1
|
Gao Y, Lu J, Wang Z, Sun N, Wu B, Han X, Liu Y, Yu R, Xu Y, Han X, Miao J. L-arginine attenuates Streptococcus uberis-induced inflammation by decreasing miR155 level. Int Immunopharmacol 2024; 130:111638. [PMID: 38373387 DOI: 10.1016/j.intimp.2024.111638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/27/2024] [Accepted: 01/30/2024] [Indexed: 02/21/2024]
Abstract
L-arginine, as an essential substance of the immune system, plays a vital role in innate immunity. MiR155, a multi-functional microRNA, has gained importance as a regulator of homeostasis in immune cells. However, the immunoregulatory mechanism between L-arginine and miR155 in bacterial infections is unknown. Here, we investigated the potential role of miR155 in inflammation and the molecular regulatory mechanisms of L-arginine in Streptococcus uberis (S. uberis) infections. And we observed that miR155 was up-regulated after infection, accompanying the depletion of L-arginine, leading to metabolic disorders of amino acids and severe tissue damage. Mechanically, the upregulated miR155 mediated by the p65 protein played a pro-inflammatory role by suppressing the suppressor of cytokine signaling 6 (SOCS6)-mediated p65 ubiquitination and degradation. This culminated in a violently inflammatory response and tissue damage. Interestingly, a significant anti-inflammatory effect was revealed in L-arginine supplementation by reducing miR155 production via inhibiting p65. This work firstly uncovers the pro-inflammatory role of miR155 and an anti-inflammatory mechanism of L-arginine in S.uberis infection with a mouse mastitis model. Collectively, we provide new insights and strategies for the prevention and control of this important pathogen, which is of great significance for ensuring human food health and safety.
Collapse
Affiliation(s)
- Yabing Gao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinye Lu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Zhenglei Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Naiyan Sun
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Binfeng Wu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xinru Han
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Yuzhen Liu
- Jiangsu Agri-animal Husbandry Vocational College, Taizhou 225300, China
| | - Rui Yu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanyuan Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China
| | - Jinfeng Miao
- MOE Joint International Research Laboratory of Animal Health and Food Safety, Key Laboratory of Animal Physiology & Biochemistry, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
2
|
Wang L, Zhang Q, Zhang Y, Zheng G, Wang K, Wu Z, Zhang J, Jia W, Zhang G. Insufficiency of plasmatic arginine/homoarginine during the initial postoperative phase among patients with tumors affecting the medulla oblongata heightens the likelihood of neurogenic pulmonary oedema following surgery. Int J Surg 2024; 110:1475-1483. [PMID: 38079589 PMCID: PMC10942246 DOI: 10.1097/js9.0000000000000957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 11/20/2023] [Indexed: 03/16/2024]
Abstract
BACKGROUND This prospective clinical study aims to investigate the fluctuations of neurotransmitters in peripheral venous blood during the perioperative period and to identify independent predictors for postoperative neurogenic pulmonary oedema (NPE) in patients with medulla oblongata-involved tumours. MATERIALS AND METHODS Peripheral venous blood samples of the enroled patients at seven perioperative time points, as well as their medical records and radiologic data were collected. High-performance liquid chromatography-tandem mass spectrometry was utilized to detect the concentrations of 39 neurotransmitters in these samples. The study applied univariate and multivariate generalized estimating equation (GEE) logistic regression analyses to explore independent predictors of postoperative NPE, and one-way repeated-measures ANOVA to compare the concentrations of the same neurotransmitter at different perioperative time points. RESULTS The study included 36 patients with medulla oblongata-involved tumours from January to December 2019, and found that 13.9% of them experienced postoperative NPE. The absence of intraoperative use of sevoflurane ( P =0.008), decreased concentrations of arginine ( P =0.026) and homoarginine ( P =0.030), and prolonged postoperative tracheal extubation ( P <0.001) were identified as independent risk factors for postoperative NPE in medulla oblongata-involved tumour patients. Pairwise comparison analysis revealed that the perioperative decreases in arginine and homoarginine concentrations mainly occurred within the postoperative 8 h. CONCLUSION This study demonstrates that NPE is not uncommon in patients with medulla oblongata-involved tumours. The absence of intraoperative use of sevoflurane, decreased concentrations of plasmatic arginine and homoarginine, and prolonged postoperative tracheal extubation are independent predictors of postoperative NPE. These two neurotransmitters' concentrations dropped mainly within the early postoperative hours and could serve as potential early warning indicators of postoperative NPE in clinical practice.
Collapse
Affiliation(s)
- Liang Wang
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases
- Center of Brain Tumor, Beijing Institute for Brain Disorders
- Beijing Key Laboratory of Brain Tumor, Beijing, People’s Republic of China
| | - Qing Zhang
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases
- Center of Brain Tumor, Beijing Institute for Brain Disorders
- Beijing Key Laboratory of Brain Tumor, Beijing, People’s Republic of China
| | - Yuan Zhang
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases
- Center of Brain Tumor, Beijing Institute for Brain Disorders
- Beijing Key Laboratory of Brain Tumor, Beijing, People’s Republic of China
| | - Guanghui Zheng
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University
| | - Ke Wang
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases
- Center of Brain Tumor, Beijing Institute for Brain Disorders
- Beijing Key Laboratory of Brain Tumor, Beijing, People’s Republic of China
| | - Zhen Wu
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases
- Center of Brain Tumor, Beijing Institute for Brain Disorders
- Beijing Key Laboratory of Brain Tumor, Beijing, People’s Republic of China
| | - Junting Zhang
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases
- Center of Brain Tumor, Beijing Institute for Brain Disorders
- Beijing Key Laboratory of Brain Tumor, Beijing, People’s Republic of China
| | - Wang Jia
- Department of Neurosurgery
- China National Clinical Research Center for Neurological Diseases
- Center of Brain Tumor, Beijing Institute for Brain Disorders
- Beijing Key Laboratory of Brain Tumor, Beijing, People’s Republic of China
| | - Guojun Zhang
- Laboratory Diagnosis Center, Beijing Tiantan Hospital, Capital Medical University
| |
Collapse
|
3
|
Li M, Wang S, Kang L, Xu F, Lan X, He M, Jin K, Xia Y. Arginine metabolism governs microcycle conidiation by changing nitric oxide content in Metarhizium acridum. Appl Microbiol Biotechnol 2023; 107:1257-1268. [PMID: 36640205 DOI: 10.1007/s00253-022-12355-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023]
Abstract
Microcycle conidiation commonly exists in filamentous fungi and has great potential for mass production of mycoinsecticides. L-Arginine metabolism is essential for conidiation and conditional growth and virulence, but its role in microcycle conidiation has not been explored. Here, a unique putative arginase (MaAGA) was characterized in the entomopathogenic fungus Metarhizium acridum. Conidial germination and thermotolerance were facilitated by the disruption of MaAGA. Despite little impact on fungal growth and virulence, the disruption resulted in normal conidiation after a 60-h incubation on microcycle conidiation medium (SYA) under normal culture conditions. In the MaAGA-disruption mutant (ΔMaAGA), intracellular arginine accumulation was sharply increased. Replenishment of the direct metabolites of arginase, namely ornithine and/or urea, was unable to restore the disruption mutant's microcycle conidiation on SYA. Interestingly, nitric oxide synthase (NOS) activity and nitric oxide (NO) levels of the ΔMaAGA strain were markedly decreased in the 60-h-old SYA cultures. Finally, adding Nω-nitro-L-arginine, an inhibitor of NOS, into the SYA converted the microcycle conidiation of the wild-type strain to normal conidiation. In contrast, adding sodium nitroprusside, an NO donor, into the SYA recovered the mutant's microcycle conidiation. The results indicate that arginine metabolism controls microcycle conidiation by changing the content of NO. KEY POINTS: • The MaAGA-disruption led to normal conidiation on microcycle conidiation medium SYA. • Nitric oxide (NO) level of the ΔMaAGA strain was markedly decreased. • Adding an NO donor into the SYA recovered the microcycle conidiation of ΔMaAGA.
Collapse
Affiliation(s)
- Mengfei Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Shuqin Wang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Luhong Kang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Fei Xu
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Xia Lan
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Min He
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China.,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China.,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China
| | - Kai Jin
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China.
