peak was not observed for the non-biofilm-forming strain, demonstrating that the intensity of the electrical activity was not linearly related to the bacterial density, but was instead correlated with biofilm formation. Results obtained indicate that the analysis of the spatio-temporal electrical activity of bacteria during biofilm formation can open a new frontier in the study of the emergence of collective microbial behaviour.
Collapse
Affiliation(s)
- Elisa Masi
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy
| | - Marzena Ciszak
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy CNR-Istituto Nazionale di Ottica, Florence, Italy
| | - Luisa Santopolo
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy
| | - Arcangela Frascella
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy
| | - Luciana Giovannetti
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy
| | - Emmanuela Marchi
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy
| | - Carlo Viti
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy
| | - Stefano Mancuso
- DISPAA-Department of Agrifood and Environmental Science, University of Florence, Florence, Italy
| |
Collapse
|
12
|
Flores C, Catita JAM, Lage OM. Assessment of planctomycetes cell viability after pollutants exposure. Antonie van Leeuwenhoek 2014; 106:399-411. [PMID: 24903954 DOI: 10.1007/s10482-014-0206-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 05/23/2014] [Indexed: 12/13/2022]
Abstract
In this study, the growth of six different planctomycetes, a particular ubiquitous bacterial phylum, was assessed after exposure to pollutants. In addition and for comparative purposes, Pseudomonas putida, Escherichia coli and Vibrio anguillarum were tested. Each microorganism was exposed to several concentrations of 21 different pollutants. After exposure, bacteria were cultivated using the drop plate method. In general, the strains exhibited a great variation of sensitivity to pollutants in the order: V. anguillarum > planctomycetes > P. putida > E. coli. E. coli showed resistance to all pollutants tested, with the exception of phenol and sodium azide. Copper, Ridomil® (fungicide), hydrazine and phenol were the most toxic pollutants. Planctomycetes were resistant to extremely high concentrations of nitrate, nitrite and ammonium but they were the only bacteria sensitive to Previcur N® (fungicide). Sodium azide affected the growth on plates of E. coli, P. putida and V. anguillarum, but not of planctomycetes. However, this compound affected planctomycetes cell respiration but with less impact than in the aforementioned bacteria. Our results provide evidence for a diverse response of bacteria towards pollutants, which may influence the structuring of microbial communities in ecosystems under stress, and provide new insights on the ecophysiology of planctomycetes.
Collapse
Affiliation(s)
- Carlos Flores
- Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, FC4 Rua do Campo Alegre s/nº, 4169-007, Porto, Portugal
| | | | | |
Collapse
|
13
|
Populations and potential association of Saccharomyces cerevisiae with lactic acid bacteria in naturally fermented Korean rice wine. Food Sci Biotechnol 2012. [DOI: 10.1007/s10068-012-0053-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
|
14
|
Kralj JM, Hochbaum DR, Douglass AD, Cohen AE. Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 2011; 333:345-8. [PMID: 21764748 DOI: 10.1126/science.1204763] [Citation(s) in RCA: 271] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Bacteria have many voltage- and ligand-gated ion channels, and population-level measurements indicate that membrane potential is important for bacterial survival. However, it has not been possible to probe voltage dynamics in an intact bacterium. Here we developed a method to reveal electrical spiking in Escherichia coli. To probe bacterial membrane potential, we engineered a voltage-sensitive fluorescent protein based on green-absorbing proteorhodopsin. Expression of the proteorhodopsin optical proton sensor (PROPS) in E. coli revealed electrical spiking at up to 1 hertz. Spiking was sensitive to chemical and physical perturbations and coincided with rapid efflux of a small-molecule fluorophore, suggesting that bacterial efflux machinery may be electrically regulated.
Collapse
Affiliation(s)
- Joel M Kralj
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
15
|
Allison WS, Ren H, Dou C. Inhibitory Mg-ADP-fluoroaluminate complexes bound to catalytic sites of F(1)-ATPases: are they ground-state or transition-state analogs? J Bioenerg Biomembr 2009; 32:531-8. [PMID: 15254389 DOI: 10.1023/a:1005677310791] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Schemes are proposed for coupling sequential opening and closing the three catalytic sites of F(1) to rotation of the gamma subunit during ATP synthesis and hydrolysis catalyzed by the F(o)F(1)-ATP synthase. A prominent feature of the proposed mechanisms is that the transition state during ATP synthesis is formed when a catalytic site is in the process of closing and that the transition state during ATP hydrolysis is formed when a catalytic site is in the process of opening. The unusual kinetics of formation of Mg-ADP-fluoroaluminate complexes in one or two catalytic sites of nucleotide-depleted MF(1) and wild-type and mutant alpha(3)beta(3)gamma subcomplexes of TF(1) are also reviewed. From these considerations, it is concluded that Mg-ADP-fluoroaluminate complexes formed at catalytic sites of isolated F(1)-ATPases or F(1) in membrane-bound F(o)F(1) are ground-state analogs.
Collapse
Affiliation(s)
- W S Allison
- Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, California 92093-0506, USA
| | | | | |
Collapse
|
16
|
Hong S, Pedersen PL. ATP synthase and the actions of inhibitors utilized to study its roles in human health, disease, and other scientific areas. Microbiol Mol Biol Rev 2008; 72:590-641, Table of Contents. [PMID: 19052322 PMCID: PMC2593570 DOI: 10.1128/mmbr.00016-08] [Citation(s) in RCA: 240] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
ATP synthase, a double-motor enzyme, plays various roles in the cell, participating not only in ATP synthesis but in ATP hydrolysis-dependent processes and in the regulation of a proton gradient across some membrane-dependent systems. Recent studies of ATP synthase as a potential molecular target for the treatment of some human diseases have displayed promising results, and this enzyme is now emerging as an attractive molecular target for the development of new therapies for a variety of diseases. Significantly, ATP synthase, because of its complex structure, is inhibited by a number of different inhibitors and provides diverse possibilities in the development of new ATP synthase-directed agents. In this review, we classify over 250 natural and synthetic inhibitors of ATP synthase reported to date and present their inhibitory sites and their known or proposed modes of action. The rich source of ATP synthase inhibitors and their known or purported sites of action presented in this review should provide valuable insights into their applications as potential scaffolds for new therapeutics for human and animal diseases as well as for the discovery of new pesticides and herbicides to help protect the world's food supply. Finally, as ATP synthase is now known to consist of two unique nanomotors involved in making ATP from ADP and P(i), the information provided in this review may greatly assist those investigators entering the emerging field of nanotechnology.
