1
|
Bioelectronic medicines: Therapeutic potential and advancements in next-generation cancer therapy. Biochim Biophys Acta Rev Cancer 2022; 1877:188808. [DOI: 10.1016/j.bbcan.2022.188808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/07/2022] [Accepted: 09/27/2022] [Indexed: 11/22/2022]
|
2
|
Baschiera E, Sorrentino U, Calderan C, Desbats MA, Salviati L. The multiple roles of coenzyme Q in cellular homeostasis and their relevance for the pathogenesis of coenzyme Q deficiency. Free Radic Biol Med 2021; 166:277-286. [PMID: 33667628 DOI: 10.1016/j.freeradbiomed.2021.02.039] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 02/13/2021] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Coenzyme Q (CoQ) is a redox active lipid that plays a central role in cellular homeostasis. It was discovered more than 60 years ago because of its role as electron transporter in the mitochondrial respiratory chain. Since then it has become evident that CoQ has many other functions, not directly related to bioenergetics. It is a cofactor of several mitochondrial dehydrogenases involved in the metabolism of lipids, amino acids, and nucleotides, and in sulfide detoxification. It is a powerful antioxidant and it is involved in the control of programmed cell death by modulating both apoptosis and ferroptosis. CoQ deficiency is a clinically and genetically heterogeneous group of disorders characterized by the impairment of CoQ biosynthesis. CoQ deficient patients display defects in cellular bioenergetics, but also in the other pathways in which CoQ is involved. In this review we will focus on the functions of CoQ not directly related to the respiratory chain, and on how their impairment is relevant for the pathophysiology of CoQ deficiency. A better understanding of the complex set of events triggered by CoQ deficiency will allow to design novel approaches for the treatment of this condition.
Collapse
Affiliation(s)
- Elisa Baschiera
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Ugo Sorrentino
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Cristina Calderan
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Maria Andrea Desbats
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy
| | - Leonardo Salviati
- Clinical Genetics Unit, Department of Women and Children's Health, University of Padova and IPR Città Della Speranza, Padova, Italy.
| |
Collapse
|
3
|
Robinson AJ, Jain A, Sherman HG, Hague RJM, Rahman R, Sanjuan‐Alberte P, Rawson FJ. Toward Hijacking Bioelectricity in Cancer to Develop New Bioelectronic Medicine. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000248] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Andie J. Robinson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Akhil Jain
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Harry G. Sherman
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| | - Richard J. M. Hague
- Centre for Additive Manufacturing, Faculty of Engineering University of Nottingham Nottingham NG8 1BB UK
| | - Ruman Rahman
- Children's Brain Tumour Research Centre, Biodiscovery Institute, School of Medicine University of Nottingham Nottingham NG7 2RD UK
| | - Paola Sanjuan‐Alberte
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
- Department of Bioengineering and iBB‐Institute for Bioengineering and Biosciences, Instituto Superior Técnico Universidade de Lisboa Lisbon 1049‐001 Portugal
| | - Frankie J. Rawson
- Regenerative Medicine and Cellular Therapies, School of Pharmacy University of Nottingham Nottingham NG7 2RD UK
| |
Collapse
|
4
|
Kelly SC, Patel NN, Eccardt AM, Fisher JS. Glucose-dependent trans-plasma membrane electron transport and p70 S6k phosphorylation in skeletal muscle cells. Redox Biol 2018; 27:101075. [PMID: 30578122 PMCID: PMC6859557 DOI: 10.1016/j.redox.2018.101075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 12/07/2018] [Accepted: 12/10/2018] [Indexed: 11/05/2022] Open
Abstract
The reduction of extracellular oxidants by intracellular electrons is known as trans-plasma membrane electron transport (tPMET). The goal of this study was to characterize a role of tPMET in the sensing of glucose as a physiological signal. tPMET from C2C12 myotubes was monitored using a cell-impermeable extracellular electron acceptor, water-soluble tetrazolium salt-1 (WST-1). Superoxide dismutase in the incubation medium or exposure to an NADPH oxidase (NOX) isoform 1/4 inhibitor suppressed WST-1 reduction by 70%, suggesting a role of NOXs in tPMET. There was a positive correlation between medium glucose concentration and WST-1 reduction, suggesting that tPMET is a glucose-sensing process. WST-1 reduction was also decreased by an inhibitor of the pentose phosphate pathway, dehydroepiandrosterone. In contrast, glycolytic inhibitors, 3PO and sodium fluoride, did not affect WST-1 reduction. Thus, it appears that glucose uptake and processing in the pentose phosphate pathway drives NOX-dependent tPMET. Western blot analysis demonstrated that p70S6k phosphorylation is glucose-dependent, while the phosphorylation of AKT and MAPK did not differ in the presence or absence of glucose. Further, phosphorylation of p70S6k was dependent upon NOX enzymes. Finally, glucose was required for full stimulation of p70S6k by insulin, again in a fashion prevented by NOX inhibition. Taken together, the data suggest that muscle cells have a novel glucose-sensing mechanism dependent on NADPH production and NOX activity, culminating in increased p70S6k phosphorylation.