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 401331, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 401331, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, 401331, Chongqing, People's Republic of China.
| |
Collapse
|
4
|
Momma TY, Ottaviani JI. There is no direct competition between arginase and nitric oxide synthase for the common substrate l-arginine. Nitric Oxide 2022; 129:16-24. [PMID: 36126859 DOI: 10.1016/j.niox.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/08/2022] [Accepted: 09/10/2022] [Indexed: 11/19/2022]
Abstract
AIMS Extrahepatic arginases are postulated to be involved in cardiovascular-related pathologies by competing with nitric oxide synthase (NOS) for the common substrate l-arginine, subsequently decreasing nitric oxide production. However, previous models used to study arginase and NOS competition did not account for steady state level of l-arginine pool, which is dependent on conditions of l-arginine supply and utilization pathways. This work aimed at revisiting the concept of NOS and arginase competition while considering different conditions of l-arginine supply and l-arginine utilization pathways. METHODS AND RESULTS Mouse macrophage-like RAW cells and human vascular endothelial cells co-expressing NOS and arginase were used to reevaluate the concept of substrate competition between arginase and NOS under conditions of l-arginine supply that mimicked either a continuous (similar to in vivo conditions) or a limited supply (similar to previous in vitro models). Enzyme kinetics simulation models were used to gain mechanistic insight and to evaluate the tenability of a substrate competition between the two enzymes. In addition to arginase and NOS, other l-arginine pathways such as transporters and utilization towards protein synthesis were considered to understand the intricacies of l-arginine metabolism. Our results indicate that when there is a continuous supply of l-arginine, as is the case for most cells in vivo, arginase does not affect NOS activity by a substrate competition. Furthermore, we demonstrate that l-arginine pathways such as transporters and protein synthesis are more likely to affect NOS activity than arginase. CONCLUSIONS Arginase does not outcompete NOS for the common substrate l-arginine. Findings from this study should be considered to better understand the role of arginase in certain pathologies and for the interpretation of in vivo studies with arginase inhibitors.
Collapse
Affiliation(s)
- Tony Y Momma
- College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA.
| | - Javier I Ottaviani
- College of Agricultural and Environmental Sciences, University of California, Davis, CA, 95616, USA; Mars Inc., McLean, VA, 22101, USA
| |
Collapse
|
5
|
Gilinsky MA, Polityko YK, Markel AL. Arginine Metabolism in Hypertensive Rats under Arginase Inhibition by Norvaline. J EVOL BIOCHEM PHYS+ 2021. [DOI: 10.1134/s0022093021040189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Pourbagher-Shahri AM, Farkhondeh T, Talebi M, Kopustinskiene DM, Samarghandian S, Bernatoniene J. An Overview of NO Signaling Pathways in Aging. Molecules 2021; 26:4533. [PMID: 34361685 PMCID: PMC8348219 DOI: 10.3390/molecules26154533] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/23/2021] [Accepted: 07/23/2021] [Indexed: 12/13/2022] Open
Abstract
Nitric Oxide (NO) is a potent signaling molecule involved in the regulation of various cellular mechanisms and pathways under normal and pathological conditions. NO production, its effects, and its efficacy, are extremely sensitive to aging-related changes in the cells. Herein, we review the mechanisms of NO signaling in the cardiovascular system, central nervous system (CNS), reproduction system, as well as its effects on skin, kidneys, thyroid, muscles, and on the immune system during aging. The aging-related decline in NO levels and bioavailability is also discussed in this review. The decreased NO production by endothelial nitric oxide synthase (eNOS) was revealed in the aged cardiovascular system. In the CNS, the decline of the neuronal (n)NOS production of NO was related to the impairment of memory, sleep, and cognition. NO played an important role in the aging of oocytes and aged-induced erectile dysfunction. Aging downregulated NO signaling pathways in endothelial cells resulting in skin, kidney, thyroid, and muscle disorders. Putative therapeutic agents (natural/synthetic) affecting NO signaling mechanisms in the aging process are discussed in the present study. In summary, all of the studies reviewed demonstrate that NO plays a crucial role in the cellular aging processes.
Collapse
Affiliation(s)
- Ali Mohammad Pourbagher-Shahri
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand 9717853577, Iran;
| | - Tahereh Farkhondeh
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand 9717853577, Iran;
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand 9717853577, Iran
| | - Marjan Talebi
- Department of Pharmacognosy and Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 1991953381, Iran;
| | - Dalia M. Kopustinskiene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, LT-50161 Kaunas, Lithuania;
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur 9318614139, Iran
| | - Jurga Bernatoniene
- Institute of Pharmaceutical Technologies, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, LT-50161 Kaunas, Lithuania;
- Department of Drug Technology and Social Pharmacy, Faculty of Pharmacy, Medical Academy, Lithuanian University of Health Sciences, Sukileliu Pr. 13, LT-50161 Kaunas, Lithuania
| |
Collapse
|
7
|
Yang X, Han X, Zhang Y, Liu J, Tang J, Zhang D, Zhao Y, Ye Y. Imaging Hg 2+-Induced Oxidative Stress by NIR Molecular Probe with "Dual-Key-and-Lock" Strategy. Anal Chem 2020; 92:12002-12009. [PMID: 32786484 DOI: 10.1021/acs.analchem.0c02509] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Mercury (Hg) is considered an extremely toxic heavy metal which is extremely harmful to both the human body and environment. In addition, Hg2+-induced oxidative stress also exerts a crucial role to play in pathophysiological mechanisms of mercury toxicity. Thus, efficient and specific fluorescent probes for imaging Hg2+-induced oxidative stress are necessary. In the present study, we rationally design a novel Hg2+-activated and ICT-based NIR emission fluorescent probe NIR-HO for sequentially monitoring the ONOO- level with a "dual-key-and-lock" strategy. The probe NIR-HO showed rapid response and excellent specificity and sensitivity for the detection of Hg2+ and ONOO- in vitro. Cell imaging demonstrated that Hg2+-induced oxidative stress was involved in ONOO- upregulation. Also, GSH, NAC, and EDTA were employed as excellent detoxifying drugs against Hg2+-induced toxicity. Moreover, the probe NIR-HO was successfully used for imaging Hg2+ and ONOO- in vivo. In brief, NIR-HO provides a simple and powerful approach which can be used to image Hg2+-induced oxidative stress in the pathological environment.
Collapse
Affiliation(s)
- Xiaopeng Yang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaojing Han
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Yongru Zhang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jianfei Liu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Jun Tang
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Di Zhang
- Institute of Agricultural Quality Standards and Testing Technology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Yufen Zhao
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China.,Institute Drug Discovery Technology, Ningbo University, Ningbo 315211, Zhejiang China
| | - Yong Ye
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
8
|
Zheng X, Fernando V, Sharma V, Walia Y, Letson J, Furuta S. Correction of arginine metabolism with sepiapterin-the precursor of nitric oxide synthase cofactor BH 4-induces immunostimulatory-shift of breast cancer. Biochem Pharmacol 2020; 176:113887. [PMID: 32112882 PMCID: PMC7842273 DOI: 10.1016/j.bcp.2020.113887] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 02/24/2020] [Indexed: 02/07/2023]
Abstract
Immunotherapy is a first-line treatment for many tumor types. However, most breast tumors are immuno-suppressive and only modestly respond to immunotherapy. We hypothesized that correcting arginine metabolism might improve the immunogenicity of breast tumors. We tested whether supplementing sepiapterin, the precursor of tetrahydrobiopterin (BH4)-the nitric oxide synthase (NOS) cofactor-redirects arginine metabolism from the pathway synthesizing polyamines to that of synthesizing nitric oxide (NO) and make breast tumors more immunogenic. We showed that sepiapterin elevated NO but lowered polyamine levels in tumor cells, as well as in tumor-associated macrophages (TAMs). This not only suppressed tumor cell proliferation, but also induced the conversion of TAMs from the immuno-suppressive M2-type to immuno-stimulatory M1-type. Furthermore, sepiapterin abrogated the expression of a checkpoint ligand, PD-L1, in tumors in a STAT3-dependent manner. This is the first study which reveals that supplementing sepiapterin normalizes arginine metabolism, improves the immunogenicity and inhibits the growth of breast tumor cells.