Collapse
Affiliation(s)
- Sangjin Hong
- Department of Biological Chemistry, Johns Hopkins University, School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205-2185, USA
| | | |
Collapse
|
17
|
Scanlon JAB, Al-Shawi MK, Nakamoto RK. A rotor-stator cross-link in the F1-ATPase blocks the rate-limiting step of rotational catalysis. J Biol Chem 2008; 283:26228-40. [PMID: 18628203 DOI: 10.1074/jbc.m804858200] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The F(0)F(1)-ATP synthase couples the functions of H(+) transport and ATP synthesis/hydrolysis through the efficient transmission of energy mediated by rotation of the centrally located gamma, epsilon, and c subunits. To understand the gamma subunit role in the catalytic mechanism, we previously determined the partial rate constants and devised a minimal kinetic model for the rotational hydrolytic mode of the F(1)-ATPase enzyme that uniquely fits the pre-steady state and steady state data ( Baylis Scanlon, J. A., Al-Shawi, M. K., Le, N. P., and Nakamoto, R. K. (2007) Biochemistry 46, 8785-8797 ). Here we directly test the model using two single cysteine mutants, betaD380C and betaE381C, which can be used to reversibly inhibit rotation upon formation of a cross-link with the conserved gammaCys-87. In the pre-steady state, the gamma-beta cross-linked enzyme at high Mg.ATP conditions retained the burst of hydrolysis but was not able to release P(i). These data show that the rate-limiting rotation step, k(gamma), occurs after hydrolysis and before P(i) release. This analysis provides additional insights into how the enzyme achieves efficient coupling and implicates the betaGlu-381 residue for proper formation of the rate-limiting transition state involving gamma subunit rotation.
Collapse
Affiliation(s)
- Joanne A Baylis Scanlon
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | |
Collapse
|
18
|
Snyder RD, Cooper CS. Photogenotoxicity of Fluoroquinolones in Chinese Hamster V79 Cells: Dependency on Active Topoisomerase II. Photochem Photobiol 2008. [DOI: 10.1111/j.1751-1097.1999.tb03288.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Walter JM, Greenfield D, Bustamante C, Liphardt J. Light-powering Escherichia coli with proteorhodopsin. Proc Natl Acad Sci U S A 2007; 104:2408-12. [PMID: 17277079 PMCID: PMC1892948 DOI: 10.1073/pnas.0611035104] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Indexed: 11/18/2022] Open
Abstract
Proteorhodopsin (PR) is a light-powered proton pump identified by community sequencing of ocean samples. Previous studies have established the ecological distribution and enzymatic activity of PR, but its role in powering cells and participation in ocean energy fluxes remains unclear. Here, we show that when cellular respiration is inhibited by depleting oxygen or by the respiratory poison azide, Escherichia coli cells expressing PR become light-powered. Illumination of these cells with light coinciding with PR's absorption spectrum creates a proton motive force (pmf) that turns the flagellar motor, yielding cells that swim when illuminated with green light. By measuring the pmf of individual illuminated cells, we quantify the coupling between light-driven and respiratory proton currents, estimate the Michaelis-Menten constant (Km) of PR (10(3) photons per second/nm2), and show that light-driven pumping by PR can fully replace respiration as a cellular energy source in some environmental conditions. Moreover, sunlight-illuminated PR+ cells are less sensitive to azide than PR- cells, consistent with PR+ cells possessing an alternative means of maintaining cellular pmf and, thus, viability. Proteorhodopsin allows Escherichia coli cells to withstand environmental respiration challenges by harvesting light energy.
Collapse
Affiliation(s)
- Jessica M. Walter
- Departments of *Physics
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Derek Greenfield
- Departments of *Physics
- Biophysics Graduate Group, University of California, Berkeley, CA 94720; and
| | - Carlos Bustamante
- Departments of *Physics
- Chemistry, and
- Molecular and Cell Biology
- Howard Hughes Medical Institute, and
- Biophysics Graduate Group, University of California, Berkeley, CA 94720; and
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| | - Jan Liphardt
- Departments of *Physics
- Biophysics Graduate Group, University of California, Berkeley, CA 94720; and
- Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
| |
Collapse
|
20
|
Hakobyan M, Poladyan A, Bagramyan K. Energy transformation coupled to formate oxidation during anaerobic fermentation. Biophysics (Nagoya-shi) 2006. [DOI: 10.1134/s0006350906030122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
21
|
Galkin MA, Ishmukhametov RR, Vik SB. A functionally inactive, cold-stabilized form of the Escherichia coli F1Fo ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2006; 1757:206-14. [PMID: 16581013 PMCID: PMC1538965 DOI: 10.1016/j.bbabio.2006.02.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2005] [Revised: 02/15/2006] [Accepted: 02/20/2006] [Indexed: 11/16/2022]
Abstract
An unusual effect of temperature on the ATPase activity of E. coli F1Fo ATP synthase has been investigated. The rate of ATP hydrolysis by the isolated enzyme, previously kept on ice, showed a lag phase when measured at 15 degrees C, but not at 37 degrees C. A pre-incubation of the enzyme at room temperature for 5 min completely eliminated the lag phase, and resulted in a higher steady-state rate. Similar results were obtained using the isolated enzyme after incorporation into liposomes. The initial rates of ATP-dependent proton translocation, as measured by 9-amino-6-chloro-2-methoxyacridine (ACMA) fluorescence quenching, at 15 degrees C also varied according to the pre-incubation temperature. The relationship between this temperature-dependent pattern of enzyme activity, termed thermohysteresis, and pre-incubation with other agents was examined. Pre-incubation of membrane vesicles with azide and Mg2+, without exogenous ADP, resulted in almost complete inhibition of the initial rate of ATPase when assayed at 10 degrees C, but had little effect at 37 degrees C. Rates of ATP synthesis following this pre-incubation were not affected at any temperature. Azide inhibition of ATP hydrolysis by the isolated enzyme was reduced when an ATP-regenerating system was used. A gradual reactivation of azide-blocked enzyme was slowed down by the presence of phosphate in the reaction medium. The well-known Mg2+ inhibition of ATP hydrolysis was shown to be greatly enhanced at 15 degrees C relative to at 37 degrees C. The results suggest that thermohysteresis is a consequence of an inactive form of the enzyme that is stabilized by the binding of inhibitory Mg-ADP.
Collapse
Affiliation(s)
- Mikhail A Galkin
- Department of Biological Sciences, Southern Methodist University, Dallas, TX 75275-0376, USA
| | | | | |
Collapse
|
22
|
Pastor N, Cantero G, Campanella C, Cortés F. Endoreduplication induced in cultured Chinese hamster cells by different anti-topoisomerase II chemicals. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2005; 582:11-9. [PMID: 15781205 DOI: 10.1016/j.mrgentox.2004.12.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2004] [Revised: 11/11/2004] [Accepted: 12/03/2004] [Indexed: 10/25/2022]
Abstract
With the ultimate purpose of testing the hypothesis that, as shown in yeast mutants, any malfunction of DNA topoisomerase II might result in aberrant mitosis due to defective chromosome segregation, we have chosen three chemicals of different nature, recently reported to catalytically inhibit the enzyme. The endpoint selected to assess any negative effect on the ability of topoisomerase II to properly carry out decatenation of fully replicated chromosomes in the G2/M phase of the cell cycle was the presence of metaphases showing diplochromosomes as a result of endoreduplication, i.e. two successive rounds of DNA replication without intervening mitosis. The anti-topoisomerase drugs selected were the anthracycline antibiotic and antineoplastic agent aclarubicin, the respiratory venom sodium azide, and 9-aminoacridine, a chemical compound with planar topology capable of intercalation between DNA bases. Our results show that the three chemicals tested are able to induce endoreduplication to different degrees. These observations seem to lend support to the proposal that topoisomerase II plays a central role in chromosome segregation in mammalian cells.