Collapse
Affiliation(s)
- Shannon C Kelly
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Neej N Patel
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Amanda M Eccardt
- Department of Biology, Saint Louis University, St. Louis, MO, United States
| | - Jonathan S Fisher
- Department of Biology, Saint Louis University, St. Louis, MO, United States.
| |
Collapse
|
5
|
Kelly SC, Eccardt AM, Fisher JS. Measuring Trans-Plasma Membrane Electron Transport by C2C12 Myotubes. J Vis Exp 2018. [PMID: 29782017 DOI: 10.3791/57565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Trans-plasma membrane electron transport (tPMET) plays a role in protection of cells from intracellular reductive stress as well as protection from damage by extracellular oxidants. This process of transporting electrons from intracellular reductants to extracellular oxidants is not well defined. Here we present spectrophotometric assays by C2C12 myotubes to monitor tPMET utilizing the extracellular electron acceptors: water-soluble tetrazolium salt-1 (WST-1) and 2,6-dichlorophenolindophenol (DPIP or DCIP). Through reduction of these electron acceptors, we are able to monitor this process in a real-time analysis. With the addition of enzymes such as ascorbate oxidase (AO) and superoxide dismutase (SOD) to the assays, we can determine which portion of tPMET is due to ascorbate export or superoxide production, respectively. While WST-1 was shown to produce stable results with low background, DPIP was able to be re-oxidized after the addition of AO and SOD, which was demonstrated with spectrophotometric analysis. This method demonstrates a real-time, multi-well, quick spectrophotometric assay with advantages over other methods used to monitor tPMET, such as ferricyanide (FeCN) and ferricytochrome c reduction.
Collapse
|
6
|
Ruiz-Pérez MV, Medina MÁ, Urdiales JL, Keinänen TA, Sánchez-Jiménez F. Polyamine metabolism is sensitive to glycolysis inhibition in human neuroblastoma cells. J Biol Chem 2015; 290:6106-19. [PMID: 25593318 DOI: 10.1074/jbc.m114.619197] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Polyamines are essential for cell proliferation, and their levels are elevated in many human tumors. The oncogene n-myc is known to potentiate polyamine metabolism. Neuroblastoma, the most frequent extracranial solid tumor in children, harbors the amplification of n-myc oncogene in 25% of the cases, and it is associated with treatment failure and poor prognosis. We evaluated several metabolic features of the human neuroblastoma cell lines Kelly, IMR-32, and SK-N-SH. We further investigated the effects of glycolysis impairment in polyamine metabolism in these cell lines. A previously unknown linkage between glycolysis impairment and polyamine reduction is unveiled. We show that glycolysis inhibition is able to trigger signaling events leading to the reduction of N-Myc protein levels and a subsequent decrease of both ornithine decarboxylase expression and polyamine levels, accompanied by cell cycle blockade preceding cell death. New anti-tumor strategies could take advantage of the direct relationship between glucose deprivation and polyamine metabolism impairment, leading to cell death, and its apparent dependence on n-myc. Combined therapies targeting glucose metabolism and polyamine synthesis could be effective in the treatment of n-myc-expressing tumors.