Collapse
Affiliation(s)
- Xunzhen Zheng
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Veani Fernando
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Vandana Sharma
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Yashna Walia
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Joshua Letson
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA
| | - Saori Furuta
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo Health Science Campus, 3000 Arlington Ave., Toledo, OH 43614, USA.
| |
Collapse
|
9
|
Zhang W, Liu J, Li P, Wang X, Bi S, Zhang J, Zhang W, Wang H, Tang B. In situ and real-time imaging of superoxide anion and peroxynitrite elucidating arginase 1 nitration aggravating hepatic ischemia-reperfusion injury. Biomaterials 2019; 225:119499. [PMID: 31561087 DOI: 10.1016/j.biomaterials.2019.119499] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/26/2019] [Accepted: 09/15/2019] [Indexed: 02/02/2023]
Abstract
Hepatic ischemia-reperfusion (IR) injury is dynamically regulated by intertwined superoxide anion (O2-)-peroxynitrite (ONOO-) cascaded molecules. Arginase 1 involves in O2-/ONOO- fluctuations and is strongly connected to IR injury. A few probes have been innovated to measure intracellular O2- or ONOO- by fluorescent imaging separately, but revealing the definite link of O2-, ONOO- and arginase 1 in situ remains unidentified in hepatic IR. Thus, a well-designed dual-color two-photon fluorescence probe (CyCA) was created for the in situ real-time detection of O2--ONOO-. Surprisingly, CyCA exhibited a suitable combination of high specificity, preeminent sensitivity, exclusive mitochondria-targeting and fast-response. On the basis of remarkable advantages, we successfully applied CyCA to visualize endogenous O2- and ONOO- in living cells and mice. The synergistic elevation of mitochondrial O2--ONOO- in IR mice was observed for the first time. Furthermore, three tyrosine nitration-sites in arginase 1 caused by ONOO- were identified in proteomic analysis, which was never reported previously. Attractively, nitro-modified arginase 1 could further promote ONOO- formation, ultimately exacerbating the intracellular redox imbalance and IR injury. These new findings decipher direct molecular links of O2--ONOO--arginase 1, and suggest effective strategies for the prevention and treatment of IR injury.
Collapse
Affiliation(s)
- Wen Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Jihong Liu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Ping Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China.
| | - Xin Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Simin Bi
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Jiao Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Wei Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Hui Wang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institutes of Biomedical Sciences, Shandong Normal University, Jinan, 250014, PR China.
| |
Collapse
|
10
|
Bavarsad K, Riahi MM, Saadat S, Barreto G, Atkin SL, Sahebkar A. Protective effects of curcumin against ischemia-reperfusion injury in the liver. Pharmacol Res 2019; 141:53-62. [DOI: 10.1016/j.phrs.2018.12.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/13/2018] [Accepted: 12/14/2018] [Indexed: 12/16/2022]
|
11
|
Bollenbach A, Bakker SJL, Tsikas D. GC-MS measurement of biological N G-hydroxy-L-arginine, a stepmotherly investigated endogenous nitric oxide synthase substrate and arginase inhibitor. Amino Acids 2019; 51:627-640. [PMID: 30610471 DOI: 10.1007/s00726-018-02695-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 12/29/2018] [Indexed: 02/07/2023]
Abstract
L-Arginine is converted by nitric oxide synthase (NOS) to L-citrulline and nitric oxide (NO). NG-Hydroxy-L-arginine (NOHA) is the isolable intermediate of this reaction. NOHA has been identified in biological samples by gas chromatography-mass spectrometry (GC-MS) and quantified by high-performance liquid chromatography (HPLC). Reportedly, NOHA concentrations in human plasma and serum range over four orders of magnitude (e.g., 2 nM-34 µM). The natural occurrence of NOHA in urine has not been reported thus far. Here, we report a validated stable-isotope dilution GC-MS method for the quantitative determination of NOHA in 10-µL aliquots of human serum and urine samples. The method is based on a two-step derivatization of NOHA to the methyl ester pentafluoropropionyl (PFP) derivatives using newly synthesized trideuteromethyl ester NOHA (d3Me-NOHA) as the internal standard and GC-MS quantification. NOHA was found to form a methyl ester-NG,Nδ,Nα-pentafluoropropionyl derivative, i.e., Me-(PFP)3 (M, 642) with the NG-hydroxy group remaining non-derivatized. Selected-ion monitoring of mass-to-charge (m/z) ratio of 458 for endogenous NOHA and m/z 461 for d3Me-NOHA in the negative-ion chemical ionization mode revealed NOHA concentrations of the order of 0.2 µM in human serum and 3 µM in urine samples. Accuracy (recovery, %) was 91.6 ± 1.6% in serum and 39.9 ± 4.5% in urine. Inorganic nitrate was found to decrease NOHA recovery from urine presumably through the reaction of the OH group of NOHA with nitric acid. Imprecision (RSD, %) ranged between 1.4 and 14.8% in serum, and between 5.3 and 18.4% in urine in the investigated concentration range (0-15 µM NOHA). Ten healthy kidney donors excreted in the urine (mean ± SEM) 13.9 ± 1.81 µmol NOHA per day before and 10.9 ± 1.4 µmol NOHA per day after kidney donation (P = 0.24). Similar results were observed for dimethylamine (DMA), the major urinary metabolite of asymmetric dimethylarginine (ADMA). Changes in NOHA and DMA correlated positively (r = 0.718, P = 0.019). This is the first report on the occurrence and measurement of NOHA in human urine and on the effect of human unilateral nephrectomy on urinary NOHA and DMA. Healthy kidney donation may be useful as a model for kidney disease.
Collapse
Affiliation(s)
- Alexander Bollenbach
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30623, Hannover, Germany
| | - Stephan J L Bakker
- Division of Nephrology, Department of Internal Medicine, University Medical Center, Groningen, The Netherlands
- Groningen Kidney Center, Groningen, The Netherlands
| | - Dimitrios Tsikas
- Institute of Toxicology, Core Unit Proteomics, Hannover Medical School, Carl-Neuberg-Strasse 1, 30623, Hannover, Germany.
| |
Collapse
|
12
|
Mohan S, Patel S, Greenstein I, Ng C, Frazier K, Nguyen G, Harding L, Barlow D. Metabolic relevance for N-hydroxy L-arginine reduction in estrogen-negative breast cancer cells. Amino Acids 2018; 50:1629-1636. [PMID: 29922922 DOI: 10.1007/s00726-018-2603-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 06/09/2018] [Indexed: 02/06/2023]
Abstract
We had shown Nw-hydroxy-L-arginine (NOHA) as a promising blood-based biomarker for estrogen-receptor-negative (ER-) breast cancer (BC) that differentiates ER- BC based on grade and molecular phenotype. In this in vitro study, we assessed the metabolic relevance for ER- BC-specific NOHA modulation and correlated them with NOHA regulatory responses. This study aids future NOHA clinical utility in ER- BC diagnosis and therapy management and would prove useful for potential drug discovery and development process.
Collapse
Affiliation(s)
- Srinidi Mohan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, 04103, USA.
| | - Seema Patel
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, 04103, USA
| | - Ian Greenstein
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, 04103, USA
| | - Cathy Ng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, 04103, USA
| | - Kelly Frazier
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, 04103, USA
| | - Giang Nguyen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, 04103, USA
| | - Lisa Harding
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, 04103, USA
| | - David Barlow
- Department of Pharmaceutical Sciences, College of Pharmacy, University of New England, Portland, ME, 04103, USA
| |
Collapse
|
13
|
Measurements of Intra-oocyte Nitric Oxide Concentration Using Nitric Oxide Selective Electrode. Methods Mol Biol 2018. [PMID: 29600447 DOI: 10.1007/978-1-4939-7695-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Precise information about the intracell nitric oxide (NO) concentration [NO] of a single cell are necessary in designing accurate experiments to further knowledge and develop treatment plans in certain disorders. The direct quantitative measurement of [NO] in situ in an intact cellular complex should be useful in tracking real-time and rapid changes at nanomolar levels. In this work, we describe the direct, real-time, and quantitative intracellular [NO] measurement utilizing an L-shaped amperometric integrated NO-selective electrode. This method not only provides an elegant and convenient approach to real-time the measurement of NO in physiological environments but also mimics the loss of NO caused by rapid NO diffusion combined with its reactivity in the biological milieu.
Collapse
|
14
|
Ahmed D, Cassol E. Role of cellular metabolism in regulating type I interferon responses: Implications for tumour immunology and treatment. Cancer Lett 2017; 409:20-29. [PMID: 28888999 DOI: 10.1016/j.canlet.2017.08.037] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Revised: 08/21/2017] [Accepted: 08/25/2017] [Indexed: 12/31/2022]
Abstract
Type I interferons (IFN) are increasingly recognized for their role in regulating anti-tumour immune responses. However, chronic activation of these pathways can result in immunosuppression and has been linked to poor responses to genotoxic and radiotoxic therapies. Emerging evidence suggests energy, lipid and amino acid metabolism play an important role in regulating and fine tuning type I IFN responses. Further, dysregulation of these processes has been implicated in the pathogenesis of chronic viral infections and autoimmune disorders. Systematic evaluation of these interrelationships in cancer models and patients may have important implications for the development of targeted IFN based anti-cancer therapeutics with minimal toxicity and limited off target effects.
