1
|
Faulkner R, Jo Y. Synthesis, function, and regulation of sterol and nonsterol isoprenoids. Front Mol Biosci 2022; 9:1006822. [PMID: 36275615 PMCID: PMC9579336 DOI: 10.3389/fmolb.2022.1006822] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 09/06/2022] [Indexed: 11/30/2022] Open
Abstract
Cholesterol, the bulk end-product of the mevalonate pathway, is a key component of cellular membranes and lipoproteins that transport lipids throughout the body. It is also a precursor of steroid hormones, vitamin D, and bile acids. In addition to cholesterol, the mevalonate pathway yields a variety of nonsterol isoprenoids that are essential to cell survival. Flux through the mevalonate pathway is tightly controlled to ensure cells continuously synthesize nonsterol isoprenoids but avoid overproducing cholesterol and other sterols. Endoplasmic reticulum (ER)-localized 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) reductase (HMGCR), the rate limiting enzyme in the mevalonate pathway, is the focus of a complex feedback regulatory system governed by sterol and nonsterol isoprenoids. This review highlights transcriptional and post-translational regulation of HMGCR. Transcriptional regulation of HMGCR is mediated by the Scap-SREBP pathway. Post-translational control is initiated by the intracellular accumulation of sterols, which causes HMGCR to become ubiquitinated and subjected to proteasome-mediated ER-associated degradation (ERAD). Sterols also cause a subfraction of HMGCR molecules to bind the vitamin K2 synthetic enzyme, UbiA prenyltransferase domain-containing protein-1 (UBIAD1). This binding inhibits ERAD of HMGCR, which allows cells to continuously synthesize nonsterol isoprenoids such as geranylgeranyl pyrophosphate (GGPP), even when sterols are abundant. Recent studies reveal that UBIAD1 is a GGPP sensor, dissociating from HMGCR when GGPP thresholds are met to allow maximal ERAD. Animal studies using genetically manipulated mice disclose the physiological significance of the HMGCR regulatory system and we describe how dysregulation of these pathways contributes to disease.
Collapse
|
2
|
Sharpe LJ, Coates HW, Brown AJ. Post-translational control of the long and winding road to cholesterol. J Biol Chem 2021; 295:17549-17559. [PMID: 33453997 DOI: 10.1074/jbc.rev120.010723] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/12/2020] [Indexed: 01/19/2023] Open
Abstract
The synthesis of cholesterol requires more than 20 enzymes, many of which are intricately regulated. Post-translational control of these enzymes provides a rapid means for modifying flux through the pathway. So far, several enzymes have been shown to be rapidly degraded through the ubiquitin-proteasome pathway in response to cholesterol and other sterol intermediates. Additionally, several enzymes have their activity altered through phosphorylation mechanisms. Most work has focused on the two rate-limiting enzymes: 3-hydroxy-3-methylglutaryl CoA reductase and squalene monooxygenase. Here, we review current literature in the area to define some common themes in the regulation of the entire cholesterol synthesis pathway. We highlight the rich variety of inputs controlling each enzyme, discuss the interplay that exists between regulatory mechanisms, and summarize findings that reveal an intricately coordinated network of regulation along the cholesterol synthesis pathway. We provide a roadmap for future research into the post-translational control of cholesterol synthesis, and no doubt the road ahead will reveal further twists and turns for this fascinating pathway crucial for human health and disease.
Collapse
Affiliation(s)
- Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Hudson W Coates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, New South Wales, Australia.
| |
Collapse
|
3
|
Arhar S, Natter K. Common aspects in the engineering of yeasts for fatty acid- and isoprene-based products. Biochim Biophys Acta Mol Cell Biol Lipids 2019; 1864:158513. [PMID: 31465888 DOI: 10.1016/j.bbalip.2019.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 06/26/2019] [Accepted: 08/20/2019] [Indexed: 11/18/2022]
Abstract
The biosynthetic pathways for most lipophilic metabolites share several common principles. These substances are built almost exclusively from acetyl-CoA as the donor for the carbon scaffold and NADPH is required for the reductive steps during biosynthesis. Due to their hydrophobicity, the end products are sequestered into the same cellular compartment, the lipid droplet. In this review, we will summarize the efforts in the metabolic engineering of yeasts for the production of two major hydrophobic substance classes, fatty acid-based lipids and isoprenoids, with regard to these common aspects. We will compare and discuss the results of genetic engineering strategies to construct strains with enhanced synthesis of the precursor acetyl-CoA and with modified redox metabolism for improved NADPH supply. We will also discuss the role of the lipid droplet in the storage of the hydrophobic product and review the strategies to either optimize this organelle for higher capacity or to achieve excretion of the product into the medium.
Collapse
Affiliation(s)
- Simon Arhar
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria
| | - Klaus Natter
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Humboldtstrasse 50/II, 8010 Graz, Austria.
| |
Collapse
|
4
|
Cheng J, Zhang T, Ji H, Tao K, Guo J, Wei W. Functional characterization of AMP-activated protein kinase signaling in tumorigenesis. Biochim Biophys Acta Rev Cancer 2016; 1866:232-251. [PMID: 27681874 DOI: 10.1016/j.bbcan.2016.09.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 12/13/2022]
Abstract
AMP-activated protein kinase (AMPK) is a ubiquitously expressed metabolic sensor among various species. Specifically, cellular AMPK is phosphorylated and activated under certain stressful conditions, such as energy deprivation, in turn to activate diversified downstream substrates to modulate the adaptive changes and maintain metabolic homeostasis. Recently, emerging evidences have implicated the potential roles of AMPK signaling in tumor initiation and progression. Nevertheless, a comprehensive description on such topic is still in scarcity, especially in combination of its biochemical features with mouse modeling results to elucidate the physiological role of AMPK signaling in tumorigenesis. Hence, we performed this thorough review by summarizing the tumorigenic role of each component along the AMPK signaling, comprising of both its upstream and downstream effectors. Moreover, their functional interplay with the AMPK heterotrimer and exclusive efficacies in carcinogenesis were chiefly explained among genetically altered mice models. Importantly, the pharmaceutical investigations of AMPK relevant medications have also been highlighted. In summary, in this review, we not only elucidate the potential functions of AMPK signaling pathway in governing tumorigenesis, but also potentiate the future targeted strategy aiming for better treatment of aberrant metabolism-associated diseases, including cancer.
Collapse
Affiliation(s)
- Ji Cheng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tao Zhang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Hongbin Ji
- Key Laboratory of Systems Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai 200031, People's Republic of China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, People's Republic of China.
| | - Jianping Guo
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| |
Collapse
|
5
|
Wensveen FM, Valentić S, Šestan M, Wensveen TT, Polić B. Interactions between adipose tissue and the immune system in health and malnutrition. Semin Immunol 2015; 27:322-33. [PMID: 26603491 DOI: 10.1016/j.smim.2015.10.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/26/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023]
Abstract
Adipose tissue provides the body with a storage depot of nutrients that is drained during times of starvation and replenished when food sources are abundant. As such, it is the primary sensor for nutrient availability in the milieu of an organism, which it communicates to the body through the excretion of hormones. Adipose tissue regulates a multitude of body functions associated with metabolism, such as gluconeogenesis, feeding and nutrient uptake. The immune system forms a vital layer of protection against micro-organisms that try to gain access to the nutrients contained in the body. Because infections need to be resolved as quickly as possible, speed is favored over energy-efficiency in an immune response. Especially when immune cells are activated, they switch to fast, but energy-inefficient anaerobic respiration to fulfill their energetic needs. Despite the necessity for an effective immune system, it is not given free rein in its energy expenditure. Signals derived from adipose tissue limit immune cell numbers and activity under conditions of nutrient shortage, whereas they allow proper immune cell activity when food sources are sufficiently available. When excessive fat accumulation occurs, such as in diet-induced obesity, adipose tissue becomes the site of pathological immune cell activation, causing chronic low-grade systemic inflammation. Obesity is therefore associated with a number of disorders in which the immune system plays a central role, such as atherosclerosis and non-alcoholic steatohepatitis. In this review, we will discuss the way in which adipose tissue regulates activity of the immune system under healthy and pathological conditions.
Collapse
Affiliation(s)
- Felix M Wensveen
- Department of Histology & Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia; Department of Experimental Immunology, Amsterdam Medical Centre, Amsterdam, The Netherlands
| | - Sonja Valentić
- Department of Histology & Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | - Marko Šestan
- Department of Histology & Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia
| | | | - Bojan Polić
- Department of Histology & Embryology, Faculty of Medicine, University of Rijeka, Rijeka, Croatia.
| |
Collapse
|
6
|
Linderholm AL, Bratt JM, Schuster GU, Zeki AA, Kenyon NJ. Novel therapeutic strategies for adult obese asthmatics. Immunol Allergy Clin North Am 2014; 34:809-23. [PMID: 25282293 DOI: 10.1016/j.iac.2014.07.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Asthma is a complex syndrome that affects an estimated 26 million people in the United States but gaps exist in the recognition and management of asthmatic subgroups. This article proposes alternative approaches for future treatments of adult obese asthmatics who do not respond to standard controller therapies, drawing parallels between seemingly disparate therapeutics through their common signaling pathways. How metformin and statins can potentially improve airway inflammation is described and supplements are suggested. A move toward more targeted therapies for asthma subgroups is needed. These therapies address asthma and the comorbidities that accompany obesity and metabolic syndrome to provide the greatest therapeutic potential.
