1
|
He X, Chen S, Tang Y, Zhao X, Yan L, Wu L, Wu Z, Liu W, Chen X, Wang X. Hepatocyte Growth Factor Overexpression Slows the Progression of 4NQO-Induced Oral Tumorigenesis. Front Oncol 2022; 11:756479. [PMID: 34970484 PMCID: PMC8712676 DOI: 10.3389/fonc.2021.756479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 11/15/2021] [Indexed: 11/25/2022] Open
Abstract
Objectives To investigate the role of hepatocyte growth factor (HGF)/c-Met signaling in oral malignant transformation. Methods We used immunohistochemistry to investigate HGF and c-Met expression in 53 oral squamous cell carcinoma (OSCC) specimens and 21 adjacent nontumor specimens and evaluated the associations between HGF and c-Met expression and clinicopathological parameters. Additionally, HGF-overexpression transgenic (HGF-Tg) and wild-type (Wt) mice were treated with 4-nitroquinoline-1-oxide (4NQO) to induce oral carcinogenesis for 16 weeks. At 16, 20, and 24 weeks, tongue lesions were collected for clinical observation; estimation of HGF, c-Met, and PCNA expression; apoptosis (TUNEL) assays; and RNA sequencing (RNA-seq). Results HGF and c-Met were positively expressed in 92.5% and 64% of OSCC samples, respectively. High HGF expression was significantly associated with smaller tumor size (p = 0.006) and inferior TNM stage (p = 0.032). No correlation between HGF and c-Met levels and other clinical parameters or prognosis was noted. In addition, HGF and c-Met expression was elevated in 4NQO-induced lesions of Wt mice. Compared with Wt mice, HGF-Tg mice have lower tumor incidence, number, volume, and lesion grade. In addition, the percentage of PCNA-positive cells in Wt mice was significantly higher than that in HGF-Tg mice at different time points. At 16 weeks, HGF-Tg mice exhibited less apoptotic cells compared with Wt mice (p < 0.000), and these levels gradually increased until the levels were greater than that of Wt mice at 24 weeks (p < 0.000). RNA-seq data revealed that 140 genes were upregulated and 137 genes were downregulated in HGF-Tg mice. KEGG enrichment analysis showed that upregulated differentially expressed genes (DEGs) are highly correlated with oxidative and metabolic signaling and that downregulated DEGs are related to MAPK and PI3K-AKT signaling. Conclusions HGF and c-Met expression is upregulated in OSCC tissues and is associated with the occurrence and development of OSCC. HGF overexpression in normal oral epithelial tissue can inhibit 4NQO-induced tumorigenesis potentially through inhibiting proliferation and accelerating apoptosis via MAPK and PI3K-AKT signaling.
Collapse
Affiliation(s)
- Xiaoxi He
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Si Chen
- Key Laboratory for Oral Biomedical Engineering of the Ministry of Education, Department of Oral Implantology, School and Hospital of Stomatology of Wuhan University, Wuhan, China
| | - Yinghua Tang
- Department of Periodontics, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xiaomin Zhao
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Liting Yan
- Department of Periodontics, Wuxi Stomatology Hospital, Wuxi, China
| | - Lihong Wu
- Department of Basic Oral Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Zhicong Wu
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Weijia Liu
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| | - Xinming Chen
- Department of Pathology, School and Hospital of Stomatology of Wuhan University, Wuhan, China
| | - Xinhong Wang
- Department of Oral Mucosal Diseases, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangdong Engineering Research Center of Oral Restoration and Reconstruction, Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Guangzhou, China
| |
Collapse
|
2
|
Liu LQ, Wang ZH, Yao HY. Hepatocyte growth factor can guide treatment of Mycoplasma pneumoniae pneumonia in children. Exp Ther Med 2020; 19:3432-3438. [PMID: 32266043 DOI: 10.3892/etm.2020.8596] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/02/2020] [Indexed: 12/30/2022] Open
Abstract
The objective of the present study was to explore the role of hepatocyte growth factor (HGF) in directing treatment of Mycoplasma pneumoniae pneumonia (MP). Serum levels of HGF were assessed using ELISA in 65 pediatric patients with MP, 42 with bacterial pneumonia and 30 healthy controls. Serum levels of C-reactive protein (CRP), the standard guide for MP treatment, were also examined in severe and non-severe MP. The sensitivity and specificity of HGF and CRP in assessing the outcome of azithromycin treatment of MP were compared using receiver operating characteristic curves. HGF levels were elevated in MP and bacterial pneumonia patients compared with healthy controls. HGF levels were also significantly higher in severe MP than in non-severe MP. HGF showed higher sensitivity and specificity than CRP in assessing outcomes of azithromycin treatment of MP. The results of the present study indicated that HGF may be used to detect severe MP and to direct its management. Furthermore, HGF may be better predictive marker to assess the effectiveness of azithromycin treatment of MP than CRP.
Collapse
Affiliation(s)
- Lun Qin Liu
- Department of Inspection, Infectious Diseases Hospital of Jinan, Jinan, Shandong 250021, P.R. China
| | - Zhi Hua Wang
- Department of Pediatrics, Tianjin Nankai Hospital, Tianjin Medical University, Tianjin 300100, P.R. China
| | - Hai Yun Yao
- Department of Inspection, Jinan Blood Center, Jinan, Shandong 250001, P.R. China
| |
Collapse
|
3
|
Zheng X, Jia Y, Qiu L, Zeng X, Xu L, Wei M, Huang C, Liu C, Chen L, Han J. A potential target for liver cancer management, lysophosphatidic acid receptor 6 (LPAR6), is transcriptionally up-regulated by the NCOA3 coactivator. J Biol Chem 2020; 295:1474-1488. [PMID: 31914406 PMCID: PMC7008366 DOI: 10.1074/jbc.ra119.009899] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 11/25/2019] [Indexed: 02/05/2023] Open
Abstract
Lysophosphatidic acid receptor 6 (LPAR6) is a G protein-coupled receptor that plays critical roles in cellular morphology and hair growth. Although LPAR6 overexpression is also critical for cancer cell proliferation, its role in liver cancer tumorigenesis and the underlying mechanism are poorly understood. Here, using liver cancer and matched paracancerous tissues, as well as functional assays including cell proliferation, quantitative real-time PCR, RNA-Seq, and ChIP assays, we report that LPAR6 expression is controlled by a mechanism whereby hepatocyte growth factor (HGF) suppresses liver cancer growth. We show that high LPAR6 expression promotes cell proliferation in liver cancer. More importantly, we find that LPAR6 is transcriptionally down-regulated by HGF treatment and that its transcriptional suppression depends on nuclear receptor coactivator 3 (NCOA3). We note that enrichment of NCOA3, which has histone acetyltransferase activity, is associated with histone 3 Lys-27 acetylation (H3K27ac) at the LPAR6 locus in response to HGF treatment, indicating that NCOA3 transcriptionally regulates LPAR6 through the HGF signaling cascade. Moreover, depletion of either LPAR6 or NCOA3 significantly inhibited tumor cell growth in vitro and in vivo (in mouse tumor xenograft assays), similar to the effect of the HGF treatment. Collectively, our findings indicate an epigenetic link between LPAR6 and HGF signaling in liver cancer cells, and suggest that LPAR6 can serve as a biomarker and new strategy for therapeutic interventions for managing liver cancer.
Collapse
Affiliation(s)
- Xuan Zheng
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China; Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yinghui Jia
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Lei Qiu
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Xinyi Zeng
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Liangliang Xu
- Department of liver Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Mingtian Wei
- Department of Gastrointestinal Surgery, West China Hospital, Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Canhua Huang
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Cong Liu
- Department of Paediatrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Ministry of Education), West China Second University Hospital, Sichuan University, Chengdu 610041, China
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China.
| | - Junhong Han
- Department of Abdominal Oncology, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China.
| |
Collapse
|
4
|
Yang YM, Fukui M, Wang Z, Miao F, Karriker MJ, Seki E. Interventional Potential of Recombinant Feline Hepatocyte Growth Factor in a Mouse Model of Non-alcoholic Steatohepatitis. Front Endocrinol (Lausanne) 2018; 9:378. [PMID: 30083132 PMCID: PMC6064873 DOI: 10.3389/fendo.2018.00378] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 06/22/2018] [Indexed: 12/12/2022] Open
Abstract
Background and Aims: Hepatocyte growth factor (HGF) is a multifunctional pleiotropic protein involved in tissue regeneration, protection, angiogenesis, anti-inflammatory and anti-fibrotic responses, and tumorigenesis, through binding to its receptor MET. Recombinant HGF protein has been shown to mitigate various liver disease models, such as alcohol-induced liver injury, hepatic ischemia-reperfusion injury, and fibrosis. This study aimed to investigate the anti-inflammatory, anti-fibrotic, and anti-lipogenic effects of exogenous administration of feline HGF on a non-alcoholic steatohepatitis (NASH) mouse model. Methods: Wild-type C57BL/6 mice were fed a choline-deficient amino acid defined (CDAA) diet for 3 weeks to create the mouse model of NASH, which displays hepatic steatosis, inflammation, injury, and very mild fibrosis. One mg/kg of recombinant feline HGF was administered intravenously daily in the last 7 days of the total 3 weeks of CDAA diet feeding. Then, hepatic steatosis, inflammation, injury, and fibrogenic gene expression was examined. Results: After 3 weeks of a CDAA diet-feeding, the vehicle-treated mice exhibited evident deposition of lipid droplets in hepatocytes, inflammatory cell infiltration, and hepatocyte ballooning along with increased serum ALT levels whereas recombinant HGF-treated mice showed reduced hepatic steatosis, inflammation, and ballooned hepatocytes with a reduction of serum ALT levels. Recombinant HGF administration promoted hepatocyte proliferation. Increased hepatic lipid accumulation was accompanied by elevated expression of lipogenesis genes Fasn and Dgat1 in vehicle-treated mice. In HGF-treated mice, these genes were reduced with a decrease of lipid accumulation in the liver. Consistent with the anti-inflammatory property of HGF, augmented macrophage infiltration and upregulation of chemokines, Cxcl1, Ccl2, and Ccl5 in the CDAA diet fed mice, were suppressed by the addition of the HGF treatment. Finally, we examined the fibrotic response. The vehicle-treated mice had mild fibrosis with upregulation of Col1a1, Acta2, Timp1, Tgfb1, and Serpine1 expression. Recombinant HGF treatment significantly suppressed fibrogenic gene expression and collagen deposition in the liver. Conclusion: Recombinant feline HGF treatment suppressed the progression of NASH in a CDAA diet feeding mouse model.This suggests that recombinant HGF protein has therapeutic potential for NASH.