Collapse
Affiliation(s)
- Duale Ahmed
- Department of Biology, Carleton University, Ottawa, Ontario, Canada
| | - Edana Cassol
- Department of Health Sciences, Carleton University, Ottawa, Ontario, Canada.
| |
Collapse
|
15
|
Pudlo M, Demougeot C, Girard-Thernier C. Arginase Inhibitors: A Rational Approach Over One Century. Med Res Rev 2016; 37:475-513. [DOI: 10.1002/med.21419] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/14/2016] [Accepted: 09/22/2016] [Indexed: 12/28/2022]
Affiliation(s)
- Marc Pudlo
- PEPITE - EA4267; University Bourgogne Franche-Comté; Besançon France
| | - Céline Demougeot
- PEPITE - EA4267; University Bourgogne Franche-Comté; Besançon France
| | | |
Collapse
|
16
|
Fluorinated methacrylamide chitosan hydrogels enhance collagen synthesis in wound healing through increased oxygen availability. Acta Biomater 2016; 36:164-74. [PMID: 27000552 DOI: 10.1016/j.actbio.2016.03.022] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Revised: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 01/02/2023]
Abstract
UNLABELLED In this study, methacrylamide chitosan modified with perfluorocarbon chains (MACF) is used as the base material to construct hydrogel dressings for treating dermal wounds. MACF hydrogels saturated with oxygen (+O2) are examined for their ability to deliver and sustain oxygen, degrade in a biological environment, and promote wound healing in an animal model. The emerging technique of metabolomics is used to understand how MACF+O2 hydrogel dressings improve wound healing. Results indicate that MACF treatment facilitates oxygen transport rate that is two orders of magnitude greater than base MAC hydrogels. MACF hydrogel dressings are next tested in an in vivo splinted rat excisional wound healing model. Histological analysis reveals that MACF+O2 dressings improve re-epithelialization (p<0.0001) and synthesis of collagen over controls (p<0.01). Analysis of endogenous metabolites in the wounds using global metabolomics demonstrates that MACF+O2 dressings promotes a regenerative metabolic process directed toward hydroxyproline and collagen synthesis, with confirmation of metabolite levels within this pathway. The results of this study confirm that increased oxygen delivery through the application of MACF+O2 hydrogels enhances wound healing and metabolomics analyses provides a powerful tool to assess wound healing physiology. STATEMENT OF SIGNIFICANCE This work presents the first application of a novel class of oxygen delivering biomaterials (methacrylamide chitosan modified with perfluorocarbon chains (MACF)) as a hydrogel wound dressing. This manuscript also contains strong focus on the biochemical benefits of MACF dressings on underlying mechanisms vital to successful wound healing. In this vein, this manuscript presents the application of applied metabolomics (tandem mass spectroscopy) to uncover biomaterial interactions with wound healing mechanisms. We believe the approaches described in this manuscript will be of great interest to biomedical scientists and particularly to researchers studying wound healing, metabolomics, applied biomaterials and regenerative medicine.
Collapse
|
17
|
Tereshina EV, Laskavy VN, Ivanenko SI. Four components of the conjugated redox system in organisms: Carbon, nitrogen, sulfur, oxygen. BIOCHEMISTRY (MOSCOW) 2015; 80:1186-200. [DOI: 10.1134/s0006297915090096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
18
|
Wijnands KAP, Castermans TMR, Hommen MPJ, Meesters DM, Poeze M. Arginine and citrulline and the immune response in sepsis. Nutrients 2015; 7:1426-63. [PMID: 25699985 PMCID: PMC4377861 DOI: 10.3390/nu7031426] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2014] [Revised: 01/15/2015] [Accepted: 01/26/2015] [Indexed: 01/01/2023] Open
Abstract
Arginine, a semi-essential amino acid is an important initiator of the immune response. Arginine serves as a precursor in several metabolic pathways in different organs. In the immune response, arginine metabolism and availability is determined by the nitric oxide synthases and the arginase enzymes, which convert arginine into nitric oxide (NO) and ornithine, respectively. Limitations in arginine availability during inflammatory conditions regulate macrophages and T-lymfocyte activation. Furthermore, over the past years more evidence has been gathered which showed that arginine and citrulline deficiencies may underlie the detrimental outcome of inflammatory conditions, such as sepsis and endotoxemia. Not only does the immune response contribute to the arginine deficiency, also the impaired arginine de novo synthesis in the kidney has a key role in the eventual observed arginine deficiency. The complex interplay between the immune response and the arginine-NO metabolism is further underscored by recent data of our group. In this review we give an overview of physiological arginine and citrulline metabolism and we address the experimental and clinical studies in which the arginine-citrulline NO pathway plays an essential role in the immune response, as initiator and therapeutic target.
Collapse
Affiliation(s)
- Karolina A P Wijnands
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Tessy M R Castermans
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Merel P J Hommen
- Department of Surgery, Maastricht University Medical Center, Maastricht 6200MD, The Netherlands.
| | - Dennis M Meesters
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| | - Martijn Poeze
- Department of Surgery, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University Medical Center, Maastricht 6200 MD, The Netherlands.
| |
Collapse
|
19
|
Rath M, Müller I, Kropf P, Closs EI, Munder M. Metabolism via Arginase or Nitric Oxide Synthase: Two Competing Arginine Pathways in Macrophages. Front Immunol 2014; 5:532. [PMID: 25386178 PMCID: PMC4209874 DOI: 10.3389/fimmu.2014.00532] [Citation(s) in RCA: 842] [Impact Index Per Article: 76.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 10/09/2014] [Indexed: 12/23/2022] Open
Abstract
Macrophages play a major role in the immune system, both as antimicrobial effector cells and as immunoregulatory cells, which induce, suppress or modulate adaptive immune responses. These key aspects of macrophage biology are fundamentally driven by the phenotype of macrophage arginine metabolism that is prevalent in an evolving or ongoing immune response. M1 macrophages express the enzyme nitric oxide synthase, which metabolizes arginine to nitric oxide (NO) and citrulline. NO can be metabolized to further downstream reactive nitrogen species, while citrulline might be reused for efficient NO synthesis via the citrulline–NO cycle. M2 macrophages are characterized by expression of the enzyme arginase, which hydrolyzes arginine to ornithine and urea. The arginase pathway limits arginine availability for NO synthesis and ornithine itself can further feed into the important downstream pathways of polyamine and proline syntheses, which are important for cellular proliferation and tissue repair. M1 versus M2 polarization leads to opposing outcomes of inflammatory reactions, but depending on the context, M1 and M2 macrophages can be both pro- and anti-inflammatory. Notably, M1/M2 macrophage polarization can be driven by microbial infection or innate danger signals without any influence of adaptive immune cells, secondarily driving the T helper (Th)1/Th2 polarization of the evolving adaptive immune response. Since both arginine metabolic pathways cross-inhibit each other on the level of the respective arginine break-down products and Th1 and Th2 lymphocytes can drive or amplify macrophage M1/M2 dichotomy via cytokine activation, this forms the basis of a self-sustaining M1/M2 polarization of the whole immune response. Understanding the arginine metabolism of M1/M2 macrophage phenotypes is therefore central to find new possibilities to manipulate immune responses in infection, autoimmune diseases, chronic inflammatory conditions, and cancer.
Collapse
Affiliation(s)
- Meera Rath
- Department of Pharmacology, Institute of Medical Sciences, Faculty of Medical Sciences, Siksha 'O' Anusandhan University , Bhubaneshwar , India
| | - Ingrid Müller
- Section of Immunology, Department of Medicine, Imperial College London , London , UK
| | - Pascale Kropf
- Section of Immunology, Department of Medicine, Imperial College London , London , UK
| | - Ellen I Closs
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University , Mainz , Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center, Johannes Gutenberg University , Mainz , Germany ; Research Center for Immunotherapy, University Medical Center, Johannes Gutenberg University , Mainz , Germany
| |
Collapse
|
20
|
De Sanctis F, Sandri S, Ferrarini G, Pagliarello I, Sartoris S, Ugel S, Marigo I, Molon B, Bronte V. The emerging immunological role of post-translational modifications by reactive nitrogen species in cancer microenvironment. Front Immunol 2014; 5:69. [PMID: 24605112 PMCID: PMC3932549 DOI: 10.3389/fimmu.2014.00069] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 02/08/2014] [Indexed: 12/18/2022] Open
Abstract
Under many inflammatory contexts, such as tumor progression, systemic and peripheral immune response is tailored by reactive nitrogen species (RNS)-dependent post-translational modifications, suggesting a biological function for these chemical alterations. RNS modify both soluble factors and receptors essential to induce and maintain a tumor-specific immune response, creating a “chemical barrier” that impairs effector T cell infiltration and functionality in tumor microenvironment and supports the escape phase of cancer. RNS generation during tumor growth mainly depends on nitric oxide production by both tumor cells and tumor-infiltrating myeloid cells that constitutively activate essential metabolic pathways of l-arginine catabolism. This review provides an overview of the potential immunological and biological role of RNS-induced modifications and addresses new approaches targeting RNS either in search of novel biomarkers or to improve anti-cancer treatment.