Collapse
Affiliation(s)
- Angela L Linderholm
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, 4150 V Street, Suite 3100, Davis, CA, USA
| | - Jennifer M Bratt
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, 4150 V Street, Suite 3100, Davis, CA, USA
| | - Gertrud U Schuster
- Nutrition Department, University of California, Davis, 430 West Health Sciences Drive, Davis, CA, USA; Immunity and Diseases Prevention Unit, Western Human Nutrition Research Center, United States Department of Agriculture (USDA), Agricultural Research Services (ARS), 430 West Health Sciences Drive, Davis, CA, USA
| | - Amir A Zeki
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, 4150 V Street, Suite 3100, Davis, CA, USA
| | - Nicholas J Kenyon
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of California, Davis, 4150 V Street, Suite 3100, Davis, CA, USA.
| |
Collapse
|
7
|
Abstract
The adenosine monophosphate (AMP)-activated protein kinase (AMPK) signaling pathway arose early during evolution of eukaryotic cells, when it appears to have been involved in the response to glucose starvation and perhaps also in monitoring the output of the newly acquired mitochondria. Due to the advent of hormonal regulation of glucose homeostasis, glucose starvation is a less frequent event for mammalian cells than for single-celled eukaryotes. Nevertheless, the AMPK system has been preserved in mammals where, by monitoring cellular AMP:adenosine triphosphate (ATP) and adenosine diphosphate (ADP):ATP ratios and balancing the rates of catabolism and ATP consumption, it maintains energy homeostasis at a cell-autonomous level. In addition, hormones involved in maintaining energy balance at the whole-body level interact with AMPK in the hypothalamus. AMPK is activated by two widely used clinical drugs, metformin and aspirin, and also by many natural products of plants that are either derived from traditional medicines or are promoted as "nutraceuticals."
Collapse
Affiliation(s)
- D Grahame Hardie
- Division of Cell Signalling and Immunology, College of Life Sciences, University of Dundee, Dundee, DD1 5EH, Scotland, United Kingdom;
| |
Collapse
|
8
|
Counteracting roles of AMP deaminase and AMP kinase in the development of fatty liver. PLoS One 2012; 7:e48801. [PMID: 23152807 PMCID: PMC3494720 DOI: 10.1371/journal.pone.0048801] [Citation(s) in RCA: 144] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 10/01/2012] [Indexed: 02/08/2023] Open
Abstract
Fatty liver (hepatic steatosis) is associated with nucleotide turnover, loss of ATP and generation of adenosine monophosphate (AMP). It is well known that in fatty liver, activity of the AMP-activated kinase (AMPK) is reduced and that its stimulation can prevent hepatic steatosis by both enhancing fat oxidation and reducing lipogenesis. Here we show that another AMP dependent enzyme, AMPD2, has opposing effects on fatty acid oxidation when compared to AMPK. In human hepatocytres, AMPD2 activation -either by overexpression or by lowering intracellular phosphate levels with fructose- is associated with a significant reduction in AMPK activity. Likewise, silencing of AMPK spontaneously increases AMPD activity, demonstrating that these enzymes counter-regulate each other. Furthermore, we show that a downstream product of AMP metabolism through AMPD2, uric acid, can inhibit AMPK activity in human hepatocytes. Finally, we show that fructose-induced fat accumulation in hepatocytes is due to a dominant stimulation of AMPD2 despite stimulating AMPK. In this regard, AMPD2-deficient hepatocytes demonstrate a further activation of AMPK after fructose exposure in association with increased fatty acid oxidation, and conversely silencing AMPK enhances AMPD-dependent fat accumulation. In vivo, we show that sucrose fed rats also develop fatty liver that is blocked by metformin in association with both a reduction in AMPD activity and an increase in AMPK activity. In summary, AMPD and AMPK are both important in hepatic fat accumulation and counter-regulate each other. We present the novel finding that uric acid inhibits AMPK kinase activity in fructose-fed hepatocytes thus providing new insights into the pathogenesis of fatty liver.
Collapse
|
9
|
Cheng Z, Chen AF, Wu F, Sheng L, Zhang HK, Gu M, Li YY, Zhang LN, Hu LH, Li JY, Li J. 8,8-Dimethyldihydroberberine with improved bioavailability and oral efficacy on obese and diabetic mouse models. Bioorg Med Chem 2010; 18:5915-24. [PMID: 20663675 DOI: 10.1016/j.bmc.2010.06.085] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 06/24/2010] [Accepted: 06/25/2010] [Indexed: 12/20/2022]
Abstract
The clinical use of the natural alkaloid berberine (BBR) as an antidiabetic reagent is limited by its poor bioavailability. Our previous work demonstrated that dihydroberberine (dhBBR) has enhanced bioavailability and in vivo efficacy compared with berberine. Here we synthesized the 8,8-dimethyldihydroberberine (Di-Me) with improved stability, and bioavailability over dhBBR. Similar to BBR and dhBBR, Di-Me inhibited mitochondria respiration, increased AMP:ATP ratio, activated AMPK and stimulated glucose uptake in L6 myotubes. In diet-induced obese (DIO) mice, Di-Me counteracted the increased adiposity, tissue triglyceride accumulation and insulin resistance, and improved glucose tolerance at a dosage of 15mg/kg. Administered to db/db mice with a dosage of 50mg/kg, Di-Me effectively reduced random fed and fasting blood glucose, improved glucose tolerance, alleviated insulin resistance and reduced plasma triglycerides, with better efficacy than dhBBR at the same dosage. Our work highlights the importance of dihydroberberine analogs as potential therapeutic reagents for type 2 diabetes treatment.
Collapse
Affiliation(s)
- Zhe Cheng
- National Center for Drug Screening, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 201203, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Subbaiah PV, Sowa JM, Singh DK. Sphingolipids and cellular cholesterol homeostasis. Effect of ceramide on cholesterol trafficking and HMG CoA reductase activity. Arch Biochem Biophys 2008; 474:32-8. [PMID: 18395507 PMCID: PMC2464457 DOI: 10.1016/j.abb.2008.03.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2007] [Revised: 03/18/2008] [Accepted: 03/20/2008] [Indexed: 01/19/2023]
Abstract
We previously showed that degradation of cellular sphingomyelin (SM) by SMase C results in a greater stimulation of cholesterol translocation to endoplasmic reticulum, compared to its degradation by SMase D. Here we investigated the hypothesis that the effect of SMase C is partly due to the generation of ceramide, rather than due to depletion of SM alone. Inhibition of hydroxymethylglutaryl CoA reductase (HMGCR) activity was used as a measure of cholesterol translocation. Treatment of fibroblasts with SMase C resulted in a 90% inhibition of HMGCR, whereas SMase D treatment inhibited it by 29%. Treatment with exogenous ceramides, or increasing the endogenous ceramide levels also inhibited HMGCR by 60-80%. Phosphorylation of HMGCR was stimulated by SMase C or exogenous ceramide. The effects of ceramide and SMase D were additive, indicating the independent effects of SM depletion and ceramide generation. These results show that ceramide regulates sterol trafficking independent of cellular SM levels.
Collapse
Affiliation(s)
- Papasani V Subbaiah
- Departments of Medicine and Biochemistry & Molecular Genetics, University of Illinois at Chicago, 1819 West Polk Street, M/C 797, Chicago, IL 60612, USA.
| | | | | |
Collapse
|
11
|
Abstract
Eight distinct inherited disorders have been linked to different enzyme defects in the isoprenoid/cholesterol biosynthetic pathway following the finding of abnormally increased levels of intermediate metabolites in patients and confirmed by the demonstration of disease-causing mutations in genes encoding the implicated enzymes. Patients afflicted with these disorders are characterized by multiple morphogenic and congenital anomalies including internal organ, skeletal and/or skin abnormalities underlining an important role for cholesterol in human embryogenesis and development. The etiology of the underlying pathophysiology may involve multiple affected processes due to lowered cholesterol and/or the elevated, teratogenic levels of the intermediate sterol precursors.
Collapse
Affiliation(s)
- Hans R Waterham
- Laboratory Genetic Metabolic Diseases, F0-224, Department of Pediatrics/Emma Children's Hospital, Academic Medical Center, University of Amsterdam, P.O. Box 22700, 1100 DE Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Proszkowiec-Weglarz M, Richards MP, Ramachandran R, McMurtry JP. Characterization of the AMP-activated protein kinase pathway in chickens. Comp Biochem Physiol B Biochem Mol Biol 2006; 143:92-106. [PMID: 16343965 DOI: 10.1016/j.cbpb.2005.10.009] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Revised: 10/25/2005] [Accepted: 10/25/2005] [Indexed: 12/13/2022]
Abstract
In mammals, AMP-activated protein kinase (AMPK) is involved in the regulation of cellular energy homeostasis and, on the whole animal level, in regulating energy balance and food intake. Because the chicken is a valuable experimental animal model and considering that a first draft of the chicken genome sequence has recently been completed, we were interested in verifying the genetic basis for the LKB1/AMPK pathway in chickens. We identified distinct gene homologues for AMPK alpha, beta and gamma subunits and for LKB1, MO25 and STRAD. Analysis of gene expression by RT-PCR showed that liver, brain, kidney, spleen, pancreas, duodenum, abdominal fat and hypothalamus from 3 wk-old broiler chickens preferentially expressed AMPK alpha-1, beta-2 and gamma-1 subunit isoforms. Heart predominantly expressed alpha-2, beta-2 and gamma-1, whereas skeletal muscle expressed alpha-2, beta-2 and gamma-3 preferentially. Moreover, the AMPK gamma-3 gene was only expressed in heart and skeletal muscle. Genes encoding LKB1, MO25 alpha, MO25 beta, and STRAD beta were expressed in all examined tissues, whereas STRAD alpha was expressed exclusively in brain, hypothalamus, heart and skeletal muscle. Alterations in energy status (fasting and refeeding) produced little significant change in AMPK subunit gene transcription. We also determined the level of phosphorylated (active) AMPK in different tissues and in different states of energy balance. Immunocytochemical analysis of the chicken hypothalamus showed that activated AMPK was present in hypothalamic nuclei involved in regulation of food intake and energy balance. Together, these findings suggest a functional LKB1/AMPK pathway exists in chickens similar to that observed in mammals.