Collapse
Affiliation(s)
- M Victoria Ruiz-Pérez
- From the Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), 29071 Málaga, Spain,
| | - Miguel Ángel Medina
- From the Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), 29071 Málaga, Spain, Unidad 741, CIBER de Enfermedades Raras (CIBERER), Málaga, Spain, and
| | - José Luis Urdiales
- From the Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), 29071 Málaga, Spain, Unidad 741, CIBER de Enfermedades Raras (CIBERER), Málaga, Spain, and
| | - Tuomo A Keinänen
- the School of Pharmacy, University of Eastern Finland, Yliopistonranta 1, P.O. Box 1627 FIN-70211 Kuopio, Finland
| | - Francisca Sánchez-Jiménez
- From the Universidad de Málaga, Andalucía Tech, Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, and IBIMA (Biomedical Research Institute of Málaga), 29071 Málaga, Spain, Unidad 741, CIBER de Enfermedades Raras (CIBERER), Málaga, Spain, and
| |
Collapse
|
7
|
Homocysteine is a potent modulator of plasma membrane electron transport systems. J Bioenerg Biomembr 2008; 40:45-51. [DOI: 10.1007/s10863-008-9127-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2007] [Accepted: 11/12/2007] [Indexed: 12/22/2022]
|
8
|
Abstract
The notion of transmembrane electron transport is usually associated with mitochondria and chloroplasts. However, since the early 1970s, it has been known that this phenomenon also occurs at the level of the plasma membrane. Ever since, evidence has accumulated for the existence of a plethora of transplasma membrane electron transport enzymes. In this review, we discuss the various enzymes known, their molecular characteristics and their biological functions.
Collapse
Affiliation(s)
- Jennifer D Ly
- Department of Biochemistry and Molecular Biology, School of Biomedical Sciences, Monash University, Melbourne, Victoria, Australia
| | | |
Collapse
|
9
|
Wright MV, Kuhn TB. CNS neurons express two distinct plasma membrane electron transport systems implicated in neuronal viability. J Neurochem 2002; 83:655-64. [PMID: 12390527 DOI: 10.1046/j.1471-4159.2002.01176.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Trans-plasma membrane electron transport is critical for maintaining cellular redox balance and viability, yet few, if any, investigations have studied it in intact primary neurons. In this investigation, extracellular reduction of 2,6-dichloroindophenol (DCIP) and ferricyanide (FeCN) were measured as indicators of trans-plasma membrane electron transport by chick forebrain neurons. Neurons readily reduced DCIP, but not FeCN unless CoQ(1), an exogenous ubiquinone analog, was added to the assays. CoQ(1) stimulated FeCN reduction in a dose-dependent manner but had no effect on DCIP reduction. Reduction of both substrates was totally inhibited by epsilon-maleimidocaproic acid (MCA), a membrane-impermeant thiol reagent, and slightly inhibited by superoxide dismutase. Diphenylene iodonium, a flavoenzyme inhibitor, completely inhibited FeCN reduction but had no affect on DCIP reduction, suggesting that these substrates are reduced by distinct redox pathways. The relationship between plasma membrane electron transport and neuronal viability was tested using the inhibitors MCA and capsaicin. MCA caused a dose-dependent decline in neuronal viability that closely paralleled its inhibition of both reductase activities. Similarly capsaicin, a NADH oxidase inhibitor, induced a rapid decline in neuronal viability. These results suggest that trans-plasma membrane electron transport helps maintain a stable redox environment required for neuronal viability.
Collapse
Affiliation(s)
- M V Wright
- Institute of Arctic Biology, University of Alaska, Fairbanks, Alaska, USA
| | | |
Collapse
|
10
|
del Castillo-Olivares A, Núñez de Castro I, Medina MA. Dual role of plasma membrane electron transport systems in defense. Crit Rev Biochem Mol Biol 2001; 35:197-220. [PMID: 10907796 DOI: 10.1080/10409230091169203] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Because oxidative stress is one of the main sources of severe cellular damage, cells have different defense weapons against reactive oxygen species. Ubiquitous plasma membrane redox systems play a role in defense against oxidative stress damage. On the other hand, a tightly controlled and localized production of reactive oxygen species by a plasma membrane NADPH oxidase can be used as a potent microbicidal weapon. This dual, prooxidant and antioxidant role of plasma membrane electron transport systems in defense is studied and discussed.