Collapse
Affiliation(s)
- Francesco De Sanctis
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Sara Sandri
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Giovanna Ferrarini
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Irene Pagliarello
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Silvia Sartoris
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Stefano Ugel
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| | - Ilaria Marigo
- Istituto Oncologico Veneto, Istituto Di Ricovero e Cura a Carattere Scientifico , Padua , Italy
| | - Barbara Molon
- Venetian Institute of Molecular Medicine , Padua , Italy
| | - Vincenzo Bronte
- Immunology Section, Department of Pathology and Diagnostics, University of Verona , Verona , Italy
| |
Collapse
|
21
|
Marino T, Russo N, Toscano M. What occurs by replacing Mn2+ with Co2+ in human arginase I: first-principles computational analysis. Inorg Chem 2012; 52:655-9. [PMID: 23273171 DOI: 10.1021/ic301703t] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The reaction mechanism of the dinuclear cobalt enzyme arginase is investigated using density functional theory. As an arginase-containing binuclear Mn(2)(2+) cluster, it catalyzes the hydrolysis of L-arginine in L-ornithine and urea. The bridging hydroxide is capable of performing nucleophilic attack on the iminium carbon ion from its bridging position, resulting in the formation of a tetrahedral intermediate, as was already obtained in a previous theoretical study on the manganese enzyme. Our theoretical investigation allows us to obtain an accurate potential energy profile and confirms that the coordination mode of the substrate to the dimetallic center is quite similar to that present in the manganese enzyme. In agreement with the experimental observations, our results show that both Mn- and Co-containing enzymes catalyze the same reaction with quite comparable energy barriers.
Collapse
Affiliation(s)
- Tiziana Marino
- Dipartimento di Chimica and Centro di Calcolo ad Alte Prestazioni per Elaborazioni Parallele e Distribuite, Universitá della Calabria, I-87030 Arcavacata di Rende (CS), Italy.
| | | | | |
Collapse
|
22
|
Benson RC, Hardy KA, Morris CR. Arginase and arginine dysregulation in asthma. J Allergy (Cairo) 2011; 2011:736319. [PMID: 21747870 PMCID: PMC3124954 DOI: 10.1155/2011/736319] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/07/2011] [Accepted: 02/10/2011] [Indexed: 01/01/2023] Open
Abstract
In recent years, evidence has accumulated indicating that the enzyme arginase, which converts L-arginine into L-ornithine and urea, plays a key role in the pathogenesis of pulmonary disorders such as asthma through dysregulation of L-arginine metabolism and modulation of nitric oxide (NO) homeostasis. Allergic asthma is characterized by airway hyperresponsiveness, inflammation, and remodeling. Through substrate competition, arginase decreases bioavailability of L-arginine for nitric oxide synthase (NOS), thereby limiting NO production with subsequent effects on airway tone and inflammation. By decreasing L-arginine bioavailability, arginase may also contribute to the uncoupling of NOS and the formation of the proinflammatory oxidant peroxynitrite in the airways. Finally, arginase may play a role in the development of chronic airway remodeling through formation of L-ornithine with downstream production of polyamines and L-proline, which are involved in processes of cellular proliferation and collagen deposition. Further research on modulation of arginase activity and L-arginine bioavailability may reveal promising novel therapeutic strategies for asthma.
Collapse
Affiliation(s)
- Renée C. Benson
- Bay Area Pediatric Pulmonary Medical Corporation, Children's Hospital & Research Center Oakland, Oakland, CA 94609, USA
| | - Karen A. Hardy
- Bay Area Pediatric Pulmonary Medical Corporation, Children's Hospital & Research Center Oakland, Oakland, CA 94609, USA
| | - Claudia R. Morris
- Department of Emergency Medicine, Children's Hospital & Research Center Oakland, Oakland, CA 94609, USA
| |
Collapse
|
23
|
Amrouni D, Meiller A, Gautier-Sauvigné S, Piraud M, Bouteille B, Vincendeau P, Buguet A, Cespuglio R. Cerebral changes occurring in arginase and dimethylarginine dimethylaminohydrolase (DDAH) in a rat model of sleeping sickness. PLoS One 2011; 6:e16891. [PMID: 21408057 PMCID: PMC3052300 DOI: 10.1371/journal.pone.0016891] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Accepted: 01/05/2011] [Indexed: 01/06/2023] Open
Abstract
Background Involvement of nitric oxide (NO) in the pathophysiology of human African trypanosomiasis (HAT) was analyzed in a HAT animal model (rat infected with Trypanosoma brucei brucei). With this model, it was previously reported that trypanosomes were capable of limiting trypanocidal properties carried by NO by decreasing its blood concentration. It was also observed that brain NO concentration, contrary to blood, increases throughout the infection process. The present approach analyses the brain impairments occurring in the regulations exerted by arginase and NG, NG–dimethylarginine dimethylaminohydrolase (DDAH) on NO Synthases (NOS). In this respect: (i) cerebral enzymatic activities, mRNA and protein expression of arginase and DDAH were determined; (ii) immunohistochemical distribution and morphometric parameters of cells expressing DDAH-1 and DDAH-2 isoforms were examined within the diencephalon; (iii) amino acid profiles relating to NOS/arginase/DDAH pathways were established. Methodology/Principal Findings Arginase and DDAH activities together with mRNA (RT-PCR) and protein (western-blot) expressions were determined in diencephalic brain structures of healthy or infected rats at various days post-infection (D5, D10, D16, D22). While arginase activity remained constant, that of DDAH increased at D10 (+65%) and D16 (+51%) in agreement with western-blot and amino acids data (liquid chromatography tandem-mass spectrometry). Only DDAH-2 isoform appeared to be up-regulated at the transcriptional level throughout the infection process. Immunohistochemical staining further revealed that DDAH-1 and DDAH-2 are contained within interneurons and neurons, respectively. Conclusion/Significance In the brain of infected animals, the lack of change observed in arginase activity indicates that polyamine production is not enhanced. Increases in DDAH-2 isoform may contribute to the overproduction of NO. These changes are at variance with those reported in the periphery. As a whole, the above processes may ensure additive protection against trypanosome entry into the brain, i.e., maintenance of NO trypanocidal pressure and limitation of polyamine production, necessary for trypanosome growth.
Collapse
MESH Headings
- Amidohydrolases/genetics
- Amidohydrolases/metabolism
- Amino Acids/blood
- Amino Acids/chemistry
- Animals
- Arginase/genetics
- Arginase/metabolism
- Biosynthetic Pathways
- Brain/enzymology
- Brain/parasitology
- Brain/pathology
- Disease Models, Animal
- Disease Progression
- Gene Expression Regulation, Enzymologic
- Humans
- Isoenzymes/genetics
- Isoenzymes/metabolism
- Male
- Mass Spectrometry
- Models, Biological
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Trypanosoma brucei brucei
- Trypanosomiasis, African/blood
- Trypanosomiasis, African/enzymology
- Trypanosomiasis, African/parasitology
- Trypanosomiasis, African/pathology
Collapse
Affiliation(s)
- Donia Amrouni
- Université Claude Bernard Lyon 1, Université de Lyon, Faculté de Médecine, EA 4170 and Plateau NeuroChem, Lyon, France
| | - Anne Meiller
- Université Claude Bernard Lyon 1, Université de Lyon, Faculté de Médecine, EA 4170 and Plateau NeuroChem, Lyon, France
| | - Sabine Gautier-Sauvigné
- Université Claude Bernard Lyon 1, Université de Lyon, Faculté de Médecine, EA 4170 and Plateau NeuroChem, Lyon, France
| | - Monique Piraud
- Laboratoire des Maladies Héréditaires du Métabolisme, Centre de Biologie Est, Hospices Civils de Lyon, Lyon, France
| | - Bernard Bouteille
- Université de Limoges, Faculté de Médecine, EA 3174 and IFR 145 GEIST, Limoges, France
| | | | - Alain Buguet
- Université Claude Bernard Lyon 1, Université de Lyon, Faculté de Médecine, EA 4170 and Plateau NeuroChem, Lyon, France
| | - Raymond Cespuglio
- Université Claude Bernard Lyon 1, Université de Lyon, Faculté de Médecine, EA 4170 and Plateau NeuroChem, Lyon, France
- * E-mail:
| |
Collapse
|
24
|
Childs LM, Paskow M, Morris SM, Hesse M, Strogatz S. From inflammation to wound healing: using a simple model to understand the functional versatility of murine macrophages. Bull Math Biol 2011; 73:2575-604. [PMID: 21347813 DOI: 10.1007/s11538-011-9637-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 01/27/2011] [Indexed: 12/18/2022]
Abstract
Macrophages are fundamental cells of the innate immune system. Their activation is essential for such distinct immune functions as inflammation (pathogen-killing) and tissue repair (wound healing). An open question has been the functional stability of an individual macrophage cell: whether it can change its functional profile between different immune responses such as between the repair pathway and the inflammatory pathway. We studied this question theoretically by constructing a rate equation model for the key substrate, enzymes and products of the pathways; we then tested the model experimentally. Both our model and experiments show that individual macrophages can switch from the repair pathway to the inflammation pathway but that the reverse switch does not occur.