Collapse
Affiliation(s)
- Nuria Pastor
- Department of Cell Biology, Faculty of Biology, University of Seville, Avenida Reina Mercedes 6, E-41012 Seville, Spain
| | | | | | | |
Collapse
|
23
|
Hamann LG, Ding CZ, Miller AV, Madsen CS, Wang P, Stein PD, Pudzianowski AT, Green DW, Monshizadegan H, Atwal KS. Benzodiazepine-based selective inhibitors of mitochondrial F1F0 ATP hydrolase. Bioorg Med Chem Lett 2004; 14:1031-4. [PMID: 15013017 DOI: 10.1016/j.bmcl.2003.11.052] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2003] [Revised: 11/14/2003] [Accepted: 11/18/2003] [Indexed: 11/28/2022]
Abstract
A series of benzodiazepine-based inhibitors of mitochondrial F(1)F(0) ATP hydrolase were prepared and evaluated for their ability to selectively inhibit the enzyme in the forward direction. Compounds from this series showed excellent potency and selectivity for ATP hydrolase versus ATP synthase, suggesting a potentially beneficial profile useful for the treatment of ischemic heart disease.
Collapse
Affiliation(s)
- Lawrence G Hamann
- Department of Discovery Chemistry, Bristol-Myers Squibb, Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Atwal KS, Ahmad S, Ding CZ, Stein PD, Lloyd J, Hamann LG, Green DW, Ferrara FN, Wang P, Rogers WL, Doweyko LM, Miller AV, Bisaha SN, Schmidt JB, Li L, Yost KJ, Lan HJ, Madsen CS. N-[1-Aryl-2-(1-imidazolo)ethyl]-guanidine derivatives as potent inhibitors of the bovine mitochondrial F1F0 ATP hydrolase. Bioorg Med Chem Lett 2004; 14:1027-30. [PMID: 15013016 DOI: 10.1016/j.bmcl.2003.11.077] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2003] [Accepted: 11/14/2003] [Indexed: 10/26/2022]
Abstract
A series of substituted guanidine derivatives were prepared and evaluated as potent and selective inhibitors of mitochondrial F(1)F(0) ATP hydrolase. The initial thiourethane derived lead molecules possessed intriguing in vitro pharmacological profiles, though contained moieties considered non-drug-like. Analogue synthesis efforts led to compounds with maintained potency and superior physical properties. Small molecules in this series which potently and selectivity inhibit ATP hydrolase and not ATP synthase may have utility as cardioprotective agents.
Collapse
Affiliation(s)
- Karnail S Atwal
- Department of Discovery Chemistry, Bristol-Myers Squibb, Pharmaceutical Research Institute, PO Box 5400, Princeton, NJ 08543-5400, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Pacheco-Moisés F, Minauro-Sanmiguel F, Bravo C, García JJ. Sulfite inhibits the F1F0-ATP synthase and activates the F1F0-ATPase of Paracoccus denitrificans. J Bioenerg Biomembr 2002; 34:269-78. [PMID: 12392190 DOI: 10.1023/a:1020252401675] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The F1F0 complex of Paracoccus denitrificans (PdF1F0) is the fastest ATP synthase but the slowest ATPase. Sulfite exerts maximal activation of the PdF1F0-ATPase (Pacheco-Moisés, F., García, J. J., Rodríguez-Zavala, J. S., and Moreno-Sánchez, R. (2000). Eur J. Biochem. 267, 993-1000) but its effect on the PdF1F0-ATP synthase activity remains unknown. Therefore, we studied the effect of sulfite on ATP synthesis and 32Pi <--> ATP exchange reactions of inside-out membrane vesicles of P. denitrificans. Sulfite inhibited both reactions under conditions of maximal delta pH and normal sensitivity to dicyclohexylcarbodiimide. Sulfite increased by 10- and 5-fold the K0.5 for Mg2+-ADP and Pi during ATP synthesis, respectively, and by 4-fold the IC50 of Mg2+-ADP for inhibition of the PdF1F0-ATPase activity. Thus, sulfite exerts opposite effects on the forward and reverse functioning of the PdF1F0 complex. These effects are not due to membrane or PdF1F0 uncoupling. Kinetic and structural modifications that could account for these results are discussed.
Collapse
Affiliation(s)
- Fermín Pacheco-Moisés
- Departamento de Bioquímica, Instituto Nacional de Cardiología, Ignacio Chavez, México, DF, México
| | | | | | | |
Collapse
|
26
|
HU J, MIYAGUCHI Y, KURUSU Y, TSUTSUMI M. Recovery of Escherichia coli IFO3301 Injured by Glycine and Ethanol. FOOD SCIENCE AND TECHNOLOGY RESEARCH 2002. [DOI: 10.3136/fstr.8.333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
27
|
Tuena de Gómez-Puyou M, Domínguez-Ramírez L, Reyes-Vivas H, Gómez-Puyou A. Structural alterations and inhibition of unisite and multisite ATP hydrolysis in soluble mitochondrial F1 by guanidinium chloride. Biochemistry 2001; 40:3396-402. [PMID: 11258961 DOI: 10.1021/bi002485+] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The effect of guanidinium chloride (GdnHCl) on the ATPase activity and structure of soluble mitochondrial F1 was studied. At high ATP concentrations, hydrolysis is carried by the three catalytic sites of F1; this reaction was strongly inhibited by GdnHCl concentrations of <50 mM. With substoichiometric ATP concentrations, hydrolysis is catalyzed exclusively by the site with the highest affinity. Under these conditions, ATP binding and hydrolysis took place with GdnHCl concentrations of >100 mM; albeit at the latter concentration, the rate of hydrolysis of bound ATP was lower. Similar results were obtained with urea, although nearly 10-fold higher concentrations were required to inhibit multisite hydrolysis. GdnHCl inhibited multisite ATPase activity by diminishing the V(max) of the reaction without significant alterations of the Km for MgATP. GdnHCl prevented the effect of excess ATP on hydrolysis of ATP that was already bound to the high-affinity catalytic site. With and without 100 mM GdnHCl and 100 microM [3H]ATP in the medium, F1 bound 1.6 and 2 adenine nucleotides per F1, respectively. The effect of GdnHCl on some structural features of F1 was also examined. GdnHCl at concentrations that inhibit multisite ATP hydrolysis did not affect the exposure of the cysteines of F1, nor its intrinsic fluorescence. With 100 mM GdnHCl, a concentration at which unisite ATP hydrolysis was still observed, 0.7 cysteine per F1 became solvent-exposed and small changes in its intrinsic fluorescence of F1 were detected. GdnHCl concentrations on the order of 500 mM were required to induce important decreases in intrinsic fluorescence. These changes accompanied inhibition of unisite ATP hydrolysis. The overall data indicate that increasing concentrations of GdnHCl bring about distinct and sequential alterations in the function and structure of F1. With respect to the function of F1, the results show that at low GdnHCl concentrations, only the high-affinity site expresses catalytic activity, and that inhibition of multisite catalysis is due to alterations in the transmission of events between catalytic sites.
