1
|
Pohl SÖG, Agostino M, Dharmarajan A, Pervaiz S. Cross Talk Between Cellular Redox State and the Antiapoptotic Protein Bcl-2. Antioxid Redox Signal 2018; 29:1215-1236. [PMID: 29304561 DOI: 10.1089/ars.2017.7414] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
SIGNIFICANCE B cell lymphoma-2 (Bcl-2) was discovered over three decades ago and is the prototype antiapoptotic member of the Bcl-2 family that comprises proteins with contrasting effects on cell fate. First identified as a consequence of chromosomal translocation (t 14:18) in human lymphoma, subsequent studies have revealed mutations and/or gene copy number alterations as well as post-translational modifications of Bcl-2 in a variety of human cancers. The canonical function of Bcl-2 is linked to its ability to inhibit mitochondrial membrane permeabilization, thereby regulating apoptosome assembly and activation by blocking the cytosolic translocation of death amplification factors. Of note, the identification of specific domains within the Bcl-2 family of proteins (Bcl-2 homology domains; BH domains) has not only provided a mechanistic insight into the various interactions between the member proteins but has also been the impetus behind the design and development of small molecule inhibitors and BH3 mimetics for clinical use. Recent Advances: Aside from its role in maintaining mitochondrial integrity, recent evidence provides testimony to a novel facet in the biology of Bcl-2 that involves an intricate cross talk with cellular redox state. Bcl-2 overexpression modulates mitochondrial redox metabolism to create a "pro-oxidant" milieu, conducive for cell survival. However, under states of oxidative stress, overexpression of Bcl-2 functions as a redox sink to prevent excessive buildup of reactive oxygen species, thereby inhibiting execution signals. Emerging evidence indicates various redox-dependent transcriptional changes and post-translational modifications with different functional outcomes. CRITICAL ISSUES Understanding the complex interplay between Bcl-2 and the cellular redox milieu from the standpoint of cell fate signaling remains vital for a better understanding of pathological states associated with altered redox metabolism and/or aberrant Bcl-2 expression. FUTURE DIRECTIONS Based on its canonical functions, Bcl-2 has emerged as a potential druggable target. Small molecule inhibitors of Bcl-2 and/or other family members with similar function, as well as BH3 mimetics, are showing promise in the clinic. The emerging evidence for the noncanonical activity linked to cellular redox metabolism provides a novel avenue for the design and development of diagnostic and therapeutic strategies against cancers refractory to conventional chemotherapy by the overexpression of this prosurvival protein.
Collapse
Affiliation(s)
- Sebastian Öther-Gee Pohl
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia
| | - Mark Agostino
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia .,3 Curtin Institute for Computation, Curtin University , Perth, Western Australia
| | - Arun Dharmarajan
- 1 Stem Cell and Cancer Biology Laboratory, Curtin Health and Innovation Research Institute, Curtin University , Bentley, Western Australia .,2 School of Biomedical Sciences, Curtin University , Perth, Western Australia
| | - Shazib Pervaiz
- 2 School of Biomedical Sciences, Curtin University , Perth, Western Australia .,4 Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore , Singapore, Singapore .,5 NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore , Singapore, Singapore .,6 National University Cancer Institute, National University Health System , Singapore, Singapore
| |
Collapse
|
2
|
Zhang H, Sun X, Xie Y, Zan J, Tan W. Isosteviol Sodium Protects Against Permanent Cerebral Ischemia Injury in Mice via Inhibition of NF-κB–Mediated Inflammatory and Apoptotic Responses. J Stroke Cerebrovasc Dis 2017; 26:2603-2614. [DOI: 10.1016/j.jstrokecerebrovasdis.2017.06.023] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2017] [Revised: 06/01/2017] [Accepted: 06/09/2017] [Indexed: 01/01/2023] Open
|
3
|
Zvarych V, Stasevych M, Lunin V, Deniz NG, Sayil C, Ozyurek M, Guclu K, Vovk M, Novikov V. Synthesis and investigation of antioxidant activity of the dithiocarbamate derivatives of 9,10-anthracenedione. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1839-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
4
|
Sharma G, Rani I, Bhatnagar A, Agnihotri N. Apoptosis-Mediated Chemoprevention by Different Ratios of Fish Oil in Experimental Colon Carcinogenesis. Cancer Invest 2016; 34:220-30. [PMID: 27191482 DOI: 10.1080/07357907.2016.1183023] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Apoptosis plays an important role in prevention of colon cancer. In the present study, different ratios of fish oil and corn oil increased Fas expression in both phases and a decrease in FasL expression only in post initiation phase. Treatment with fish oil activated the intrinsic apoptotic pathway by increasing Bax expression and Cyt c release and decreasing Bcl-2 levels in both phases. This suggests that intrinsic pathway is upregulated by fish oil; however, Fas-FasL activity may be involved in inhibition of reversal of immune surveillance in tumor cells.
Collapse
Affiliation(s)
- Gayatri Sharma
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Isha Rani
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Archana Bhatnagar
- a Department of Biochemistry , Panjab University , Chandigarh , India
| | - Navneet Agnihotri
- a Department of Biochemistry , Panjab University , Chandigarh , India
| |
Collapse
|
5
|
Tao T, Li CL, Yang WC, Zeng XZ, Song CY, Yue ZY, Dong H, Qian H. Protective effects of propofol against whole cerebral ischemia/reperfusion injury in rats through the inhibition of the apoptosis-inducing factor pathway. Brain Res 2016; 1644:9-14. [PMID: 27163721 DOI: 10.1016/j.brainres.2016.05.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 05/04/2016] [Accepted: 05/05/2016] [Indexed: 10/21/2022]
Abstract
Cerebral ischemia/reperfusion (I/R) injury could cause neural apoptosis that involved the signaling cascades. Cytochrome c release from the mitochondria and the followed activation of caspase 9 and caspase 3 are the important steps. Now, a new mitochondrial protein, apoptosis-inducing factor (AIF), has been shown to have relationship with the caspase-independent apoptotic pathway. In this study, we investigated the protective effects of propofol through inhibiting AIF-mediated apoptosis induced by whole cerebral I/R injury in rats. 120 Wistar rats that obtained the permission of the animal care committee of Harbin Medical University were randomly divided into three groups: sham group (S group), cerebral ischemia/reperfusion injury group (I/R group), and propofol treatment group (P group). Propofol (1.0mg/kg/min) was administered intravenously for 1h before the induction of ischemia in P group. The apoptotic rate in three groups was detected by flow cytometry after 24h of reperfusion. The mitochondrial membrane potential (MMP) changes were detected via microplate reader. The expressions of B-cell leukemia-2 (Bcl-2), Bcl-2 associated X protein (Bax) and AIF were evaluated using Western blot after 6h, 24h and 48h of reperfusion. The results of our study showed that apoptotic level was lower in P group compared with I/R group and propofol could protect MMP. The ratio of Bcl-2/Bax was significantly higher in P group compared with I/R group. The translocation of AIF from mitochondrial to nucleus was lower in P group than that in I/R group. Our findings suggested that the protective effects of propofol on cerebral I/R injury might be associated with inhibiting translocation of AIF from mitochondrial to the nucleus in hippocampal neurons.
Collapse
Affiliation(s)
- Tao Tao
- Department of Anesthesiology, China and Heilongjiang Key Laboratory for Anesthesia and Critical Care, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Chun-Lei Li
- Department of Anesthesiology, China and Heilongjiang Key Laboratory for Anesthesia and Critical Care, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Wan-Chao Yang
- Department of Anesthesiology, China and Heilongjiang Key Laboratory for Anesthesia and Critical Care, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Xian-Zhang Zeng
- Department of Anesthesiology, China and Heilongjiang Key Laboratory for Anesthesia and Critical Care, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Chun-Yu Song
- Department of Anesthesiology, China and Heilongjiang Key Laboratory for Anesthesia and Critical Care, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China.
| | - Zi-Yong Yue
- Department of Anesthesiology, China and Heilongjiang Key Laboratory for Anesthesia and Critical Care, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Hong Dong
- Department of Anesthesiology, China and Heilongjiang Key Laboratory for Anesthesia and Critical Care, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Hua Qian
- Department of Anesthesiology, China and Heilongjiang Key Laboratory for Anesthesia and Critical Care, The Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| |
Collapse
|
6
|
Liang H, Ran Q, Jang YC, Holstein D, Lechleiter J, McDonald-Marsh T, Musatov A, Song W, Remmen HV, Richardson A. Glutathione peroxidase 4 differentially regulates the release of apoptogenic proteins from mitochondria. Free Radic Biol Med 2009; 47:312-20. [PMID: 19447173 PMCID: PMC2773016 DOI: 10.1016/j.freeradbiomed.2009.05.012] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/28/2008] [Revised: 04/07/2009] [Accepted: 05/08/2009] [Indexed: 01/18/2023]
Abstract
Glutathione peroxidase 4 (Gpx4) is a unique antioxidant enzyme that repairs oxidative damage to biomembranes. In this study, we examined the effects of Gpx4 on the release of various apoptogenic proteins from mitochondria using transgenic mice overexpressing Gpx4 [Tg(GPX4(+/0))] and mice deficient in Gpx4 (Gpx4+/- mice). Diquat exposure triggered apoptosis that occurred through an intrinsic pathway and resulted in the mitochondrial release of cytochrome c (Cyt c), Smac/DIABLO, and Omi/HtrA2 in the liver of wild-type (Wt) mice. Liver apoptosis and Cyt c release were suppressed in Tg(GPX4(+/0)) mice but exacerbated in Gpx4+/- mice; however, neither the Tg(GPX4(+/0)) nor the Gpx4+/- mice showed any alterations in the levels of Smac/DIABLO or Omi/HtrA2 released from mitochondria. Submitochondrial fractionation data showed that Smac/DIABLO and Omi/HtrA2 existed primarily in the intermembrane space and matrix, whereas Cyt c and Gpx4 were both associated with the inner membrane. In addition, diquat exposure induced cardiolipin peroxidation in the liver of Wt mice; the levels of cardiolipin peroxidation were reduced in Tg(GPX4(+/0)) mice but elevated in Gpx4+/- mice. These data suggest that Gpx4 differentially regulates apoptogenic protein release owing to its inner membrane location in mitochondria and its ability to repair cardiolipin peroxidation.