Collapse
Affiliation(s)
- Monika Proszkowiec-Weglarz
- United States Department of Agriculture, Agriculture Research Service, Animal and Natural Resources Institute, Growth Biology Laboratory, 10300 Baltimore Avenue, Building 200, Rm. 218, BARC-East, Beltsville, MD 20705-2350, USA.
| | | | | | | |
Collapse
|
13
|
Geelen MJH. The use of digitonin-permeabilized mammalian cells for measuring enzyme activities in the course of studies on lipid metabolism. Anal Biochem 2005; 347:1-9. [PMID: 16291302 DOI: 10.1016/j.ab.2005.03.032] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2005] [Revised: 02/25/2005] [Accepted: 03/17/2005] [Indexed: 10/25/2022]
Affiliation(s)
- Math J H Geelen
- Department of Nutrition, Graduate School of Animal Health, Faculty of Veterinary Medicine, Utrecht University, The Netherlands.
| |
Collapse
|
14
|
Panda T, Devi VA. Regulation and degradation of HMGCo-A reductase. Appl Microbiol Biotechnol 2004; 66:143-52. [PMID: 15558272 DOI: 10.1007/s00253-004-1720-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2004] [Revised: 07/15/2004] [Accepted: 07/16/2004] [Indexed: 11/26/2022]
Abstract
The enzyme, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) controls the biosynthesis of cholesterol. Hypercholesterolemia and atherosclerosis are critical health risk factors. One way of controlling these risk factors is to manipulate regulation as well as degradation of HMGR. At present, a class of compounds called statins, which are HMGR inhibitors, are used for the treatment of hypercholesterolemia. However, statins suffer major setbacks as their use produces more adverse reactions than the desirable one of inhibiting the enzyme. Genetically engineered forms of HMGR are also studied in primitive life forms like bacteria, but detailed investigation of this enzyme in human systems is certainly required. Extensive studies have been made on the regulatory aspects of this enzyme, but no breakthrough is conspicuous in the clinical background to find an alternative treatment for hypercholesterolemia. The immediate need is to find an alternate way of regulating degradation of the enzyme. This review presents the importance of regulation and degradation of the HMGR enzyme in different systems to gain possible insight into alternative schemes for regulating this enzyme and, if these exist, the feasibility of extending them same to studies in mammalian systems. A high degree of similarity exists between mammalian and yeast HMGR. Detailed studies reported on the regulation and degradation of the yeast enzyme also throw more light on the mammalian system, leading to a better understanding of ways of controlling hypercholesterolemia.
Collapse
Affiliation(s)
- T Panda
- Department of Chemical Engineering, Indian Institute of Technology, Madras, Chennai, 600 036, India.
| | | |
Collapse
|
15
|
Abstract
The regulation of carbon metabolism in plant cells responds sensitively to the levels of carbon metabolites that are available. The sensing and signalling systems that are involved in this process form a complex web that comprises metabolites, transporters, enzymes, transcription factors and hormones. Exactly which metabolites are sensed is not yet known, but candidates include sucrose, glucose and other hexoses, glucose-6-phosphate, trehalose-6-phosphate, trehalose and adenosine monophosphate. Important components of the signalling pathways include sucrose non-fermenting-1-related protein kinase-1 (SnRK1) and hexokinase; sugar transporters are also implicated. A battery of genes and enzymes involved in carbohydrate metabolism, secondary metabolism, nitrogen assimilation and photosynthesis are under the control of these pathways and fundamental developmental processes such as germination, sprouting, pollen development and senescence are affected by them. Here we review the current knowledge of carbon metabolite sensing and signalling in plants, drawing comparisons with homologous and analogous systems in animals and fungi. We also review the evidence for cross-talk between carbon metabolite and other major signalling systems in plant cells and the prospects for manipulating this fundamentally important aspect of metabolic regulation for crop improvement.
Collapse
Affiliation(s)
- Nigel G Halford
- Crop Performance and Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | |
Collapse
|
16
|
Halford NG, Hey S, Jhurreea D, Laurie S, McKibbin RS, Paul M, Zhang Y. Metabolic signalling and carbon partitioning: role of Snf1-related (SnRK1) protein kinase. JOURNAL OF EXPERIMENTAL BOTANY 2003; 54:467-75. [PMID: 12508057 DOI: 10.1093/jxb/erg038] [Citation(s) in RCA: 157] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A protein kinase that plays a key role in the global control of plant carbon metabolism is SnRK1 (sucrose non-fermenting-1-related protein kinase 1), so-called because of its homology and functional similarity with sucrose non-fermenting 1 (SNF1) of yeast. This article reviews studies on the characterization of SnRK1 gene families, SnRK1 regulation and function, interacting proteins, and the effects of manipulating SnRK1 activity on carbon metabolism and development.
Collapse
Affiliation(s)
- Nigel G Halford
- Crop Performance and Improvement, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Daniel T, Carling D. Expression and regulation of the AMP-activated protein kinase-SNF1 (sucrose non-fermenting 1) kinase complexes in yeast and mammalian cells: studies using chimaeric catalytic subunits. Biochem J 2002; 365:629-38. [PMID: 11971761 PMCID: PMC1222717 DOI: 10.1042/bj20020124] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2002] [Revised: 04/16/2002] [Accepted: 04/24/2002] [Indexed: 11/17/2022]
Abstract
Mammalian AMP-activated protein kinase (AMPK) and yeast SNF1 (sucrose non-fermenting 1) kinase are members of a highly conserved protein kinase family that plays an important role in energy homoeostasis. AMPK and SNF1 kinase are heterotrimeric complexes consisting of a catalytic subunit and two regulatory subunits. We swapped the C-terminal regulatory domains of the catalytic subunits of AMPK (alpha) and SNF1 kinase (Snf1) and compared the expression and regulation of these chimaeric proteins with the native catalytic subunits in both mammalian and yeast cells. In mammalian cells, alpha1-Snf1 yielded a functional kinase complex following co-expression with the yeast regulatory subunits Sip2 and Snf4. Unlike native AMPK, the alpha 1-Snf1 complex was not activated by the stresses that deplete intracellular AMP. Significantly, hyperosmotic stress led to the marked activation of both the alpha 1-Snf1 complex and AMPK, without a detectable change in adenine nucleotide levels, indicating that an alternative, non-AMP-dependent, pathway was responsible for activation. alpha1-Snf1 was able to restore growth of snf1 mutant yeast on raffinose and phosphorylated the transcriptional repressor protein Mig1. Co-expression of the AMPK trimeric complex in yeast yielded an activity, increased by low glucose, that was similar to native SNF1 kinase. Importantly, expression of AMPK restored growth of a snf1 mutant on raffinose. Our results provide clues to the regulation of AMPK and SNF1 kinase and demonstrate that, in mammalian cells, there are at least two pathways that can activate AMPK, namely one that involves an increase in the AMP/ATP ratio and one that is independent of this ratio. In yeast, the glucose signalling pathway is able to activate AMPK, suggesting that the mammalian and yeast kinase pathways are conserved.
Collapse
Affiliation(s)
- Tyrone Daniel
- Cellular Stress Group, MRC Clinical Sciences Centre, Hammersmith Hospital, Du Cane Road, London W12 0NN, U.K
| | | |
Collapse
|
18
|
Dubbelhuis PF, Meijer AJ. Hepatic amino acid-dependent signaling is under the control of AMP-dependent protein kinase. FEBS Lett 2002; 521:39-42. [PMID: 12067722 DOI: 10.1016/s0014-5793(02)02815-6] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has become increasingly clear in recent years that amino acids can stimulate a signal transduction pathway resulting in the phosphorylation of mammalian target of rapamycin downstream targets. We have now found that amino acid-dependent phosphorylation of p70S6 kinase and of S6 in hepatocytes is prevented when AMP-dependent protein kinase (AMPK) is activated by either the purine ribonucleoside analogue AICAriboside, fructose or glycerol. Insulin-dependent phosphorylation of protein kinase B is not affected by AMPK activation. Protein synthesis is strongly inhibited when AMPK is activated. It is concluded that amino acid-dependent signaling, a protein-anabolic signal, can be effectively antagonized by activation of AMPK.