Collapse
Affiliation(s)
- Yoon Mee Yang
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Masato Fukui
- Veterinary Medical Center–San Diego, University of California, San Diego, San Diego, CA, United States
| | - Zhijun Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Fiona Miao
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Margo J. Karriker
- Veterinary Medical Center–San Diego, University of California, San Diego, San Diego, CA, United States
| | - Ekihiro Seki
- Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
- Division of Gastroenterology, Department of Medicine, School of Medicine, University of California, San Diego, La Jolla, CA, United States
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- *Correspondence: Ekihiro Seki
| |
Collapse
|
5
|
Activated HGF-c-Met Axis in Head and Neck Cancer. Cancers (Basel) 2017; 9:cancers9120169. [PMID: 29231907 PMCID: PMC5742817 DOI: 10.3390/cancers9120169] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 12/14/2022] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) is a highly morbid disease. Recent developments including Food and Drug Administration (FDA) approved molecular targeted agent’s pembrolizumab and cetuximab show promise but did not improve the five-year survival which is currently less than 40%. The hepatocyte growth factor receptor; also known as mesenchymal–epithelial transition factor (c-Met) and its ligand hepatocyte growth factor (HGF) are overexpressed in head and neck squamous cell carcinoma (HNSCC); and regulates tumor progression and response to therapy. The c-Met pathway has been shown to regulate many cellular processes such as cell proliferation, invasion, and angiogenesis. The c-Met pathway is involved in cross-talk, activation, and perpetuation of other signaling pathways, curbing the cogency of a blockade molecule on a single pathway. The receptor and its ligand act on several downstream effectors including phospholipase C gamma (PLCγ), cellular Src kinase (c-Src), phosphotidylinsitol-3-OH kinase (PI3K) alpha serine/threonine-protein kinase (Akt), mitogen activate protein kinase (MAPK), and wingless-related integration site (Wnt) pathways. They are also known to cross-talk with other receptors; namely epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) and specifically contribute to treatment resistance. Clinical trials targeting the c-Met axis in HNSCC have been undertaken because of significant preclinical work demonstrating a relationship between HGF/c-Met signaling and cancer cell survival. Here we focus on HGF/c-Met impact on cellular signaling in HNSCC to potentiate tumor growth and disrupt therapeutic efficacy. Herein we summarize the current understanding of HGF/c-Met signaling and its effects on HNSCC. The intertwining of c-Met signaling with other signaling pathways provides opportunities for more robust and specific therapies, leading to better clinical outcomes.
Collapse
|
6
|
Lam BQ, Dai L, Qin Z. The role of HGF/c-MET signaling pathway in lymphoma. J Hematol Oncol 2016; 9:135. [PMID: 27923392 PMCID: PMC5141645 DOI: 10.1186/s13045-016-0366-y] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 12/01/2016] [Indexed: 01/15/2023] Open
Abstract
Inappropriate activation of c-mesenchymal-epithelial transition (MET), the receptor tyrosine kinase (RTK) for hepatocyte growth factor (HGF), has been implicated in tumorigenesis and represented a promising therapeutic target for developing anticancer agents. In contrast to other solid tumors, there are limited data describing the functional role of HGF/c-MET signaling pathway in lymphoma. In the current review, we summarize recent findings about the expression, cellular mechanisms/functions, and therapeutic application of HGF/c-MET in different types of lymphoma, especially B cell lymphoma, T and NK cell lymphoma, and Hodgkin lymphoma. We also discuss the existing problems and future directions about studying the HGF/c-MET pathway in lymphoma cells.
Collapse
Affiliation(s)
- Bao Quoc Lam
- Departments of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, Suite 902, 1700 Tulane Ave., New Orleans, LA, 70112, USA
| | - Lu Dai
- Departments of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, Suite 902, 1700 Tulane Ave., New Orleans, LA, 70112, USA.,Department of Oncology, Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China
| | - Zhiqiang Qin
- Departments of Microbiology, Immunology, and Parasitology, Louisiana State University Health Sciences Center, Louisiana Cancer Research Center, Suite 902, 1700 Tulane Ave., New Orleans, LA, 70112, USA. .,Department of Oncology, Research Center for Translational Medicine and Key Laboratory of Arrhythmias, East Hospital, Tongji University School of Medicine, Shanghai, 200120, China.
| |
Collapse
|
7
|
Ertosun MG, Hapil FZ, Osman Nidai O. E2F1 transcription factor and its impact on growth factor and cytokine signaling. Cytokine Growth Factor Rev 2016; 31:17-25. [PMID: 26947516 DOI: 10.1016/j.cytogfr.2016.02.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 02/27/2016] [Indexed: 12/13/2022]
Abstract
E2F1 is a transcription factor involved in cell cycle regulation and apoptosis. The transactivation capacity of E2F1 is regulated by pRb. In its hypophosphorylated form, pRb binds and inactivates DNA binding and transactivating functions of E2F1. The growth factor stimulation of cells leads to activation of CDKs (cyclin dependent kinases), which in turn phosphorylate Rb and hyperphosphorylated Rb is released from E2F1 or E2F1/DP complex, and free E2F1 can induce transcription of several genes involved in cell cycle entry, induction or inhibition of apoptosis. Thus, growth factors and cytokines generally utilize E2F1 to direct cells to either fate. Furthermore, E2F1 regulates expressions of various cytokines and growth factor receptors, establishing positive or negative feedback mechanisms. This review focuses on the relationship between E2F1 transcription factor and cytokines (IL-1, IL-2, IL-3, IL-6, TGF-beta, G-CSF, LIF), growth factors (EGF, KGF, VEGF, IGF, FGF, PDGF, HGF, NGF), and interferons (IFN-α, IFN-β and IFN-γ).
Collapse
Affiliation(s)
- Mustafa Gokhan Ertosun
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey
| | - Fatma Zehra Hapil
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey
| | - Ozes Osman Nidai
- Akdeniz University, Faculty of Medicine, Department of Medical Biology and Genetic, Kampus, Antalya 07070, Turkey.
| |
Collapse
|
8
|
Schon HT, Bartneck M, Borkham-Kamphorst E, Nattermann J, Lammers T, Tacke F, Weiskirchen R. Pharmacological Intervention in Hepatic Stellate Cell Activation and Hepatic Fibrosis. Front Pharmacol 2016; 7:33. [PMID: 26941644 PMCID: PMC4764688 DOI: 10.3389/fphar.2016.00033] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 02/08/2016] [Indexed: 12/17/2022] Open
Abstract
The activation and transdifferentiation of hepatic stellate cells (HSCs) into contractile, matrix-producing myofibroblasts (MFBs) are central events in hepatic fibrogenesis. These processes are driven by autocrine- and paracrine-acting soluble factors (i.e., cytokines and chemokines). Proof-of-concept studies of the last decades have shown that both the deactivation and removal of hepatic MFBs as well as antagonizing profibrogenic factors are in principle suitable to attenuate ongoing hepatic fibrosis. Although several drugs show potent antifibrotic activities in experimental models of hepatic fibrosis, there is presently no effective pharmaceutical intervention specifically approved for the treatment of liver fibrosis. Pharmaceutical interventions are generally hampered by insufficient supply of drugs to the diseased liver tissue and/or by adverse effects as a result of affecting non-target cells. Therefore, targeted delivery systems that bind specifically to receptors solely expressed on activated HSCs or transdifferentiated MFBs and delivery systems that can improve drug distribution to the liver in general are urgently needed. In this review, we summarize current strategies for targeted delivery of drugs to the liver and in particular to pro-fibrogenic liver cells. The applicability and efficacy of sequestering molecules, selective protein carriers, lipid-based drug vehicles, viral vectors, transcriptional targeting approaches, therapeutic liver- and HSC-specific nanoparticles, and miRNA-based strategies are discussed. Some of these delivery systems that had already been successfully tested in experimental animal models of ongoing hepatic fibrogenesis are expected to translate into clinically useful therapeutics specifically targeting HSCs.
Collapse
Affiliation(s)
- Hans-Theo Schon
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Matthias Bartneck
- Department of Medicine III, University Hospital RWTH Aachen Aachen, Germany
| | - Erawan Borkham-Kamphorst
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| | - Jacob Nattermann
- Department of Internal Medicine I, University of Bonn Bonn, Germany
| | - Twan Lammers
- Department for Experimental Molecular Imaging, University Clinic and Helmholtz Institute for Biomedical Engineering, RWTH Aachen University Aachen, Germany
| | - Frank Tacke
- Department of Medicine III, University Hospital RWTH Aachen Aachen, Germany
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry, RWTH University Hospital Aachen Aachen, Germany
| |
Collapse
|
9
|
Psarra E, Foster E, König U, You J, Ueda Y, Eichhorn KJ, Müller M, Stamm M, Revzin A, Uhlmann P. Growth Factor-Bearing Polymer Brushes - Versatile Bioactive Substrates Influencing Cell Response. Biomacromolecules 2015; 16:3530-42. [DOI: 10.1021/acs.biomac.5b00967] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Evmorfia Psarra
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
- Faculty
of Science, Department of Chemistry, Chair of Physical Chemistry of
Polymeric Materials, The Technische Universität Dresden, Bergstrasse
66, 01069 Dresden, Germany
| | - Elena Foster
- Department
of Biomedical Engineering, University of California at Davis, 451 East Health Sciences Drive, California 95616, United States
| | - Ulla König
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Jungmok You
- Department of Plant & Environmental New Resources, Kyung Hee University, Yongin-si, Gyeonggi-do 446-701, South Korea
| | - Yuichiro Ueda
- Institute for
Biomaterial Science Teltow, Helmholtz-Zentrum Geesthacht, Berlin-Brandenburg
Center for Regenerative Therapies, Kantstrasse 55, 14513 Teltow, Germany
| | - Klaus-J. Eichhorn
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Martin Müller
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
| | - Manfred Stamm
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
- Faculty
of Science, Department of Chemistry, Chair of Physical Chemistry of
Polymeric Materials, The Technische Universität Dresden, Bergstrasse
66, 01069 Dresden, Germany
| | - Alexander Revzin
- Department
of Biomedical Engineering, University of California at Davis, 451 East Health Sciences Drive, California 95616, United States
| | - Petra Uhlmann
- Leibniz Institute of Polymer Research Dresden, Hohe Strasse 6, 01069 Dresden, Germany
- Department
of Chemistry, Hamilton Hall, University of Nebraska-Lincoln, 639 North 12th Street, Lincoln, Nebraska 68588, United States
| |
Collapse
|
10
|
MET expression is associated with disease-specific survival in breast cancer patients in the neoadjuvant setting. Pathol Res Pract 2014; 210:494-500. [PMID: 24814255 DOI: 10.1016/j.prp.2014.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 03/13/2014] [Accepted: 04/01/2014] [Indexed: 11/24/2022]
Abstract
MET and RON receptor tyrosine kinases play an important role in tumor progression. The aim of this study was to determine the predictive or prognostic impact of MET and RON in breast cancer patients treated with neoadjuvant chemotherapy (NAC). Immunohistochemical analyses were performed to retrospectively examine the predictive or prognostic impact of MET and RON expression in 129 breast cancer patients treated with NAC followed by definitive surgical resection. MET-positive tumors were detected in 89 patients (68.9%) and RON-positive tumors in 94 patients (72.9%). Survival analysis showed that MET expression was correlated with longer disease-specific survival (DSS; P=0.016), whereas RON expression was not associated with survival rates. MET expression was a significant factor for DSS in the non-pCR group in subgroup analysis (P=0.024) and a marginal significant independent prognostic factor for DSS in multivariate analysis. The MET-positive group had higher pCR than the MET-negative group but the difference was not statistically significant (P=0.266). MET expression is a prognostic factor for DSS in breast cancer patients receiving NAC and may provide additional prognostic information in patients not achieving a pCR.