Collapse
Affiliation(s)
- Hanyu Liang
- Department of Cellular & Structural Biology, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
| | - Qitao Ran
- Department of Cellular & Structural Biology, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
- Department of The Sam and Ann Barshop Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
- The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, 78229
| | - Youngmok Charles Jang
- Department of Cellular & Structural Biology, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
| | - Deborah Holstein
- Department of Cellular & Structural Biology, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
| | - James Lechleiter
- Department of Cellular & Structural Biology, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
- Department of The Sam and Ann Barshop Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
| | - Tiffany McDonald-Marsh
- Department of Biochemistry, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
| | - Andrej Musatov
- Department of Biochemistry, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
| | - Wook Song
- The Department of Physical Education at Seoul National University, Seoul 151-742, Korea
| | - Holly Van Remmen
- Department of Cellular & Structural Biology, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
- Department of The Sam and Ann Barshop Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
- The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, 78229
| | - Arlan Richardson
- Department of Cellular & Structural Biology, Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
- Department of The Sam and Ann Barshop Institute for Longevity and Aging Studies at the University of Texas Health Science Center at San Antonio, San Antonio Texas, 78245
- The Geriatric Research Education and Clinical Center, South Texas Veterans Health Care System, San Antonio, Texas, 78229
| |
Collapse
|
7
|
Batsi C, Markopoulou S, Kontargiris E, Charalambous C, Thomas C, Christoforidis S, Kanavaros P, Constantinou AI, Marcu KB, Kolettas E. Bcl-2 blocks 2-methoxyestradiol induced leukemia cell apoptosis by a p27(Kip1)-dependent G1/S cell cycle arrest in conjunction with NF-kappaB activation. Biochem Pharmacol 2009; 78:33-44. [PMID: 19447221 DOI: 10.1016/j.bcp.2009.03.017] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Revised: 03/12/2009] [Accepted: 03/13/2009] [Indexed: 11/16/2022]
Abstract
2-Methoxyestradiol (2-ME2) induces leukemia cells to undergo apoptosis in association with Bcl-2 inactivation but the mechanisms whereby Bcl-2 contributes to protection against programmed cell death in this context remain unclear. Here we showed that 2-ME2 inhibited the proliferation of Jurkat leukemia cells by markedly suppressing the levels of cyclins D3 and E, E2F1 and p21(Cip1/Waf1) and up-regulating p16(INK4A). Further, 2-ME2 induced apoptosis of Jurkat cells in association with down-regulation and phosphorylation of Bcl-2 (as mediated by JNK), up-regulation of Bak, activation of caspases-9 and -3 and PARP-1 cleavage. To determine the importance and mechanistic role of Bcl-2 in this process, we enforced its expression in Jurkat cells by retroviral transduction. Enforcing Bcl-2 expression in Jurkat cells abolished 2-ME2-induced apoptosis and instead produced a G1/S phase cell cycle arrest in association with markedly increased levels of p27(Kip1). Bcl-2 and p27(Kip1) were localized mainly in the nucleus in these apoptotic resistant cells. Interestingly, NF-kappaB activity and p50 levels were increased by 2-ME2 and suppression of NF-kappaB signaling reduced p27(Kip1) expression and sensitized cells to 2-ME2-induced apoptosis. Importantly, knocking-down p27(Kip1) in Jurkat Bcl-2 cells sensitized them to spontaneous and 2-ME2-induced apoptosis. Thus, Bcl-2 prevented the 2-ME2-induced apoptotic response by orchestrating a p27(Kip1)-dependent G1/S phase arrest in conjunction with activating NF-kappaB. Thus, we achieved a much better understanding of the penetrance and mechanistic complexity of Bcl-2 dependent anti-apoptotic pathways in cancer cells and why Bcl-2 inactivation is so critical for the efficacy of apoptosis and anti-proliferative inducing drugs like 2-ME2.
Collapse
Affiliation(s)
- Christina Batsi
- Cell and Molecular Physiology Unit, Laboratory of Physiology, School of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Rogers D, Nylander KD, Mi Z, Hu T, Schor NF. Molecular predictors of human nervous system cancer responsiveness to enediyne chemotherapy. Cancer Chemother Pharmacol 2008; 62:699-706. [PMID: 18338171 PMCID: PMC2575071 DOI: 10.1007/s00280-008-0725-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2008] [Accepted: 02/26/2008] [Indexed: 11/25/2022]
Abstract
PURPOSE To identify and mathematically model molecular predictors of response to the enediyne chemotherapeutic agent, neocarzinostatin, in nervous system cancer cell lines. METHODS Human neuroblastoma, breast cancer, glioma, and medulloblastoma cell lines were maintained in culture. Content of caspase-3 and Bcl-2, respectively, was determined relative to actin content for each cell line by Western blotting and optical densitometry. For each cell line, sensitivity to neocarzinostatin was determined. Brain tumor cell lines were stably transfected with human Bcl-2 cDNA cloned into the pcDNA3 plasmid vector. RESULTS In human tumor cell lines of different tissue origins, sensitivity to neocarzinostatin is proportional to the product of the relative contents of Bcl-2 and caspase-3 (r (2) = 0.9; P < 0.01). Neuroblastoma and brain tumor cell lines are particularly sensitive to neocarzinostatin; the sensitivity of brain tumor lines to neocarzinostatin is enhanced by transfection with an expression construct for Bcl-2 and is proportional in transfected cells to the product of the relative contents of Bcl-2 and caspase-3 (r (2) = 0.7). CONCLUSION These studies underscore the potential of molecular profiling in identifying effective chemotherapeutic paradigms for cancer in general and tumors of the nervous system in particular.
Collapse
Affiliation(s)
- Danny Rogers
- Departments of Pediatrics, Neurology, and Neurobiology & Anatomy, University of Rochester Medical Center, Rochester, NY
| | - Karen D. Nylander
- Pediatric Center for Neuroscience, Children’s Hospital of Pittsburgh, Pittsburgh, PA
| | - Zhiping Mi
- Departments of Pediatrics, Neurology, and Neurobiology & Anatomy, University of Rochester Medical Center, Rochester, NY
| | - Tong Hu
- Departments of Pediatrics, Neurology, and Neurobiology & Anatomy, University of Rochester Medical Center, Rochester, NY
| | - Nina F. Schor
- Departments of Pediatrics, Neurology, and Neurobiology & Anatomy, University of Rochester Medical Center, Rochester, NY
| |
Collapse
|
9
|
Li H, Wang LJ, Qiu GF, Yu JQ, Liang SC, Hu XM. Apoptosis of Hela cells induced by extract from Cremanthodium humile. Food Chem Toxicol 2007; 45:2040-6. [PMID: 17597278 DOI: 10.1016/j.fct.2007.05.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2006] [Revised: 03/30/2007] [Accepted: 05/08/2007] [Indexed: 11/30/2022]
Abstract
Cremanthodium humile (C. humile) is a traditional herbal medicine for treatment of inflammation. Based on initial screening results, the purpose of this study was to evaluate the cytotoxic effect on four human cancer cell lines and one non-cancer cell line (293), then to determine the possible mechanisms of cell death elicited by the extract of C. humile on Hela cells. We have found the ether extract of C. humile (CH-EE) strongly decreased the survival rate of the four human tumor cell lines: Hela, A549, HepG2 and SW480. The cytotoxic effect of CH-EE on 293 was smaller than on tumor cell lines. Flow cytometry assays and nuclear staining showed that CH-EE induced apoptosis in Hela cells. This process was accompanied by the collapse of mitochondrial membrane potential, the release of cytochrome c and the activation of caspase-3/7 and -9. Furthermore, CH-EE generated reactive oxygen species (ROS) in Hela cells. These results indicate that CH-EE induces apoptosis in Hela cells through a ROS-mediated mitochondrial dysfunction pathway.
Collapse
Affiliation(s)
- Hui Li
- State Key Laboratory of Virology, College of Pharmacy, Wuhan University, Wuhan 430072, China
| | | | | | | | | | | |
Collapse
|
10
|
Abstract
Lactosylceramide (LacCer) is a member of the glycosphingolipid family which has been recently recognized as a signaling intermediate in the regulation of cell proliferation and cell adhesion. In this paper, we present our studies pointing to a potential role of LacCer in inducing apoptosis. In our studies we employed a human osteosarcoma cell line MG-63 (wild type, WT) and a neutral sphingomyelinase (N-SMase) deficient cell line CC derived from MG-63 (mutant) cells. We observed that WT cells were highly sensitive to tumor necrosis factor-alpha (TNF-alpha), ceramide and LacCer-induced apoptosis. In contrast, the mutant cells were insensitive to TNF-alpha-induced apoptosis as they did not generate ceramide and LacCer. However, the exogenous supply of ceramide and/or LacCer rendered the mutant cells apoptotic. Interestingly, preincubation of cells with D-threo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol (D-PDMP), an inhibitor of glucosylceramide synthase and lactosylceramide synthase, abrogated ceramide-induced apoptosis but not LacCer-induced apoptosis in both WT cells and the mutant cells. Moreover, TNF-alpha and LacCer-induced apoptosis required the generation of reactive oxygen species (ROS) in WT cells. However, since mutant cells did not produce significant amounts of LacCer and ROS in response to TNF-alpha treatment they are insensitive to TNF-alpha-induced apoptosis. In summary, our studies suggest that TNF-alpha-induced N-SMase activation and production of ceramide is required to activate the apoptosis pathway in human osteosarcoma cells. But it is not sufficient to induce apoptosis. Rather, the conversion of ceramide to LacCer and ROS generation are critical for apoptosis.
Collapse
Affiliation(s)
- Sergio F Martin
- Lipid Research Atherosclerosis Division, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | |
Collapse
|
11
|
Yang HL, Chen CS, Chang WH, Lu FJ, Lai YC, Chen CC, Hseu TH, Kuo CT, Hseu YC. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by Antrodia camphorata. Cancer Lett 2006; 231:215-27. [PMID: 16399223 DOI: 10.1016/j.canlet.2005.02.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2004] [Revised: 01/30/2005] [Accepted: 02/02/2005] [Indexed: 11/19/2022]
Abstract
Antrodia camphorata (A. camphorata) is well known in Taiwan as a traditional Chinese medicine, and it has been shown to exhibit antioxidant and anticancer effects. In this study, therefore, its ability to induce apoptosis in cultured MCF-7 breast cancer cells was studied. Treatment of the MCF-7 cells with a variety of concentrations of the fermented culture broth of A. camphorata (25-150 microg/ml) resulted in dose- and time-dependent sequences of events marked by apoptosis, as shown by loss of cell viability, chromatin condensation, internucleosomal DNA fragmentation, and sub-G1 phase accumulation. Furthermore, apoptosis in the MCF-7 cells was accompanied by the release of cytochrome c, activation of caspase 3, and specific proteolytic cleavage of poly (ADP-ribose) polymerase (PARP). Although, the A. camphorata-induced apoptosis was associated with Bax protein levels, negligible Bcl-2 reduction was observed. Interestingly, A. camphorata induced dose-dependent reactive oxygen species (ROS) generation in MCF-7 cells. Analysis of the data suggests that A. camphorata exerts antiproliferative action and growth inhibition on MCF-7 cells through apoptosis induction, and that it may have anticancer properties valuable for application in drug products.