Collapse
Affiliation(s)
- Peter F Dubbelhuis
- Department of Biochemistry, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, The Netherlands
| | | |
Collapse
|
19
|
Di Croce L, Vicent GP, Pecci A, Bruscalupi G, Trentalance A, Beato M. The promoter of the rat 3-hydroxy-3-methylglutaryl coenzyme A reductase gene contains a tissue-specific estrogen-responsive region. Mol Endocrinol 1999; 13:1225-36. [PMID: 10446899 DOI: 10.1210/mend.13.8.0333] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The isoprenoid metabolic pathway is mainly regulated at the level of conversion of 3-hydroxy-3-methylglutaryl coenzyme A (HMG CoA) to mevalonate, catalyzed by HMG CoA reductase. As estrogens are known to influence cholesterol metabolism, we have explored the potential regulation of the HMG CoA reductase gene promoter by estrogens. The promoter contains an estrogen-responsive element-like sequence at position -93 (termed Red-ERE), which differs from the ERE consensus by one mismatch in each half of the palindrome. A Red-ERE oligonucleotide specifically bound estrogen receptor in vitro and conferred receptor-dependent estrogen responsiveness to a heterologous promoter in all cell lines tested. However, expression of a reporter driven by the rat HMG CoA reductase promoter was induced by estrogen treatment after transient transfection into the breast cancer cell line MCF-7 cells but not in hepatic cell lines expressing estrogen receptor. Estrogen induction in MCF-7 cells was dependent on the Red-ERE and was strongly inhibited by the antiestrogen ICI 164,384. A functional cAMP-responsive element is located immediately upstream of the Red-ERE, but cAMP and estrogens inhibit each other in terms of transactivation of the promoter. Similarly, induction by estrogens was inhibited by micromolar concentrations of cholesterol, likely acting via changes in occupancy of the sterol-responsive element located 70 bp upstream of the Red-ERE. Thus, within its natural context, Red-ERE is able to mediate hormonal regulation of the HMG CoA reductase gene in tissues that respond to estrogens with enhanced cell proliferation, while it is not operative in liver cells. We postulate that this tissue-specific regulation of HMG CoA reductase by estrogens could partially explain the protective effect of estrogens against heart disease.
Collapse
Affiliation(s)
- L Di Croce
- Institute for Molecular Biology and Tumor Research (IMT), Marburg, Germany
| | | | | | | | | | | |
Collapse
|
20
|
Hardie DG, Carling D, Carlson M. The AMP-activated/SNF1 protein kinase subfamily: metabolic sensors of the eukaryotic cell? Annu Rev Biochem 1998; 67:821-55. [PMID: 9759505 DOI: 10.1146/annurev.biochem.67.1.821] [Citation(s) in RCA: 1111] [Impact Index Per Article: 41.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Mammalian AMP-activated protein kinase and yeast SNF1 protein kinase are the central components of kinase cascades that are highly conserved between animals, fungi, and plants. The AMP-activated protein kinase cascade acts as a metabolic sensor or "fuel gauge" that monitors cellular AMP and ATP levels because it is activated by increases in the AMP:ATP ratio. Once activated, the enzyme switches off ATP-consuming anabolic pathways and switches on ATP-producing catabolic pathways, such as fatty acid oxidation. The SNF1 complex in yeast is activated in response to the stress of glucose deprivation. In this case the intracellular signal or signals have not been identified; however, SNF1 activation is associated with depletion of ATP and elevation of AMP. The SNF1 complex acts primarily by inducing expression of genes required for catabolic pathways that generate glucose, probably by triggering phosphorylation of transcription factors. SNF1-related protein kinases in higher plants are likely to be involved in the response of plant cells to environmental and/or nutritional stress.
Collapse
Affiliation(s)
- D G Hardie
- Biochemistry Department, University, Dundee, Scotland, United Kingdom.
| | | | | |
Collapse
|
21
|
Asslan R, Pradines A, Favre G, Le Gaillard F. Tyrosine kinase-dependent modulation of 3-hydroxy-3-methylglutaryl-CoA reductase in human breast adenocarcinoma SKBR-3 cells. Biochem J 1998; 330 ( Pt 1):241-6. [PMID: 9461516 PMCID: PMC1219133 DOI: 10.1042/bj3300241] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
3-Hydroxy-3-methylglutaryl-CoA (HMG-CoA) reductase is the major rate-limiting enzyme in sterol and non-sterol isoprenoid synthesis. Isoprenoids are involved in the mechanisms of cell proliferation and transformation leading notably to crucial post-translational maturation of small G-proteins of the Ras superfamily. HMG-CoA reductase is among the most highly regulated enzymes. It is controlled by several feedback regulation mechanisms induced by sterol and non-sterol metabolites. The present results show that tyrosine kinase activity is also involved in the regulation of HMG-CoA reductase activity in the human breast cancer cell line SKBR-3. Incubation of SKBR-3 cells with the tyrosine kinase inhibitor, herbimycin A, induces a concentration-dependent reduction of HMG-CoA reductase activity with an IC50 of 80nM. The inhibition of HMG-CoA reductase activity by herbimycin A is also time-dependent. A similar effect of herbimycin A was obtained on the steady-state level of the HMG-CoA reductase protein. The effect of herbimycin A is probably specific as it abolished the stimulation of reductase activity by epidermal growth factor. To elucidate the molecular basis of the inhibition of HMG-CoA reductase activity and protein level by herbimycin A, we performed experiments to study the metabolic turnover of this enzyme using [35S]methionine and [35]cysteine. Herbimycin A (1 microM) did not have any significant effect on the rate of HMG-CoA reductase protein degradation but did affect its rate of synthesis and mRNA levels. The decrease in protein synthesis rate correlates with the lower reductase protein level but is more pronounced than the decrease in mRNA levels. Taken together, the results reveal a novel pathway of regulation of HMG-CoA reductase expression and activity by cellular tyrosine kinase activities.
Collapse
Affiliation(s)
- R Asslan
- Laboratoire d'Oncologie Cellulaire et Moléculaire, UPRES-EA 2048, Faculté des Sciences Pharmaceutiques and Institut Claudius Regaud, 20-24 rue du Pont Saint-Pierre, 31052, Toulouse Cedex, France
| | | | | | | |
Collapse
|
22
|
Mitchelhill KI, Michell BJ, House CM, Stapleton D, Dyck J, Gamble J, Ullrich C, Witters LA, Kemp BE. Posttranslational modifications of the 5'-AMP-activated protein kinase beta1 subunit. J Biol Chem 1997; 272:24475-9. [PMID: 9305909 DOI: 10.1074/jbc.272.39.24475] [Citation(s) in RCA: 119] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The AMP-activated protein kinase (AMPK) consists of catalytic alpha and noncatalytic beta and gamma subunits and is responsible for acting as a metabolic sensor for AMP levels. There are multiple genes for each subunit and the rat liver AMPK alpha1 and alpha2 catalytic subunits are associated with beta1 and gamma1 noncatalytic subunits. We find that the isolated gamma1 subunit is N-terminally acetylated with no other posttranslational modification. The isolated beta1 subunit is N-terminally myristoylated. Transfection of COS cells with AMPK subunit cDNAs containing a nonmyristoylatable beta1 reduces, but does not eliminate, membrane binding of AMPK heterotrimer. The isolated beta1 subunit is partially phosphorylated at three sites, Ser24/25, Ser182, and Ser108. The Ser24/25 and Ser108 sites are substoichiometrically phosphorylated and can be autophosphorylated in vitro. The Ser-Pro site in the sequence LSSS182PPGP is stoichiometrically phosphorylated, and no additional phosphate is incorporated into this site with autophosphorylation. Based on labeling studies in transfected cells, we conclude that alpha1 Thr172 is a major, although not exclusive, site of both basal and stimulated alpha1 phosphorylation by an upstream AMPK kinase.
Collapse
Affiliation(s)
- K I Mitchelhill
- St. Vincent's Institute of Medical Research, 41 Victoria Parade, Fitzroy, Victoria 3065 Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Heyer BS, Warsowe J, Solter D, Knowles BB, Ackerman SL. New member of the Snf1/AMPK kinase family, Melk, is expressed in the mouse egg and preimplantation embryo. Mol Reprod Dev 1997; 47:148-56. [PMID: 9136115 DOI: 10.1002/(sici)1098-2795(199706)47:2<148::aid-mrd4>3.0.co;2-m] [Citation(s) in RCA: 107] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The initial phase of mammalian preimplantation development is directed by stored maternal mRNAs and their encoded proteins, yet most of the molecules controlling this process have not been described. We have used differential display analysis of cDNA libraries prepared from unfertilized eggs and preimplantation embryos to isolate three maternal cDNAs that represent novel genes exhibiting different patterns of expression during this developmental period. One of these, Melk, encodes a protein with a kinase catalytic domain and a leucine zipper motif, a new member of the Snf1/AMPK family of kinases. This gene product may play a role in the signal transduction events in the egg and early embryo.