Collapse
|
11
|
Li X, Bian Y, Takizawa Y, Hashimoto T, Ikoma T, Tanaka J, Kitamura N, Inagaki Y, Komada M, Tanaka T. ERK-Dependent Downregulation of Skp2 Reduces Myc Activity with HGF, Leading to Inhibition of Cell Proliferation through a Decrease in Id1 Expression. Mol Cancer Res 2013; 11:1437-47. [DOI: 10.1158/1541-7786.mcr-12-0718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
12
|
Koh YW, Hwang HS, Jung SJ, Park C, Yoon DH, Suh C, Huh J. Receptor tyrosine kinases MET and RON as prognostic factors in diffuse large B-cell lymphoma patients receiving R-CHOP. Cancer Sci 2013; 104:1245-51. [PMID: 23745832 DOI: 10.1111/cas.12215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 05/16/2013] [Accepted: 06/07/2013] [Indexed: 01/08/2023] Open
Abstract
Receptor tyrosine kinases MET and RON (MST1R) form non-covalent complexes on the cell surface, a critical step in tumor progression. A recent study suggested a prognostic role for MET expression in diffuse large B-cell lymphoma (DLBCL). The aim of this study was to examine the impact of MET and RON expression in uniformly treated DLBCL patients. The expression of MET and RON was retrospectively examined by immunohistochemistry in 120 DLBCL patients treated with rituximab combined with a CHOP regimen (cyclophosphamide, doxorubicin, vincristine, and prednisone). The median follow-up time was 42.5 months (range, 1-89 months). Thirty-two (26%) and 30 patients (25%) expressed MET or RON, respectively. Seventy-five patients (62.5%) were negative for both MET and RON (MET(-) RON(-) ). MET negativity was associated with worse overall survival (P = 0.029). In multivariate analysis, negativity for both MET and RON (MET(-) RON(-) ) was strongly associated with inferior overall survival (P = 0.008). Interestingly, the MET(-) RON(-) phenotype retained its prognostic impact after subgroup analysis according to the international prognostic index or by the cell of origin by immunohistochemical algorithm by Choi et al. This study suggests that the MET(-) RON(-) phenotype is an independent prognostic factor in DLBCL patients receiving R-CHOP, and may identify a subgroup of DLBCL patients who require more intensive therapy.
Collapse
Affiliation(s)
- Young Wha Koh
- Department of Pathology, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | | | | | | | | | | | | |
Collapse
|
13
|
Basilico C, Pennacchietti S, Vigna E, Chiriaco C, Arena S, Bardelli A, Valdembri D, Serini G, Michieli P. Tivantinib (ARQ197) displays cytotoxic activity that is independent of its ability to bind MET. Clin Cancer Res 2013; 19:2381-92. [PMID: 23532890 DOI: 10.1158/1078-0432.ccr-12-3459] [Citation(s) in RCA: 141] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
PURPOSE MET, the high-affinity receptor for hepatocyte growth factor, is frequently deregulated in human cancer. Tivantinib (ARQ197; Arqule), a staurosporine derivative that binds to the dephosphorylated MET kinase in vitro, is being tested clinically as a highly selective MET inhibitor. However, the mechanism of action of tivantinib is still unclear. EXPERIMENTAL DESIGN The activity of tivantinib was analyzed in multiple cellular models, including: cells displaying c-MET gene amplification, strictly 'addicted' to MET signaling; cells with normal c-MET gene copy number, not dependent on MET for growth; cells not expressing MET; somatic knockout cells in which the ATP-binding cleft of MET, where tivantinib binds, was deleted by homologous recombination; and a cell system 'poisoned' by MET kinase hyperactivation, where cells die unless cultured in the presence of a specific MET inhibitor. RESULTS Tivantinib displayed cytotoxic activity independently of c-MET gene copy number and regardless of the presence or absence of MET. In both wild-type and isogenic knockout cells, tivantinib perturbed microtubule dynamics, induced G2/M arrest, and promoted apoptosis. Tivantinib did not rescue survival of cells 'poisoned' by MET kinase hyperactivation, but further incremented cell death. In all cell models analyzed, tivantinib did not inhibit HGF-dependent or -independent MET tyrosine autophosphorylation. CONCLUSIONS We conclude that tivantinib displays cytotoxic activity via molecular mechanisms that are independent from its ability to bind MET. This notion has a relevant impact on the interpretation of clinical results, on the design of future clinical trials, and on the selection of patients receiving tivantinib treatment.
Collapse
Affiliation(s)
- Cristina Basilico
- Laboratory of Experimental Therapy, Institute for Cancer Research and Treatment (IRCC), Candiolo, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Abstract
Hepatocellular carcinoma (HCC) is a significant cause of cancer-related morbidity and mortality worldwide. Despite improvements in local therapies, including surgical resection, liver transplantation, and transarterial embolization, the prognosis remains poor for the majority of patients who develop recurrence or present with advanced disease. Systemic therapy with the tyrosine kinase inhibitor sorafenib represents a milestone in advanced HCC but provides a limited survival benefit. Ongoing efforts to study hepatocarcinogenesis have identified an important role for c-MET signaling in the promotion of tumor growth, angiogenesis, and metastasis. In this review, we summarize the preclinical data from human tissue, cell lines, and animal models that implicate c-MET in the pathogenesis of HCC. We also evaluate potential biomarkers that may estimate prognosis or predict response to c-MET inhibitors for more rational clinical trial design. Finally, we discuss the latest clinical trials of c-MET inhibitors in advanced HCC.
Collapse
Affiliation(s)
- Lipika Goyal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts 02114, USA
| | | | | |
Collapse
|
15
|
Sánchez-Ilárduya MB, Trouche E, Tejero R, Orive G, Reviakine I, Anitua E. Time-dependent release of growth factors from implant surfaces treated with plasma rich in growth factors. J Biomed Mater Res A 2012; 101:1478-88. [DOI: 10.1002/jbm.a.34428] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 08/01/2012] [Accepted: 08/06/2012] [Indexed: 12/22/2022]
|
16
|
Ozaki I, Hamajima H, Matsuhashi S, Mizuta T. Regulation of TGF-β1-Induced Pro-Apoptotic Signaling by Growth Factor Receptors and Extracellular Matrix Receptor Integrins in the Liver. Front Physiol 2011; 2:78. [PMID: 22028694 PMCID: PMC3199809 DOI: 10.3389/fphys.2011.00078] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 10/11/2011] [Indexed: 01/24/2023] Open
Abstract
Hepatocellular carcinoma (HCC) often arises from chronically diseased livers. Persistent liver inflammation causes the accumulation of excessive extracellular matrix (ECM) proteins and impairs the liver function, finally leading to the development of HCC. A pleiotropic cytokine, transforming growth factor (TGF)-β1, plays critical roles throughout the process of fibrogenesis and hepatocarcinogenesis. In the liver, TGF-β1 inhibits the proliferation of hepatocytes and stimulates the production of ECM from hepatic stellate cells (HSCs) to maintain tissue homeostasis. During disease progression, both growth factors/cytokines and the ECM alter the TGF-β1 signals by modifying the phosphorylation of Smad proteins at their C-terminal and linker regions. TGF-β1 stimulates the expression of integrins, cellular receptors for ECM, along with an increase in ECM accumulation. The activation of integrins by the ECM modulates the response to TGF-β1 in hepatic cells, resulting in their resistance to TGF-β1-induced growth suppression in hepatocytes and the sustained production of ECM proteins in activated HSCs/myofibroblasts. Both growth factor receptors and integrins modify the expression and/or functions of the downstream effectors of TGF-β1, resulting in the escape of hepatocytes from TGF-β1-induced apoptosis. Recent studies have revealed that the alterations of Smad phosphorylation that occur as the results of the crosstalk between TGF-β1, growth factors and integrins could change the nature of TGF-β1 signals from tumor suppression to promotion. Therefore, the modification of Smad phosphorylation could be an attractive target for the prevention and/or treatment of HCC.
Collapse
Affiliation(s)
- Iwata Ozaki
- Saga Medical School, Health Administration Center Saga, Japan
| | | | | | | |
Collapse
|
17
|
Grzelakowska-Sztabert B, Dudkowska M. Paradoxical action of growth factors: antiproliferative and proapoptotic signaling by HGF/c-MET. Growth Factors 2011; 29:105-18. [PMID: 21631393 DOI: 10.3109/08977194.2011.585609] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Hepatocyte growth factor (HGF)/mesenchymal-epithelial transition factor (c-MET) signaling is usually associated with the promotion of cellular growth and often with progression of tumors. Nevertheless, under certain conditions HGF can also act as an antiproliferative and proapoptotic factor and can sensitize various cancer cells, treated with anticancer drugs, to apoptosis. Not only HGF but also its various truncated forms as well as intracellular fragments of its membrane receptor, c-MET, may act as antiproliferative and proapoptotic factors toward various cells. This review focuses on different mechanisms responsible for such paradoxical action of the known typical growth factor. It also points toward the possibilities of usage of this information in anticancer therapy.
Collapse
|
18
|
Arous C, Naïmi M, Van Obberghen E. Oleate-mediated activation of phospholipase D and mammalian target of rapamycin (mTOR) regulates proliferation and rapamycin sensitivity of hepatocarcinoma cells. Diabetologia 2011; 54:954-64. [PMID: 21240477 DOI: 10.1007/s00125-010-2032-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2010] [Accepted: 12/03/2010] [Indexed: 12/28/2022]
Abstract
AIMS/HYPOTHESIS A high-fat diet and obesity are associated with increased risk of liver cancer. Because increased delivery of NEFA to the liver occurs in these conditions, we investigated the involvement of the unsaturated fatty acid oleate in hepatocarcinoma cell proliferation using human-derived hepatocarcinoma cell lines as model systems. METHODS Western blotting, FACS analysis and [(3)H]thymidine incorporation were used to study the signalling pathways and the proliferation of cells cultured for up to 72 h with or without a concentration of oleate considered to be relevant to human pathophysiology (50 μmol/l) or a concentration considered elevated (1 mmol/l). RESULTS In HepG2 cells, proliferation was increased in the presence of 50 μmol/l oleate, but was decreased at 1 mmol/l. This differential effect was correlated with the activation of the mammalian target of rapamycin complex 1 (mTORC1) and with increased translation of cell cycle regulators. Oleate-mediated mTORC1 activation required phospholipase D activation, which produces phosphatidic acid and is known to render mTORC1 rapamycin resistant. Remarkably, rapamycin resistance was found to affect specifically the mTORC1/eukaryotic initiation factor 4E-binding protein 1 (4E-BP1) branch of the mTORC1 pathway in the presence of 50 μmol/l oleate. Furthermore, inhibition of phosphatidic acid production abolished oleate-induced increases in mTORC1 activity and cyclin A production. Importantly, the same differential effects of oleate on mTORC1 activation, cell cycle regulators and rapamycin resistance were found in SK-Hep1 cells. CONCLUSIONS/INTERPRETATION Oleate stimulates mTORC1 activation and rapamycin resistance. We propose that rapamycin-derived mTOR inhibitors are likely to be of limited therapeutic use to restrain hepatic tumour growth, particularly in the context of associated obesity.