Collapse
Affiliation(s)
- Hsin-Ling Yang
- Institute of Nutrition, China Medical University, Taichung, Taiwan, ROC
| | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tyurina YY, Nylander KD, Mirnics ZK, Portugal C, Yan C, Zaccaro C, Saragovi HU, Kagan VE, Schor NF. The intracellular domain of p75NTR as a determinant of cellular reducing potential and response to oxidant stress. Aging Cell 2005; 4:187-96. [PMID: 16026333 DOI: 10.1111/j.1474-9726.2005.00160.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The low-affinity neurotrophin receptor, p75NTR, has been found to be pro- or anti-apoptotic depending upon the cell in which it is expressed. Reactive oxygen species play a major role in apoptosis induction and enactment. Using two polyclonal PC12 populations that, respectively, do or do not express p75NTR, this paper demonstrates that p75NTR expression confers resistance to oxidant stress upon PC12 cells maintained in serum-containing medium. The effect of p75NTR on cell survival is mimicked in p75-negative cells by expression of constructs that produce the p75NTR intracellular domain (ICD) or p75NTR with the extracellular domain deleted (DeltaECD), suggesting that binding of an extracellular ligand to p75NTR is not required. Our studies further document that the differential sensitivity to oxidant stress is serum-dependent and associated with differential oxidation of glutathione between p75-positive and p75-negative cells. These results suggest that the role of p75NTR in determining the consequences and treatment of age-related disorders and conditions in which reactive oxygen species are involved may require neither the extracellular receptor domain nor, by inference, the cognate extracellular ligands of this neurotrophin receptor.
Collapse
Affiliation(s)
- Yulia Y Tyurina
- Pediatric Center for Neuroscience, Children's Hospital of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Ng Y, Barhoumi R, B.Tjalkens R, Fan YY, Kolar S, Wang N, R.Lupton J, S.Chapkin R. The role of docosahexaenoic acid in mediating mitochondrial membrane lipid oxidation and apoptosis in colonocytes. Carcinogenesis 2005; 26:1914-21. [PMID: 15975958 PMCID: PMC4477626 DOI: 10.1093/carcin/bgi163] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Docosahexaenoic acid (DHA, 22:6 n-3) from fish oil, and butyrate, a fiber fermentation product, work coordinately to protect against colon tumorigenesis in part by inducing apoptosis. We have recently demonstrated that dietary DHA is incorporated into mitochondrial membrane phospholipids, thereby enhancing oxidative stress induced by butyrate metabolism. In order to elucidate the subcellular origin of oxidation induced by DHA and butyrate, immortalized young adult mouse colonocytes were treated with 0-200 microM DHA or linoleic acid (LA, 18:2 n-6; control) for 72 h with or without 5 mM butyrate for the final 24 h. Cytosolic reactive oxygen species, membrane lipid oxidation, and mitochondrial membrane potential (MP), were measured by live-cell fluorescence microscopy. After 24 h of butyrate treatment, DHA primed cells exhibited a 151% increase in lipid oxidation (P < 0.01), compared with no butyrate treatment, which could be blocked by a mitochondria-specific antioxidant, 10-(6'-ubiquinoyl) decyltriphenylphosphonium bromide (MitoQ) (P < 0.05). Butyrate treatment of LA pretreated cells did not show any significant effect. In the absence of butyrate, DHA treatment, compared with LA, increased resting MP by 120% (P < 0.01). In addition, butyrate-induced mitochondrial membrane potential (MP), dissipation was 21% greater in DHA primed cells as compared with LA at 6 h. This effect was reversed by preincubation with inhibitors of the mitochondrial permeability transition pore, cyclosporin A or bongkrekic acid (1 microM). The functional importance of these events is supported by the demonstration that DHA and butyrate-induced apoptosis is blocked by MitoQ. These data indicate that DHA and butyrate potentiate mitochondrial lipid oxidation and the dissipation of MP which contribute to the induction of apoptosis.
Collapse
Affiliation(s)
- Yeevoon Ng
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Rola Barhoumi
- Center for Environmental and Rural Health, Texas A&M University, College Station, TX 77843, USA
| | - Ronald B.Tjalkens
- Center for Environmental and Rural Health, Texas A&M University, College Station, TX 77843, USA
- Faculty of Toxicology, Department of Veterinary Integrated Biosciences, Texas A&M University, College Station, TX 77843, USA
| | - Yang-Yi Fan
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Satya Kolar
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
| | - Naisyin Wang
- Department of Statistics, Texas A&M University, College Station, TX 77843, USA
| | - Joanne R.Lupton
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
- Center for Environmental and Rural Health, Texas A&M University, College Station, TX 77843, USA
| | - Robert S.Chapkin
- Faculty of Nutrition, Texas A&M University, College Station, TX 77843, USA
- Center for Environmental and Rural Health, Texas A&M University, College Station, TX 77843, USA
- Faculty of Toxicology, Department of Veterinary Integrated Biosciences, Texas A&M University, College Station, TX 77843, USA
- To whom correspondence should be addressed. Tel: +979 845 0448; Fax: +979 862 2662;
| |
Collapse
|
14
|
Kubo E, Singh DP, Akagi Y. Gene expression profiling of diabetic and galactosaemic cataractous rat lens by microarray analysis. Diabetologia 2005; 48:790-8. [PMID: 15761720 DOI: 10.1007/s00125-005-1687-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2004] [Accepted: 11/07/2004] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS Osmotic and oxidative stress is associated with the progression and advancement of diabetic cataract. In the present study, we used a cDNA microarray method to analyse gene expression patterns in streptozotocin-induced diabetic rats and galactose-fed cataractous lenses. In addition, we investigated the regulation and interaction(s) of anti-oxidant protein 2 and lens epithelium-derived growth factor in these models. METHODS To identify differential gene expression patterns, one group of Sprague-Dawley rats was made diabetic with streptozotocin and a second group was made galactosaemic. Total RNA was extracted from the lenses of both groups and their controls. Labelled cDNA was hybridised to Atlas Rat Arrays. Changes in gene expression level were analysed. Real-time PCR and western analysis were used to validate the microarray results. RESULTS The expression of 31 genes was significantly modulated in hyperglycaemic lenses compared with galactosaemic lenses. Notably, transcript and protein levels of B-cell leukaemia/lymphoma protein 2 and nuclear factor-kappaB were significantly elevated in rat lenses at 4 weeks after injection of streptozotocin. At a later stage, mRNA and protein levels of TGF-beta were elevated. However, levels of mRNA for IGF-1, lens epithelium-derived growth factor and anti-oxidant protein 2 were diminished in streptozotocin-induced diabetic cataract. CONCLUSIONS/INTERPRETATIONS These results provide evidence that progression of sugar cataract involves oxidative- and TGF-beta-mediated signalling. These pathways may promote abnormal gene expression in the hyperglycaemic and galactosaemic states and thus may contribute to the symptoms associated with these conditions. Since oxidative stress seems to be a major event in cataract formation, supply of anti-oxidant may postpone the progression of such disorders.
Collapse
Affiliation(s)
- E Kubo
- Department of Ophthalmology, Faculty of Medical Science, University of Fukui, 23-3 Shimoaiduki, Matsuoka, Fukui, 910-1193, Japan
| | | | | |
Collapse
|
15
|
Haddad JJ. On the antioxidant mechanisms of Bcl-2: a retrospective of NF-kappaB signaling and oxidative stress. Biochem Biophys Res Commun 2004; 322:355-63. [PMID: 15325238 DOI: 10.1016/j.bbrc.2004.07.138] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2004] [Indexed: 11/22/2022]
Abstract
Antioxidant and prooxidant signaling pathways are emanating as major players in, and regulators of, cell death and apoptosis. Redox conception of the critical role of oxidative stress in determining cell fate is being established-a foundation that craves deeper than the basic understanding of physiochemical interactions to extend beyond that into the realms of deciphering the molecular codes implicated with apoptosis. The proto-oncogene Bcl-2 is no stranger being a major player and decoder in controlling apoptosis, ostensibly via the regulation of redox equilibrium and disequilibrium. One of those potential mechanisms exhibited by Bcl-2 is its ability to counteract the detrimental effects of cell damage caused by free radicals, thereby gaining its well-known property of being an antioxidant. But the question is: what are the molecular mechanisms involved with the antioxidant role of Bcl-2 in the face of cell damage and apoptosis? Currently, a stance is being upheld in that the Bcl-2 antioxidant efficacy should be weighed against its ability to manipulate transcriptional control, through the regulation of specific transcription factors. NF-kappaB is no doubt one of the best candidates when it comes to the arena of oxidative stress, inflammation, and apoptosis. Therein, current themes in the burgeoning antioxidant role of Bcl-2 are exposed within the context of transcriptional control of NF-kappaB, thereby holding potential avenues for alleviating therapeutic approaches in the regulation of apoptosis.
Collapse
Affiliation(s)
- John J Haddad
- Severinghaus-Radiometer Research Laboratories, University of California, San Francisco, CA, USA.
| |
Collapse
|
16
|
Zhao H, Yenari MA, Cheng D, Barreto-Chang OL, Sapolsky RM, Steinberg GK. Bcl-2 transfection via herpes simplex virus blocks apoptosis-inducing factor translocation after focal ischemia in the rat. J Cereb Blood Flow Metab 2004; 24:681-92. [PMID: 15181376 DOI: 10.1097/01.wcb.0000127161.89708.a5] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Apoptosis plays a critical role in many neurologic diseases, including stroke. Cytochrome c release and activation of various caspases are known to occur after focal and global ischemia. However, recent reports indicate that caspase-independent pathways may also be involved in ischemic damage. Apoptosis-inducing factor (AIF) is a novel flavoprotein that helps mediate caspase-independent apoptotic cell death. AIF translocates from mitochondria to nuclei where it induces caspase-independent DNA fragmentation. Bcl-2, a mitochondrial membrane protein, protects against apoptotic and necrotic death induced by different insults, including cerebral ischemia. In the present study, Western blots confirmed that AIF was normally confined to mitochondria but translocated to nuclei or cytosol 8, 24, and 48 hours after onset of ischemia. Overall, AIF protein levels also increased after stroke. Confocal microscopy further demonstrated that nuclear AIF translocation occurred in the peri-infarct region but not in the ischemic core where only some cytosolic AIF release was observed. Our data also suggest that AIF translocated into nuclei after cytochrome c was released into the cytosol. Bcl-2 transfection in the peri-infarct region blocked nuclear AIF translocation and improved cortical neuron survival.