Collapse
Affiliation(s)
- M Tuena de Gómez-Puyou
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Apartado Postal 70243, 04510 México.
| | | | | | | |
Collapse
|
28
|
Beharry S, Bragg PD. Phosphate exchange and ATP synthesis by DMSO-pretreated purified bovine mitochondrial ATP synthase. Biochem J 2001; 353:215-22. [PMID: 11139383 PMCID: PMC1221561 DOI: 10.1042/0264-6021:3530215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Purified soluble bovine mitochondrial F(1)F(o)-ATP synthase contained 2 mol of ATP, 2 mol of ADP and 6 mol of P(i)/mol. Incubation of this enzyme with 1 mM [(32)P]P(i) caused the exchange of 2 mol of P(i)/mol of F(1)F(o)-ATP synthase. The labelled phosphates were not displaced by ATP. Transfer of F(1)F(o)-ATP synthase to a buffer containing 30% (v/v) DMSO and 1 mM [(32)P]P(i) resulted in the loss of bound nucleotides with the retention of 1 mol of ATP/mol of F(1)F(o)-ATP synthase. Six molecules of [(32)P]P(i) were incorporated by exchange with the existing bound phosphate. Removal of the DMSO by passage of the enzyme through a centrifuged column of Sephadex G-50 resulted in the exchange of one molecule of bound [(32)P]P(i) into the bound ATP. Azide did not prevent this [(32)P]P(i)<-->ATP exchange reaction. The bound labelled ATP could be displaced from the enzyme by exogenous ATP. Addition of ADP to the DMSO-pretreated F(1)F(o)-ATP synthase in the original DMSO-free buffer resulted in the formation of an additional molecule of bound ATP. It was concluded that following pretreatment with and subsequent removal of DMSO the F(1)F(o)-ATP synthase contained one molecule of ATP at a catalytic site which was competent to carry out a phosphate-ATP exchange reaction using enzyme-bound inorganic radiolabelled phosphate. In the presence of ADP an additional molecule of labelled ATP was formed from enzyme-bound P(i) at a second catalytic site. The bound phosphate-ATP exchange reaction is not readily accommodated by current mechanisms for the ATP synthase.
Collapse
Affiliation(s)
- S Beharry
- Department of Biochemistry and Molecular Biology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
29
|
Utyanskaya EZ, Lidskii BV, Neihaus MG, Shilov AE. Mathematical modelling of kinetics of adenosine 5'-triphosphate hydrolysis catalyzed by Zn2+ ion in the pH range 7.1-7.4. J Inorg Biochem 2000; 81:239-58. [PMID: 11065188 DOI: 10.1016/s0162-0134(00)00109-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Kinetic data on hydrolysis of ZnATP2- complexes confirm the enzyme-like mechanism of the reaction. The whole sequence of steps for the formation and transformations of the intermediates is established by numerical modelling in a wide range of concentrations (4x10(-4)-0.3 M) in the pH range 7.1-7.4. The rates of active center formation and appropriate equilibria are governed by H+ transfer from coordinated water with formation of hydrogen bond between the (N1) atom of the second ZnATP2- molecule and the gamma-phosphate moiety of the first ZnATP2- molecule. The rate and equilibrium constants are higher in trimeric associates as compared to dimeric ones. Among the steps of ADP formation in the pH-independent channel, H+ transfer from the hydrogen bond with O(-)-Pgamma of ZnATP2- to the hydrogen bond with O(-)-Pbeta of ZnADP- forming in the course of general base catalysis is the rate determining step. It is followed by the rapid and reversible substitution of ligand H2PO4- by H2O in the Zn2+ coordination sphere. Hydrogen bond participation leads to reversible ADP formation. AMP is shown to be formed also via associates, and the conformation transformation determines the induction period. The induction period decreases as the concentration of ZnATP2- increases. The rate and equilibrium constants of all steps are evaluated and variation of the intermediate concentrations in the course of hydrolysis is presented.
Collapse
Affiliation(s)
- E Z Utyanskaya
- N.M. Emanuel Institute of Biochemical Physics RAS, Moscow, Kosygina, Russia.
| | | | | | | |
Collapse
|
30
|
Nakamoto RK, Ketchum CJ, Kuo PH, Peskova YB, Al-Shawi MK. Molecular mechanisms of rotational catalysis in the F(0)F(1) ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1458:289-99. [PMID: 10838045 DOI: 10.1016/s0005-2728(00)00081-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rotation of the F(0)F(1) ATP synthase gamma subunit drives each of the three catalytic sites through their reaction pathways. The enzyme completes three cycles and synthesizes or hydrolyzes three ATP for each 360 degrees rotation of the gamma subunit. Mutagenesis studies have yielded considerable information on the roles of interactions between the rotor gamma subunit and the catalytic beta subunits. Amino acid substitutions, such as replacement of the conserved gammaMet-23 by Lys, cause altered interactions between gamma and beta subunits that have dramatic effects on the transition state of the steady state ATP synthesis and hydrolysis reactions. The mutations also perturb transmission of specific conformational information between subunits which is important for efficient conversion of energy between rotation and catalysis, and render the coupling between catalysis and transport inefficient. Amino acid replacements in the transport domain also affect the steady state catalytic transition state indicating that rotation is involved in coupling to transport.
Collapse
Affiliation(s)
- R K Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, P.O. Box 10011, Charlottesville, VA 22906-0011, USA.
| | | | | | | | | |
Collapse
|
31
|
Nakamoto RK, Ketchum CJ, al-Shawi MK. Rotational coupling in the F0F1 ATP synthase. ANNUAL REVIEW OF BIOPHYSICS AND BIOMOLECULAR STRUCTURE 1999; 28:205-34. [PMID: 10410801 DOI: 10.1146/annurev.biophys.28.1.205] [Citation(s) in RCA: 100] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The F0F1 ATP synthase is a large multisubunit complex that couples translocation of protons down an electrochemical gradient to the synthesis of ATP. Recent advances in structural analyses have led to the demonstration that the enzyme utilizes a rotational catalytic mechanism. Kinetic and biochemical evidence is consistent with the expected equal participation of the three catalytic sites in the alpha 3 beta 3 hexamer, which operate in sequential, cooperative reaction pathways. The rotation of the core gamma subunit plays critical roles in establishing the conformation of the sites and the cooperative interactions. Mutational analyses have shown that the rotor subunits are responsible for coupling and in doing so transmit specific conformational information between transport and catalysis.
Collapse
Affiliation(s)
- R K Nakamoto
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville 22906, USA.
| | | | | |
Collapse
|
32
|
Park LC, Zhang H, Sheu KF, Calingasan NY, Kristal BS, Lindsay JG, Gibson GE. Metabolic impairment induces oxidative stress, compromises inflammatory responses, and inactivates a key mitochondrial enzyme in microglia. J Neurochem 1999; 72:1948-58. [PMID: 10217272 DOI: 10.1046/j.1471-4159.1999.0721948.x] [Citation(s) in RCA: 112] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Microglial activation, oxidative stress, and dysfunctions in mitochondria, including the reduction of cytochrome oxidase activity, have been implicated in neurodegeneration. The current experiments tested the effects of reducing cytochrome oxidase activity on the ability of microglia to respond to inflammatory insults. Inhibition of cytochrome oxidase by azide reduced oxygen consumption and increased reactive oxygen species (ROS) production but did not affect cell viability. Azide also attenuated microglial activation, as measured by nitric oxide (NO.) production in response to lipopolysaccharide (LPS). It is surprising that the inhibition of cytochrome oxidase also diminished the activity of the alpha-ketoglutarate dehydrogenase complex (KGDHC), a Krebs cycle enzyme. This reduction was exaggerated when the azide-treated microglia were also treated with LPS. The combination of the azide-stimulated ROS and LPS-induced NO. would likely cause peroxynitrite formation in microglia. Thus, the possibility that KGDHC was inactivated by peroxynitrite was tested. Peroxynitrite inhibited the activity of isolated KGDHC, nitrated tyrosine residues of all three KGDHC subunits, and reduced immunoreactivity to antibodies against two KGDHC components. Thus, our data suggest that inhibition of the mitochondrial respiratory chain diminishes aerobic energy metabolism, interferes with microglial inflammatory responses, and compromises mitochondrial function, including KGDHC activity, which is vulnerable to NO. and peroxynitrite that result from microglial activation. Thus, activation of metabolically compromised microglia can further diminish their oxidative capacity, creating a deleterious spiral that may contribute to neurodegeneration.