Collapse
Affiliation(s)
- A del Castillo-Olivares
- Department of Biochemistry and Molecular Biology, Medical College of Virginia, Virginia Commonwealth University, Richmond 23298-0614, USA
| | | | | |
Collapse
|
11
|
Baker MA, Lawen A. Plasma membrane NADH-oxidoreductase system: a critical review of the structural and functional data. Antioxid Redox Signal 2000; 2:197-212. [PMID: 11229526 DOI: 10.1089/ars.2000.2.2-197] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The observation in the early 1970s that ferricyanide can replace transferrin as a growth factor highlighted the major role plasma membrane proteins can play within a mammalian cell. Ferricyanide, being impermeant to the cell, was assumed to act at the level of the plasma membrane. Since that time, several enzymes isolated from the plasma membrane have been described, which, using NADH as the intracellular electron donor, are capable of reducing ferricyanide. However, their exact modes of action, and their physiological substrates and functions have not been solved to date. Numerous hypotheses have been proposed for the role of such redox enzymes within the plasma membrane. Examples include the regulation of cell signaling, cell growth, apoptosis, proton pumping, and ion channels. All of these roles may be a result of the function of these enzymes as cellular redox sensors. The emergence of many diverse roles for ferricyanide utilizing redox enzymes present in the plasma membrane might also, in part, be due to the numerous redox enzymes present within the membrane; the poor molecular characterization of the enzymes may be the reason for some of the diverging results reported in the literature as various researchers may be working on different enzymes. Here we review the diverse proposals given for structure and function to the plasma membrane NADH-oxidoreductase system(s) with a specific focus on those enzyme activities which can couple ferricyanide and NADH. Although they are still ill-defined enzymes, evidence is rising that they are of utmost significance for cellular regulation.
Collapse
Affiliation(s)
- M A Baker
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
| | | |
Collapse
|
12
|
Abstract
Cell membrane redox systems carry electrons from intracellular donors and transport them to extracellular acceptors. This phenomenon appears to be universal. Numerous reviews have emphasized not only the bioenergetic mechanisms of redox systems but also the antioxidant defense mechanisms in which they participate. Moreover, significant progress has been made in the modulation of the membrane redox systems on cell proliferation. Because membrane redox systems play a key role in the regulation of cell growth, they need to be somehow linked into the signaling pathways resulting in either controlled or unregulated growth by both internal and external signals. Ultimately, these sequential events lead to either normal cell proliferation or cancer cell formation. However, much less is known about the involvement of membrane redox in transformation or tumorgenesis. In this review, the facts and ideas are summarized concerning the redox systems and tumorgenesis in several aspects, such as the regulation of cell growth and the effect on cell differentiation and on signaling pathways. In addition, information on a unique tumor-associated nicotinamide adenine dinucleotide (NADH) oxidase (tNOX) protein is reviewed.
Collapse
Affiliation(s)
- P J Chueh
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.
| |
Collapse
|
13
|
Medina MA, del Castillo-Olivares A, Núñez de Castro I. Multifunctional plasma membrane redox systems. Bioessays 1997; 19:977-84. [PMID: 9394620 DOI: 10.1002/bies.950191107] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
All the biological membranes contain oxidoreduction systems actively involved in their bioenergetics. Plasma membrane redox systems seem to be ubiquitous and they have been related to several important functions, including not only their role in cell bioenergetics, but also in cell defense through the generation of reactive oxygen species, in iron uptake, in the control of cell growth and proliferation and in signal transduction. In the last few years, an increasing number of mechanistic and molecular studies have deeply widened our knowledge on the function of these plasma membrane redox systems. The aim of this review is to summarize what is currently known about the components and physiological roles of these systems.