Collapse
Affiliation(s)
- Heng Zhao
- Department of Neurosurgery, Stanford University, Stanford, CA, USA
| | | | | | | | | | | |
Collapse
|
17
|
Wenzel U, Schoberl K, Lohner K, Daniel H. Activation of mitochondrial lactate uptake by flavone induces apoptosis in human colon cancer cells. J Cell Physiol 2004; 202:379-90. [PMID: 15452831 DOI: 10.1002/jcp.20129] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Lactate production from glucose even in the presence of oxygen is a characteristic of cancer cell metabolism and an important feature for tumor progression. Here, we describe that an increased uptake of lactate into mitochondria of HT-29 human colon cancer cells by treatment of cells with the flavonoid flavone is associated with an increased production of mitochondrial superoxide anions and apoptotic cell death. In search of the mitochondrial transporter that could promote enhanced lactate uptake and energetic flow through the electron transport chain, we used fluorescein as a model substrate. Flavone increased fluorescein uptake at pH 7.4 into mitochondria of HT-29 cells almost tenfold while lactate inhibited uptake significantly. Uptake of fluorescein in the absence or presence of flavone was strongly increased by lowering pH from 7.4 to 6.0 and almost abolished by the protonophore carbonyl cyanide m-chlorophenylhydrazone (CCCP). The lactate-sensitive part of fluorescein transport was completely blocked by p-chloromercuribenzenesulfonic acid (pCMBS), a specific inhibitor of the monocarboxylate transporter-1 (MCT-1) that by Western blotting and immunofluorescence was identified in mitochondria of HT-29 cells. Finally, lactate increased and pCMBS inhibited the flavone-induced generation of mitochondrial O2-* radicals and in turn blunted the apoptotic response. In conclusion, our studies provide evidence that flavone reverts the metabolic phenotype of transformed colonocytes towards a phenotype characteristic for normal cells. Transformed colonocytes, however, seem especially vulnerable to O2-*, produced in mitochondria as a consequence of these metabolic alterations, and respond with the induction of apoptosis.
Collapse
Affiliation(s)
- Uwe Wenzel
- Molecular Nutrition Unit, Department of Food and Nutrition, Technical University of Munich, Freising, Germany.
| | | | | | | |
Collapse
|
18
|
Zhao M, Antunes F, Eaton JW, Brunk UT. Lysosomal enzymes promote mitochondrial oxidant production, cytochrome c release and apoptosis. EUROPEAN JOURNAL OF BIOCHEMISTRY 2003; 270:3778-86. [PMID: 12950261 DOI: 10.1046/j.1432-1033.2003.03765.x] [Citation(s) in RCA: 218] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Exposure of mammalian cells to oxidant stress causes early (iron catalysed) lysosomal rupture followed by apoptosis or necrosis. Enhanced intracellular production of reactive oxygen species (ROS), presumably of mitochondrial origin, is also observed when cells are exposed to nonoxidant pro-apoptotic agonists of cell death. We hypothesized that ROS generation in this latter case might promote the apoptotic cascade and could arise from effects of released lysosomal materials on mitochondria. Indeed, in intact cells (J774 macrophages, HeLa cells and AG1518 fibroblasts) the lysosomotropic detergent O-methyl-serine dodecylamide hydrochloride (MSDH) causes lysosomal rupture, enhanced intracellular ROS production, and apoptosis. Furthermore, in mixtures of rat liver lysosomes and mitochondria, selective rupture of lysosomes by MSDH promotes mitochondrial ROS production and cytochrome c release, whereas MSDH has no direct effect on ROS generation by purifed mitochondria. Intracellular lysosomal rupture is associated with the release of (among other constituents) cathepsins and activation of phospholipase A2 (PLA2). We find that addition of purified cathepsins B or D, or of PLA2, causes substantial increases in ROS generation by purified mitochondria. Furthermore, PLA2 - but not cathepsins B or D - causes rupture of semipurified lysosomes, suggesting an amplification mechanism. Thus, initiation of the apoptotic cascade by nonoxidant agonists may involve early release of lysosomal constituents (such as cathepsins B and D) and activation of PLA2, leading to enhanced mitochondrial oxidant production, further lysosomal rupture and, finally, mitochondrial cytochrome c release. Nonoxidant agonists of apoptosis may, thus, act through oxidant mechanisms.
Collapse
Affiliation(s)
- Ming Zhao
- Faculty of Health Sciences, Linköping University, Sweden.
| | | | | | | |
Collapse
|
19
|
Kopecky SA, Lyles DS. Contrasting effects of matrix protein on apoptosis in HeLa and BHK cells infected with vesicular stomatitis virus are due to inhibition of host gene expression. J Virol 2003; 77:4658-69. [PMID: 12663772 PMCID: PMC152120 DOI: 10.1128/jvi.77.8.4658-4669.2003] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Vesicular stomatitis virus (VSV) is a potent inducer of apoptosis in host cells. Recently, it has been shown that two VSV products are involved in the induction of apoptosis, the matrix (M) protein, and another viral product that has yet to be identified (S. A. Kopecky et. al., J. Virol. 75:12169-12181, 2001). Comparison of recombinant viruses containing wild-type (wt) or mutant M proteins showed that wt M protein accelerates VSV-induced apoptosis in HeLa cells, while wt M protein delays apoptosis in VSV-infected BHK cells. Our hypothesis to explain these results is that both effects of M protein are due to the ability of M protein to inhibit host gene expression. This hypothesis was tested by infecting cells with an M protein mutant virus defective in the inhibition of host gene expression (rM51R-M virus) in the presence or absence of actinomycin D, another inhibitor of host gene expression. Actinomycin D accelerated induction of apoptosis of HeLa cells infected with rM51R-M virus and delayed apoptosis in BHK cells infected with rM51R-M virus, similar to the effects of wt M protein. The idea that the induction of apoptosis by M protein in HeLa cells is due to its ability to inhibit host gene expression was further tested by comparing the activation of upstream caspase pathways by M protein versus that by actinomycin D or 5,6-dichlorobenzimidazole riboside (DRB). Expression of M protein activated both caspase-8 and caspase-9-like enzymes, as did treatment with actinomycin D or DRB. Induction of apoptosis by M protein, actinomycin D, and DRB was inhibited in stably transfected HeLa cell lines that overexpress Bcl-2, an antiapoptotic protein that inhibits the caspase-9 pathway. A synthetic inhibitor of caspase-8, Z-IETD-FMK, did not inhibit induction of apoptosis by M protein, actinomycin D, or DRB. Taken together, our data support the hypothesis that the induction of apoptosis by M protein is caused by the inhibition of host gene expression and that the caspase-9 pathway is more important than the caspase-8 pathway for the induction of apoptosis by M protein and other inhibitors of host gene expression.
Collapse
Affiliation(s)
- Sarah A Kopecky
- Department of Microbiology and Immunology, Wake Forest University School of Medicine, Winston-Salem, North Carolina 27157-1064, USA
| | | |
Collapse
|
20
|
Graczyk PP. Caspase inhibitors as anti-inflammatory and antiapoptotic agents. PROGRESS IN MEDICINAL CHEMISTRY 2003; 39:1-72. [PMID: 12536670 DOI: 10.1016/s0079-6468(08)70068-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The striking efficacy of Z-VAD-fmk in the various animal models presented above may reflect its ability to inhibit multiple enzymes including caspases. In accord with this, more selective, reversible inhibitors usually show low efficacy in multifactorial models such as ischaemia, but may offer some protection against NMDA-induced excitotoxicity and hepatitis. Importantly, caspase inhibitors may exhibit significant activity in vivo even when they are applied post insult. As far as the CNS is concerned, the first systemically active inhibitors have emerged. Functional recovery could be achieved in some ischaemia models, but long-term protection by caspase inhibitors is still being questioned. Recent developments in drug design enabled the first caspase inhibitors to enter the clinic. Although initially directed towards peripheral indications such as rheumatoid arthritis, caspase inhibitors will no doubt eventually be used to target CNS disorders. For this purpose the peptidic character of current inhibitors will have to be further reduced. Small molecule, nonpeptidic caspase inhibitors, which have appeared recently, indicate that this goal can be accomplished. Unfortunately, many fundamental questions still remain to be addressed. In particular, the necessary spectrum of inhibitory activity required to achieve the desired effect needs to be determined. There is also a safety aspect associated with prolonged administration. Therefore, the next therapeutic areas for broader-range caspase inhibitors are likely to involve acute treatment. Recent results with synergistic effects between MK-801 and caspase inhibitors in ischaemia suggest that caspase inhibitors may need to be used in conjunction with other drugs. It can be expected that, in the near future, research on caspases and their inhibitors will remain a rapidly developing area of biology and medicinal chemistry. More time, however, may be needed for the first caspase inhibitors to appear on the market.
Collapse
Affiliation(s)
- Piotr P Graczyk
- Department of Medicinal Chemistry, EISAI London Research Laboratories, University College London, Bernard Katz Building, London WC1E 6BT, UK
| |
Collapse
|
21
|
Saugstad OD. Bronchopulmonary dysplasia-oxidative stress and antioxidants. SEMINARS IN NEONATOLOGY : SN 2003; 8:39-49. [PMID: 12667829 DOI: 10.1016/s1084-2756(02)00194-x] [Citation(s) in RCA: 217] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
There is increasing evidence that oxidative stress is implicated in the development of bronchopulmonary dysplasia. Several important factors contribute to augmented oxidative stress in the newborn and especially the preterm infant: first, because of its immaturity, the lung of preterm infants is frequently exposed to oxygen therapy and hyperoxia. Second, the antioxidant defense and its ability to be induced during an hyperoxic challenge are impaired. Third, the preterm infant has an increased susceptibility to infection and inflammation, which increases oxidative stress. Fourth, free iron, which catalyzes the production of toxic reactive oxygen species, can be detected in preterm infants. The molecular and cellular mechanisms for free radical-induced injury are now understood in more detail, and it is clear that oxidative stress plays an important role in triggering apoptosis, in serving as second messenger and in signal transduction. This new insight might lead to novel and efficient therapies. So far, there has been no significant breakthrough regarding antioxidant therapies. Care should, however, be exercised in supplementing the preterm infant with antioxidants since this may affect growth and development.