Collapse
Affiliation(s)
- C Arous
- Faculté de Médecine, Institut de Génétique et Signalisation Moléculaire, Université de Nice-Sophia Antipolis, Nice, France.
| | | | | |
Collapse
|
19
|
Afford SC, Kakoullis T, Oates J, Crocker J, Strain AJ. Effects of hepatocyte growth factor on differentiation and cMET receptor expression in the promyelocytic HL60 cell line. Mol Pathol 2010; 48:M23-7. [PMID: 16695971 PMCID: PMC407915 DOI: 10.1136/mp.48.1.m23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Aim-To determine the effects of hepatocyte growth factor (HGF) on myeloid cell differentiation and cMET expression using the promyelocytic HL60 cell line.Methods-HL60 cells cultured with purified recombinant HGF, dimethyl sulphoxide (DMSO), or 12-O tetradecanoylphorbol-13-acetate (TPA) were immunostained for the differentiation markers, human neutrophil elastase (HNE), cathepsin B, MAC387, or the receptor for hepatocyte growth factor (cMET).Results-HGF treated cells were positive on staining for cathepsin B and MAC387, but were negative for HNE, indicating monocytic differentiation. HGF treated cells had the morphology of monocytes but continued to divide at the same rate as control cells and remained non-adherent. DMSO treated cells were positive for HNE and cell numbers were reduced, confirming myeloid differentiation. TPA treated cells were positive for cathepsin B and MAC387, cell numbers were reduced, and the cells became adherent, confirming terminal monocytic differentiation. Untreated HL60 cells were weakly positive for cMET at the start of the culture period and expression increased after 72 hours. Cells treated with HGF, DMSO, or TPA were also positive for cMET.Conclusions-These data suggest that HGF induced partial monocytic differentiation in HL60 cells. In addition, expression of cMET by HL60 cells occurs at an early stage in myelomonocytic cells and is maintained after differentiation along either the myeloid or monocytic pathways.
Collapse
Affiliation(s)
- S C Afford
- The Liver Research Laboratories, Queen Elizabeth Hospital, Edgbaston, Birmingham B15 2TH
| | | | | | | | | |
Collapse
|
20
|
Nakamura T, Mizuno S. The discovery of hepatocyte growth factor (HGF) and its significance for cell biology, life sciences and clinical medicine. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2010; 86:588-610. [PMID: 20551596 PMCID: PMC3081175 DOI: 10.2183/pjab.86.588] [Citation(s) in RCA: 374] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
It has been more than 25 years since HGF was discovered as a mitogen of hepatocytes. HGF is produced by stromal cells, and stimulates epithelial cell proliferation, motility, morphogenesis and angiogenesis in various organs via tyrosine phosphorylation of its receptor, c-Met. In fetal stages, HGF-neutralization, or c-Met gene destruction, leads to hypoplasia of many organs, indicating that HGF signals are essential for organ development. Endogenous HGF is required for self-repair of injured livers, kidneys, lungs and so on. In addition, HGF exerts protective effects on epithelial and non-epithelial organs (including the heart and brain) via anti-apoptotic and anti-inflammatory signals. During organ diseases, plasma HGF levels significantly increased, while anti-HGF antibody infusion accelerated tissue destruction in rodents. Thus, endogenous HGF is required for minimization of diseases, while insufficient production of HGF leads to organ failure. This is the reason why HGF supplementation produces therapeutic outcomes under pathological conditions. Moreover, emerging studies delineated key roles of HGF during tumor metastasis, while HGF-antagonism leads to anti-tumor outcomes. Taken together, HGF-based molecules, including HGF-variants, HGF-fragments and c-Met-binders are available as regenerative or anti-tumor drugs. Molecular analysis of the HGF-c-Met system could provide bridges between basic biology and clinical medicine.
Collapse
Affiliation(s)
- Toshikazu Nakamura
- Kringle Pharma Joint Research Division for Regenerative Drug Discovery, Center for Advanced Science and Innovation, Osaka University, Osaka, Japan.
| | | |
Collapse
|
21
|
Tian K, Yang S, Ren Q, Han Z, Lu S, Ma F, Zhang L, Han Z. p38 MAPK Contributes to the Growth Inhibition of Leukemic Tumor Cells Mediated by Human Umbilical Cord Mesenchymal Stem Cells. Cell Physiol Biochem 2010; 26:799-808. [DOI: 10.1159/000323973] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2010] [Indexed: 12/13/2022] Open
|
22
|
Wang J, Bian C, Liao L, Zhu Y, Li J, Zeng L, Zhao RC. Inhibition of hepatic stellate cells proliferation by mesenchymal stem cells and the possible mechanisms. Hepatol Res 2009; 39:1219-28. [PMID: 19788697 DOI: 10.1111/j.1872-034x.2009.00564.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AIM During fibrosis, hepatic stellate cells (HSCs) undergo a complex activation process characterized by increased proliferation and extracellular matrix deposition. Previous studies have suggested that mesenchymal stem cells (MSCs) may ameliorate fibrogenesis and represent a promising strategy for cell therapy. However, the underlying mechanisms are not fully understood. METHODS Hepatic stellate cells were treated with or without MSCs. Then cell proliferation and cell cycle were analyzed. Production of soluble factors by MSCs and its relation with cell proliferation suppression was evaluated by transwell co-culture and RNA interference. Effects of MSCs on the gene expression of collagen were also evaluated. RESULTS MSCs induced G(0)/G(1) arrest of HSCs growth partly through secreting soluble factors TGF-beta3 and HGF, which resulted in up-regulation of p21(Cip1) and p27(Kip1) expression and down-regulation of cyclinD1. MSCs inhibited the phosphorylation of extracellular signal-regulated kinase (ERK) 1/2 and reduced gene expression of collagen type I and III. MSCs did not reverse the proliferation and collagen type I gene expression of HSCs provoked by PDGF. CONCLUSIONS The growth inhibition of HSCs induced by MSCs through an arrest in the G(0)/G(1) phase of the cell cycle is partially mediated by secretion of TGF-beta3 and HGF. MSCs inhibit HSCs activation through decreasing phosphorylation of extracellular signal-regulated kinase (ERK) 1/2. These results further support MSCs may be used as a novel therapy for treating fibrotic diseases in human.
Collapse
Affiliation(s)
- Jing Wang
- Center of Excellence Tissue Engineering, Department of Cell Biology, Institute of Basic Medical Sciences & School of Basic Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | | | | | |
Collapse
|
23
|
Ushio K, Hashimoto T, Kitamura N, Tanaka T. Id1 is down-regulated by hepatocyte growth factor via ERK-dependent and ERK-independent signaling pathways, leading to increased expression of p16INK4a in hepatoma cells. Mol Cancer Res 2009; 7:1179-88. [PMID: 19567783 DOI: 10.1158/1541-7786.mcr-08-0289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hepatocyte growth factor (HGF) inhibits the proliferation of several tumor cell lines and tumor growth in vivo. We showed previously that HGF induces cell cycle arrest at G1 in a human hepatoma cell line, HepG2, by up-regulating the expression of p16INK4a through strong activation of extracellular signal-regulated kinase (ERK). However, although essential, the activation was not sufficient for the up-regulation of p16. In this study, we examined regulatory mechanisms of p16 expression through a transcription factor, Ets, which has been shown previously to bind to the promoter. The treatment of HepG2 cells with HGF induced ERK-dependent phosphorylation of Ets, which leads to its activation, before the up-regulation of p16, suggesting that another factor suppresses Ets activity. We found that HGF reduces the amount of Id1, which is a dominant-negative inhibitor of Ets, leading to a decrease in Ets associated with Id1. Id1 was down-regulated via transcriptional regulation not via the ubiquitin-proteasome-mediated pathway. Inhibition of the HGF-induced high-intensity ERK activity had a modest effect on the Id1 down-regulation, and inhibition of the phosphatidylinositol 3-kinase pathway had no effect, showing that Id1 is regulated by ERK-dependent and -independent pathways other than the phosphatidylinositol 3-kinase pathway. Exogenously expressed Id1 suppressed the up-regulation of p16 by HGF and the antiproliferative effect of HGF. Knockdown of Id1 significantly enhanced the activity of the p16 promoter coordinately with the activation of ERK. Our results indicated that down-regulation of Id1 plays a key role in the inhibitory effect of HGF on cell proliferation and provides a molecular basis for cancer therapy with HGF.
Collapse
Affiliation(s)
- Kazutaka Ushio
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Yokohama, Japan
| | | | | | | |
Collapse
|
24
|
Shirako E, Hirayama N, Tsukada YI, Tanaka T, Kitamura N. Up-regulation of p21CIP1 expression mediated by ERK-dependent and -independent pathways contributes to hepatocyte growth factor-induced inhibition of HepG2 hepatoma cell proliferation. J Cell Biochem 2008; 104:176-88. [DOI: 10.1002/jcb.21614] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
25
|
Accordi B, Pillozzi S, Dell'Orto MC, Cazzaniga G, Arcangeli A, Kronnie GT, Basso G. Hepatocyte growth factor receptor c-MET is associated with FAS and when activated enhances drug-induced apoptosis in pediatric B acute lymphoblastic leukemia with TEL-AML1 translocation. J Biol Chem 2007; 282:29384-93. [PMID: 17673463 DOI: 10.1074/jbc.m706314200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Expression of c-MET, the HGF (hepatocyte growth factor) tyrosine kinase receptor, was investigated in pediatric B-acute lymphoblastic leukemia (ALL) patients. c-MET was found to be expressed in normal B cells and in B-ALL patients with the t(12;21) TEL-AML1 translocation, but it is not expressed in the most part of B-ALL without the t(12;21). We also found that c-MET, related to proliferation and protection from apoptosis, is associated with the pro-apoptotic protein FAS in TEL-AML1 B-ALL cells and in normal B lymphocytes. The possible role of this protein complex in drug-induced apoptosis was thus investigated in REH TEL-AML1 B-ALL cell line. REH cells prestimulated with HGF and treated with doxorubicin had shown a higher apoptotic rate than non-HGF-prestimulated ones (p = 0.03). REH cells stimulated with IL-3 and treated with doxorubicin did not undergo apoptosis more than nonstimulated cells, demonstrating that increased proliferation in itself is not directly related to the higher apoptotic sensitivity observed with HGF stimulation. These results indicate that c-MET activation enhances specifically FAS-mediated apoptosis in TEL-AML1 ALL cells and, considering that the c-MET/FAS complex is present only in normal B lymphocytes and in TEL-AML1 leukemias, this implies that it may have an important contribution in cellular homeostasis and in high sensitivity of TEL-AML1 ALL to chemotherapeutic regimens.