Collapse
Affiliation(s)
- L C Park
- Department of Neurology and Neuroscience, Cornell University Medical College at Burke Medical Research Institute, White Plains, New York 10605, USA
| | | | | | | | | | | | | |
Collapse
|
33
|
Weber J, Senior AE. Effects of the inhibitors azide, dicyclohexylcarbodiimide, and aurovertin on nucleotide binding to the three F1-ATPase catalytic sites measured using specific tryptophan probes. J Biol Chem 1998; 273:33210-5. [PMID: 9837890 DOI: 10.1074/jbc.273.50.33210] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Equilibrium nucleotide binding to the three catalytic sites of Escherichia coli F1-ATPase was measured in the presence of the inhibitors azide, dicyclohexylcarbodiimide, and aurovertin to elucidate mechanisms of inhibition. Fluorescence signals of beta-Trp-331 and beta-Trp-148 substituted in catalytic sites were used to determine nucleotide binding parameters. Azide brought about small decreases in Kd(MgATP) and Kd(MgADP). Notably, under MgATP hydrolysis conditions, it caused all enzyme molecules to assume a state with three catalytic site-bound MgATP and zero bound MgADP. These results rule out the idea that azide inhibits by "trapping" MgADP. Rather, azide blocks the step at which signal transmission between catalytic sites promotes multisite hydrolysis. Aurovertin bound with stoichiometry of 1.8 (mol/mol of F1) and allowed significant residual turnover. Cycling of the aurovertin-free beta-subunit catalytic site through three normal conformations was indicated by MgATP binding data. Aurovertin did not change the normal ratio of 1 bound MgATP/2 bound MgADP in catalytic sites. The results indicate that it acts to slow the switch of catalytic site affinities ("binding change step") subsequent to MgATP hydrolysis. Dicyclohexylcarbodiimide shifted the ratio of catalytic site-bound MgATP/MgADP from 1:2 to 1.6:1.4, without affecting Kd(MgATP) values. Like azide, it also appears to affect activity at the step after MgATP binding, in which signal transmission between catalytic sites promotes MgATP hydrolysis.
Collapse
Affiliation(s)
- J Weber
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, New York 14642, USA
| | | |
Collapse
|
34
|
García JJ, Capaldi RA. Unisite catalysis without rotation of the gamma-epsilon domain in Escherichia coli F1-ATPase. J Biol Chem 1998; 273:15940-5. [PMID: 9632641 DOI: 10.1074/jbc.273.26.15940] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Unisite [gamma-32P]ATP hydrolysis was studied in ECF1 from the mutant betaE381C after generating a single disulfide bond between beta and gamma subunits to prevent the rotation of the gamma/epsilon domain. The single beta-gamma cross-link was obtained by removal of the delta subunit from F1 and then treating with CuCl2 as described previously (Aggeler, R., Haughton, M. A., and Capaldi, R. A. (1996) J. Biol. Chem. 270, 9185-9191). The mutant enzyme, betaE381C, had an increased overall rate of unisite hydrolysis of [gamma-32P]ATP compared with the wild type ECF1 due to increases in the rate of ATP binding (k+1), Pi release (k+3), and ADP release (k+4). Release of bound substrate ([gamma-32P]ATP) was also increased in the betaE381C mutant. Cross-linking between Cys-381 and the intrinsic Cys-87 of gamma caused a further increase in the rate of unisite catalysis, mainly by additional effects on nucleotide binding in the high affinity catalytic site (k+1 and k+4). In delta-subunit-free ECF1 from wild type or betaE381C F1, addition of an excess of ATP accelerated unisite catalysis. After cross-linking, unisite catalysis of betaE381C was not enhanced by the cold chase. The covalent linkage of gamma to beta increased the rate of unisite catalysis to that obtained by cold chase of ATP of the noncross-linked enzyme. It is concluded that the conversion of Glu-381 of beta to Cys induces an activated conformation of the high affinity catalytic site with low affinity for substrate and products. This state is stabilized by cross-linking the Cys at beta381 to Cys-87 of gamma. We infer from the data that rotation of the gamma/epsilon rotor in ECF1 is not linked to unisite hydrolysis of ATP at the high affinity catalytic site but to ATP binding to a second or third catalytic site on the enzyme.
Collapse
Affiliation(s)
- J J García
- Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1229, USA
| | | |
Collapse
|
35
|
Radax C, Sigurdsson O, Hreggvidsson GO, Aichinger N, Gruber C, Kristjansson JK, Stan-Lotter H. F-and V-ATPases in the genus Thermus and related species. Syst Appl Microbiol 1998; 21:12-22. [PMID: 9741106 DOI: 10.1016/s0723-2020(98)80003-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The discovery of a V-type ATPase in the gram-negative bacterium Thermus thermophilus HB8 (YOKOYAMA et al., J. Biol. Chem. 265, 21946, 1990) was unexpected, since only eukaryotic endomembranes and archaea were thought to contain this enzyme complex, and horizontal gene transfer was suggested to explain the finding. We examined membrane-associated ATPases from representatives of several groups of the genus Thermus. The enzymes were extracted with chloroform and purified by ion exchange chromatography or native gel electrophoresis. One novel Islandic isolate, T. scotoductus SE-1, as well as strain T. filiformis from New Zealand, possessed F-ATPases, as judged by the typical five subunit composition of the F1-moiety, sensitivity to azide, insensitivity to nitrate and a strong crossreaction with antibodies against the F1-ATPase from E. coli. In addition, N-terminal amino acid sequencing of the beta subunit from T. scotoductus SE-1 confirmed its homology with beta subunits from known F-ATPases. In contrast, the same extraction procedure released a V-ATPase from the membranes of T. thermophilus HB27 and T. aquaticus YT-1. The related species Meiothermus (formerly Thermus) chliarophilus ALT-8 also possessed a V-ATPase. All V-ATPases examined in this study contained larger major subunits than F-ATPases, crossreacted with antiserum against subunit A of the V-ATPase from the archaeon Halobacterium saccharovorum, and the N-terminal sequences of their major subunits were homologous to those of other V-ATPases. Sequences of the 16S rRNA gene clearly placed T. scotoductus SE-1, along with other non-pigmented Thermus strains, as a distinct species close to T. aquaticus. Our results suggested that at least two members of the genus, T. scotoductus SE-1 and T. filiformis, contain an F-ATPase, whereas several others possess a V-ATPase. These data could indicate a greater diversity of the genus Thermus than was previously thought. Alternatively, the genus may consist of species where horizontal gene transfer has occurred and others, where it has not.