Collapse
Affiliation(s)
- Ola Didrik Saugstad
- Department of Pediatric Research, Rikshospitalet, University of Oslo, Norway.
| |
Collapse
|
22
|
Blatt NB, Bednarski JJ, Warner RE, Leonetti F, Johnson KM, Boitano A, Yung R, Richardson BC, Johnson KJ, Ellman JA, Opipari AW, Glick GD. Benzodiazepine-induced superoxide signals B cell apoptosis: mechanistic insight and potential therapeutic utility. J Clin Invest 2002; 110:1123-32. [PMID: 12393848 PMCID: PMC150800 DOI: 10.1172/jci16029] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The properties of a proapoptotic 1,4-benzodiazepine, Bz-423, identified through combinatorial chemistry and phenotype screening are described. Bz-423 rapidly generated superoxide (O(2)(-)) in transformed Ramos B cells. This O(2)(-) response originated from mitochondria prior to mitochondrial transmembrane gradient collapse and opening of the permeability transition pore. Bz-423-induced O(2)(-) functioned as an upstream signal that initiated an apoptotic program characterized by cytochrome c release, mitochondrial depolarization, and caspase activation. Pretreatment of cells with agents that either block the formation of Bz-423-induced O(2)(-) or scavenge free radicals attenuated the death cascade, which demonstrated that cell killing by Bz-423 depends on O(2)(-). Parallels between Ramos cells and germinal center B cells prompted experiments to determine whether Bz-423 had therapeutic activity in vivo. This possibility was tested using the (NZB x NZW)F(1) murine model of lupus, in which the pathologically enhanced survival and expansion of germinal center B cells mediate disease. Administration of Bz-423 for 12 weeks specifically controlled germinal center hyperplasia and reduced the histological evidence of glomerulonephritis. Collectively, these studies define a new structure-function relationship for benzodiazepines and point to a new target and mechanism that could be of value for developing improved drugs to manage systemic lupus erythematosus and related disorders.
Collapse
Affiliation(s)
- Neal B Blatt
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Blatt NB, Bednarski JJ, Warner RE, Leonetti F, Johnson KM, Boitano A, Yung R, Richardson BC, Johnson KJ, Ellman JA, Opipari AW, Glick GD. Benzodiazepine-induced superoxide signalsB cell apoptosis: mechanistic insight and potential therapeutic utility. J Clin Invest 2002. [DOI: 10.1172/jci0216029] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
24
|
Franco DL, Nojek IM, Molinero L, Coso OA, Costas MA. Osmotic stress sensitizes naturally resistant cells to TNF-alpha-induced apoptosis. Cell Death Differ 2002; 9:1090-8. [PMID: 12232797 DOI: 10.1038/sj.cdd.4401074] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2001] [Revised: 03/04/2002] [Accepted: 04/23/2002] [Indexed: 11/09/2022] Open
Abstract
Most cells are naturally resistant to TNF-alpha-induced cell death and become sensitized when NF-kappaB transactivation is blocked or in the presence of protein synthesis inhibitors that prevent the expression of anti-apoptotic genes. In this report we analyzed the role of osmotic stress on TNF-alpha-induced cell death. We found that it sensitizes the naturally resistant HeLa cells to TNF-alpha-induced apoptosis, with the involvement of an increase in the activity of several kinases, the inhibition of Bcl-2 expression, and a late increase on NF-kappaB activation. Cell death occurs regardless of the enhanced NF-kappaB activity, whose inhibition produces an increase in apoptosis. The inhibition of p38 kinase, also involved in NF-kappaB activation, significantly increases the effect of osmotic stress on TNF-alpha-induced cell death.
Collapse
Affiliation(s)
- D L Franco
- Laboratorio de Fisiología y Biología Molecular, Departamento de Cs. Biológicas, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, C1428EHA Bs. As., Argentina
| | | | | | | | | |
Collapse
|
25
|
Kasahara T, Koguchi E, Funakoshi M, Aizu-Yokota E, Sonoda Y. Antiapoptotic action of focal adhesion kinase (FAK) against ionizing radiation. Antioxid Redox Signal 2002; 4:491-9. [PMID: 12215217 DOI: 10.1089/15230860260196290] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Focal adhesion kinase (FAK) has an antiapoptotic role in anchorage-dependent cells via an unknown mechanism. To elucidate the role of FAK in the antiapoptosis, we have demonstrated that FAK-overexpressed (HL-60/FAK) cells have marked resistance against various apoptotic stimuli. That is, HL-60/FAK cells were highly resistant to hydrogen peroxide or etoposide-induced apoptosis compared with the vector-transfected cells. In this study, we demonstrated that HL-60/FAK cells were highly resistant to ionizing radiation (IR)-induced apoptosis. IR at 10-40 Gy induced significant DNA fragmentation, activation of caspase-3 and -8, the processing of a proapoptotic BID, and mitochondrial release of cytochrome c in the parental or HL-60/Vect cells, whereas no significant DNA fragmentation or no other concurring events were observed in the HL-60/FAK cells. Of note is that, in the HL-60/FAK cells, phosphatidylinositol 3'-kinase-Akt survival pathway was activated, accompanied with significant induction of inhibitor-of-apoptosis proteins (cIAP-2, XIAP). Finally, constructs of FAK mutants revealed that the central kinase domain (K454), autophosphorylation site (Y397), as well as focal adhesion target regions (Y925), were prerequisite for the FAK function. These results indicated that mitochondria pathway is required for IR-induced apoptosis, and FAK overexpression prevents this pathway, thus rendering antiapoptotic states.
Collapse
Affiliation(s)
- Tadashi Kasahara
- Department of Biochemistry, Kyoritsu College of Pharmacy, Shibakoen 1-5-30, Minato-ku, Tokyo, 105-8512, Japan.
| | | | | | | | | |
Collapse
|
26
|
Affiliation(s)
- Tetsuo Nagano
- Graduate School of Pharmacological Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | | |
Collapse
|
27
|
Nakamura Y, Kawakami M, Yoshihiro A, Miyoshi N, Ohigashi H, Kawai K, Osawa T, Uchida K. Involvement of the mitochondrial death pathway in chemopreventive benzyl isothiocyanate-induced apoptosis. J Biol Chem 2002; 277:8492-9. [PMID: 11751909 DOI: 10.1074/jbc.m109760200] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the present study, we studied the molecular mechanism underlying cell death induced by a cancer chemoprotective compound benzyl isothiocyanate (BITC). The cytotoxic effect of BITC was examined in rat liver epithelial RL34 cells. Apoptosis was induced when the cells were treated with 20 mum BITC, characterized by the appearance of phosphatidylserine on the outer surface of the plasma membrane and caspase-3 activation, whereas no caspase activation and propidium iodide incorporation into cell were detected with 50 mum BITC that induced necrosis. The mitochondrial death pathway was suggested to be involved in BITC-induced apoptosis because the treatment of cells with BITC-induced caspase-9-dependent apoptosis and mitochondrial transmembrane potential (Delta Psi m) alteration. We demonstrated here for the first time that BITC directly modifies mitochondrial functions, including inhibition of respiration, mitochondrial swelling, and release of cytochrome c. Moreover, glutathione depletion by diethyl maleate significantly accelerated BITC-triggered apoptosis, suggesting the involvement of a redox-dependent mechanism. This was also implicated by the observations that intracellular accumulation of reactive oxygen species, including superoxide (O(2)) and hydroperoxides (HPOs), was indeed detected in the cells treated with BITC and that the intracellular HPO level was significantly attenuated by pretreatment with N-acetylcysteine. The treatment with a pharmacological scavenger of O(2), Tiron, also diminished the HPO formation by approximately 80%, suggesting that most of the HPOs were H(2)O(2) derived from the dismutation of O(2). These results suggest that BITC induces apoptosis through a mitochondrial redox-sensitive mechanism.
Collapse
Affiliation(s)
- Yoshimasa Nakamura
- Laboratory of Food and Biodynamics, Nagoya University Graduate School of Bioagricultural Sciences, Nagoya 464-8601, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Chang WH, Liu JJ, Chen CH, Huang TS, Lu FJ. Growth inhibition and induction of apoptosis in MCF-7 breast cancer cells by fermented soy milk. Nutr Cancer 2002; 43:214-26. [PMID: 12588701 DOI: 10.1207/s15327914nc432_12] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
The effect of a fermented soy milk product (FSP) on various human breast carcinoma cell lines was investigated, and it was shown to have a growth-inhibitory effect, especially on MCF-7 cells. Thus the MCF-7 cell line was used to study the mechanism of action. In female severe combined immune deficiency mice implanted with MCF-7 cells, pretreatment with FSP significantly inhibited tumor growth. The inhibitory effect of FSP on MCF-7 cells seemed to be caused by the additive effects of a wide variety of constituents. The active components of FSP are mainly in the water phase, and the lipid-soluble fraction, which includes the soy isoflavones such as genistein and daidzein, is relatively ineffective. A variety of methods were used to demonstrate that FSP caused apoptotic cell death in MCF-7 cells. FSP induced generation of reactive oxygen species (ROS). Growth inhibition and ROS generation induced by FSP could be inhibited by catalase and deferoxamine, indicating that the ROS production probably was the cause of this apoptotic cell death. This study suggests that FSP retards tumor growth in vivo and can trigger apoptosis in vitro. It may, therefore, be a potential nutritional supplement in chemotherapy.
Collapse
Affiliation(s)
- Wen-Huei Chang
- Graduate Institute of Biochemistry and Molecular Biology, College of Medicine, National Taiwan University, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
29
|
Mao YW, Xiang H, Wang J, Korsmeyer S, Reddan J, Li DW. Human bcl-2 gene attenuates the ability of rabbit lens epithelial cells against H2O2-induced apoptosis through down-regulation of the alpha B-crystallin gene. J Biol Chem 2001; 276:43435-45. [PMID: 11546795 DOI: 10.1074/jbc.m102195200] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
It is well established that the proto-oncogene, bcl-2, can prevent apoptosis induced by a variety of factors. Regarding the mechanism by which BCL-2 prevents cell death, one theory suggests that it acts by protecting cells from oxidative stress. In the lens system, oxidative stress-induced apoptosis is implicated in cataractogenesis. To explore the possibility of anti-apoptotic gene therapy development for cataract prevention and also to further test the anti-oxidative stress theory of BCL-2 action, we have introduced the human bcl-2 gene into an immortalized rabbit lens epithelial cell line, N/N1003A. The stable expression clones of both vector- and bcl-2-transfected cells have been established. Treatment of the two cell lines with H(2)O(2) revealed that bcl-2-transfected cells were less capable of detoxifying H(2)O(2) than the control cells. Moreover, bcl-2-transfected cells are more susceptible to H(2)O(2)-induced apoptosis. To explore why bcl-2-transfected cells have reduced resistance to H(2)O(2)-induced apoptosis, we examined the expression patterns of several relevant genes and found that expression of the alphaB-crystallin gene was distinctly down-regulated in bcl-2-transfected cells compared with that in vector-transfected cells. This down-regulation was specific because a substantial inhibition of BCL-2 expression through antisense bcl-2 RNA significantly restored the level of alphaB-crystallin and, moreover, enhanced the ability of the bcl-2-transfected cells against H(2)O(2)-induced apoptosis. Introduction of a mouse alphaB-crystallin gene into bcl-2-transfected cells also counteracted the BCL-2 effects. Down-regulation of alphaB-crystallin gene was largely derived from changed lens epithelial cell-derived growth factor activity. Besides, alphaB-crystallin prevents apoptosis through interaction with procaspase-3 and partially processed procaspase-3 to prevent caspase-3 activation. Together, our results reveal that BCL-2 can regulate gene expression in rabbit lens epithelial cells. Through down-regulation of the alphaB-crystallin gene, BCL-2 attenuates the ability of rabbit lens epithelial cells against H(2)O(2)-induced apoptosis.