Collapse
Affiliation(s)
- B S Heyer
- Max-Planck-Institut, Freiburg, Germany
| | | | | | | | | |
Collapse
|
24
|
Hardie DG, Carling D. The AMP-activated protein kinase--fuel gauge of the mammalian cell? EUROPEAN JOURNAL OF BIOCHEMISTRY 1997; 246:259-73. [PMID: 9208914 DOI: 10.1111/j.1432-1033.1997.00259.x] [Citation(s) in RCA: 1011] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
A single entity, the AMP-activated protein kinase (AMPK), phosphorylates and regulates in vivo hydroxymethylglutaryl-CoA reductase and acetyl-CoA carboxylase (key regulatory enzymes of sterol synthesis and fatty acid synthesis, respectively), and probably many additional targets. The kinase is activated by high AMP and low ATP via a complex mechanism, which involves allosteric regulation, promotion of phosphorylation by an upstream protein kinase (AMPK kinase), and inhibition of dephosphorylation. This protein-kinase cascade represents a sensitive system, which is activated by cellular stresses that deplete ATP, and thus acts like a cellular fuel gauge. Our central hypothesis is that, when it detects a 'low-fuel' situation, it protects the cell by switching off ATP-consuming pathways (e.g. fatty acid synthesis and sterol synthesis) and switching on alternative pathways for ATP generation (e.g. fatty acid oxidation). Native AMP-activated protein kinase is a heterotrimer consisting of a catalytic alpha subunit, and beta and gamma subunits, which are also essential for activity. All three subunits have homologues in budding yeast, which are components of the SNF1 protein-kinase complex. SNF1 is activated by glucose starvation (which in yeast leads to ATP depletion) and genetic studies have shown that it is involved in derepression of glucose-repressed genes. This raises the intriguing possibility that AMPK may regulate gene expression in mammals. AMPK/SNF1 homologues are found in higher plants, and this protein-kinase cascade appears to be an ancient system which evolved to protect cells against the effects of nutritional or environmental stress.
Collapse
Affiliation(s)
- D G Hardie
- Biochemistry Department, The University, Dundee, UK.
| | | |
Collapse
|
25
|
Vavvas D, Apazidis A, Saha AK, Gamble J, Patel A, Kemp BE, Witters LA, Ruderman NB. Contraction-induced changes in acetyl-CoA carboxylase and 5'-AMP-activated kinase in skeletal muscle. J Biol Chem 1997; 272:13255-61. [PMID: 9148944 DOI: 10.1074/jbc.272.20.13255] [Citation(s) in RCA: 318] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The concentration of malonyl-CoA, a negative regulator of fatty acid oxidation, diminishes acutely in contracting skeletal muscle. To determine how this occurs, the activity and properties of acetyl-CoA carboxylase beta (ACC-beta), the skeletal muscle isozyme that catalyzes malonyl-CoA formation, were examined in rat gastrocnemius-soleus muscles at rest and during contractions induced by electrical stimulation of the sciatic nerve. To avoid the problem of contamination of the muscle extract by mitochondrial carboxylases, an assay was developed in which ACC-beta was first purified by immunoprecipitation with a monoclonal antibody. ACC-beta was quantitatively recovered in the immunopellet and exhibited a high sensitivity to citrate (12-fold activation) and a Km for acetyl-CoA (120 microM) similar to that reported for ACC-beta purified by other means. After 5 min of contraction, ACC-beta activity was decreased by 90% despite an apparent increase in the cytosolic concentration of citrate, a positive regulator of ACC. SDS-polyacrylamide gel electrophoresis of both homogenates and immunopellets from these muscles showed a decrease in the electrophoretic mobility of ACC, suggesting that phosphorylation could account for the decrease in ACC activity. In keeping with this notion, citrate activation of ACC purified from contracting muscle was markedly depressed. In addition, homogenization of the muscles in a buffer free of phosphatase inhibitors and containing the phosphatase activators glutamate and MgCl2 or treatment of immunoprecipitated ACC-beta with purified protein phosphatase 2A abolished the decreases in both ACC-beta activity and electrophoretic mobility caused by contraction. The rapid decrease in ACC-beta activity after the onset of contractions (50% by 20 s) and its slow restoration to initial values during recovery (60-90 min) were paralleled temporally by reciprocal changes in the activity of the alpha2 but not the alpha1 isoform of 5'-AMP-activated protein kinase (AMPK). In conclusion, the results suggest that the decrease in ACC activity during muscle contraction is caused by an increase in its phosphorylation, most probably due, at least in part, to activation of the alpha2 isoform of AMPK. They also suggest a dual mechanism for ACC regulation in muscle in which inhibition by phosphorylation takes precedence over activation by citrate. These alterations in ACC and AMPK activity, by diminishing the concentration of malonyl-CoA, could be responsible for the increase in fatty acid oxidation observed in skeletal muscle during exercise.
Collapse
Affiliation(s)
- D Vavvas
- Department of Physiology and Diabetes and Metabolism Unit, Evans Department of Medicine, Boston University Medical Center, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Michell BJ, Stapleton D, Mitchelhill KI, House CM, Katsis F, Witters LA, Kemp BE. Isoform-specific purification and substrate specificity of the 5'-AMP-activated protein kinase. J Biol Chem 1996; 271:28445-50. [PMID: 8910470 DOI: 10.1074/jbc.271.45.28445] [Citation(s) in RCA: 102] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The 5'-AMP-activated protein kinase (AMPK) mediates several cellular responses to metabolic stress. Rat liver contains at least two isoforms of this enzyme, either alpha1 or alpha2 catalytic subunits together with beta and gamma noncatalytic subunits in a trimeric complex. The alpha1 isoform is purified using a peptide substrate affinity chromatography column with ADR1 (222-234)P229 (LKKLTRRPSFSAQ), corresponding to the cAMP-dependent protein kinase phosphorylation site in the yeast transcriptional activator of the ADH2 gene, ADR1. This peptide is phosphorylated at Ser230 by AMPK alpha1 with a Km of 3.8 microM and a Vmax of 4.8 micromol/min/mg compared to the commonly used rat acetyl-CoA carboxylase (73-87)A77R86-87 peptide substrate, HMRSAMSGLHLVKRR, with a Km of 33.3 microM and a Vmax of 8.1 micromol/min/mg. Thus, the AMPK exhibits some overlapping specificity with the cAMP-dependent protein kinase. The rat liver AMPK alpha1 isoform has a Kcat approximately 250-fold higher than the AMPK alpha2 isoform isolated from rat liver. The AMPK alpha1 isoform readily phosphorylates peptides corresponding to the reported AMPK phosphorylation sites in rat, chicken, and yeast acetyl-CoA carboxylase and rat hydroxymethylglutaryl-CoA reductase but not phosphorylase kinase. Based on previous peptide substrate specificity studies (Dale, S., Wilson, W. A., Edelman, A. M., and Hardie, G. (1995) FEBS Lett. 361, 191-195) using partially purified enzyme and variants of the peptide AMARAASAAALARRR, it was proposed that the AMPK preferred the phosphorylation site motif Phi(X, beta)XXS/TXXXPhi (Phi, hydrophobic; beta, basic). In good AMPK alpha1 peptide substrates, a hydrophobic residue at the P-5 position is conserved but not at the P+4 position. Oxidation of the Met residues in the rat acetyl-CoA carboxylase (73-87)A77R86-87 peptide increased the Km 6-fold and reduced the Vmax to 4% of the reduced peptide.
Collapse
Affiliation(s)
- B J Michell
- St. Vincent's Institute of Medical Research, Fitzroy, Victoria 3065, Australia
| | | | | | | | | | | | | |
Collapse
|
27
|
Hawley SA, Davison M, Woods A, Davies SP, Beri RK, Carling D, Hardie DG. Characterization of the AMP-activated protein kinase kinase from rat liver and identification of threonine 172 as the major site at which it phosphorylates AMP-activated protein kinase. J Biol Chem 1996; 271:27879-87. [PMID: 8910387 DOI: 10.1074/jbc.271.44.27879] [Citation(s) in RCA: 960] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
We have developed a sensitive assay for the AMP-activated protein kinase kinase, the upstream component in the AMP-activated protein kinase cascade. Phosphorylation and activation of the downstream kinase by the upstream kinase absolutely requires AMP and is antagonized by high (millimolar) concentrations of ATP. We have purified the upstream kinase >1000-fold from rat liver; a variety of evidence indicates that the catalytic subunit may be a polypeptide of 58 kDa. The physical properties of the downstream and upstream kinases, e.g. catalytic subunit masses (63 versus 58 kDa) and native molecular masses (190 versus 195 kDa), are very similar. However, unlike the downstream kinase, the upstream kinase is not inactivated by protein phosphatases. The upstream kinase phosphorylates the downstream kinase at a single major site on the alpha subunit, i.e. threonine 172, which lies in the "activation segment" between the DFG and APE motifs. This site aligns with activating phosphorylation sites on many other protein kinases, including Thr177 on calmodulin-dependent protein kinase I. As well as suggesting a mechanism of activation of AMP-activated protein kinase, this finding is consistent with our recent report that the AMP-activated protein kinase kinase can slowly phosphorylate and activate calmodulin-dependent protein kinase I, at least in vitro (Hawley, S. A., Selbert, M. A., Goldstein, E. G., Edelman, A. M., Carling, D., and Hardie, D. G. (1995) J. Biol. Chem. 270, 27186-27191).