Collapse
Affiliation(s)
- Benedetta Accordi
- Oncohematology Laboratory, Department of Pediatrics, University of Padova, 35128, Padova Italy.
| | | | | | | | | | | | | |
Collapse
|
26
|
Tulasne D, Foveau B. The shadow of death on the MET tyrosine kinase receptor. Cell Death Differ 2007; 15:427-34. [DOI: 10.1038/sj.cdd.4402229] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
|
27
|
Leroy C, Deheuninck J, Reveneau S, Foveau B, Ji Z, Villenet C, Quief S, Tulasne D, Kerckaert JP, Fafeur V. HGF/SF regulates expression of apoptotic genes in MCF-10A human mammary epithelial cells. Ann N Y Acad Sci 2007; 1090:188-202. [PMID: 17384262 DOI: 10.1196/annals.1378.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) induces scattering, morphogenesis, and survival of epithelial cells through activation of the MET tyrosine kinase receptor. HGF/SF and MET are involved in normal development and tumor progression of many tissues and organs, including the mammary gland. In order to find target genes of HGF/SF involved in its survival function, we used an oligonucleotide microarray representing 1,920 genes known to be involved in apoptosis, transcriptional regulation, and signal transduction. MCF-10A human mammary epithelial cells were grown in the absence of serum and treated or not with HGF/SF for 2 h. Total RNA was reverse-transcribed to cDNA in the presence of fluorescent Cy3-dUTP or Cy5-dUTP to generate fluorescently labeled cDNA probes. Microarrays were performed and the ratios of Cy5/Cy3 fluorescence were determined. The expression of three apoptotic genes was modified by HGF/SF, with A20 being upregulated, and DAXX and SMAC being downregulated. These changes of expression were confirmed by real-time quantitative PCR. According to current-knowledge, A20 is antiapoptotic and SMAC is proapoptotic, while a pro- or antiapoptotic function of DAXX is controversial. The fact that HGF/SF upregulates an antiapoptotic gene (A20) and downregulates a proapoptotic gene (SMAC) is in agreement with its survival effect in MCF-10A cells. This study identified novel apoptotic genes regulated by HGF/SF, which can contribute to its survival effect.
Collapse
Affiliation(s)
- Catherine Leroy
- CNRS UMR 8161 Institut de Biologie de Lille, Institut Pasteur de Lille, B.P. 447, 59021 Lille Cedex, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Williamson D, Selfe J, Gordon T, Lu YJ, Pritchard-Jones K, Murai K, Jones P, Workman P, Shipley J. Role for amplification and expression of glypican-5 in rhabdomyosarcoma. Cancer Res 2007; 67:57-65. [PMID: 17210683 DOI: 10.1158/0008-5472.can-06-1650] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Overexpression of genes, through genomic amplification and other mechanisms, can critically affect the behavior of tumor cells. Genomic amplification of the 13q31-32 region is reported in many tumors, including rhabdomyosarcomas that are primarily pediatric sarcomas resembling developing skeletal muscle. The minimum overlapping region of amplification at 13q31-32 in rhabdomyosarcomas was defined as containing two genes: Glypican-5 (GPC5) encoding a cell surface proteoglycan and C13orf25 encompassing the miR-17-92 micro-RNA cluster. Genomic copy number and gene expression analyses of rhabdomyosarcomas indicated that GPC5 was the only gene consistently expressed and up-regulated in all cases with amplification. Constitutive overexpression and knockdown of GPC5 expression in rhabdomyosarcoma cell lines increased and decreased cell proliferation, respectively. A correlation between expression levels of nascent pre-rRNA and GPC5 (P = 0.001), but not a C13orf25 transcript containing miR-17-92, in primary samples supports an association of GPC5 with proliferative capacity in vivo. We show that GPC5 increases proliferation through potentiating the action of the growth factors fibroblast growth factor 2 (FGF2), hepatocyte growth factor (HGF), and Wnt1A. GPC5 enhanced the intracellular signaling of FGF2 and HGF and altered the cellular distribution of FGF2. The mesoderm-inducing effect of FGF2 and FGF4 in Xenopus blastocysts was also enhanced. Our data are consistent with a role of GPC5, in the context of sarcomagenesis, in enhancing FGF signaling that leads to mesodermal cell proliferation without induction of myogenic differentiation. Furthermore, the properties of GPC5 make it an attractive target for therapeutic intervention in rhabdomyosarcomas and other tumors that amplify and/or overexpress the gene.
Collapse
Affiliation(s)
- Daniel Williamson
- Molecular Cytogenetics Team, Paediatric Oncology, Cancer Research UK Centre for Cancer Therapeutics, The Institute of Cancer Research, Sutton, Surrey, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Ueno M, Uchiyama K, Nakamori M, Ueda K, Iwahashi M, Ozawa S, Yamaue H. Adenoviral vector expressing hepatocyte growth factor promotes liver regeneration by preoperative injection: the advantages of performing selective injection to the remnant lobe. Surgery 2007; 141:511-9. [PMID: 17383528 DOI: 10.1016/j.surg.2006.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2006] [Revised: 10/09/2006] [Accepted: 10/20/2006] [Indexed: 01/26/2023]
Abstract
BACKGROUND In a cirrhotic liver, the regenerative ability is impaired and liver failure may occur after a hepatectomy. Hepatocyte growth factor (HGF) stimulates liver regeneration and adenoviral vector expressing hepatocyte growth factor (AdHGF) allows hepatocyte growth factor (HGF) to be persistently expressed. The aim of this study is to evaluate the benefits of the selective and preoperative injection of AdHGF to the remnant lobes to regenerate the liver. METHODS A 70% partial hepatectomy was performed in dimethylnitrosamine-induced cirrhotic rats with a preoperative injection of AdHGF, adenoviral vector carrying beta-galactosidase (AdLacZ), or phosphate-buffered saline (PBS). The morphologic, histologic, and biochemical changes in the remnant liver and survival rates were then assessed. RESULTS Portal injection with clamping the portal branches of the resected lobes for 5 min made it possible to effectively transduce the adenoviral vector into the remnant lobes. On day 7 after hepatectomy, the survival rates were 87% in the AdHGF group, 53% in the AdLacZ group, and 40% in the PBS group (P < .05). The ratio of the remnant liver weight/body weight (%) was 2.0 +/- 0.1 in the AdHGF group, 1.5 +/- 0.3 in the AdLacZ group, and 1.6 +/- 0.04 in the PBS group (P < .01). The 5-bromo-2'-deoxyuridine labeling index significantly increased in the AdHGF group on day 1, and the fibrous status significantly decreased in the AdHGF group on day 7 after hepatectomy. CONCLUSIONS Preoperatively, the selective injection of AdHGF into the remnant lobes may be an effective treatment prior to a major hepatectomy in a cirrhotic liver.
Collapse
Affiliation(s)
- Masaki Ueno
- Second Department of Surgery, Wakayama Medical University, School of Medicine, Japan
| | | | | | | | | | | | | |
Collapse
|
30
|
Ozawa S, Uchiyama K, Nakamori M, Ueda K, Iwahashi M, Ueno H, Muragaki Y, Ooshima A, Yamaue H. Combination gene therapy of HGF and truncated type II TGF-beta receptor for rat liver cirrhosis after partial hepatectomy. Surgery 2006; 139:563-73. [PMID: 16627068 DOI: 10.1016/j.surg.2005.10.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2005] [Revised: 10/06/2005] [Accepted: 10/13/2005] [Indexed: 01/19/2023]
Abstract
BACKGROUND In a cirrhotic liver, the regenerative ability and specific functions are impaired; a hepatic resection increases the possibility of postoperative liver failure. Hepatocyte growth factor (HGF) stimulates liver regeneration, accelerates restoration of hepatic function, and improves fibrosis. A truncated type II transforming growth factor-beta receptor (TbetaTR), which specifically inhibits TGF-beta signaling as a dominant-negative receptor, appears to prevent the progression of liver fibrosis. We demonstrated the therapeutic efficacy of adenovirus-mediated HGF and TbetaTR gene transduction after partial hepatectomy for liver cirrhosis. METHODS Rats were treated with dimethylnitrosamine for 3 weeks, and they all had severe cirrhosis. After partial hepatectomy (10%), we injected adenovirus expressing bacterial beta-galactosidase (AdLacZ), adenovirus expressing a truncated type II TGF-beta receptor (AdTbetaTR), adenovirus expressing hepatocyte growth factor (AdHGF), or AdTbetaTR + AdHGF into the portal vein, which was followed by an additional 2-week dimethylnitrosamine treatment. RESULTS On histologic examination, fibrotic tissue had decreased in the livers of the AdTbetaTR + AdHGF-treated rats compared with rats that were treated by AdLacZ, AdTbetaTR alone, and AdHGF alone. Liver function, which included serum levels of alanine aminotransferase, improved significantly in AdTbetaTR + AdHGF-treated rats compared with all other groups. The number of hepatocytes that were positive for proliferating-cell nuclear antigen was greater (P < .05) in AdHGF alone and AdTbetaTR + AdHGF-treated rat livers than in AdLacZ- and AdTbetaTR-treated rats. All AdTbetaTR + AdHGF-treated rats survived >60 days, and AdTbetaTR + AdHGF treatment markedly improved the survival rate after a partial hepatectomy. CONCLUSION Our results suggest that the combination of HGF and TbetaTR gene therapy may increase the possibility of hepatectomy in a cirrhotic liver by improving fibrosis, hepatic function, and hepatocyte regeneration.
Collapse
Affiliation(s)
- Satoru Ozawa
- Second Department of Surgery, Wakayama Medical University, Wakayama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Heideman DAM, Overmeer RM, van Beusechem VW, Lamers WH, Hakvoort TBM, Snijders PJF, Craanen ME, Offerhaus GJA, Meijer CJLM, Gerritsen WR. Inhibition of angiogenesis and HGF-cMET-elicited malignant processes in human hepatocellular carcinoma cells using adenoviral vector-mediated NK4 gene therapy. Cancer Gene Ther 2006; 12:954-62. [PMID: 15905856 DOI: 10.1038/sj.cgt.7700856] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
NK4 is an hepatocyte growth factor (HGF)-antagonist and a broad angiogenesis inhibitor. NK4 gene therapy has confirmed antitumor efficacy on cancers with intact HGF-cMET signaling pathway. However, the feasibility to treat tumors in which the effect of the HGF-cMET signaling pathway is less unambiguous or may even be inhibitory on carcinogenesis, such as hepatocellular carcinoma (HCC) with NK4 needs further assessment. Therefore, we evaluated the effects of adenoviral vector-mediated expression of NK4 on the biological behavior of a series of HCC cell lines in vitro and on HepG2 xenografts in vivo. In vitro, transduction of HCC cell lines with the replication-deficient recombinant adenoviral vector AdCMV.NK4 resulted in significant inhibition of proliferation over and above the antimitogenic effects of HGF. In addition, HGF-induced scattering and invasion through matrigel were inhibited effectively. Moreover, transduced HCC cells produced sufficient amounts of NK4 protein to achieve bystander effects involving reduced migration of nontransduced tumor cells and reduced proliferation of endothelial cells. Finally, treatment of established HepG2 xenografts with AdCMV.NK4 resulted in significant tumor growth delay and significant reduction of intratumoral microvessel density. In conclusion, NK4 gene therapy is a promising strategy to treat HCC based on the pleiotropic functions of NK4 interfering with tumor growth, invasion, metastasis and angiogenesis.