Collapse
Affiliation(s)
- Y W Mao
- Department of Molecular Biology, University of Medicine and Dentistry of New Jersey School of Osteopathic Medicine, Stratford, New Jersey 08084, USA
| | | | | | | | | | | |
Collapse
|
30
|
Takano S, Aramaki Y, Tsuchiya S. Lipoxygenase may be involved in cationic liposome-induced macrophage apoptosis. Biochem Biophys Res Commun 2001; 288:116-20. [PMID: 11594761 DOI: 10.1006/bbrc.2001.5731] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The purpose of this study was to determine the source of reactive oxygen species (ROS) generation and the contribution of ROS to the apoptosis of RAW264.7 cells induced by cationic liposomes. Cationic liposome-induced apoptosis was inhibited by lipoxygenase inhibitors, but not inhibitors of NADPH-oxidase, xanthine oxidase or cyclooxygenase. ROS generation induced by cationic liposomes was also inhibited by the lipoxygenase inhibitor NDGA. Furthermore, lipid peroxidation was observed following liposome treatment, but the apoptosis was not inhibited by the antioxidant alpha-tocopherol. These findings suggested that lipoxygenase is responsible for ROS generation, and ROS but not lipid peroxidation acts as a key mediator in the progress of apoptosis induced by cationic liposomes.
Collapse
Affiliation(s)
- S Takano
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | | | | |
Collapse
|
31
|
Aramaki Y, Takano S, Tsuchiya S. Cationic liposomes induce macrophage apoptosis through mitochondrial pathway. Arch Biochem Biophys 2001; 392:245-50. [PMID: 11488598 DOI: 10.1006/abbi.2001.2458] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To clarify the mechanism of apoptosis of the macrophage-like cell line RAW264.7 induced by cationic liposomes, we focused on the mitochondria and investigated the changes in mitochondrial membrane potential and the release of cytochrome c following treatment of cationic liposomes composed of stearylamine (SA-liposomes). SA-liposomes induced mitochondrial membrane depolarization and also the release of cytochrome c from mitochondria. Caspase-3 was also activated by SA-liposome treatment. Pretreatment of cells with N-acetylcysteine, a scavenger of reactive oxygen species (ROS), conferred resistance to the induction of the membrane depolarization, cytochrome c release, and caspase-3 activation by SA-liposomes. These results indicated that SA-liposomes caused the apoptosis in RAW264.7 cells through the mitochondrial pathway, and ROS generation was required for this phenomenon.
Collapse
Affiliation(s)
- Y Aramaki
- School of Pharmacy, Tokyo University of Pharmacy and Life Science, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| | | | | |
Collapse
|
32
|
Camps M, Boothroyd JC. Toxoplasma gondii: selective killing of extracellular parasites by oxidation using pyrrolidine dithiocarbamate. Exp Parasitol 2001; 98:206-14. [PMID: 11560413 DOI: 10.1006/expr.2001.4636] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Extracellular Toxoplasma parasites are sensitive to pyrrolidine dithiocarbamate (PDTC) at low micromolar concentrations. Loss of parasite viability following PDTC treatment is shown to be mediated by oxidation, which is reminiscent of PDTC killing in mammalian cells. Intracellular parasites, by contrast, are resistant to PDTC killing, although treatment does cause reversible growth arrest. In addition to the possible implications relative to the biology of the parasite, these observations suggest that PDTC could be of use in eliminating undesired extracellular parasites during assays and selections in vitro.
Collapse
Affiliation(s)
- M Camps
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305-5124, U.S.A
| | | |
Collapse
|
33
|
Mudipalli A, Li Z, Hromchak R, Bloch A. NF-kappaB (p65/RelA) as a regulator of TNFalpha-mediated ML-1 cell differentiation. Leukemia 2001; 15:808-13. [PMID: 11368442 DOI: 10.1038/sj.leu.2402083] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
ML-1 human myeloblastic leukemia cells, suspended in serum-depleted medium, proliferate when the insulin-like growth factor-1 (IGF-1) and transferrin (Tf) are supplied, but differentiate to monocytes when these factors are replaced by the tumor necrosis factor-alpha (TNF-alpha). Induction of differentiation, but not of proliferation, involved the selective activation of diverse members of the NF-kappaB family of proteins. In differentiation-induced cells, NF-kappaB (p65) was translocated from the cytoplasm to the nucleus, whereas NF-kappaB (p75) remained localized to the cytoplasm. In contrast, NF-kappaB (p52) was present in the nuclei of proliferation- as well as of differentiation-induced ML-1 cells. The differentiation-specific translocation of NF-kappaB (p65) from the cytoplasm to the nucleus was mediated by an increase in the level of NIK, the NF-kappaB-inducing kinase which, through phosphorylation of IkappaB kinase alpha (Ikappakalpha), causes a decrease in the level of IkappaBalpha, allowing p65 to move from the cytoplasm to the nucleus. The p52/p65 heterodimer formed in the nucleus, bound specifically to the promoter of the tumor suppressor protein p53, effecting a 25 to 30-fold increase in the level of this protein. As we reported previously (Li et al, Cancer Res 1998; 58: 4282-4287), that increase led to the decreased expression of proliferating cell nuclear antigen (PCNA) and to the loss of proliferation-associated DNA synthesis. The ensuing uncoupling of growth from differentiation was followed by the initiation of the monocyte-specific differentiation program.
Collapse
Affiliation(s)
- A Mudipalli
- Department of Molecular Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | | | | | |
Collapse
|
34
|
Ellerby LM, Bredesen DE. Measurement of cellular oxidation, reactive oxygen species, and antioxidant enzymes during apoptosis. Methods Enzymol 2001; 322:413-21. [PMID: 10914037 DOI: 10.1016/s0076-6879(00)22040-5] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- L M Ellerby
- Program on Aging, Buck Center for Research in Aging, Novato, California 94945, USA
| | | |
Collapse
|
35
|
Abstract
Free radicals are highly reactive molecules implicated in the pathology of traumatic brain injury and cerebral ischemia, through a mechanism known as oxidative stress. After brain injury, reactive oxygen and reactive nitrogen species may be generated through several different cellular pathways, including calcium activation of phospholipases, nitric oxide synthase, xanthine oxidase, the Fenton and Haber-Weiss reactions, by inflammatory cells. If cellular defense systems are weakened, increased production of free radicals will lead to oxidation of lipids, proteins, and nucleic acids, which may alter cellular function in a critical way. The study of each of these pathways may be complex and laborious since free radicals are extremely short-lived. Recently, genetic manipulation of wild-type animals has yielded species that over- or under-express genes such as, copper-zinc superoxide dismutase, manganese superoxide dismutase, nitric oxide synthase, and the Bcl-2 protein. The introduction of the species has improved the understanding of oxidative stress. We conclude here that substantial experimental data links oxidative stress with other pathogenic mechanisms such as excitotoxicity, calcium overload, mitochondrial cytochrome c release, caspase activation, and apoptosis in central nervous system (CNS) trauma and ischemia, and that utilization of genetically manipulated animals offers a unique possibility to elucidate the role of free radicals in CNS injury in a molecular fashion.
Collapse
Affiliation(s)
- A Lewén
- Department of Neurosurgery, Stanford University School of Medicine, Palo Alto, California 94305, USA
| | | | | |
Collapse
|
36
|
Lakics V, Medvedev AE, Okada S, Vogel SN. Inhibition of LPS-induced cytokines by Bcl-xL in a murine macrophage cell line. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2729-37. [PMID: 10946304 DOI: 10.4049/jimmunol.165.5.2729] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The antiapoptotic molecule Bcl-xL has been implicated in the differentiation and survival of activated macrophages in inflammatory conditions. In this report, the role of Bcl-xL in LPS-induced cytokine gene expression and secretion was studied. Bcl-xL-transfected RAW 264 macrophages were protected from gliotoxin-induced apoptosis, indicating the presence of functional Bcl-xL. Overexpression of Bcl-xL in this macrophage cell line was also associated with a marked inhibition of LPS-induced TNF-alpha, JE/monocyte chemoattractant protein 1, and macrophage inflammatory protein 2 secretion. Inhibition of LPS-induced cytokine secretion was paralleled by a decrease in levels of steady-state mRNA for the above cytokines and for IL-1beta. Decreased production of TNF-alpha in Bcl-xL transfectants was not due to increased mRNA degradation, as the mRNA half-lives were the same in Bcl-xL transfectants and control macrophages. Although the composition of NF-kappaB complexes detected by EMSA and supershift analysis in nuclear lysates derived from Bcl-xL transfectants and control cells was indistinguishable, LPS-induced inhibitory kappaBalpha degradation, as well as NF-kappaB binding and AP-1 activation, were slightly decreased by ectopic expression of Bcl-xL. More strikingly, LPS-induced phosphorylation of p38 mitogen-activated protein kinase and c-Jun N-terminal kinase was strongly repressed by Bcl-xL overexpression, offering a possible mechanism for the inhibition of LPS-induced cytokine production. These data provide the first evidence for a novel role for Bcl-xL as an anti-inflammatory mediator in macrophages.
Collapse
Affiliation(s)
- V Lakics
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | | | | | | |
Collapse
|
37
|
Abstract
The purpose of this review article is to discuss established molecular mechanisms of apoptosis and their relevance to cell death induced by environmental toxicants. Apoptosis is a highly regulated form of cell death distinguished by the activation of a family of cysteine-aspartate proteases (caspases) that cleave various proteins resulting in morphological and biochemical changes characteristic of this form of cell death. Abundant evidence supports a role for mitochondria in regulating apoptosis. Specifically, it seems that a number of death stimuli target these organelles and stimulate, by an unknown mechanism, the release of several proteins, including cytochrome c. Once released into the cytosol, cytochrome c binds to its adaptor molecule, Apaf-1, which oligomerizes and then activates pro-caspase-9. Caspase-9 can signal downstream and activate pro-caspase-3 and -7. The release of cytochrome c can be influenced by different Bcl-2 family member proteins, including, but not limited to, Bax, Bid, Bcl-2, and Bcl-X(L). Bax and Bid potentiate cytochrome c release, whereas Bcl-2 and Bcl-X(L) antagonize this event. Although toxicologists have traditionally associated cell death with necrosis, emerging evidence suggests that different types of environmental contaminants exert their toxicity, at least in part, by triggering apoptosis. The mechanism responsible for eliciting the pro-apoptotic effect of a given chemical is often unknown, although in many instances mitochondria appear to be key participants. This review describes our current understanding of the role of apoptosis in environmental toxicant-induced cell death, using dioxin, metals (cadmium and methylmercury), organotin compounds, dithiocarbamates, and benzene as specific examples. Finally, we conclude with a critical discussion of the current knowledge in this area and provide recommendations for future directions.