Collapse
Affiliation(s)
- S A Hawley
- Biochemistry Department, The University, Dundee DD1 4HN, Scotland, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
28
|
Lum PY, Edwards S, Wright R. Molecular, functional and evolutionary characterization of the gene encoding HMG-CoA reductase in the fission yeast,Schizosaccharomyces pombe. Yeast 1996. [DOI: 10.1002/(sici)1097-0061(19960915)12:11<1107::aid-yea992>3.0.co;2-e] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
29
|
Lum PY, Edwards S, Wright R. Molecular, functional and evolutionary characterization of the gene encoding HMG-CoA reductase in the fission yeast, Schizosaccharomyces pombe. Yeast 1996; 12:1107-24. [PMID: 8896278 DOI: 10.1002/(sici)1097-0061(19960915)12:11%3c1107::aid-yea992%3e3.0.co;2-e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The synthesis of mevalonate, a molecule required for both sterol and isoprene biosynthesis in eukaryotes, is catalysed by 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase. Using a gene dosage approach, we have isolated the gene encoding HMG-CoA reductase hmgl+, from the fission yeast Schizosaccharomyces pombe (Accession Number L76979). Specifically, hmgl+ was isolated on the basis of its ability to confer resistance to lovastatin, a competitive inhibitor of HMG-CoA reductase. Gene disruption analysis showed that hmgl+ was an essential gene. This result provided evidence that, unlike Saccharomyces cerevisiae, S. pombe contained only a single functional HMG-CoA reductase gene. The presence of a single HMG-CoA reductase gene was confirmed by genomic hybridization analysis. As observed for the S. cerevisiae HMGlp, the hmgl+ protein induced membrane proliferations known as karmellae. A previously undescribed 'feed-forward' regulation was observed in which elevated levels of HMG-CoA synthase, the enzyme catalysing the synthesis of the HMG-CoA reductase substrate, induced elevated levels of hmgl+ protein in the cell and conferred partial resistance to lovastatin. The amino acid sequences of yeast and human HMG-CoA reductase were highly divergent in the membrane domains, but were extensively conserved in the catalytic domains. We tested whether the gene duplication that produced the two functional genes in S. cerevisiae occurred before or after S. pombe and S. cerevisiae diverged by comparing the log likelihoods of trees specified by these hypotheses. We found that the tree specifying post-divergence duplication had significantly higher likelihood. Moreover, phylogenetic analyses of available HMG-CoA reductase sequences also suggested that the lineages of S. pombe and S. cerevisiae diverged approximately 420 million years ago but that the duplication event that produced two HMG-CoA reductase genes in the budding yeast occurred only approximately 56 million years ago. To date, S. pombe is the only unicellular eukaryote that has been found to contain a single HMG-CoA reductase gene. Consequently, S. pombe may provide important opportunities to study aspects of the regulation of sterol biosynthesis that have been difficult to address in other organisms and serve as a test organism to identify novel therapies for modulating cholesterol synthesis.
Collapse
Affiliation(s)
- P Y Lum
- Department of Zoology, University of Washington, Seattle 98195, USA
| | | | | |
Collapse
|
30
|
Piosik PA, van Groenigen M, Ponne NJ, Valentijn LJ, Bolhuis PA, Baas F. Caprine homologue of rodent 5'-AMP-activated protein kinase subunit and yeast SNF4/CAT3 is down-regulated by thyroid hormone. BRAIN RESEARCH. MOLECULAR BRAIN RESEARCH 1996; 40:240-53. [PMID: 8872308 DOI: 10.1016/0169-328x(96)00061-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We isolated a cDNA, B12, that was down-regulated by thyroid hormone (TH) in the goat cerebellum, using a polymerase chain reaction (PCR)-based subtractive hybridization and differential screening procedure. Northern blot analysis of RNA from cerebellum of T4-treated and untreated hypothyroid goats confirmed that clone B12 was TH-regulated with an average reduction in expression of 21% after 4 days of T4 supplementation. Other tissues from a T4-treated and an untreated hypothyroid goat also revealed down-regulation of B12, with the highest reduction in expression found in the thyroid gland (38%). Steady-state levels of the approximately 1.8 kb B12 mRNA were higher in brain than in peripheral tissues. In situ hybridization showed that B12 mRNA in the brain is mainly present in various layers of the cerebellum and the cerebral cortex, the hippocampus, and the olfactory tubercle and is predominantly expressed in neurons. Sequence analysis of the caprine B12 cDNA clone, and the murine homologue, revealed 61% similarity to SNF4/CAT3, a regulator involved in the transcriptional control of glucose-repressible genes in yeast, and 99% identity to a rat 5'-AMP-activated protein kinase subunit, which is involved in the regulation of fatty acid, glycogen and isoprenoid metabolism. In view of these homologies, B12 might encode a regulator involved in distinct metabolic pathways and therefore, TH might also affect gene expression indirectly by down-regulation of regulators like B12.
Collapse
Affiliation(s)
- P A Piosik
- Department of Neurology, University of Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
31
|
Dyck JR, Gao G, Widmer J, Stapleton D, Fernandez CS, Kemp BE, Witters LA. Regulation of 5'-AMP-activated protein kinase activity by the noncatalytic beta and gamma subunits. J Biol Chem 1996; 271:17798-803. [PMID: 8663446 DOI: 10.1074/jbc.271.30.17798] [Citation(s) in RCA: 158] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The mammalian 5'-AMP-activated protein kinase is a heterotrimer consisting of an alpha catalytic subunit and beta and gamma noncatalytic subunits, each of which is represented in a larger isoprotein family, related to the SNF1 kinase and its interacting proteins in yeast. In this study, we have used mammalian cell transfection to compare the activities of the two alpha subunit isoforms, alpha-1 and alpha-2, and to study the influence of the noncatalytic subunits on enzyme subunit association and activity. Expression of epitope-tagged protein subunits in COS7 cells indicates detectable but low level kinase activity for each of the two catalytic alpha subunits. Co-expression of alpha subunits with the beta or gamma subunits modestly increases kinase activity accompanied by the formation of alpha/beta or alpha/gamma heterodimers. Co-expression of all three subunits, however, is accompanied by a 50-110-fold increase in kinase activity with the formation of a heterotrimeric complex. In addition to binding of each noncatalytic subunit to the alpha subunit, the beta and gamma subunits bind to each other, likely resulting in a more stable heterotrimeric complex. The increase in kinase activity associated with expression of this heterotrimer is due both to an increase in enzyme-specific activity (units/enzyme mass) and to an apparent enhanced alpha subunit expression. Co-expression of a catalytically defective alpha subunit or the beta/gamma-binding COOH-terminal domain of the alpha subunit results in reduced heterotrimeric kinase activity. The synergistic positive regulatory roles for both the noncatalytic beta and gamma subunits of 5'-AMP-activated protein kinase contrasts with the Snf1p kinase, where only heterodimers of Snf1p and Snf4p seem to be required for maximum kinase activity.
Collapse
Affiliation(s)
- J R Dyck
- Endocrine-Metabolism Division, Department of Medicine, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | |
Collapse
|
32
|
Berkhout TA, Simon HM, Patel DD, Bentzen C, Niesor E, Jackson B, Suckling KE. The novel cholesterol-lowering drug SR-12813 inhibits cholesterol synthesis via an increased degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. J Biol Chem 1996; 271:14376-82. [PMID: 8662919 DOI: 10.1074/jbc.271.24.14376] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
SR-12813 (tetra-ethyl 2-(3,5-di-tert-butyl-4-hydroxyphenyl)ethenyl-1, 1-bisphosphonate) lowers plasma cholesterol in five species. In this paper we investigate the underlying mechanism using Hep G2 cells. SR-12813 inhibited incorporation of tritiated water into cholesterol with an IC50 of 1.2 microM but had no effect on fatty acid synthesis. Furthermore, SR-12813 reduced cellular 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase activity with an IC50 of 0.85 microM. The inhibition of HMG-CoA reductase activity was rapid with a T1/2 of 10 min. After a 16-h incubation with SR-12813, mRNA levels of HMG-CoA reductase and low density lipoprotein (LDL) receptor were increased. The increased expression of LDL receptor translated into a higher LDL uptake, which can explain the primary hypocholesterolemic effect of SR-12813 in vivo. Western blot analysis indicated that the amount of HMG-CoA reductase protein rapidly decreased in the presence of SR-12813. Pulse-chase experiments with [35S]methionine showed that the T1/2 of HMG-CoA reductase degradation decreased in the presence of SR-12813 from 90 to 20 min. Pre-incubation with 50 microM of lovastatin did not prevent the effects of SR-12813 on HMG-CoA reductase degradation, indicating that the compound does not need mevalonate-derived regulators for its action. It is concluded that SR-12813 inhibits cholesterol synthesis mainly by an enhanced degradation of HMG-CoA reductase.
Collapse
Affiliation(s)
- T A Berkhout
- Department of Vascular Biology, Smithkline Beecham Pharmaceuticals, The Frythe, Welwyn, Herts. AL6 9AR, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
33
|
Ching YP, Davies SP, Hardie DG. Analysis of the specificity of the AMP-activated protein kinase by site-directed mutagenesis of bacterially expressed 3-hydroxy 3-methylglutaryl-CoA reductase, using a single primer variant of the unique-site-elimination method. EUROPEAN JOURNAL OF BIOCHEMISTRY 1996; 237:800-8. [PMID: 8647128 DOI: 10.1111/j.1432-1033.1996.0800p.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The specificity of protein kinases is usually examined using synthetic peptide substrates, either designed variants, or, more recently random peptide libraries. However not all protein kinases utilize synthetic peptides efficiently as substrates. Even among those that do, these approaches neglect effects caused by three-dimensional protein conformation, or the existence of determinants remote from the phosphorylation site. To follow up our previous peptide studies on the specificity of the AMP-activated protein kinase (AMPK) [Dale, S., Wilson, W. A., Edelman, A.M., & Hardie, D. G. (1995) FEBS Lett. 361, 191-195], we have expressed the C-terminal, catalytic domain of Chinese hamster hydroxymethylglutaryl-CoA reductase in Escherichia coli. The domain was expressed with an N-terminal His6 tag which allowed rapid purification on Nj(2+)-agarose. The purified protein retained full enzymic activity, and as with the native enzyme, was totally inactivated by phosphorylation by AMPK at a single site corresponding to Ser871. Using a novel modification of the unique-site elimination method (which allowed direct mutagenesis of the double-stranded expression vector using a single oligonucleotide primer) we expressed 18 mutations involving residues around Ser871. The results broadly confirmed the recognition motif previously proposed on the basis of peptide studies. Three of the mutants were better substrates for AMPK than the wild type, and one of these (K872A) had hydroxymethylglutaryl-CoA reductase kinetic parameters virtually indistinguishable from the wild type. This suggests that hydroxymethylglutaryl-CoA reductase may have been selected to be a sub-optimal substrate for AMPK.