Collapse
Affiliation(s)
- M A Medina
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | |
Collapse
|
14
|
Gómez-Díaz C, Rodríguez-Aguilera JC, Barroso MP, Villalba JM, Navarro F, Crane FL, Navas P. Antioxidant ascorbate is stabilized by NADH-coenzyme Q10 reductase in the plasma membrane. J Bioenerg Biomembr 1997; 29:251-7. [PMID: 9298710 DOI: 10.1023/a:1022410127104] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Plasma membranes isolated from K562 cells contain an NADH-ascorbate free radical reductase activity and intact cells show the capacity to reduce the rate of chemical oxidation of ascorbate leading to its stabilization at the extracellular space. Both activities are stimulated by CoQ10 and inhibited by capsaicin and dicumarol. A 34-kDa protein (p34) isolated from pig liver plasma membrane, displaying NADH-CoQ10 reductase activity and its internal sequence being identical to cytochrome b5 reductase, increases the NADH-ascorbate free radical reductase activity of K562 cells plasma membranes. Also, the incorporation of this protein into K562 cells by p34-reconstituted liposomes also increased the stabilization of ascorbate by these cells. TPA-induced differentiation of K562 cells increases ascorbate stabilization by whole cells and both NADH-ascorbate free radical reductase and CoQ10 content in isolated plasma membranes. We show here the role of CoQ10 and its NADH-dependent reductase in both plasma membrane NADH-ascorbate free radical reductase and ascorbate stabilization by K562 cells. These data support the idea that besides intracellular cytochrome b5-dependent ascorbate regeneration, the extracellular stabilization of ascorbate is mediated by CoQ10 and its NADH-dependent reductase.
Collapse
Affiliation(s)
- C Gómez-Díaz
- Departamento de Biología Celular, Facultad de Ciencias, Universidad deCórdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
15
|
Gómez-Díaz C, Villalba JM, Pérez-Vicente R, Crane FL, Navas P. Ascorbate stabilization is stimulated in rho(0)HL-60 cells by CoQ10 increase at the plasma membrane. Biochem Biophys Res Commun 1997; 234:79-81. [PMID: 9168964 DOI: 10.1006/bbrc.1997.6582] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Long-term treatment with ethidium bromide of HL-60 cells induced a mitochondria-deficient rho degree cell line, where mitochondrial DNA can not be identified by PCR and cytochrome c oxidase activity was 80% decreased. These cells showed a progressive increase of ascorbate stabilization which was 52% higher in the established rho degree HL-60 cells. Both CoQ10 and NADH-ascorbate free radical reductase of the plasma membrane were increased in rho(0)HL-60 cells compared to parental cells, while NADH-cytochrome c reductase was unchanged. CoQ10 is a component of the ascorbate stabilization activity in the plasma membrane that would provide both a mechanism to deplete the excess of NADH produced in rho(0)HL-60 cells and for resistance to oxidative stress.
Collapse
Affiliation(s)
- C Gómez-Díaz
- Departamento de Biología Celular, Universidad de Córdoba, Spain
| | | | | | | | | |
Collapse
|
16
|
del Castillo-Olivares A, Esteban del Valle A, Márquez J, Núñez de Castro I, Medina MA. Effects of protein kinase C and phosphoprotein phosphatase modulators on Ehrlich cell plasma membrane redox system activity. BIOCHIMICA ET BIOPHYSICA ACTA 1996; 1313:157-60. [PMID: 8781563 DOI: 10.1016/0167-4889(96)00062-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Diacyl glycerols and phorbol esters, which activate protein kinases C, stimulated Ehrlich ascites tumor cell ferricyanide reductase activity. On the contrary, selective inhibition of active protein kinases C with bis-indolyl maleimide did not change the rate of ferricyanide reduction by Ehrlich cells. Selective inhibitors of phosphoprotein phosphatases, okadaic acid and cyclosporin A, also stimulated plasma membrane redox system. Taking all these data together, protein kinases or phosphoprotein phosphatases seemed to be involved in the multiple and complex regulation of Ehrlich cell plasma membrane redox system.
Collapse
Affiliation(s)
- A del Castillo-Olivares
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | | | |
Collapse
|
17
|
del Castillo-Olivares A, Medina MA, Núñez de Castro I, Márquez J. Purification and characterization of a plasma membrane ferricyanide-utilizing NADH dehydrogenase from Ehrlich tumour cells. Biochem J 1996; 314 ( Pt 2):587-93. [PMID: 8670074 PMCID: PMC1217089 DOI: 10.1042/bj3140587] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
A ferricyanide-utilizing NADH dehydrogenase (NADH-ferricyanide oxidoreductase) from the plasma membrane of Ehrlich ascites tumour cells has been purified about 1500-fold to apparent homogeneity. The method comprises the isolation of an enriched plasma membrane fraction, solubilization with Triton X-100, ion-exchange chromatography, ammonium sulphate precipitation, Cibacron Blue chromatography and fast-protein liquid chromatography with a Superose-6 gel filtration column. The specific activity of the final pool was more than 61 units/mg protein. The pure enzyme examined by SDS/PAGE displayed only one type of subunit with an apparent molecular mass of 32.0 kDa. The molecular mass of the native protein (117.0 kDa) was estimated by gel filtration; these results suggest a protein composed of four subunits of identical molecular mass. The enzyme was stable in the pH interval between 6 and 9, with maximum activity at pH values from 7.5 to 8.5. The purified enzyme showed Michaelis-Menten kinetics for the substrates, with apparent K(m) values of 4.3 X 10(-5) M and 6.7 X 10(-5) M for NADH and ferricyanide respectively. The isolated protein was strongly inhibited by Zn2+ and the thio-specific reagents mersalyl and p-chloromercuribenzenesulphonic acid.