Collapse
Affiliation(s)
- Daniëlle A M Heideman
- Department of Pathology, VU University Medical Center, PO Box 7057, 1007 MB Amsterdam, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Han J, Tsukada YI, Hara E, Kitamura N, Tanaka T. Hepatocyte Growth Factor Induces Redistribution of p21CIP1 and p27KIP1 through ERK-dependent p16INK4a Up-regulation, Leading to Cell Cycle Arrest at G1 in HepG2 Hepatoma Cells. J Biol Chem 2005; 280:31548-56. [PMID: 16014626 DOI: 10.1074/jbc.m503431200] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF) has an anti-proliferative effect on many types of tumor cell lines and tumors in vivo. We found previously that inhibition of HGF-induced proliferation in HepG2 hepatoma cells is caused by cell cycle arrest at G1 through a high intensity ERK signal, which represses Cdk2 activity. To examine further the mechanisms of G1 arrest by HGF, we analyzed the Cdk inhibitor p16(INK4a), which has an anti-proliferative function through cell cycle arrest at G1. We found that HGF treatment drastically increased endogenous p16 levels. Knockdown of p16 with small interfering RNA reversed the arrest, indicating that the induction of p16 is required for G1 arrest by HGF. Analysis of the promoter of the human p16 gene identified the proximal Ets-binding site as a responsive element for HGF, and this responded to the high intensity ERK signal. HGF treatment of the cells led to a redistribution of p21(CIP1) and p27(KIP1) from Cdk4 to Cdk2. The redistribution was blocked by the knockdown of p16 with small interfering RNA, which restored the Cdk2 activity repressed by HGF, demonstrating the requirement of p16 induction for the redistribution and eventual repression of Cdk2 activity. Our results reveal a signaling pathway for G1 arrest induced by HGF.
Collapse
Affiliation(s)
- Junhong Han
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | | | | | |
Collapse
|
33
|
Sheen-Chen SM, Liu YW, Eng HL, Chou FF. Serum levels of hepatocyte growth factor in patients with breast cancer. Cancer Epidemiol Biomarkers Prev 2005; 14:715-7. [PMID: 15767355 DOI: 10.1158/1055-9965.epi-04-0340] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE Hepatocyte growth factor (HGF) has been reported the cause of many biological events, including cell proliferation, movement, invasiveness, morphogenesis, and angiogenesis. Elevated hepatocyte growth factor content in tumor tissue was reported to predict a more aggressive biology in non-small cell lung cancer patients. However, there is still limited knowledge about the role of HGF in breast cancer. This study was designed with the aim to elucidate the possible relationship between the preoperative circulating soluble HGF and breast cancer. MATERIALS AND METHODS One hundred twenty-four consecutive patients with invasive breast cancer undergoing surgery were prospectively included and evaluated. Venous blood samples were collected before the surgery. Sera were obtained by centrifugation and stored at -70 degrees C until assayed. The control group consisted of 35 patients with benign breast tumor (20 with fibrocystic disease and 15 with fibroadenoma). Serum concentrations of soluble HGF were measured by the quantitative sandwich enzyme immunoassay technique. The data on primary tumor staging, age, estrogen receptor status, lymph node status, distant metastases status, histologic grading, and tumor-node-metastasis (TNM) staging were reviewed and recorded. RESULTS The mean value of serum soluble HGF in patients with invasive breast cancer was 529.05 +/- 123.33 pg/mL and that of control group was 343.00+/- 31.03 pg/mL and the difference was significant (P < 0.001). Furthermore, there were significantly higher serum levels of soluble HGF in patients with negative estrogen receptor (P = 0.035), in patients with poorer differentiated tumor (P < 0.001), in patients with more advanced primary tumor staging (P < 0.001), in patients with more advanced lymph node status (P < 0.001), in patients with distant metastases (P < 0.001), and in patients with more advanced TNM staging (P < 0.001). In multivariate analysis by the multiple linear regression method, TNM staging (P < 0.001) seemed an independent factor regarding the significant higher serum levels of soluble HGF. CONCLUSION Patients with more advanced TNM staging were shown to have higher serum soluble HGF. Thus, preoperative serum soluble HGF levels might reflect the severity of invasive breast cancer and deserve further evaluation.
Collapse
Affiliation(s)
- Shyr-Ming Sheen-Chen
- Departmen of Surgery, Chang Gung Memorial Hospital, Kaohsiung College of Medicine, Chang Gung University, Kaohsiung, Taiwan.
| | | | | | | |
Collapse
|
34
|
Kim WH, Matsumoto K, Bessho K, Nakamura T. Growth inhibition and apoptosis in liver myofibroblasts promoted by hepatocyte growth factor leads to resolution from liver cirrhosis. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1017-28. [PMID: 15793283 PMCID: PMC1602371 DOI: 10.1016/s0002-9440(10)62323-1] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Liver cirrhosis is characterized by hepatic dysfunction with extensive accumulation of fibrous tissue in the liver. In response to chronic hepatic injury, hepatic portal myofibroblasts and activated hepatic stellate cells (HSCs) play a role in liver fibrosis. Although administration or gene expression of hepatocyte growth factor (HGF) leads to improvement in hepatic fibrosis/cirrhosis, the related mechanisms are not fully understood. We investigated mechanisms involved in resolution from liver cirrhosis by HGF, focusing on growth regulation and apoptosis in portal myofibroblasts. Cultured rat HSCs could not proliferate, were withdrawn after passage, and were replaced by proliferating portal myofibroblasts during the passages. In quiescent HSCs, c-Met receptor expression was undetected whereas c-Met receptor expression was detected in activated HSCs and liver myofibroblasts expressing alpha-smooth muscle actin (alpha-SMA), suggesting that activated HSCs and portal myofibroblasts are targets of HGF. For cultured rat portal myofibroblasts, HGF counteracted phosphorylation of extracellular signal-regulated kinase (Erk) 1/2 and mitogenic stimulus induced by platelet-derived growth factor, induced c-jun N-terminal kinase (JNK) 1 phosphorylation, and promoted apoptotic cell death. In the dimethylnitrosamine rat model of liver cirrhosis, administration of HGF suppressed proliferation while promoting apoptosis of alpha-SMA-positive cells in the liver, events that were associated with reduced hepatic expressions of alpha-SMA and histological resolution from liver cirrhosis. Growth inhibition and enhanced apoptosis in portal myofibroblasts by HGF are newly identified mechanisms aiding resolution from liver fibrosis/cirrhosis by HGF.
Collapse
Affiliation(s)
- Wook-Hwan Kim
- Division of Molecular Regenerative Medicine, Course of Advanced Medicine, Osaka University Graduate School of Medicine, Yamada-oka 2-2-B7, Suita, Osaka 565-0871, Japan
| | | | | | | |
Collapse
|
35
|
Jiang WG, Martin TA, Parr C, Davies G, Matsumoto K, Nakamura T. Hepatocyte growth factor, its receptor, and their potential value in cancer therapies. Crit Rev Oncol Hematol 2005; 53:35-69. [PMID: 15607934 DOI: 10.1016/j.critrevonc.2004.09.004] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/14/2004] [Indexed: 12/22/2022] Open
Abstract
Hepatocyte growth factor plays multiple roles in cancer, by acting as a motility and invasion stimulating factor, promoting metastasis and tumour growth. Furthermore, it acts as a powerful angiogenic factor. The pivotal role of this factor in cancer has indicated HGF as being a potential target in cancer therapies. The past few years have seen rapid progress in developing tools in targeting HGF, in the context of cancer therapies, including development of antagonists, small compounds, antibodies and genetic approaches. The current article discusses the potential value of HGF and its receptor as targets in cancer therapies, the current development in anti-HGF research, and the clinical value of HGF in prognosis and treatment.
Collapse
Affiliation(s)
- Wen G Jiang
- Metastasis and Angiogenesis Research Group, University Department of Surgery, Wales College of Medicine, Cardiff University, Heath Park, Cardiff CF14 4XN, UK.
| | | | | | | | | | | |
Collapse
|
36
|
Suzuki M, Shiraha H, Fujikawa T, Takaoka N, Ueda N, Nakanishi Y, Koike K, Takaki A, Shiratori Y. Des-gamma-carboxy prothrombin is a potential autologous growth factor for hepatocellular carcinoma. J Biol Chem 2005; 280:6409-15. [PMID: 15582995 DOI: 10.1074/jbc.m406714200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Des-gamma-carboxyl prothrombin (DCP) is a well recognized tumor marker for hepatocellular carcinoma (HCC). In the present study, we demonstrate that DCP has a mitogenic effect on HCC cell lines. Purified DCP stimulated DNA synthesis of Hep3B and SK-Hep-1 cells in a dose-dependent manner. DCP was found to bind with cell surface receptor Met causing Met autophosphorylation and also to activate STAT3 signaling pathway through Janus kinase 1. Luciferase gene reporter analysis showed that DCP induced STAT3-related transcription. Small interfering RNAs against both STAT3 and Met abrogated DCP-induced cell proliferation. DCP did not affect the mitogen-activated protein kinase pathway, Myc signaling pathway, or phosphoinositide 3-kinase/Akt pathway. Based on these results, we believe that DCP acts as an autologous mitogen for HCC cell lines. The Met-Janus kinase 1-STAT3 signaling pathway may be a major signaling pathway for DCP-induced cell proliferation.
Collapse
Affiliation(s)
- Mayumi Suzuki
- Department of Medicine and Medical Science, Okayama University Graduate School of Medicine and Dentistry, 2-5-1 Shikata-cho, Okayama 700-8558, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Pollack AL, Apodaca G, Mostov KE. Hepatocyte growth factor induces MDCK cell morphogenesis without causing loss of tight junction functional integrity. Am J Physiol Cell Physiol 2004; 286:C482-94. [PMID: 14592813 DOI: 10.1152/ajpcell.00377.2003] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatocyte growth factor (HGF) induces mitogenesis, motogenesis, and tubulogenesis of cultured Madin-Darby canine kidney (MDCK) epithelial cells. We report that in addition to these effects HGF stimulates morphogenesis of tight, polarized MDCK cell monolayers into pseudostratified layers without loss of tight junction (TJ) functional integrity. We tested TJ functional integrity during formation of pseudostratified layers. In response to HGF, the TJ marker ZO-1 remained in morphologically complete rings and functional barriers to paracellular diffusion of ruthenium red were maintained in pseudostratified layers. Transepithelial resistance (TER) increased transiently two- to threefold during the morphogenetic transition from monolayers to pseudostratified layers and then declined to baseline levels once pseudostratified layers were formed. In MDCK cells expressing the trk/met chimera, both HGF and NGF at concentrations of 2.5 ng/ml induced scattering. However, 2.5 ng/ml HGF did not affect TER. The peak effect of HGF on TER was at a concentration of 100 ng/ml. In contrast, NGF at concentrations as high as 25 μg/ml had no effect on TER or pseudostratified layer morphogenesis of trk/met-expressing cultures. These results suggest that altered presentation of the stimulus, such as through HGF interaction with low-affinity sites, may change the downstream signaling response. In addition, our results demonstrate that HGF stimulates pseudostratified layer morphogenesis while inducing an increase in TER and maintaining the overall tightness of the epithelial layer. Stimulation of epithelial cell movements by HGF without loss of functional TJs may be important for maintaining epithelial integrity during morphogenetic events such as formation of pseudostratified epithelia, organ regeneration, and tissue repair.