Collapse
Affiliation(s)
- Y P Ching
- Department of Biochemistry, The University, Dundee, Scotland
| | | | | |
Collapse
|
34
|
Gao G, Fernandez CS, Stapleton D, Auster AS, Widmer J, Dyck JR, Kemp BE, Witters LA. Non-catalytic beta- and gamma-subunit isoforms of the 5'-AMP-activated protein kinase. J Biol Chem 1996; 271:8675-81. [PMID: 8621499 DOI: 10.1074/jbc.271.15.8675] [Citation(s) in RCA: 110] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The mammalian 5'-AMP-activated protein kinase (AMPK) is a heterotrimeric protein consisting of alpha-, beta-, and gamma-subunits. The alpha-subunit is the catalytic subunit and is related to the yeast Snf1p kinase. In this study, we report the cloning of full-length cDNAs for the non-catalytic beta- and gamma-subunits. The rat liver AMPK beta-subunit clone predicts a protein of 30,464 Da, which is related to the Sip1p, Sip2p, and Gal83p subfamily of yeast proteins that interact with Snf1p and are involved in glucose regulation of gene expression. The AMPK beta-subunit, when expressed in bacteria and in mammalian cells, migrates anomalously on SDS gels at an apparent molecular mass of 40 kDa. Rat and human liver AMPK gamma-subunit clones predict a protein of 37,577 Da (AMPK-gamma1), which is related to the yeast Snf4p protein that copurifies with Snf1p and to a larger family of other human AMPK gamma-isoforms. The mRNAs for both AMPK- beta and AMPK-gamma1 are widely expressed in rat tissues, consistent with a broad role for AMPK in cellular regulation. These data reveal a mammalian multisubunit protein kinase strikingly similar to the multisubunit glucose-sensing Snf1 kinase complex. The identification of isoform families for the AMPK subunits indicates the potential diversity of the roles of this highly conserved signaling system in nutrient regulation and utilization in mammalian cells.
Collapse
Affiliation(s)
- G Gao
- Department of Medicine, Dartmouth Medical School, Hanover, New Hampshire 03755, USA
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Hampton R, Dimster-Denk D, Rine J. The biology of HMG-CoA reductase: the pros of contra-regulation. Trends Biochem Sci 1996. [DOI: 10.1016/s0968-0004(96)80168-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Young ME, Radda GK, Leighton B. Activation of glycogen phosphorylase and glycogenolysis in rat skeletal muscle by AICAR--an activator of AMP-activated protein kinase. FEBS Lett 1996; 382:43-7. [PMID: 8612761 DOI: 10.1016/0014-5793(96)00129-9] [Citation(s) in RCA: 115] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
We determined whether the cell permeable molecule AICAR, whose metabolite activates AMP-activated protein kinase (AMPK) in cells, affected glycogen metabolism in rat soleus muscle preparations in vitro. The basal and insulin-stimulated rates of radiochemical lactate formation, net lactate release and glycogen synthesis were determined. AICAR stimulated net lactate release (but not radiochemical lactate formation) only at a basal concentration of insulin. An increased rate of glycogenolysis was the likely cause of increased net lactate release as glycogen phosphorylase activity was significantly increased by AICAR. AICAR-stimulated net lactate release and phosphorylase activity were potently inhibited by insulin.
Collapse
Affiliation(s)
- M E Young
- Department of Biochemistry, University of Oxford, U.K
| | | | | |
Collapse
|
37
|
Ball KL, Barker J, Halford NG, Hardie DG. Immunological evidence that HMG-CoA reductase kinase-A is the cauliflower homologue of the RKIN1 subfamily of plant protein kinases. FEBS Lett 1995; 377:189-92. [PMID: 8543048 DOI: 10.1016/0014-5793(95)01343-1] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Three different antibodies against the RKIN1 and BKIN12 gene products from rye and barley recognized the 58 kDa subunit of HMG-CoA reductase kinase-A (HRK-A) from Brassica oleracea on Western blots. HRK-A was also detected by an antipeptide antibody in enzyme-linked immunoassays, and this was competed by the peptide antigen. HRK-A was not recognized by antibodies against plant, mammalian and Saccharomyces cerevisiae relatives of RKIN1, i.e. wheat PKABA1, rat AMP-activated protein kinase and S. cerevisiae Snf1p. RKIN1/HMG-CoA reductase kinase-A are now among the first protein kinases in plants to be well characterized at both the molecular and biochemical levels.
Collapse
Affiliation(s)
- K L Ball
- Department of Biochemistry, University, Dundee, Scotland, UK
| | | | | | | |
Collapse
|
38
|
Dale S, Arró M, Becerra B, Morrice NG, Boronat A, Hardie DG, Ferrer A. Bacterial expression of the catalytic domain of 3-hydroxy-3-methylglutaryl-CoA reductase (isoform HMGR1) from Arabidopsis thaliana, and its inactivation by phosphorylation at Ser577 by Brassica oleracea 3-hydroxy-3-methylglutaryl-CoA reductase kinase. EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 233:506-13. [PMID: 7588795 DOI: 10.1111/j.1432-1033.1995.506_2.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The catalytic domain of 3-hydroxy-3-methylglutaryl-CoA reductase isoform 1 (HMGR1cd) from Arabidopsis thaliana has been expressed in Escherichia coli in a catalytically active form and purified. The high efficiency of the bacterial expression system together with the simplicity of the purification procedure used in this study resulted in the attainment of large quantities of pure enzyme (about 5 mg/l culture) with a final specific activity of up to 17 U/mg. This specific activity is higher than that reported to date for any 3-hydroxy-3-methylglutaryl-CoA reductase (HMGR) purified from a plant source. HMGR1cd activity was completely blocked by the HMGR inhibitor mevinolin (IC50 = 12.5 nM). No significant differences were observed between the Km values of HMGR1cd for NADPH (71 +/- 7 microM) and (S)-3-hydroxy-3-methylglutaryl-CoA (8.3 +/- 1.5 microM) and those of pure HMGR preparations obtained from different plant sources. The purified HMGR1cd was reversibly inactivated by phosphorylation at a single site by Brassica oleracea HMGR kinase A, which is functionally related to the mammalian AMP-activated protein kinase. The site of phosphorylation is Ser577 in the complete sequence of A. thaliana HMGR1. The results in this paper represent the first evidence that a higher plant HMGR is regulated by direct phosphorylation, at least in a cell-free system. Our results also reinforce the view that the AMP-activated protein kinase/SNF1 family is an ancient and highly conserved protein kinase system.
Collapse
Affiliation(s)
- S Dale
- Biochemistry Department, The University, Dundee, UK
| | | | | | | | | | | | | |
Collapse
|
39
|
Lawrence CM, Rodwell VW, Stauffacher CV. Crystal structure of Pseudomonas mevalonii HMG-CoA reductase at 3.0 angstrom resolution. Science 1995; 268:1758-62. [PMID: 7792601 DOI: 10.1126/science.7792601] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The rate-limiting step in cholesterol biosynthesis in mammals is catalyzed by 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, a four-electron oxidoreductase that converts HMG-CoA to mevalonate. The crystal structure of HMG-CoA reductase from Pseudomonas mevalonii was determined at 3.0 angstrom resolution by multiple isomorphous replacement. The structure reveals a tightly bound dimer that brings together at the subunit interface the conserved residues implicated in substrate binding and catalysis. These dimers are packed about a threefold crystallographic axis, forming a hexamer with 23 point group symmetry. Difference Fourier studies reveal the binding sites for the substrates HMG-CoA and reduced or oxidized nicotinamide adenine dinucleotide [NAD(H)] and demonstrate that the active sites are at the dimer interfaces. The HMG-CoA is bound by a domain with an unusual fold, consisting of a central alpha helix surrounded by a triangular set of walls of beta sheets and alpha helices. The NAD(H) is bound by a domain characterized by an antiparallel beta structure that defines a class of dinucleotide-binding domains.