Collapse
Affiliation(s)
- C Radax
- Institute of Genetics and General Biology, Salzburg, Austria
| | | | | | | | | | | | | |
Collapse
|
36
|
Unisite ATP hydrolysis by soluble Rhodospirillum rubrum F1-ATPase is accelerated by Ca2+. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1363:70-8. [PMID: 9526049 DOI: 10.1016/s0005-2728(97)00083-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
At saturating concentrations of ATP, soluble F1 from the Rhodospirillum rubrum (RF1) exhibits a higher rate of hydrolysis with Ca2+ than with Mg2+. The mechanisms involved in the expression of a higher catalytic activity with Ca2+ were explored by measuring the ATPase activity of RF1 at substiochiometric concentrations of ATP (unisite conditions). At a ratio of 0.25 [gamma-32P]ATP per RF1, the enzyme exhibited a 50 times higher hydrolytic rate with Ca2+ than with Mg2+. The rate of [gamma-32P]ATP binding to RF1 was in the same range with the two divalent metal ions. Centrifugation-filtration of RF1 exposed to substoichiometric [gamma-32P]ATP concentrations and Mg2+ through Sephadex columns yielded an enzyme that contained [gamma-32P]ATP and [32P]phosphate in a stoichiometry that was close to one. In the presence of Ca2+, the eluted enzyme did not contain [gamma-32P]ATP nor [32P]phosphate. This indicated that the rate of product release was faster with Ca2+ than with Mg2+. It was also observed that the ratio of multisite to unisite hydrolysis rates was of similar magnitude with both divalent cations. This suggests that they do not affect differently the cooperative mechanisms that may exist between catalytic sites. In consequence, the higher ATPase activity of RF1 in presence of Ca2+ strongly suggests that the retention time of products is decreased in the presence of this cation. Copyright 1998 Elsevier Science B.V.
Collapse
|
37
|
Hu D, Strotmann H, Shavit N, Leu S. The C. reinhardtii CF1 with the mutation betaT168S has high ATPase activity. FEBS Lett 1998; 421:65-8. [PMID: 9462841 DOI: 10.1016/s0014-5793(97)01531-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We have generated the mutation T168S in the beta subunit of the chloroplast ATP synthase complex of Chlamydomonas reinhardtii by site directed mutagenesis and chloroplast transformation. CF1 and the alpha3beta3gamma complex of this mutant strain were isolated and their enzymatic activities were characterized and compared to those of the corresponding wild type complexes. Without activation the mutant CF1 exhibits MgATPase activity with at least 10 times higher rates than the wild type enzyme. The MgATPase activity could be stimulated to some extent by methanol, but less by ethanol and octylglucoside. The alpha3beta3gamma complex had an even higher MgATPase activity, which was only slightly enhanced by ethanol or methanol. The ATPase activities of the mutant complexes, like those of the wild type complexes, displayed a sharp concentration optimum for Mg2+. Free ADP inhibited neither the mutant nor the wild type ATPase significantly. Azide, which strongly inhibited the ATPase activity of the wild type enzyme, inhibited the mutant enzyme only at an about 30 times higher concentration suggesting that the mutation T168S prevents trapping of a tightly bound MgADP by a catalytic site that regulates chloroplast ATPase activity. The mutant cells grew photoautotrophically at a growth rate of about 50%. Similar to the wild type the cells survived on minimal medium in the dark. Under heterotrophic conditions with acetate as energy and carbon source the mutant cells grew much faster than the wild type cells, but the chlorophyll content per cell decreased dramatically.
Collapse
Affiliation(s)
- D Hu
- The Doris and Bertie Black Center for Bioenergetics in Life Sciences, Ben Gurion University of the Negev, Beer Sheva, Israel
| | | | | | | |
Collapse
|
38
|
García JJ, Gómez-Puyou A, Maldonado E, Tuena De Gómez-Puyou M. Acceleration of unisite catalysis of mitochondrial F1-adenosinetriphosphatase by ATP, ADP and pyrophosphate--hydrolysis and release of the previously bound [gamma-32P]ATP. EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 249:622-9. [PMID: 9370375 DOI: 10.1111/j.1432-1033.1997.00622.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The effect of ATP, ADP and pyrophosphate (PPi) on hydrolysis and release of [gamma-32P]ATP bound to the high-affinity catalytic site of soluble F1 from bovine heart mitochondria under unisite conditions [Grubmeyer, C., Cross, R. L. & Penefsky, H. S. (1982) J. Biol. Chem. 257, 12092-12100] was studied. In accord with the previous data, it was observed that millimolar concentrations of ATP or ADP added to F1 undergoing unisite hydrolysis of [gamma-32P]ATP accelerated its hydrolysis. PPi also produced a hydrolytic burst of a fraction of the previously bound [gamma-32P]ATP; kinetic data suggested that for production of optimal hydrolysis by PPi of the bound [gamma-32P]ATP, two binding sites with apparent Kd of 27 microM and 240 microM must be filled. The extent of the hydrolytic burst induced by MgPPi was lower than that induced by ADP and ATP. In F1 in which PPi had produced a hydrolytic burst of the bound [gamma-32P]ATP, the addition of ATP induced a second burst of hydrolysis. By filtration experiments and enzyme trapping, it was also studied whether ATP, ADP and PPi produce release of the tightly bound [gamma-32P]ATP. At millimolar concentrations, ATP and ADP brought about release of about 25% of the previously bound [gamma-32P]ATP. At micromolar concentrations, ADP accelerated the hydrolysis of the previously bound [gamma-32P]ATP but not its release. Hence, the hydrolytic and release reactions could be separated, indicating that the two reactions require the occupancy of different sites in F1. With PPi, no release of the tightly bound [gamma-32P]ATP was observed. The ADP induced hydrolysis and release of the F1-bound [gamma-32P]ATP were inhibited by sodium azide to the same extent (60%). Since release of ATP from a high-affinity catalytic site of F1 represents the terminal step of oxidative phosphorylation, the data illustrate that the binding energy of substrates to F1 is critical to the ejection of ATP into the media. The failure of PPi to induce release of [gamma-32P]ATP bound to F1 under unisite conditions is probably due to its lower binding energy.
Collapse
Affiliation(s)
- J J García
- Instituto Nacional de Cardiología Ignacio Chávez, México, D.F., México
| | | | | | | |
Collapse
|
39
|
Abstract
The structure of the core catalytic unit of ATP synthase, alpha 3 beta 3 gamma, has been determined by X-ray crystallography, revealing a roughly symmetrical arrangement of alternating alpha and beta subunits around a central cavity in which helical portions of gamma are found. A low-resolution structural model of F0, based on electron spectroscopic imaging, locates subunit a and the two copies of subunit b outside of a subunit c oligomer. The structures of individual subunits epsilon and c (largely) have been solved by NMR spectroscopy, but the oligomeric structure of c is still unknown. The structures of subunits a and delta remain undefined, that of b has not yet been defined but biochemical evidence indicates a credible model. Subunits gamma, epsilon, b, and delta are at the interface between F1 and F0; gamma epsilon complex forms one element of the stalk, interacting with c at the base and alpha and beta at the top. The locations of b and delta are less clear. Elucidation of the structure F0, of the stalk, and of the entire F1F0 remains a challenging goal.