Collapse
Affiliation(s)
- J D Robertson
- Division of Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden.
| | | |
Collapse
|
38
|
Abstract
Apoptosis has been well established as a vital biological phenomenon that is important in the maintenance of cellular homeostasis. Three major protooncogene families and their encoded proteins function as mediators of apoptosis in various cell types and are the subject of this chapter. Protooncogenic proteins such as c-Myc/Max, c-Fos/c-Jun, and Bcl-2/Bax utilize a synergetic effect to enhance their roles in the pro- or antiapoptotic action. These family members activate and repress the expression of their target genes, control cell cycle progression, and execute programmed cell death. Repression or overproduction of these protooncogenic proteins induces apoptosis, which may vary as a result of either cell type specificity or the nature of the apoptotic stimuli. The proapoptotic and antiapoptotic proteins exert their effects in the membrane of cellular organelles. Here they generate cell-type-specific signals that activate the caspase family of proteases and their regulators for the execution of apoptosis.
Collapse
Affiliation(s)
- C S Teng
- Department of Anatomy, Physiological Sciences, and Radiology, North Carolina State University, Raleigh 27606, USA
| |
Collapse
|
39
|
Sonoda Y, Matsumoto Y, Funakoshi M, Yamamoto D, Hanks SK, Kasahara T. Anti-apoptotic role of focal adhesion kinase (FAK). Induction of inhibitor-of-apoptosis proteins and apoptosis suppression by the overexpression of FAK in a human leukemic cell line, HL-60. J Biol Chem 2000; 275:16309-15. [PMID: 10821872 DOI: 10.1074/jbc.275.21.16309] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Focal adhesion kinase (FAK) has an anti-apoptotic role in anchorage-dependent cells via an unknown mechanism. To elucidate the role of FAK in anti-apoptosis, we have established several FAK cDNA-transfected HL-60 cell lines and examined whether FAK-transfected cells have resistance to apoptotic stimuli. FAK-transfected HL-60 (HL-60/FAK) cells were highly resistant to apoptosis induced with hydrogen peroxide (1 mm) and etoposide (50 microg/ml) compared with the parental HL-60 cells or the vector-transfected cells, when determined using viability assay, DNA fragmentation, and flow cytometry analysis. Because no proteolytic cleavage of pro-caspase 3 to mature caspase 3 fragment was observed in HL-60/FAK cells, FAK was presumed to inhibit an upstream signal pathway leading to the activation of caspase 3. HL-60/FAK activated the phosphatidylinositide 3'-OH-kinase-Akt survival pathway and exhibited significant activation of NF-kappaB with marked induction of inhibitor-of-apoptosis proteins (IAPs: cIAP-1, cIAP-2, XIAP), regardless of the hydrogen peroxide-treated or untreated conditions, whereas no significant IAPs were detected in the parental or vector-transfected HL-60 cells. Apoptotic agents induced higher NF-kappaB activation in HL-60/FAK cells than in HL-60/Vect cells, and it appeared that sustained NF-kappaB activation is critical to the anti-apoptotic states in HL-60/FAK cells. Mutagenesis of FAK cDNA revealed that Y397 and Y925, which are involved in the tyrosine-phosphorylation sites, were prerequisite for the anti-apoptotic activity as well as induction of IAPs, and that K454, which is involved in the kinase activity, was also required for the full anti-apoptotic activity of FAK. Taken together, we have demonstrated definitively that FAK-transfected HL-60 cells, otherwise sensitive to apoptosis, become resistant to the apoptotic stimuli. We conclude that FAK activates the phosphatidylinositide 3'-OH-kinase-Akt survival pathway with the concomitant activation of NF-kB and induction of IAPs, which ultimately inhibit apoptosis by inhibiting caspase-3 cascade.
Collapse
Affiliation(s)
- Y Sonoda
- Department of Biochemistry, Kyoritsu College of Pharmacy, Shibakoen 1-5-30, Minato-ku, Tokyo, 105-8512, Japan
| | | | | | | | | | | |
Collapse
|
40
|
Segal BH, Leto TL, Gallin JI, Malech HL, Holland SM. Genetic, biochemical, and clinical features of chronic granulomatous disease. Medicine (Baltimore) 2000; 79:170-200. [PMID: 10844936 DOI: 10.1097/00005792-200005000-00004] [Citation(s) in RCA: 611] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The reduced nicotinamide dinucleotide phosphate (NADPH) oxidase complex allows phagocytes to rapidly convert O2 to superoxide anion which then generates other antimicrobial reactive oxygen intermediates, such as H2O2, hydroxyl anion, and peroxynitrite anion. Chronic granulomatous disease (CGD) results from a defect in any of the 4 subunits of the NADPH oxidase and is characterized by recurrent life-threatening bacterial and fungal infections and abnormal tissue granuloma formation. Activation of the NADPH oxidase requires translocation of the cytosolic subunits p47phox (phagocyte oxidase), p67phox, and the low molecular weight GT-Pase Rac, to the membrane-bound flavocytochrome, a heterodimer composed of the heavy chain gp91phox and the light chain p22phox. This complex transfers electrons from NADPH on the cytoplasmic side to O2 on the vacuolar or extracellular side, thereby generating superoxide anion. Activation of the NADPH oxidase requires complex rearrangements between the protein subunits, which are in part mediated by noncovalent binding between src-homology 3 domains (SH3 domains) and proline-rich motifs. Outpatient management of CGD patients relies on the use of prophylactic antibiotics and interferon-gamma. When infection is suspected, aggressive effort to obtain culture material is required. Treatment of infections involves prolonged use of systemic antibiotics, surgical debridement when feasible, and, in severe infections, use of granulocyte transfusions. Mouse knockout models of CGD have been created in which to examine aspects of pathophysiology and therapy. Gene therapy and bone marrow transplantation trials in CGD patients are ongoing and show great promise.
Collapse
Affiliation(s)
- B H Segal
- Laboratory of Host Defenses, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | |
Collapse
|
41
|
Cheung NS, Beart PM, Pascoe CJ, John CA, Bernard O. Human Bcl-2 protects against AMPA receptor-mediated apoptosis. J Neurochem 2000; 74:1613-20. [PMID: 10737619 DOI: 10.1046/j.1471-4159.2000.0741613.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Dysfunctions of the (S)-alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) subtype of ionotropic receptor for the brain's major excitatory neurotransmitter, L-glutamate, occur in various neurological conditions. We have previously demonstrated that AMPA receptor-mediated excitotoxicity occurs by apoptosis and here examined the influence of the expression of cell death repressor gene Bcl-2 on this excitotoxic insult. Using neuronal cortical cultures prepared from transgenic mice expressing the human Bcl-2 gene, the influence of Bcl-2 on AMPA receptor-mediated neuronal death was compared with that seen with staurosporine and H2O2. At day 6 cultures were exposed to AMPA (0.1-100 microM), and cellular injury was analyzed 48 h after insult using phase-contrast microscopy, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide viability assay, and DNA staining with 4,6-diamidino-2-phenylindole and Sytox Green. AMPA produced a concentration-dependent increase in cell death that was significantly attenuated by human Bcl-2. AMPA (3 microM) increased the number of apoptotic nuclei to 60% of control in wild-type cultures, and human Bcl-2 significantly decreased the number of apoptotic nuclei to 30% of AMPA-treated cultures. Human Bcl-2 only provided significant neuroprotection against neuronal injury induced by low concentrations of staurosporine (1-10 nM) and H2O2 (0.1-30 microM) and where neuronal death was by apoptosis, but not against H2O2-induced necrosis. Our findings indicate that overexpression of Bcl-2 in primary cultured neurons protects in an insult-dependent manner against AMPA receptor-mediated apoptosis, whereas protection was not seen against more traumatic insults. This study provides new insights into the molecular therapeutics of neurodegenerative conditions.
Collapse
Affiliation(s)
- N S Cheung
- Department of Pharmacology, Monash University, Clayton, Victoria, Australia
| | | | | | | | | |
Collapse
|
42
|
Sung JY, Hong JH, Kang HS, Choi I, Lim SD, Lee JK, Seok JH, Lee JH, Hur GM. Methotrexate suppresses the interleukin-6 induced generation of reactive oxygen species in the synoviocytes of rheumatoid arthritis. IMMUNOPHARMACOLOGY 2000; 47:35-44. [PMID: 10708808 DOI: 10.1016/s0162-3109(99)00185-x] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Various cytokines and reactive oxygen species (ROS) play a fundamental role in the inflammatory and immunologic processes of rheumatoid arthritis (RA). Methotrexate (MTX) is one of the disease-modifying anti-rheumatic drugs and its effect may be partly due to the modulation of immunologic or inflammatory reactions by some cytokines. In the present study, we investigated the effects of MTX on the gene expression and synthesis of interleukin-6 (IL-6), and the proliferative activity and the production of ROS in the fibroblast-like synoviocytes (FLSs) obtained from the patient of RA. The expression or production of IL-6 was induced spontaneously, and augmented by the addition of recombinant human IL-6 or recombinant human IL-1 beta and TNF-alpha in FLSs. These spontaneous and augmented IL-6 expressions or productions were suppressed by treatment with low-concentration of MTX (1 microg/ml). Also, IL-6 stimulated the proliferation of FLSs, and this IL-6 driven proliferation was inhibited with the treatment of MTX or N-acetylcysteine (NAC, 1 mM). Furthermore, ROS production in FLSs was increased significantly by IL-6, and its effect was also abrogated in the presence of MTX or NAC. These results suggest that inflammatory reaction in the synovium of RA patients could be augmented by the autocrine or other cytokine-induced production of IL-6 with subsequent generation of ROS in the synoviocytes, and the modulations of IL-6 synthesis and ROS production may contribute to the therapeutic effects of MTX for RA.
Collapse
Affiliation(s)
- J Y Sung
- Department of Pharmacology, College of Medicine, Chungnam National University, Taejon, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Schor NF, Rudin CM, Hartman AR, Thompson CB, Tyurina YY, Kagan VE. Cell line dependence of Bcl-2-induced alteration of glutathione handling. Oncogene 2000; 19:472-6. [PMID: 10656697 DOI: 10.1038/sj.onc.1203324] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Bcl-2 has been associated with both oxidative and antioxidative effects in vivo. Moreover, despite evidence that Bcl-2 is antiapoptotic by virtue of its effect on reactive oxygen species and their scavengers, Bcl-2 exerts its antiapoptotic effects even under anaerobic conditions. The reasons for the variable relationship between Bcl-2 and reactive oxygen species are not clear. The present studies demonstrate that the impact of Bcl-2 on glutathione (GSH) metabolism is cell line-dependent. Bcl-2 overproduction in PC12 cells is associated with increased functional thiol reserves, increased reductive activation of chemotherapeutic prodrugs, and GSH accumulation after treatment with N-acetylcysteine. In contrast, Bcl-2-overproducing MCF-7 breast cancer cells demonstrate neither altered GSH handling nor potentiation of chemotherapeutic prodrug reduction. These findings indicate that the effects of Bcl-2 on GSH handling are millieu-dependent. This could account for the variable effects of Bcl-2 in in vivo systems. Furthermore, since our previous studies have demonstrated that reduction-dependent prodrugs may be useful chemotherapeutic agents against tumors that demonstrate altered GSH handling, screening in vitro for alteration of GSH handling may predict responsiveness of such tumors to these reduction-dependent agents.