Collapse
Affiliation(s)
- C M Lawrence
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | |
Collapse
|
40
|
Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5-aminoimidazole-4-carboxamide ribonucleoside. A specific method for activating AMP-activated protein kinase in intact cells? EUROPEAN JOURNAL OF BIOCHEMISTRY 1995; 229:558-65. [PMID: 7744080 DOI: 10.1111/j.1432-1033.1995.tb20498.x] [Citation(s) in RCA: 946] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The AMP-activated protein kinase (AMPK) is believed to protect cells against environmental stress (e.g. heat shock) by switching off biosynthetic pathways, the key signal being elevation of AMP. Identification of novel targets for the kinase cascade would be facilitated by development of a specific agent for activating the kinase in intact cells. Incubation of rat hepatocytes with 5-aminoimidazole-4-carboxamide ribonucleoside (AICAR) results in accumulation of the monophosphorylated derivative (5-aminoimidazole-4-carboxamide ribonucleoside; ZMP) within the cell. ZMP mimics both activating effects of AMP on AMPK, i.e. direct allosteric activation and promotion of phosphorylation by AMPK kinase. Unlike existing methods for activating AMPK in intact cells (e.g. fructose, heat shock), AICAR does not perturb the cellular contents of ATP, ADP or AMP. Incubation of hepatocytes with AICAR activates AMPK due to increased phosphorylation, causes phosphorylation and inactivation of a known target for AMPK (3-hydroxy-3-methylglutaryl-CoA reductase), and almost total cessation of two of the known target pathways, i.e. fatty acid and sterol synthesis. Incubation of isolated adipocytes with AICAR antagonizes isoprenaline-induced lipolysis. This provides direct evidence that the inhibition by AMPK of activation of hormone-sensitive lipase by cyclic-AMP-dependent protein kinase, previously demonstrated in cell-free assays, also operates in intact cells. AICAR should be a useful tool for identifying new target pathways and processes regulated by the protein kinase cascade.
Collapse
Affiliation(s)
- J M Corton
- Department of Biochemistry, University, Dundee, Scotland
| | | | | | | |
Collapse
|
41
|
Gao G, Widmer J, Stapleton D, Teh T, Cox T, Kemp BE, Witters LA. Catalytic subunits of the porcine and rat 5'-AMP-activated protein kinase are members of the SNF1 protein kinase family. BIOCHIMICA ET BIOPHYSICA ACTA 1995; 1266:73-82. [PMID: 7718624 DOI: 10.1016/0167-4889(94)00222-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The 5'-AMP-activated protein kinase (AMPK) regulates the fatty acid and sterol synthesizing pathways via phosphorylation of acetyl-CoA carboxylase and HMG-CoA reductase, respectively. Highly purified kinase from porcine liver contains three apparent subunits of molecular mass 63 kDa, 40 kDa and 38 kDa. Peptide sequencing of the 63 kDa protein (AMPK63cat) revealed that this polypeptide is the catalytic subunit of the kinase. Porcine peptide sequences were used to clone by RT-PCR partial length cDNAs for the catalytic domains of the porcine AMPK63cat, and its rat homolog, which were virtually identical in deduced amino acid sequence. Screening of a rat liver cDNA library with these partial length cDNAs and with degenerate oligonucleotides yielded several unique clones, some of which had a 142 bp deletion in the catalytic domain of the kinase. A consensus full-length sequence with a 1.7 kb open reading frame has been constructed from overlapping library and PCR-derived clones. A large mRNA for rat AMPK63cat (8.5 kb) is expressed in nearly all rat tissues, with highest levels detectable in heart and skeletal muscle. Using PCR, the presence of two mRNA species with or without the 142 bp deletion in the catalytic domain was noted in all rat tissues examined. Comparison of the deduced protein sequence of AMPK63cat reveals highly conserved homologies in both the catalytic and non-catalytic domains to several members of the SNF1 kinase family, including kinases from Arabidopsis, barley, rye, and S. cerevesiae, as well as to other mammalian kinases and to a C. elegans kinase. The high evolutionary conservation of both kinase structure and function (metabolite sensing) coupled with their pattern of tissue/organism expression suggest that the mammalian members of this kinase family likely play wider roles than the regulation of cellular lipid metabolism.
Collapse
Affiliation(s)
- G Gao
- Endocrine-Metabolism Division, Dartmouth Medical School, Hanover, New Hampshire 03755-3833, USA
| | | | | | | | | | | | | |
Collapse
|
42
|
Corton JM, Gillespie JG, Hawley SA, Hardie DG. 5-Aminoimidazole-4-Carboxamide Ribonucleoside. A Specific Method for Activating AMP-Activated Protein Kinase in Intact Cells? ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.0558k.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
43
|
Verhoeven AJM, Woods A, Brennan CH, Hawley SA, Hardie DG, Scott J, Beri RK, Carling D. The AMP-activated Protein Kinase Gene is Highly Expressed in Rat Skeletal Muscle. Alternative Splicing and Tissue Distribution of the mRNA. ACTA ACUST UNITED AC 1995. [DOI: 10.1111/j.1432-1033.1995.tb20255.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
44
|
Stapleton D, Gao G, Michell BJ, Widmer J, Mitchelhill K, Teh T, House CM, Witters LA, Kemp BE. Mammalian 5'-AMP-activated protein kinase non-catalytic subunits are homologs of proteins that interact with yeast Snf1 protein kinase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)43879-3] [Citation(s) in RCA: 97] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
45
|
Sullivan JE, Brocklehurst KJ, Marley AE, Carey F, Carling D, Beri RK. Inhibition of lipolysis and lipogenesis in isolated rat adipocytes with AICAR, a cell-permeable activator of AMP-activated protein kinase. FEBS Lett 1994; 353:33-6. [PMID: 7926017 DOI: 10.1016/0014-5793(94)01006-4] [Citation(s) in RCA: 380] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In vivo, hormone-sensitive lipase (HSL) is known to be phosphorylated on two sites termed the regulatory and basal sites. However, the intracellular role of the basal site or the identity of the protein kinase phosphorylating this site has not been established. We show that 5-amino-4-imidazolecarboxamide ribonucleoside (AICAR) markedly activates cellular AMP-activated protein kinase (AMPK) in a time- and dose-dependent manner. As expected for an agent that activates AMPK intracellularly, AICAR had no effect on the basal activity of HSL. However, preincubation of adipocytes with AICAR led to a reduced response of these cells to the lipolytic agent isoprenaline. AICAR was also shown to profoundly inhibit lipogenesis through increased phosphorylation of acetyl-CoA carboxylase (ACC). Thus it appears that in addition to regulating lipogenesis, AMPK also plays an important antilipolytic role by regulating HSL in rat adipocytes.
Collapse
Affiliation(s)
- J E Sullivan
- Cardiovascular and Metabolism Research Department, ZENECA Pharmaceuticals, Alderley Park, Cheshire, UK
| | | | | | | | | | | |
Collapse
|
46
|
Pombo CM, Bonventre JV, Avruch J, Woodgett JR, Kyriakis JM, Force T. The stress-activated protein kinases are major c-Jun amino-terminal kinases activated by ischemia and reperfusion. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(18)47229-8] [Citation(s) in RCA: 196] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
47
|
Omkumar R, Rodwell V. Phosphorylation of Ser871 impairs the function of His865 of Syrian hamster 3-hydroxy-3-methylglutaryl-CoA reductase. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)89470-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
48
|
Mammalian AMP-activated protein kinase is homologous to yeast and plant protein kinases involved in the regulation of carbon metabolism. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(19)78143-5] [Citation(s) in RCA: 170] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
49
|
Corton JM, Gillespie JG, Hardie DG. Role of the AMP-activated protein kinase in the cellular stress response. Curr Biol 1994; 4:315-24. [PMID: 7922340 DOI: 10.1016/s0960-9822(00)00070-1] [Citation(s) in RCA: 316] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
BACKGROUND AMP-activated protein kinase is the central component of a protein kinase cascade that phosphorylates and inactivates key regulatory enzymes of several biosynthetic pathways. Elevation of cellular AMP levels activates this kinase, both by allosteric activation, which causes more than 5-fold activation, and by phosphorylation by an upstream kinase kinase, leading to more than 20-fold activation; the result is a greater than 100-fold activation overall. As AMP is usually elevated when cellular ATP is depleted, we have assessed the possibility that the AMP-activated kinase is involved in the cellular response to stress, which is known to lead to ATP depletion. RESULTS We report that AMP is elevated, and ATP depleted, when isolated rat hepatocytes are subjected to treatments that activate the cellular stress response, namely heat shock or treatment with arsenite. Several events are correlated with these changes in nucleotide levels: first, a large activation of the AMP-activated protein kinase, which can be reversed by treatment with a protein phosphatase; second, phosphorylation and inactivation of one of the known substrates of the AMP-activated kinase, HMG-CoA reductase; and third, inhibition of two of the biosynthetic pathways known to be affected by the AMP-activated kinase, namely sterol and fatty-acid synthesis. CONCLUSIONS Our results suggest that a major function of the AMP-activated protein kinase is to act protectively, switching off biosynthetic pathways when the cell is subjected to stress that causes ATP depletion, the key signal being a rise in AMP level. By this mechanism, ATP is preserved for processes that may be more essential in the short term, such as the maintenance of ion gradients. This function of the kinase represents a novel role for protein phosphorylation.
Collapse
Affiliation(s)
- J M Corton
- Biochemistry Department, The University, Dundee, UK
| | | | | |
Collapse
|
50
|
Omkumar R, Darnay B, Rodwell V. Modulation of Syrian hamster 3-hydroxy-3-methylglutaryl-CoA reductase activity by phosphorylation. Role of serine 871. J Biol Chem 1994. [DOI: 10.1016/s0021-9258(17)37448-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|