Collapse
Affiliation(s)
- Lauren M Childs
- Center for Applied Mathematics, Cornell University, Ithaca, NY 14853, USA.
| | | | | | | | | |
Collapse
|
25
|
Di Costanzo L, Ilies M, Thorn KJ, Christianson DW. Inhibition of human arginase I by substrate and product analogues. Arch Biochem Biophys 2010; 496:101-8. [PMID: 20153713 DOI: 10.1016/j.abb.2010.02.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2009] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 11/29/2022]
Abstract
Human arginase I is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of L-arginine to generate L-ornithine and urea. We demonstrate that N-hydroxy-L-arginine (NOHA) binds to this enzyme with K(d)=3.6 microM, and nor-N-hydroxy-L-arginine (nor-NOHA) binds with K(d)=517 nM (surface plasmon resonance) or K(d) approximately 50 nM (isothermal titration calorimetry). Crystals of human arginase I complexed with NOHA and nor-NOHA afford 2.04 and 1.55 A resolution structures, respectively, which are significantly improved in comparison with previously-determined structures of the corresponding complexes with rat arginase I. Higher resolution structures clarify the binding interactions of the inhibitors. Finally, the crystal structure of the complex with L-lysine (K(d)=13 microM) is reported at 1.90 A resolution. This structure confirms the importance of hydrogen bond interactions with inhibitor alpha-carboxylate and alpha-amino groups as key specificity determinants of amino acid recognition in the arginase active site.
Collapse
Affiliation(s)
- Luigi Di Costanzo
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA 19104-6323, USA
| | | | | | | |
Collapse
|
26
|
|
27
|
Abstract
The enzyme arginase metabolizes L-arginine to L-ornithine and urea. Besides its fundamental role in the hepatic urea cycle, arginase is also expressed the immune system of mice and man. While significant interspecies differences exist regarding expression, subcellular localization and regulation of immune cell arginase, associated pathways of immunopathology are comparable between species. Arginase is induced in murine myeloid cells mainly by Th2 cytokines and inflammatory agents and participates in a variety of inflammatory diseases by down-regulation of nitric oxide synthesis, induction of fibrosis and tissue regeneration. In humans, arginase I is constitutively expressed in polymorphonuclear neutrophils and is liberated during inflammation. Myeloid cell arginase-mediated L-arginine depletion profoundly suppresses T cell immune responses and this has emerged as a fundamental mechanism of inflammation-associated immunosuppression. Pharmacological interference with L-arginine metabolism is a novel promising strategy in the treatment of cancer, autoimmunity or unwanted immune deviation.
Collapse
Affiliation(s)
- Markus Munder
- Department of Hematology, Oncology and Rheumatology, University Hospital Heidelberg, University of Heidelberg, Heidelberg, Germany.
| |
Collapse
|
28
|
Maarsingh H, Zaagsma J, Meurs H. Arginase: a key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives. Br J Pharmacol 2009; 158:652-64. [PMID: 19703164 DOI: 10.1111/j.1476-5381.2009.00374.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Allergic asthma is a chronic inflammatory airways' disease, characterized by allergen-induced early and late bronchial obstructive reactions, airway hyperresponsiveness (AHR), airway inflammation and airway remodelling. Recent ex vivo and in vivo studies in animal models and asthmatic patients have indicated that arginase may play a central role in all these features. Thus, increased arginase activity in the airways induces reduced bioavailability of L-arginine to constitutive (cNOS) and inducible (iNOS) nitric oxide synthases, causing a deficiency of bronchodilating and anti-inflammatory NO, as well as increased formation of peroxynitrite, which may be involved in allergen-induced airways obstruction, AHR and inflammation. In addition, both via reduced NO production and enhanced synthesis of L-ornithine, increased arginase activity may be involved in airway remodelling by promoting cell proliferation and collagen deposition in the airway wall. Therefore, arginase inhibitors may have therapeutic potential in the treatment of acute and chronic asthma. This review focuses on the pathophysiological role of arginase in allergic asthma and the emerging effectiveness of arginase inhibitors in the treatment of this disease.
Collapse
Affiliation(s)
- Harm Maarsingh
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands.
| | | | | |
Collapse
|
29
|
North ML, Khanna N, Marsden PA, Grasemann H, Scott JA. Functionally important role for arginase 1 in the airway hyperresponsiveness of asthma. Am J Physiol Lung Cell Mol Physiol 2009; 296:L911-20. [PMID: 19286931 DOI: 10.1152/ajplung.00025.2009] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
l-Arginine metabolism by the arginase and nitric oxide (NO) synthase (NOS) families of enzymes is important in NO production, and imbalances between these pathways contribute to airway hyperresponsiveness (AHR) in asthma. To investigate the role of arginase isozymes (ARG1 and ARG2) in AHR, we determined the protein expression of ARG1, ARG2, the NOS isozymes, and other proteins involved in l-arginine metabolism in lung tissues from asthma patients and in acute (3-wk) and chronic (12-wk) murine models of ovalbumin-induced airway inflammation. Expression of ARG1 was increased in human asthma, whereas ARG2, NOS isoforms, and the other l-arginine-related proteins (i.e., cationic amino acid transporters 1 and 2, agmatinase, and ornithine decarboxylase) were unchanged. In the acute murine model of allergic airway inflammation, augmentation of ARG1 expression was similarly the most dramatic change in protein expression. However, ARG2, NOS1, NOS2, and agmatinase were also increased, whereas NOS3 expression was decreased. Arginase inhibition in vivo with nebulized S-(2-boronoethyl)-l-cysteine attenuated the methacholine responsiveness of the central airways in mice from the acute model. Further investigations in the chronic murine model revealed an expression profile that more closely paralleled the human asthma samples: only ARG1 expression was significantly increased. Interestingly, in the chronic mouse model, which generates a remodeling phenotype, arginase inhibition attenuated methacholine responsiveness of the central and peripheral airways. The similarity in arginase expression between human asthma and the chronic model and the attenuation of AHR after in vivo treatment with an arginase inhibitor suggest the potential for therapeutic modification of arginase activity in asthma.
Collapse
Affiliation(s)
- Michelle L North
- Institutes of Medical Sciences, Dalla Lana School of Public Health, Faculty of Medicine, Ontario, Canada
| | | | | | | | | |
Collapse
|
30
|
Slama P, Boucher JL, Réglier M. N-Hydroxyguanidines oxidation by a N3S copper-complex mimicking the reactivity of Dopamine β-Hydroxylase. J Inorg Biochem 2009; 103:455-62. [DOI: 10.1016/j.jinorgbio.2008.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2008] [Revised: 11/22/2008] [Accepted: 12/17/2008] [Indexed: 10/21/2022]
|
31
|
Fitzpatrick JM, Fuentes JM, Chalmers IW, Wynn TA, Modolell M, Hoffmann KF, Hesse M. Schistosoma mansoni arginase shares functional similarities with human orthologs but depends upon disulphide bridges for enzymatic activity. Int J Parasitol 2009; 39:267-79. [PMID: 18723022 PMCID: PMC2756234 DOI: 10.1016/j.ijpara.2008.06.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2008] [Revised: 06/11/2008] [Accepted: 06/13/2008] [Indexed: 11/19/2022]
Abstract
Schistosome helminths constitute a major health risk for the human population in many tropical areas. We demonstrate for the first time that several developmental stages of the human parasite Schistosoma mansoni express arginase, which is responsible for the hydrolysis of l-arginine to l-ornithine and urea. Arginase activity by alternatively activated macrophages is an essential component of the mammalian host response in schistosomiasis. However, it has not been previously shown that the parasite also expresses arginase when it is in contact with the mammalian host. After cloning and sequencing the cDNA encoding the parasite enzyme, we found that many structural features of human arginase are well conserved in the parasite ortholog. Subsequently, we discovered that S. mansoni arginase shares many similar molecular, biochemical and functional properties with both human arginase isoforms. Nevertheless, our data also reveal striking differences between human and schistosome arginase. Particularly, we found evidence that schistosome arginase activity depends upon disulphide bonds by cysteines, in contrast to human arginase. In conclusion, we report that S. mansoni arginase is well adapted to the physiological conditions that exist in the human host.