Collapse
Affiliation(s)
- A del Castillo-Olivares
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencas, Universidad de Málaga, Spain
| | | | | | | |
Collapse
|
18
|
Villalba JM, Córdoba F, Navas P. Ascorbate and the plasma membrane. A new view of cell growth control. Subcell Biochem 1996; 25:57-8. [PMID: 8821969 DOI: 10.1007/978-1-4613-0325-1_4] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- J M Villalba
- Departamento de Biología Celular, Universidad de Córdoba, Spain
| | | | | |
Collapse
|
19
|
del Castillo-Olivares A, Esteban del Valle A, Márquez J, Núñez de Castro I, Medina MA. Ehrlich cell plasma membrane redox system is modulated through signal transduction pathways involving cGMP and Ca2+ as second messengers. J Bioenerg Biomembr 1995; 27:605-11. [PMID: 8746847 DOI: 10.1007/bf02111658] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Ehrlich cell plasma membrane ferricyanide reductase activity increased in the presence of mastoparan, a generic activator of G proteins, using either whole cells or isolated plasma membrane-fractions. Agents that increase intracellular cAMP also increased the rate of ferricyanide reduction by Ehrlich cells. For the first time, evidence is shown on a modulation of plasma membrane redox system by cGMP. In fact, permeant analogs of cGMP, dibutyryl cGMP, and 8-bromo-cGMP increased the rate of ferricyanide reduction by the Ehrlich cell plasma membrane redox system. Furthermore, specific inhibition of cGMP-phosphodiesterases by dipyridamole was also accompanied by an enhancement in the rate of ferricyanide reduction. On the other hand, treatments expected to increase cytoplasmic Ca2+ concentrations were accompanied by a remarkable stimulation of the reductase activity. Taking all these data together, it seems that the Ehrlich cell plasma membrane redox system is under a multiple and complex regulation by different signal transduction pathways involving G proteins, cyclic nucleotides, and Ca2+ ions.
Collapse
|
20
|
de Veas RG, Schweigerer L, Medina MA. Matrix metalloproteinase-2 and tissue inhibitor of metalloproteinase-2 expression in paediatric tumour cells. Effects of tumour cell proliferation modulators on gelatinolytic activity. J Cancer Res Clin Oncol 1995; 121:275-8. [PMID: 7768964 DOI: 10.1007/bf01209593] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We have examined the expression of 72-kDa gelatinase/type IV collagenase or matrix metalloproteinase-2 (MMP-2) and its inhibitor, tissue inhibitor of metalloproteinase-2 (TIMP-2), in various cell lines derived from paediatric tumours. In a neuroblastoma model system of tumour progression, the expression level of MMP-2 mRNA was higher in the more malignant cell line. Surprisingly, MMP-2 was not expressed in the highly malignant rhabdomyosarcoma A-204 cell line. TIMP-2 showed higher expression levels in the 007 and U-2OS tumour cell lines than in the more malignant ones, WAC2 and A-204 cells. We have also determined the effect of some tumour cell proliferation modulators on gelatinolytic activity. While basic fibroblast growth factor and retinoic acid produced no apparent change in gelatinolytic activity, genistein induced in partial inhibition of gelatinolytic activity.