Collapse
Affiliation(s)
- N F Schor
- Department of Pediatrics, University of Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
44
|
Chung KC, Park JH, Kim CH, Lee HW, Sato N, Uchiyama Y, Ahn YS. Novel biphasic effect of pyrrolidine dithiocarbamate on neuronal cell viability is mediated by the differential regulation of intracellular zinc and copper ion levels, NF-?b, and MAP kinases. J Neurosci Res 2000. [DOI: 10.1002/(sici)1097-4547(20000101)59:1<117::aid-jnr14>3.0.co;2-q] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Fujii S, Yoshimura T. Detection and imaging of endogenously produced nitric oxide with electron paramagnetic resonance spectroscopy. Antioxid Redox Signal 2000; 2:879-901. [PMID: 11213490 DOI: 10.1089/ars.2000.2.4-879] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Nitric oxide (NO) represents a new paradigm for second messengers in regulation. Despite the numerous physiological and pathophysiological functions of NO, its importance as an endogenous second messenger and a cytostatic and/or cytotoxic agent was unknown until 1987. Recent developments in detection methods for endogenous NO produced directly or indirectly from NO synthases (NOSs) have enabled major advances in our understanding of the role of NO in biological systems. The spin-trapping technique combined with electron paramagnetic resonance (EPR) spectroscopy is a method for analyzing NO production directly both in vivo and in vitro. Iron complexes with dithiocarbamate derivatives are noteworthy among the spin-trapping reagents for NO because NO has a high affinity for iron complexes. The resultant stable nitrosyl iron complexes exhibit an intense three-line signal at room temperature and an axial signal at low temperature. Besides the facility and wide applicability of this method, its outstanding feature is that noninvasive in vivo measurements are available by using a low-frequency EPR spectrometer. In this article, we review on previous and recent developments of in vitro, in vivo, and ex vivo EPR detection and imaging of endogenously produced NO.
Collapse
Affiliation(s)
- S Fujii
- Institute for Life Support Technology, Yamagata Public Corporation for the Development of Industry, Yamagata 990-2473, Japan
| | | |
Collapse
|
46
|
Fernandez PC, Machado J, Heussler VT, Botteron C, Palmer GH, Dobbelaere DA. The inhibition of NF-kappaB activation pathways and the induction of apoptosis by dithiocarbamates in T cells are blocked by the glutathione precursor N-acetyl-L-cysteine. Biol Chem 1999; 380:1383-94. [PMID: 10661865 DOI: 10.1515/bc.1999.178] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Nuclear factor-kappaB regulates genes that control immune and inflammatory responses and are involved in the pathogenesis of several diseases, including AIDS and cancer. It has been proposed that reactive oxygen intermediates participate in NF-kappaB activation pathways, and compounds with putative antioxidant activity such as N-acetyl-L-cysteine (NAC) and pyrrolidine dithiocarbamate (PDTC) have been used interchangeably to demonstrate this point. We examined their effects, separately and combined, on different stages of the NF-kappaB activation pathway, in primary and in transformed T cells. We show that NAC, contrary to its reported role as an NF-kappaB inhibitor, can actually enhance rather than inhibit IkappaB degradation and, most importantly, show that in all cases NAC exerts a dominant antagonistic effect on PDTC-mediated NF-kappaB inhibition. This was observed at the level of IkappaB degradation, NF-kappaB DNA binding, and HIV-LTR-driven reporter gene expression. NAC also counteracted growth arrest and apoptosis induced by dithiocarbamates. Antagonistic effects were further observed at the level of jun-NH2-terminal kinase, p38 and ATF-2 activation. Our findings argue against the widely accepted assumption that NAC inhibits all NF-kappaB activation pathways and shows that two compounds, previously thought to function through a common inhibitory mechanism, can also have antagonistic effects.
Collapse
Affiliation(s)
- P C Fernandez
- Laboratory of Molecular Pathology, Institute of Animal Pathology, University of Berne, Switzerland
| | | | | | | | | | | |
Collapse
|
47
|
Nomura K, Imai H, Koumura T, Arai M, Nakagawa Y. Mitochondrial phospholipid hydroperoxide glutathione peroxidase suppresses apoptosis mediated by a mitochondrial death pathway. J Biol Chem 1999; 274:29294-302. [PMID: 10506188 DOI: 10.1074/jbc.274.41.29294] [Citation(s) in RCA: 215] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phospholipid hydroperoxide glutathione peroxidase (PHGPx) is a key enzyme in the protection of biomembranes exposed to oxidative stress. We investigated the role of mitochondrial PHGPx in apoptosis using RBL2H3 cells that overexpressed mitochondrial PHGPx (M15 cells), cells that overexpressed non-mitochondrial PHGPx (L9 cells), and control cells (S1 cells). The morphological changes and fragmentation of DNA associated with apoptosis occurred within 15 h in S1 and L9 cells upon exposure of cells to 2-deoxyglucose (2DG). The release of cytochrome c from mitochondria was observed in S1 cells after 4 h and was followed by the activation of caspase-3 within 6 h. Overexpression of mitochondrial PHGPx prevented the release of cytochrome c, the activation of caspase-3, and apoptosis, but non-mitochondrial PHGPx lacked the ability to prevent the induction of apoptosis by 2DG. An ability to protect cells from 2DG-induced apoptosis was abolished when the PHGPx activity of M15 cells was inhibited by diethylmalate, indicating that the resistance of M15 cells to apoptosis was indeed due to the overexpression of PHGPx in the mitochondria. The expression of members of the Bcl-2 family of proteins, such as Bcl-2, Bcl-xL, Bax, and Bad, was unchanged by the overexpression of PHGPx in cells. The levels of hydroperoxides, including hydrogen and lipid peroxide, in mitochondria isolated from S1 and L9 cells were significantly increased after the exposure to 2DG for 2 h, while the level of hydroperoxide in mitochondria isolated from M15 cells was lower than that in S1 and L9 cells. M15 cells were also resistant to apoptosis induced by etoposide, staurosporine, UV irradiation, cycloheximide, and actinomycin D, but not to apoptosis induced by Fas-specific antibodies, which induces apoptosis via a pathway distinct from the pathway initiated by 2DG. Our results suggest that hydroperoxide, produced in mitochondria, is a major factor in apoptosis and that mitochondrial PHGPx might play a critical role as an anti-apoptotic agent in mitochondrial death pathways.
Collapse
Affiliation(s)
- K Nomura
- School of Pharmaceutical Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo 108, Japan
| | | | | | | | | |
Collapse
|
48
|
Kiningham KK, Oberley TD, Lin S, Mattingly CA, St Clair DK. Overexpression of manganese superoxide dismutase protects against mitochondrial-initiated poly(ADP-ribose) polymerase-mediated cell death. FASEB J 1999; 13:1601-10. [PMID: 10463952 DOI: 10.1096/fasebj.13.12.1601] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Mitochondria have recently been shown to serve a central role in programmed cell death. In addition, reactive oxygen species (ROS) have been implicated in cell death pathways upon treatment with a variety of agents; however, the specific cellular source of the ROS generation is unknown. We hypothesize that mitochondria-derived free radicals play a critical role in apoptotic cell death. To directly test this hypothesis, we treated murine fibrosarcoma cell lines, which expressed a range of mitochondrial manganese superoxide dismutase (MnSOD) activities, with respiratory chain inhibitors. Apoptosis was confirmed by DNA fragmentation analysis and electron microscopy. MnSOD overexpression specifically protected against cell death upon treatment with rotenone or antimycin. We examined bcl-x(L), p53 and poly(ADP-ribose) polymerase (PARP) to identify specific cellular pathways that might contribute to the mitochondrial-initiated ROS-mediated cell death. Cells overexpressing MnSOD contained less bcl-x(L) within the mitochondria compared to control (NEO) cells, therefore excluding the role of bcl-x(L). p53 was undetectable by Western analysis and examination of the proapoptotic protein bax, a p53 target gene, did not increase with treatment. Activation of caspase-3 (CPP-32) occurred in the NEO cells independent of cytochrome c release from the mitochondria. PARP, a target protein of CPP-32 activity, was cleaved to a 64 kDa fragment in the NEO cells prior to generation of nucleosomal fragments. Taken together, these findings suggest that mitochondrial-mediated ROS generation is a key event by which inhibition of respiration causes cell death, and identifies CPP-32 and the PARP-linked pathway as targets of mitochondrial-derived ROS-induced cell death.
Collapse
Affiliation(s)
- K K Kiningham
- Graduate Center for Toxicology, University of Kentucky, Lexington, Kentucky 40536, USA
| | | | | | | | | |
Collapse
|
49
|
Schor NF, Tyurina YY, Tyurin VA, Kagan VE. Differential membrane antioxidant effects of immediate and long-term estradiol treatment of MCF-7 breast cancer cells. Biochem Biophys Res Commun 1999; 260:410-5. [PMID: 10403783 DOI: 10.1006/bbrc.1999.0937] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previous studies have documented the direct antioxidant effects of estradiol, and it is tempting to ascribe the antiapoptosis effects of estradiol to its scavenging of reactive oxygen species. However, recent reports have also demonstrated that long-term exposure of MCF-7 human breast cancer cells to estradiol results in estrogen receptor- and estradiol dose-dependent overexpression of the antiapoptosis gene, bcl-2. We have used the pattern of protection of membrane phospholipids from oxidation as a probe to separate these direct and indirect effects of estradiol from one another. Immediate exposure to estradiol non-specifically protects all membrane phospholipids from oxidation by the diazo radical initiator, AMVN. This implies the direct antioxidant activity of estradiol in this system. In contrast, long-term exposure, with associated increased expression of bcl-2, protects only phosphatidylserine, the oxidation of which is a critical component of the final common pathway for apoptosis. This bcl-2-mediated indirect effect of estradiol is accompanied by prevention of apoptosis in MCF-7 cells.
Collapse
Affiliation(s)
- N F Schor
- School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213, USA
| | | | | | | |
Collapse
|
50
|
Affiliation(s)
- S Horowitz
- Jewish Hospital Heart and Lung Institute, Louisville, KY 40202, USA.
| |
Collapse
|