Collapse
Affiliation(s)
- Anne L Pollack
- Department of Anatomy, Department of Biochemistry and Biophysics and Cardiovascular Research Institute, University of California San Francisco School of Medicine, San Francisco, California 94143-2140, USA.
| | | | | |
Collapse
|
38
|
Zhang H, Ozaki I, Mizuta T, Yoshimura T, Matsuhashi S, Hisatomi A, Tadano J, Sakai T, Yamamoto K. Mechanism of beta 1-integrin-mediated hepatoma cell growth involves p27 and S-phase kinase-associated protein 2. Hepatology 2003; 38:305-13. [PMID: 12883474 PMCID: PMC7131649 DOI: 10.1053/jhep.2003.50345] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Although cooperative interactions between growth factors and integrins, cell surface receptors for extracellular matrices (ECM), have been reported, little is known about the interaction between hepatocyte growth factor (HGF) and integrin in hepatoma cells. We investigated the effects and mechanisms of integrin on the proliferation of hepatoma cells regulated by HGF. Human HepG2 hepatoma cells stably transfected with beta 1-integrin were treated with HGF and compared with parental and mock-transfected control cells. Cell proliferation and expression of cyclin-dependent kinase (Cdk) inhibitors and S-phase kinase-associated protein 2 (Skp2), were investigated. HGF dose-dependently suppressed the proliferation of parental and mock-transfected HepG2 cells. However, cells overexpressing beta 1-integrin exhibited increased proliferation in response to HGF. Although HGF increased p27 and decreased Skp2 expression in the parental and mock-transfected cells, the p27 and Skp2 levels in cells overexpressing beta 1-integrin were not altered by HGF. Interestingly, HepG2 cells overexpressing beta 1-integrin showed increased Skp2 expression. Furthermore, HGF did not reduce the proliferation of HepG2 cells transfected with antisense p27 or sense Skp2. Thus, HGF suppresses HepG2 cell proliferation by directly increasing p27 expression and indirectly decreasing Skp2 expression, and beta 1-integrin modulates the responsiveness of hepatoma cells to HGF via a p27-dependent manner by increasing Skp2. In conclusion, these results strongly suggest that integrin-mediated signals from the ECM can modulate growth factor-mediated signals in hepatoma cells, and may contribute to the growth of hepatocellular carcinomas.
Collapse
Affiliation(s)
- Hao Zhang
- Division of Hepatology and Metabolism, Department of Internal Medicine, Saga Medical School, Nabeshima, Saga, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Yamagamim H, Moriyama M, Matsumura H, Aoki H, Shimizu T, Saito T, Kaneko M, Shioda A, Tanaka N, Arakawa Y. Serum concentrations of human hepatocyte growth factor is a useful indicator for predicting the occurrence of hepatocellular carcinomas in C-viral chronic liver diseases. Cancer 2002; 95:824-34. [PMID: 12209727 DOI: 10.1002/cncr.10732] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
BACKGROUND Numerous reports have examined the relationship between hepatocyte growth factor (HGF) and either the facilitation or suppression of the occurrence of hepatocellular carcinoma (HCC). METHODS In this study, we measured serum HGF concentrations of blood samples and conducted prospective studies to examine the long-term outcome of C-viral chronic hepatitis (CH) and cirrhosis in patients. The subjects examined in this study include 99 patients with C-viral CH, cirrhosis, and HCC. The serum HGF level was measured in blood samples within 48 hours of collection using enzyme-linked immunosorbent assay kits. RESULTS The serum concentrations of HGF were significantly higher in patients with HCC than in patients with CH or cirrhosis. The detection rate of HGF and its mean serum level were significantly higher in patients with a low platelet count than in patients with a high platelet count. All of the patients with serum HGF concentrations of more than 0.6 ng/mL had HCC, irrespective of the levels of alpha-fetoprotein, vitamin K absence, or antagonist-II in the blood. Serum HGF concentrations increased concomitantly with increases in areas occupied by HCC. The cumulative incidence of occurrence of HCC was significantly higher in patients with high HGF concentrations than in patients with low HGF concentrations. Multivariate analysis revealed that the elevation in serum HGF level is the most important risk factor for the occurrence of HCC. CONCLUSIONS The serum level of HGF represents the degree of the carcinogenic state in the liver of patients with C-viral CH and cirrhosis. Therefore, the determination of serum HGF concentrations may be useful as a third tumor marker of HCC in detection as well as follow-up therapy.
Collapse
Affiliation(s)
- Hiroaki Yamagamim
- Third Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Suzuki S, Yamanouchi K, Soeta C, Katakai Y, Harada R, Naito K, Tojo H. Skeletal muscle injury induces hepatocyte growth factor expression in spleen. Biochem Biophys Res Commun 2002; 292:709-14. [PMID: 11922624 DOI: 10.1006/bbrc.2002.6706] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatocyte growth factor (HGF) is present in skeletal muscle and facilitates skeletal muscle regeneration by activating quiescent satellite cells and stimulating their proliferation. However, possible involvement of HGF from non-muscle organs during muscle regeneration is still uncovered. Since liver injury induces HGF expression in distal HGF-producing organs such as lung, kidney and spleen, we examined if this is the case in muscle injury in analogy. In rat femoral muscle, HGF protein levels were elevated within 1 h after muscle injury, with a simultaneous proteolytic activation of HGF protein. Semiquantitative RT-PCR analysis revealed an elevation of HGF mRNA expression after muscle injury in the liver and spleen, and also an increase of HGF protein levels in the spleen, suggesting the presence of endocrine HGF-inducing factor(s) during muscle regeneration. Indeed, the sera from the rat with muscle regeneration were capable of inducing HGF mRNA expression when applied to primary cultured spleen cells from intact rats. These results indicated that skeletal muscle injury induces HGF expression in the non-muscle HGF-producing organs, especially in the spleen, and suggested the possible involvement of non-muscle organ-derived HGF in activation/proliferation of satellite cells during muscle regeneration.
Collapse
Affiliation(s)
- Shunichi Suzuki
- Laboratory of Applied Genetics, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | |
Collapse
|
41
|
Horiguchi N, Takayama H, Toyoda M, Otsuka T, Fukusato T, Merlino G, Takagi H, Mori M. Hepatocyte growth factor promotes hepatocarcinogenesis through c-Met autocrine activation and enhanced angiogenesis in transgenic mice treated with diethylnitrosamine. Oncogene 2002; 21:1791-9. [PMID: 11896611 DOI: 10.1038/sj.onc.1205248] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2001] [Revised: 12/04/2001] [Accepted: 12/12/2001] [Indexed: 01/24/2023]
Abstract
Hepatocyte growth factor (HGF) is a mitogen for hepatocytes, but it is not clear whether HGF stimulates or inhibits hepatocarcinogenesis. We previously reported that HGF transgenic mice under the metallothionein gene promoter developed benign and malignant liver tumors spontaneously after 17 months of age. To elucidate the role of HGF in hepatocarcinogenesis, diethylnitrosamine (DEN) was administered to HGF transgenic mice. HGF overexpression accelerated DEN-induced hepatocarcinogenesis, often accompanied by abnormal blood vessel formation. In this study, 59% of transgenic males (versus 20% of wild-type males) and 39% of transgenic females (versus 2% of wild-type females) developed either benign or malignant liver tumors by 48 weeks (P<0.005, P<0.001, respectively). Moreover, 33% of males and 23% of female transgenic mice developed hepatocellular carcinoma (HCC), while none of the wild-type mice developed HCC (P<0.001, P<0.005, respectively). Enhanced kinase activity of the HGF receptor, Met, was detected in most of these tumors. Expression of vascular endothelial growth factor (VEGF) was up-regulated in parallel with HGF transgene expression. Taken together, our results suggest that HGF promotes hepatocarcinogenesis through the autocrine activation of the HGF-Met signaling pathway in association with stimulation of angiogenesis by HGF itself and/or indirectly through VEGF.
Collapse
Affiliation(s)
- Norio Horiguchi
- The First Department of Internal Medicine, Gunma University School of Medicine, Maebashi, Gunma 371-8511, Japan
| | | | | | | | | | | | | | | |
Collapse
|
42
|
To C, Seiden I, Liu N, Wigle D, Tsao MS. High expression of Met/hepatocyte growth factor receptor suppresses tumorigenicity in NCI-H1264 lung carcinoma cells. Exp Cell Res 2002; 273:45-53. [PMID: 11795945 DOI: 10.1006/excr.2001.5433] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The protein product of c-met proto-oncogene, Met, is a tyrosine kinase receptor for the hepatocyte growth factor (HGF). Met receptor is expressed in normal human bronchial epithelium. In comparison, its expression in squamous cell carcinoma (SQCC) of the lung is markedly decreased in a great majority of cases. To understand further the role of Met receptor overexpression in non-small-cell lung carcinoma, we forced-expressed the full-length met cDNA in the NCI-H1264 (H1264) lung carcinoma cell line with low constitutive expression of this receptor. In vitro studies demonstrated that increased Met expression in H1264 cells resulted in strong inhibition of their ability to form soft agar colonies and in marked suppression of tumorigenicity in the subcutaneous tissue of immune-deficient mice. This is despite inconsistent alteration in the proliferation rate on plastic surfaces. Tumor cells explanted from occasional xenograft tumors formed by the Met-overexpressing H1264 cells also demonstrated marked down-regulation of the receptor protein levels as compared to the transplanted cells. The results suggest that constitutive overexpression of Met receptor may negatively regulate the malignancy of certain human lung cancer cells.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- Blotting, Western
- Carcinogenicity Tests
- Carcinoma, Adenosquamous/metabolism
- Carcinoma, Adenosquamous/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Cell Differentiation
- Cell Division
- DNA Primers/chemistry
- Endothelial Growth Factors/metabolism
- Hepatocyte Growth Factor/metabolism
- Humans
- Immunoenzyme Techniques
- Lung Neoplasms/metabolism
- Lung Neoplasms/pathology
- Lymphokines/metabolism
- Male
- Mice
- Mice, SCID
- Middle Aged
- Proto-Oncogene Mas
- Proto-Oncogene Proteins c-met/metabolism
- RNA, Messenger/isolation & purification
- RNA, Messenger/metabolism
- Retroviridae/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- Christine To
- University Health Network-Ontario Cancer Institute/Princess Margaret Hospital, University of Toronto, Ontario, Toronto, M5G 2M9, Canada
| | | | | | | | | |
Collapse
|
43
|
Hiyoshi M, Ohkubo T, Tsuji K, Hagihara M, Nakasaki H, Mukai M, Makuuchi H, Yamamura M, Tsuda M. Hepatocyte proliferation factors from neonatal pig liver: purification and characterization. Biofactors 2002; 16:1-14. [PMID: 12515911 DOI: 10.1002/biof.5520160101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Two factors were found in the condition medium of neonatal pig liver fragments, which were capable of stimulating DNA synthesis in primary hepatocytes. They were named hepatocyte proliferation factor (HPF)-1 and HPF-2 and purified 1,025- and 2,580-fold, respectively. Both HPF-1 and HPF-2 seem to be anionic at pH 8.0 judged from the elution pattern of DEAE (DE52) column chromatography. HPF-1 was recovered as a non-adsorbed fraction in blue Sepharose and heparin Sepharose columns, and had a molecular weight of 26-31 kDa as estimated by gel filtration in high salt condition. Purified HPF-1 stimulated DNA synthesis of primary rat hepatocytes, but suppressed that of HepG2 cells. HPF-2 strongly bound to blue Sepharose and heparin Sepharose columns, and had a molecular weight of 71-90 kDa as estimated by SDS-PAGE under non-reduced condition. Purified HPF-2 stimulated DNA synthesis of primary rat hepatocytes dose dependently but did not suppress that of HepG2 cells. From further biological and chemical characteristics studied in this paper, HPF-1 and HPF-2 may be novel stimulating proteins for hepatocyte proliferation, although the possibility that they are already known growth factors can not be excluded without complete purification and its cloning.