Collapse
|
32
|
Gookin JL, Stauffer SH, Stone MR. Induction of arginase II by intestinal epithelium promotes the uptake of L-arginine from the lumen of Cryptosporidium parvum-infected porcine ileum. J Pediatr Gastroenterol Nutr 2008; 47:417-27. [PMID: 18852633 PMCID: PMC3685577 DOI: 10.1097/mpg.0b013e31816f6c02] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
OBJECTIVES To determine the specific transport system activities and expression of transporter genes responsible for uptake of L-arginine from the lumen of normal and Cryptosporidium parvum-infected neonatal porcine ileum and the influence of L-arginine catabolic pathways on L-arginine uptake. METHODS Intact sheets of ileal mucosa from control and C parvum-infected neonatal piglets were mounted in Ussing chambers and the uptake of 14C-L-arginine was determined under initial rate conditions and in the presence of transport system-selective inhibitors. Epithelial expression of L-arginine transporter genes was quantified by real-time reverse transcription polymerase chain reaction. L-Arginine catabolic enzyme expression was examined by immunoblotting epithelial lysates for arginase I and II. The role of intracellular catabolism in promoting the uptake of L-arginine was determined by pharmacological inhibition of nitric oxide synthase and arginase activities. RESULTS C parvum-infected ileum transported L-arginine at rates equivalent to uninfected epithelium despite profound villous atrophy. This was attributed to enhanced uptake of L-arginine by individual epithelial cells in the infection. There were no differences in L-arginine transport system activities (y(+) and B(0, +)) or level of transporter gene expression (CAT-1, CAT-2A, and ATB(0, +)) between uninfected and C parvum-infected epithelial cells. However, infected epithelia had induced expression of the L-arginine hydrolytic enzyme arginase II and lower concentrations of L-arginine. Furthermore, transport of L-arginine by the infected epithelium was significantly inhibited by pharmacological blockade of arginase. CONCLUSIONS Intracellular catabolism by arginase II, the induction of which has not been described previously for intestinal epithelium, facilitates uptake of L-arginine by infected epithelium using transport systems that do not differ from those of uninfected cells. Induction of arginase II may limit nitric oxide synthesis by competing with nitric oxide synthase for utilization of L-arginine or promote use of L-arginine for the synthesis of reparative polyamines.
Collapse
Affiliation(s)
- Jody L Gookin
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC 27606, USA.
| | | | | |
Collapse
|
33
|
Wells SM, Buford MC, Migliaccio CT, Holian A. Elevated asymmetric dimethylarginine alters lung function and induces collagen deposition in mice. Am J Respir Cell Mol Biol 2008; 40:179-88. [PMID: 18703795 DOI: 10.1165/rcmb.2008-0148oc] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Increasing evidence suggests that lung mechanics and structure are maintained in part by an intimate balance between the L-arginine-metabolizing enzymes nitric oxide synthase (NOS) and arginase. Asymmetric dimethylarginine (ADMA) is a competitive endogenous inhibitor of NOS. The role of ADMA in the regulation of NOS and arginase in the airways has not yet been explored. Our objective was to investigate the role of ADMA in lung physiology. A murine model of continuous subcutaneous ADMA infusion via osmotic minipump was used for assessment of elevated ADMA in vivo, and primary lung fibroblasts were used for in vitro assessments. Two weeks after minipump placement, animals were anesthetized and mechanically ventilated, and lung mechanical responses were evaluated. Lungs were assessed histologically and biochemically for collagen content, arginase activity, and arginase protein levels. Lung lavage fluid was assessed for cellularity, nitrite, urea, and cytokine concentrations. ADMA infusion resulted in significantly enhanced lung resistance and decreased dynamic compliance in response to methacholine. These physiologic changes were associated with significantly increased lung collagen content in the absence of inflammation. Significant decreases in lung fluid nitrite were accompanied by elevated lung fluid urea and arginase activity in lung homogenates. These changes were reversed in mice 4 weeks after completion of ADMA administration. In addition, treatment of primary mouse lung fibroblasts with ADMA stimulated arginase activity and collagen formation in vitro. These data support the idea that ADMA may play a role in airway diseases, including asthma and pulmonary fibrosis, through NOS inhibition and enhancement of arginase activity.
Collapse
Affiliation(s)
- Sandra M Wells
- Department of Environmental, Agricultural, and Occupational Health, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | | | | | | |
Collapse
|
34
|
Pervin S, Singh R, Chaudhuri G. Nitric oxide, N omega-hydroxy-L-arginine and breast cancer. Nitric Oxide 2008; 19:103-6. [PMID: 18474257 DOI: 10.1016/j.niox.2008.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 04/16/2008] [Accepted: 04/17/2008] [Indexed: 01/04/2023]
Abstract
Nitric oxide has varied effects on human breast cancer cells. At low concentration (micromolar range) it increases proliferation by increasing synthesis of some cells cycle protein and in higher concentration (nanomolar range) it leads to cytostasis or apoptosis by decreasing the translation of some cell cycle proteins.
Collapse
Affiliation(s)
- Shehla Pervin
- Department of Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Los Angeles, CA 90095-1740, USA
| | | | | |
Collapse
|
35
|
Maarsingh H, Zaagsma J, Meurs H. Arginine homeostasis in allergic asthma. Eur J Pharmacol 2008; 585:375-84. [PMID: 18410920 DOI: 10.1016/j.ejphar.2008.02.096] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2008] [Revised: 02/15/2008] [Accepted: 02/20/2008] [Indexed: 11/16/2022]
Abstract
Allergic asthma is a chronic disease characterized by early and late asthmatic reactions, airway hyperresponsiveness, airway inflammation and airway remodelling. Changes in l-arginine homeostasis may contribute to all these features of asthma by decreased nitric oxide (NO) production and increased formation of peroxynitrite, polyamines and l-proline. Intracellular l-arginine levels are regulated by at least three distinct mechanisms: (i) cellular uptake by cationic amino acid (CAT) transporters, (ii) metabolism by NO-synthase (NOS) and arginase, and (iii) recycling from l-citrulline. Ex vivo studies using animal models of allergic asthma have indicated that attenuated l-arginine bioavailability to NOS causes deficiency of bronchodilating NO and increased production of procontractile peroxynitrite, which importantly contribute to allergen-induced airway hyperresponsiveness after the early and late asthmatic reaction, respectively. Decreased cellular uptake of l-arginine, due to (eosinophil-derived) polycations inhibiting CATs, as well as increased consumption by increased arginase activity are major causes of substrate limitation to NOS. Increasing substrate availability to NOS by administration of l-arginine, l-citrulline, the polycation scavenger heparin, or an arginase inhibitor alleviates allergen-induced airway hyperresponsiveness by restoring the production of bronchodilating NO. In addition, reduced l-arginine levels may contribute to the airway inflammation associated with the development of airway hyperresponsiveness, which similarly may involve decreased NO synthesis and increased peroxynitrite formation. Increased arginase activity could also contribute to airway remodelling and persistent airway hyperresponsiveness in chronic asthma via increased synthesis of l-ornithine, the precursor of polyamines and l-proline. Drugs that increase the bioavailability of l-arginine in the airways - particularly arginase inhibitors - may have therapeutic potential in allergic asthma.
Collapse
Affiliation(s)
- Harm Maarsingh
- Department of Molecular Pharmacology, University Centre for Pharmacy, University of Groningen, A. Deusinglaan 1, 9713 AV Groningen, The Netherlands.