Collapse
Affiliation(s)
- J Weber
- Department of Biochemistry, University of Rochester Medical Center, NY 14642, USA
| | | |
Collapse
|
40
|
García JJ, Gómez-Puyou A, de Gómez-Puyou MT. Unisite hydrolysis of [gamma 32 P]ATP by soluble mitochondrial F1-ATPase and its release by excess ADP and ATP. Effect of trifluoperazine. J Bioenerg Biomembr 1997; 29:61-70. [PMID: 9067803 DOI: 10.1023/a:1022463822929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Some of the characteristics of unisite hydrolysis of [gamma 32P]ATP as well as the changes that occur on the transition to multisite catalysis were further studied. It was found that a fraction of [gamma 32P]ATP bound at the catalytic sites of F1 under unisite conditions undergoes both hydrolysis and release induced by medium nucleotides upon addition of millimolar concentrations of ADP or ATP. The fraction of [gamma 32P]ATP that undergoes release is similar to the fraction that undergoes hydrolytic cleavage, indicating that the rates of the release and hydrolytic reactions of bound [gamma 32P]ATP are in the same range. As part of studies on the mechanisms through which trifluoperazine inhibits ATP hydrolysis, its effect on unisite hydrolysis of [gamma 32P]ATP was also studied. Trifluoperazine diminishes the rate of unisite hydrolysis by 30-40%. The inhibition is accompanied by a nearly tenfold increase in the ratio of [gamma 32P]ATP/32Pi bound at the catalytic site and a 50% diminution in the rate of 32Pi release from the enzyme into the media. Trifluoperazine also induces heterogeneity of the three catalytic sites of F1 in the sense that in a fraction of F1 molecules, the high-affinity catalytic site has a turnover rate lower than the other two. Trifluoperazine does not modify the release of previously bound [gamma 32P]ATP induced by medium nucleotides. The latter indicates that hindrances in the release of Pi do not necesarily accompany alterations in the release of ATP even though both species lie in the same site.
Collapse
Affiliation(s)
- J J García
- Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México, D. F. México
| | | | | |
Collapse
|
41
|
Fan F, Macnab RM. Enzymatic characterization of FliI. An ATPase involved in flagellar assembly in Salmonella typhimurium. J Biol Chem 1996; 271:31981-8. [PMID: 8943245 DOI: 10.1074/jbc.271.50.31981] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
FliI is a protein needed for flagellar assembly in Salmonella typhimurium. It shows sequence similarity to the catalytic beta subunit of the F0F1-ATPase and is even more closely related to putative ATPases in Type III bacterial secretory pathways. A His-tagged version of FliI, which was fully functional in complementation tests, was purified to homogeneity. It had an ATPase activity of 0.16 s-1 at 25 degrees C and pH 7, and a Km for ATP of 0.3 mM; Mg2+ was required. The activity was not affected by inhibitors of the F-, V- or P-type ATPases, or inhibitors of the Type I or Type II bacterial secretory pathways. Mutations K188I and Y363S decreased the ATPase activity about 100-fold, increased the Km about 10-fold, blocked flagellar assembly, and were dominant. Other FliI mutations that disrupted flagellar protein export were found near the N terminus; they permitted essentially wild-type ATPase activity, were not dominant, and showed a dosage-dependent phenotype. We propose that FliI has a C-terminal ATPase domain and an N-terminal domain that interacts with other components in the flagellum-specific export apparatus.
Collapse
Affiliation(s)
- F Fan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114, USA.
| | | |
Collapse
|
42
|
Futai M, Omote H. Conformational transmission in ATP synthase during catalysis: search for large structural changes. J Bioenerg Biomembr 1996; 28:409-14. [PMID: 8951087 DOI: 10.1007/bf02113982] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Escherichia coli ATP synthase has eight subunits and functions through transmission of conformational changes between subunits. Defective mutation at beta Gly-149 was suppressed by the second mutations at the outer surface of the beta subunit, indicating that the defect by the first mutation was suppressed by the second mutation through long range conformation transmission. Extensive mutant/pseudorevertant studies revealed that beta/alpha and beta/gamma subunits interactions are important for the energy coupling between catalysis and H+ translocation. In addition, long range interaction between amino and carboxyl terminal regions of the gamma subunit has a critical role(s) for energy coupling. These results suggest that the dynamic conformation change and its transmission are essential for ATP synthase.
Collapse
Affiliation(s)
- M Futai
- Division of Biological Sciences, Osaka University, Japan
| | | |
Collapse
|
43
|
Beharry S, Bragg PD. The bound adenine nucleotides of purified bovine mitochondrial ATP synthase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 240:165-72. [PMID: 8797850 DOI: 10.1111/j.1432-1033.1996.0165h.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The experiments in this study were directed towards defining the nucleotide content of purified beef-heart mitochondrial F1F0 ATP synthase during binding and hydrolysis of ATP. The purified, soluble synthase as prepared contained 2 mol ATP and 2 mol ADP/mol enzyme. Three of these four nucleotides were exchangeable on incubation with radiolabelled MgATP. Passage of the ATP synthase through a column of Sephadex G-50 readily removed 1 mol ADP/mol. The remaining bound nucleotides were not displaced by incubation with 1 mM GTP or 5 mM sodium sulfite, the latter an activator of the ATPase activity of the synthase. Incubation of the synthase with 250 microM MgATP in the presence of 3 mM sodium azide, an inhibitor of the ATPase, resulted in the transitory formation of a form of the enzyme in which 5-6 nucleotide-binding sites were loaded with ATP and/or ADP, thus showing that the ATP synthase, like the soluble F1 ATPase, contained a minimum of six nucleotide-binding sites. The presence of an ATP-regenerating system during incubation with MgATP resulted in the loading of 5-6 sites to yield a form of the enzyme containing 3-4 mol ATP and 2 mol ADP/mol synthase even after passage through a centrifuged column. Following hydrolysis of the medium MgATP, the enzyme reached a stable form containing 2 mol ATP and 2 mol ADP/mol synthase. Like the form of the enzyme originally prepared, 1 mol ADP/mol synthase was readily released. However, this ADP remained bound to the synthase in the presence of GTP if azide was present. These results are discussed in the context of current ideas about nucleotide-binding sites on the F1 ATPase portion of the F1F0 ATP synthase. It is concluded that the properties of the sites on the F1F0 synthase show some differences from those on the F1 ATPase.