Collapse
Affiliation(s)
- R G de Veas
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | |
Collapse
|
21
|
Rodríguez-Aguilera JC, Navas P. Extracellular ascorbate stabilization: enzymatic or chemical process? J Bioenerg Biomembr 1994; 26:379-84. [PMID: 7844112 DOI: 10.1007/bf00762778] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Ascorbate is stabilized in the presence of HL-60 cells. This stabilization has been questioned as a simple chemical effect. Further properties and controls about the enzymatic nature of this stabilization are described and discussed. Our results showed that cAMP derivatives and cAMP-increasing agents stimulated the ability of HL-60 cells to stabilize ascorbate. On the other hand, tunicamycin, a glycosylation-interfering agent, inhibited this ability. These data, together with hormonal regulation, support the hypothesis of an enzymatic redox system located at the plasma membrane as being responsible for the extracellular ascorbate stabilization by HL-60 cells.
Collapse
|
22
|
Navas P, Villalba JM, Córdoba F. Ascorbate function at the plasma membrane. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1197:1-13. [PMID: 8155689 DOI: 10.1016/0304-4157(94)90016-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Affiliation(s)
- P Navas
- Departamento de Biología Celular, Facultad de Ciencias, Universidad de Córdoba, Spain
| | | | | |
Collapse
|
23
|
Medina MA, del Castillo-Olivares A, Márquez J, Núñez de Castro I. Involvement of essential histidine residue(s) in the activity of Ehrlich cell plasma membrane NADH-ferricyanide oxidoreductase. BIOCHIMICA ET BIOPHYSICA ACTA 1994; 1190:20-4. [PMID: 8110817 DOI: 10.1016/0005-2736(94)90030-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The existence of histidine residue(s) implicated in the active site of NADH-ferricyanide oxidoreductase in plasma membrane vesicles isolated from Ehrlich ascites tumour cells is investigated. The shape of the pH-dependence curve of the enzyme activity suggests that one or more histidine residues are located at (or near) the active site of the enzyme. This hypothesis is supported by the following experimental data: the loss of activity after treatment with diethyl pyrocarbonate (DEPC) or photooxidation by using Rose bengal, and the strong inhibition caused by Zn2+ ions at micromolar concentrations. The combined arguments support the statement that histidine plays an essential role in the catalytic activity of NADH-ferricyanide oxidoreductase from Ehrlich ascites tumour cells.
Collapse
Affiliation(s)
- M A Medina
- Laboratorio de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Málaga, Spain
| | | | | | | |
Collapse
|
24
|
Crane FL, Sun IL, Crowe RA, Alcain FJ, Löw H. Coenzyme Q10, plasma membrane oxidase and growth control. Mol Aspects Med 1994; 15 Suppl:s1-11. [PMID: 7752819 DOI: 10.1016/0098-2997(94)90008-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The plasma membrane of eukaryotic cells contains an NADH oxidase which can transfer electrons across the membrane. This oxidase is controlled by hormones, growth factors and other ligands which bind to receptors in the plasma membrane. Oncogenes also affect activity of the oxidase. Natural serum components such as diferric transferrin and ceruloplasmin which stimulate proliferation also stimulate membrane oxidase activity. Additional growth factors can be required to complement the proliferative effect. Electron transport across the plasma membrane can be measured by the reduction of impermeable electron acceptors, such as ferricyanide, which also stimulate cell growth. The oxidants activate growth-related signals such as cytosolic alkalinization and calcium mobilization. Antiproliferative agents such as adriamycin and retinoic acid inhibit the plasma membrane electron transport. Flavin, Coenzyme Q and an iron chelate on the cell surface are apparent electron carriers for the transmembrane electron transport. Coenzyme Q10 stimulates cell growth, and Coenzyme Q analogs such as capsaicin and chloroquine reversibly inhibit both growth and transmembrane electron transport. Addition of iron salts to the depleted cells restores activity and growth. The ligand-activated oxidase in the plasma membrane introduces a new basis for control of signal transduction in cells. The redox state of the quinone in the oxidase is proposed to control tyrosine kinase either by generation of H2O2 or redox-induced conformational change.
Collapse
Affiliation(s)
- F L Crane
- Department of Biological Sciences, Purdue University, West Lafayette, IN 47907-1392, USA
| | | | | | | | | |
Collapse
|
25
|
Rodríguez-Aguilera JC, Nakayama K, Arroyo A, Villalba JM, Navas P. Transplasma membrane redox system of HL-60 cells is controlled by cAMP. J Biol Chem 1993. [DOI: 10.1016/s0021-9258(19)74321-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|