Collapse
Affiliation(s)
- Mineyoshi Hiyoshi
- Department of Molecular Life Science, Tokai University School of Medicine, Isehara, Kanagawa, 259-1193 Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Tsukada Y, Miyazawa K, Kitamura N. High intensity ERK signal mediates hepatocyte growth factor-induced proliferation inhibition of the human hepatocellular carcinoma cell line HepG2. J Biol Chem 2001; 276:40968-76. [PMID: 11533045 DOI: 10.1074/jbc.m010890200] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Hepatocyte growth factor (HGF) induces growth stimulation of a variety of cell types, but it also induces growth inhibition of several types of tumor cell lines. The molecular mechanism of the HGF-induced growth inhibition of tumor cells remains obscure. We have investigated the intracellular signaling pathway involved in the antiproliferative effect of HGF on the human hepatocellular carcinoma cell line HepG2. HGF induced strong activation of ERK in HepG2 cells. Although the serum-dependent proliferation of HepG2 cells was inhibited by the MEK inhibitor PD98059 in a dose-dependent manner, 10 microM PD98059 reduced the HGF-induced strong activation of ERK to a weak activation; and as a result, the proliferation inhibited by HGF was completely restored. Above or below this specific concentration, the restoration was incomplete. Expression of constitutively activated Ha-Ras, which induces strong activation of ERK, led to the proliferation inhibition of HepG2 cells, as was observed in HGF-treated HepG2 cells. This inhibition was suppressed by the MEK inhibitor. Furthermore, HGF treatment and expression of constitutively activated Ha-Ras changed the hyperphosphorylated form of the retinoblastoma tumor suppressor gene product pRb to the hypophosphorylated form. This change was inhibited by the same concentration of MEK inhibitor needed to suppress the proliferation inhibition. These results suggest that ERK activity is required for both the stimulation and inhibition of proliferation of HepG2 cells; that the level of ERK activity determines the opposing proliferation responses; and that HGF-induced proliferation inhibition is caused by cell cycle arrest, which results from pRb being maintained in its active hypophosphorylated form via a high-intensity ERK signal in HepG2 cells.
Collapse
Affiliation(s)
- Y Tsukada
- Department of Biological Sciences, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8501, Japan
| | | | | |
Collapse
|
45
|
Parr C, Davies G, Nakamura T, Matsumoto K, Mason MD, Jiang WG. The HGF/SF-induced phosphorylation of paxillin, matrix adhesion, and invasion of prostate cancer cells were suppressed by NK4, an HGF/SF variant. Biochem Biophys Res Commun 2001; 285:1330-7. [PMID: 11478803 DOI: 10.1006/bbrc.2001.5307] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hepatocyte growth factor/scatter factor (HGF/SF) plays a crucial role in cancer cell migration, matrix adhesion, invasion, and angiogenesis, via the phosphorylation of the c-met tyrosine kinase. This study examined the ability of NK4, a recently discovered HGF/SF variant, to inhibit the influence of HGF/SF on cell-matrix interaction, paxillin phosphorylation, and invasion of prostate cancer cells. HGF/SF was shown to dramatically enhance tumour cell motility, invasion, cell-matrix adhesion, together with an increase in the degree of paxillin phosphorylation and formation of focal adhesion complexes. However, these HGF/SF-induced effects were suppressed by the presence of NK4. NK4 effectively inhibited the degree of HGF/SF-induced paxillin phosphorylation and matrix adhesion. As a consequence, the matrix invasion of these prostate cancer cells was also suppressed by NK4. In conclusion, this study shows that these HGF/SF-enhanced events, which are critical steps in metastasis, can be inhibited through the addition of NK4, thus warranting further in vivo studies on the implication of NK4 as a potential antimetastasis agent in prostate cancer.
Collapse
Affiliation(s)
- C Parr
- Department of Surgery, Department of Oncology, University of Wales College of Medicine, Heath Park, Cardiff, CF14-4XN, United Kingdom.
| | | | | | | | | | | |
Collapse
|
46
|
Yamagami H, Moriyama M, Tanaka N, Arakawa Y. Detection of serum and intrahepatic human hepatocyte growth factor in patients with type C liver diseases. Intervirology 2001; 44:36-42. [PMID: 11223718 DOI: 10.1159/000050028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
We determined hepatocyte growth factor (HGF) levels in the serum and liver of patients with hepatitis C and assessed the relationship to histological findings of the liver and hepatitis C virus-related markers in the serum in patients with type C liver diseases. The subjects were 108 patients with chronic hepatitis C (CH), 70 patients with liver cirrhosis C (LC), 38 patients with hepatocellular carcinoma (HCC) and 20 patients with acute hepatitis (AH). As normal controls 20 subjects were studied. The serum HGF levels were measured using an enzyme-linked immunosorbent assay kit. Intrahepatic HGF was investigated by immunoperoxidase staining using monoclonal HGF antibody. The serum HGF level was highest in patients with AH. The serum HGF levels tended to be higher in patients with LC and HCC than those with CH. Further, the serum HGF level was related to the degree of intrahepatic inflammatory cell infiltration and fibrosis, and intrahepatic HGF was noted primarily in the cell membrane of mesenchymal cells in focal necrosis. The degree of intrahepatic HGF expression tended to be higher in patients with high serum HGF levels. In patients with HCC, however, HGF showed little localization in cancer cells, but was noted in infiltrating mesenchymal cells in both cancerous and noncancerous regions. In conclusion, the measurement of serum HGF levels may be useful for estimating the degree of intrahepatic inflammatory reaction and fibrosis. Although further study is necessary, the high serum level of HGF revealed high carcinogenic states in chronic hepatitis and liver cirrhosis type C.
Collapse
Affiliation(s)
- H Yamagami
- Third Department of Internal Medicine, Nihon University School of Medicine, Tokyo, Japan
| | | | | | | |
Collapse
|
47
|
Matteucci E, Castoldi R, Desiderio MA. Hepatocyte growth factor induces pro-apoptotic genes in HepG2 hepatoma but not in B16-F1 melanoma cells. J Cell Physiol 2001; 186:387-96. [PMID: 11169978 DOI: 10.1002/1097-4652(2000)9999:9999<000::aid-jcp1033>3.0.co;2-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hepatocyte growth factor (HGF) exerts a cytostatic effect on HepG2 and B16-F1 cell lines. To evaluate the possible involvement of the apoptotic process in this effect, we performed studies at cellular and molecular levels. HGF induced apoptosis only in HepG2 hepatoma cells at day 3 in about 20% of the cells undergoing growth inhibition, while hallmarks of apoptosis did not occur in B16-F1 melanoma cells. During the first 24 h after HGF treatment, enhanced expression of the pro-apoptotic genes bax and c-Myc was observed at level of mRNA and protein. Concomitant induction of antizyme (AZ) might lower ornithine decarboxylase (ODC) protein level though a huge increase in ODC mRNA level took place. This was suggested as a signal for apoptosis decisional phase. The levels of the proteins examined except that of AZ fell down thereafter when HepG2 cells underwent apoptosis. In B16-F1 cells, only ODC and AZ protein levels were elevated probably in relation to the initial elevated growth rate and the absence of apoptosis involvement in the following cytostatic effect of HGF in melanoma cells. Consistent with this hypothesis, bax mRNA and protein levels were unchanged or even lower relative to control values.
Collapse
Affiliation(s)
- E Matteucci
- Institute of General Pathology, University of Milano, via L. Mangiagalli, 31-20133 Milano, Italy
| | | | | |
Collapse
|
48
|
Osada S, Saji S, Osada K. Critical role of extracellular signal-regulated kinase phosphorylation on menadione (vitamin K3) induced growth inhibition. Cancer 2001. [DOI: 10.1002/1097-0142(20010315)91:6<1156::aid-cncr1112>3.0.co;2-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
49
|
Tsao MS, Yang Y, Marcus A, Liu N, Mou L. Hepatocyte growth factor is predominantly expressed by the carcinoma cells in non-small-cell lung cancer. Hum Pathol 2001; 32:57-65. [PMID: 11172296 DOI: 10.1053/hupa.2001.21133] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Hepatocyte growth factor (HGF) exerts multifunctional regulatory roles in the growth, morphogenesis, differentiation, and motility of epithelial cells, and putatively plays important roles in tumor angiogenesis and metastasis. Aside from the full-length protein, 2 naturally occurring truncated HGF isoforms (NK1 and NK2) have been identified. Recent evidence suggests that a high level of HGF in surgically resected non-small-cell lung carcinoma (NSCLC) is a negative prognostic marker for NSCLC patients' survival. The origin of HGF in these tumors remains uncertain. We show here by in situ hybridization and immunohistochemistry that HGF messenger RNA (mRNA) and protein were predominantly expressed by the tumor cells in a high percentage of primary NSCLC. Stromal cell expression of HGF was limited to some lymphocytes and endothelial cells. Normal bronchial and bronchiolar epithelial cells also expressed HGF mRNA and immunoreactive protein. The mRNA transcripts and putative proteins of all 3 known HGF isoforms were detected in both normal lung and lung cancer tissues, but the full-length HGF was predominantly expressed. Our findings indicate that both autocrine and paracrine functions of HGF are likely to contribute to the pathobiology of lung cancer in vivo.
Collapse
Affiliation(s)
- M S Tsao
- Department of Laboratory Medicine and Pathobiology, University Health Network and University of Toronto, Toronto, Canada
| | | | | | | | | |
Collapse
|
50
|
Osada S, Carr BI. Critical role of extracellular signal-regulated kinase (ERK) phosphorylation in novel vitamin K analog-induced cell death. Jpn J Cancer Res 2000; 91:1250-7. [PMID: 11123423 PMCID: PMC5926301 DOI: 10.1111/j.1349-7006.2000.tb00911.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
In the present study, we show that 2-(2-hydroxyethylsulfaryl)-3-methyl-1,4-naphthoquinone, or CPD 5, is a potent growth inhibitor for pancreas cancer cell lines (ID(50): 21.4 +/- 3.8, 31.8 +/- 2.7 and 55.2 +/- 4.5 microM for MiaPaCa, Panc-1 and BxPc3, respectively). It induced protein tyrosine phosphor-ylation of hepatocyte growth factor (HGF) receptor (c-Met) or epidermal growth factor receptor (EGFR), which increased progressively to a maximum level at 30 min in Panc-1 cells. The receptor phosphorylation by CPD 5 was indicated to be functional, since these receptors were found to bind with Grb2 or SOS1 protein. CPD 5 was also suggested to induce phosphorylation of external signal-regulated kinase (ERK). EGF induced cell proliferation through ERK phosphorylation, since U0126, which is an inhibitor of ERK phosphorylation, abrogated the increase of cyclin D1 by EGF. HGF increased the amount of p27 protein, suggesting that it is associated with cell differentiation. By contrast, U0126 reduced CPD 5-induced cell death. On two-dimensional electrophoresis, we found an extra type of phospho-ERK, and this was completely and selectively abolished by U0126. These results suggest that ERK phosphorylation, especially the extra spot on two-dimensional gel, is critically associated with CPD 5-mediated cell death.
Collapse
Affiliation(s)
- S Osada
- Department of Surgery, Thomas E. Starzl Transplantation Institute, University of Pittsburgh, Pittsburgh, PA 15213, USA.
| | | |
Collapse
|