Collapse
Affiliation(s)
- S Beharry
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | |
Collapse
|
44
|
Varming T, Drejer J, Frandsen A, Schousboe A. Characterization of a chemical anoxia model in cerebellar granule neurons using sodium azide: protection by nifedipine and MK-801. J Neurosci Res 1996; 44:40-6. [PMID: 8926628 DOI: 10.1002/(sici)1097-4547(19960401)44:1<40::aid-jnr5>3.0.co;2-i] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Induction of chemical anoxia, using sodium azide in cerebellar granule cells maintained in primary culture, was evaluated as an in vitro assay for screening of potential neuroprotective compounds. The purpose of this study was to evaluate sodium azide as an alternative to cyanide salts, compounds which, despite their unfavorable characteristics, are often used in assays for chemical anoxia. The viability of neuronal cultures after treatment with azide, with or without preincubation with calcium channel blockers, tetrodotoxin (TTX), or glutamate receptor antagonists, was monitored by subsequent incubation with the tetrazolium dye MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide), followed by isopropanol extraction and spectrophotometric quantification of cellularly reduced MTT. The azide-induced degeneration of neurons was shown to be dependent on the concentration as well as on the duration of incubation with submaximal concentrations of azide. Incubation of the neurons with nifedipine, a blocker of L-type voltage-sensitive calcium channels (L-VSCC), or with the noncompetitive N-methyl-D-aspartate (NMDA) subtype glutamate receptor antagonist MK-801, prior to addition of submaximal concentrations of azide, significantly attenuated azide-induced neuronal death. Blockers of N-type and Q-type VSCC (omega-conotoxin MVIIA and MVIIC, respectively) and the P-type VSCC blocker omega-agatoxin IVA had no effect in this assay. The sodium channel blocker TTX was without effect when added to neurons under depolarizing conditions, but potently and effectively protected cells when experiments were performed in a nondepolarizing buffer. The results show that chemical anoxia induced by incubation of cultured neurons with azide leads to detrimental effects, which may be quantitatively monitored by the capability of the cells to reduce MTT. This procedure is a suitable method for screening of compounds for possible protective effects against neuronal death induced by energy depletion. In addition, the results suggest involvement of L-type VSCC as well as of glutamate receptors in the pathways leading to neuronal degradation induced by energy depletion in cerebellar granule neurons. This would further support the notion that these pathways might be important in neurodegeneration induced by cerebral ischemia or anoxia.
Collapse
|
45
|
Omote H, Le NP, Park MY, Maeda M, Futai M. Beta subunit Glu-185 of Escherichia coli H(+)-ATPase (ATP synthase) is an essential residue for cooperative catalysis. J Biol Chem 1995; 270:25656-60. [PMID: 7592742 DOI: 10.1074/jbc.270.43.25656] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Glu-beta 185 of the Escherichia coli H(+)-ATPase (ATP synthase) beta subunit was replaced by 19 different amino acid residues. The rates of multisite (steady state) catalysis of all the mutant membrane ATPases except Asp- beta 185 were less than 0.2% of the wild type one; the Asp- beta 185 enzyme exhibited 15% (purified) and 16% (membrane-bound) ATPase activity. The purified inactive Cys- beta 185 F1-ATPase recovered substantial activity after treatment with iodoacetate in the presence of MgCl2; maximal activity was obtained upon the introduction of about 3 mol of carboxymethyl residues/mol of F1. The divalent cation dependences of the S-carboxymethyl- beta 185 and Asp- beta 185 ATPase activities were altered from that of the wild type. The Asp- beta 185, Cys- beta 185, S-carboxymethyl-beta 185, and Gln- beta 185 enzymes showed about 130, 60, 20, and 50% of the wild type unisite catalysis rates, respectively. The S-carboxymethyl- beta 185 and Asp- beta 185 enzymes showed altered divalent cation sensitivities, and the S-carboxymethyl- beta 185 enzyme showed no Mg2+ inhibition. Unlike the wild type, the two mutant enzymes showed low sensitivities to azide, which stabilizes the enzyme Mg-ADP complex. These results suggest that Glu- beta 185 may form a Mg2+ binding site, and its carboxyl moiety is essential for catalytic cooperativity. Consistent with this model, the bovine glutamate residue corresponding to Glu- beta 185 is located close to the catalytic site in the higher order structure (Abrahams, J.P., Leslie, A.G.W., Lutter, R ., and Walker, J.E. (1994) Nature 370, 621-628)
Collapse
Affiliation(s)
- H Omote
- Department of Biological Science, Osaka University, Japan
| | | | | | | | | |
Collapse
|
46
|
|
47
|
Nucleotide-binding sites on Escherichia coli F1-ATPase. Specificity of noncatalytic sites and inhibition at catalytic sites by MgADP. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)61988-5] [Citation(s) in RCA: 78] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
48
|
RayChaudhuri D, Park J. A point mutation converts Escherichia coli FtsZ septation GTPase to an ATPase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)31600-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
49
|
Mueller DM, Indyk V, McGill L. ATPase kinetics for wild-type Saccharomyces cerevisiae F1-ATPase and F1-ATPase with the beta-subunit Thr197-->Ser mutation. EUROPEAN JOURNAL OF BIOCHEMISTRY 1994; 222:991-9. [PMID: 8026510 DOI: 10.1111/j.1432-1033.1994.tb18950.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Unisite ATPase kinetic constants were measured for wild-type yeast Saccharomyces cerevisiae F1-ATPase and F1-ATPase with the Thr197-->Ser mutation in the beta subunit. Under unisite conditions, the concentration of ATP is greater than that of the enzyme, ATP hydrolysis is slow and the affinity of the enzyme for ATP and ADP is high. The Thr197-->Ser mutation in the yeast F1-ATPase increases the specific activity of ATP hydrolysis threefold and makes the enzyme much less sensitive to azide and oxyanions [Mueller, D. M. (1989) J. Biol. Chem. 264, 16552-16556]. A unifying hypothesis is that the affinity of F1-ATPase for ADP is altered by azide, oxyanions and the Thr197-->Ser mutation. To address this hypothesis, kinetic and thermodynamic constants were measured for the wild-type and mutant enzymes in the absence and presence of azide and oxyanions. The results indicate that sulfite and azide do not significantly alter unisite thermodynamic binding constants of either enzyme for ADP at the catalytic site. The mutation Thr197-->Ser has little effect on the binding constant for ADP, or on other unisite kinetic constants of the enzyme, in the presence or absence of azide or oxyanions. However, the binding of ADP to the enzyme was affected by oxyanions and the Thr197-->Ser mutation as measured by determining the KiADP values for multisite ATPase activity (saturating ATP). The Ki for ADP on ATPase activity was measured for the wild-type and mutant enzymes in the presence and absence of sulfite under multisite conditions. Sulfite increases the KiADP values for ATP hydrolysis under multisite conditions approximately threefold for the wild-type and mutant enzymes and the Thr197-->Ser mutation increases KiADP ninefold. The effect of sulfite on KiADP is additive to the effect of the Thr197-->Ser mutation, suggesting that these are distinct effects. These results indicate that the effects of azide, oxyanions, and the Thr197-->Ser mutation on the biochemistry of F1-ATPase are limited primarily to multisite conditions. Both sulfite and the Thr197-->Ser mutation decrease the affinity of the enzyme for ADP, as measured by the increase in the Ki values. Furthermore, the mechanisms of activation by sulfite and the Thr197-->Ser mutations are different. This difference occurs despite their common biochemical consequences on the apparent affinity for ADP.
Collapse
Affiliation(s)
- D M Mueller
- Chicago Medical School, Department of Biological Chemistry, IL 60064
| | | | | |
Collapse
|
50
|
Rubinchik S, Parris W, Gold M. The in vitro ATPases of bacteriophage lambda terminase and its large subunit, gene product A. The relationship with their DNA helicase and packaging activities. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)36870-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|