| | | | | |
Collapse
|
36
|
da Silva Krause M, de Bittencourt PIH. Type 1 diabetes: can exercise impair the autoimmune event? TheL-arginine/glutamine coupling hypothesis. Cell Biochem Funct 2008; 26:406-33. [DOI: 10.1002/cbf.1470] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
37
|
Holowatz LA, Kenney WL. Local ascorbate administration augments NO- and non-NO-dependent reflex cutaneous vasodilation in hypertensive humans. Am J Physiol Heart Circ Physiol 2007; 293:H1090-6. [PMID: 17483240 DOI: 10.1152/ajpheart.00295.2007] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Full expression of reflex cutaneous vasodilation (VD) is dependent on nitric oxide (NO) and is attenuated with essential hypertension. Decreased NO-dependent VD may be due to 1) increased oxidant stress and/or 2) decreased L-arginine availability through upregulated arginase activity, potentially leading to increased superoxide production through uncoupled NO synthase (NOS). The purpose of this study was to determine the effect of antioxidant supplementation (alone and combined with arginase inhibition) on attenuated NO-dependent reflex cutaneous VD in hypertensive subjects. Nine unmedicated hypertensive [HT; mean arterial pressure (MAP) = 112 +/- 1 mmHg] and nine age-matched normotensive (NT; MAP = 81 +/- 10 mmHg) men and women were instrumented with four intradermal microdialysis (MD) fibers: control (Ringer), NOS inhibited (NOS-I; 10 mM N(G)-nitro-L-arginine), L-ascorbate supplemented (Asc; 10 mM L-ascorbate), and Asc + arginase inhibited [Asc+A-I; 10 mM L-ascorbate + 5 mM (S)-(2-boronoethyl)-L-cysteine-HCl + 5 mM N(omega)-hydroxy-nor-L-arginine]. Oral temperature was increased by 0.8 degrees C via a water-perfused suit. N(G)-nitro-L-arginine was then ultimately perfused through all MD sites to quantify the change in VD due to NO. Red blood cell flux was measured by laser-Doppler flowmetry over each skin MD site, and cutaneous vascular conductance (CVC) was calculated (CVC = flux/MAP) and normalized to maximal CVC (%CVC(max); 28 mM sodium nitroprusside + local heating to 43 degrees C). During the plateau in skin blood flow (Delta T(or) = 0.8 degrees C), cutaneous VD was attenuated in HT skin (NT: 42 +/- 4, HT: 35 +/- 3 %CVC(max); P < 0.05). Asc and Asc+A-I augmented cutaneous VD in HT (Asc: 57 +/- 5, Asc+A-I: 53 +/- 6 %CVC(max); P < 0.05 vs. control) but not in NT. %CVC(max) after NOS-I in the Asc- and Asc+A-I-treated sites was increased in HT (Asc: 41 +/- 4, Asc+A-I: 40 +/- 4, control: 29 +/- 4; P < 0.05). Compared with the control site, the change in %CVC(max) within each site after NOS-I was greater in HT (Asc: -19 +/- 4, Asc+A-I: -17 +/- 4, control: -9 +/- 2; P < 0.05) than in NT. Antioxidant supplementation alone or combined with arginase inhibition augments attenuated reflex cutaneous VD in hypertensive skin through NO- and non-NO-dependent mechanisms.
Collapse
Affiliation(s)
- Lacy A Holowatz
- Noll Laboratory, The Pennsylvania State University, Univerisity Park, PA 16802, USA.
| | | |
Collapse
|
38
|
Comes S, Locascio A, Silvestre F, d'Ischia M, Russo GL, Tosti E, Branno M, Palumbo A. Regulatory roles of nitric oxide during larval development and metamorphosis in Ciona intestinalis. Dev Biol 2007; 306:772-84. [PMID: 17499701 DOI: 10.1016/j.ydbio.2007.04.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2006] [Revised: 04/11/2007] [Accepted: 04/16/2007] [Indexed: 01/30/2023]
Abstract
Metamorphosis in the ascidian Ciona intestinalis is a very complex process which converts a swimming tadpole to an adult. The process involves reorganisation of the body plan and a remarkable regression of the tail, which is controlled by caspase-dependent apoptosis. However, the endogenous signals triggering apoptosis and metamorphosis are little explored. Herein, we report evidence that nitric oxide (NO) regulates tail regression in a dose-dependent manner, acting on caspase-dependent apoptosis. An increase or decrease of NO levels resulted in a delay or acceleration of tail resorption, without affecting subsequent juvenile development. A similar hastening effect was induced by suppression of cGMP-dependent NO signalling. Inhibition of NO production resulted in an increase in caspase-3-like activity with respect to untreated larvae. Detection of endogenously activated caspase-3 and NO revealed the existence of a spatial correlation between the diminution of the NO signal and caspase-3 activation during the last phases of tail regression. Real-time PCR during development, from early larva to early juveniles, showed that during all stages examined, NO synthase (NOS) is always more expressed than arginase and it reaches the maximum value at late larva, the stage immediately preceding tail resorption. The spatial expression pattern of NOS is very dynamic, moving rapidly along the body in very few hours, from the anterior part of the trunk to central nervous system (CNS), tail and new forming juvenile digestive organs. NO detection revealed free diffusion from the production sites to other cellular districts. Overall, the results of this study provide a new important link between NO signalling and apoptosis during metamorphosis in C. intestinalis and hint at novel roles for the NO signalling system in other developmental and metamorphosis-related events preceding and following tail resorption.
Collapse
Affiliation(s)
- Stefania Comes
- Biochemistry and Molecular Biology Laboratory, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Shen SQ, Zhang Y, Xiang JJ, Xiong CL. Protective effect of curcumin against liver warm ischemia/reperfusion injury in rat model is associated with regulation of heat shock protein and antioxidant enzymes. World J Gastroenterol 2007; 13:1953-61. [PMID: 17461496 PMCID: PMC4146972 DOI: 10.3748/wjg.v13.i13.1953] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the hypothesis that the protective effects of curcumin in hepatic warm ischemia/reperfusion (I/R) injury are associated with increasing heat shock protein 70 (Hsp70) expression and antioxidant enzyme activity.
METHODS: Sixty Sprague-Dawley male rats were randomly divided into sham, I/R, C + I/R groups. The model of reduced-size liver warm ischemia and reperfusion was used. Curcumin (50 mg/kg) was administered by injection through a branch of superior mesenteric vein at 30 min before ischemia in C + I/R group. Five rats were used to investigate the survival during 1 wk after operation in each group. Blood samples and liver tissues were obtained in the remaining animals after 3, 12, and 24 h of reperfusion to assess serum alanine aminotransferase (ALT), aspartate aminotransferase (AST), liver tissue NO2- + NO3-, malondialdehyde (MDA) content, superoxide dismutase (SOD), catalase (CAT), nitricoxide synthase (NOS) and myeloperoxidase (MPO) activity, Hsp70 expression and apoptosis ratio.
RESULTS: Compared with I/R group, curcumin pretreatment group showed less ischemia/reperfusion-induced injury. CAT and SOD activity and Hsp70 expression increased significantly. A higher rate of apoptosis was observed in I/R group than in C + I/R group, and a significant increase of MDA, NO2- + NO3- and MPO level in liver tissues and serum transaminase concentration was also observed in I/R group compared to C + I/R group. Curcumin also decreased the activity of inducible NO synthase (iNOS) in liver after reperfusion, but had no effect on the level of endothelial NO synthase (eNOS) after reperfusion in liver. The 7 d survival rate was significantly higher in C + I/R group than in I/R group.
CONCLUSION: Curcumin has protective effects against hepatic I/R injury. Its mechanism might be related to the overexpression of Hsp70 and antioxidant enzymes.
Collapse
Affiliation(s)
- Shi-Qiang Shen
- Department of General Surgery, Renmin Hospital of Wuhan University, 238 Jiefang Road, Wuhan 430060, Hubei Province, China.
| | | | | | | |
Collapse
|
40
|
Silva MA, Mirza DF, Buckels JAC, Bramhall SR, Mayer D, Wigmore SJ, Murphy N, Richards DA. Arginine and Urea Metabolism in the Liver Graft: A Study Using Microdialysis in Human Orthotopic Liver Transplantation. Transplantation 2006; 82:1304-11. [PMID: 17130779 DOI: 10.1097/01.tp.0000241099.93794.d6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Arginine is an amino acid having a central role in the metabolism of urea and nitric oxide in the liver. We present our findings of the behavior of these metabolites during the process of transplantation of the liver. METHODS Urea, arginine, ornithine, citrulline, gamma-aminobutyric acid, glutamate, and glutamine levels in 15 livers were studied during the process of retrieval, following storage during the backtable procedure, and for 48 hours postreperfusion using microdialysis. Arginase levels in donor and recipient serum were also analyzed using an enzyme-linked immunosorbent assay specific for type I human arginase. Data was analyzed using one-way analysis of variance, with post-hoc comparison to the value at two hours using Dunnett's test (P < 0.05 significant). RESULTS Levels of metabolites measured in the donor liver were seen to decline significantly in the stored liver. Immediately postreperfusion, there was a significant rise in arginase I levels in the recipient serum with low arginine levels recorded in the liver. The high arginase I levels significantly reduced six hours postreperfusion with a corresponding rise in extracellular arginine levels. Urea levels in the graft increased significantly immediately postreperfusion. CONCLUSIONS Arginine levels were found to be low with correspondingly high serum arginase I levels in the early postreperfusion phase. High serum arginase I levels in early postreperfusion may influence nitric oxide production in this phase since considering Vmax and Km values, arginase I could compete with inducible nitric oxide synthase for arginine. Urea metabolism in the liver recommences immediately postreperfusion.
Collapse
Affiliation(s)
- Michael A Silva
- The Liver Unit, Queen Elizabeth Hospital, University Hospital Birmingham NHS Trust, Edgbaston, Birmingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Holowatz LA, Thompson CS, Kenney WL. L-Arginine supplementation or arginase inhibition augments reflex cutaneous vasodilatation in aged human skin. J Physiol 2006; 574:573-81. [PMID: 16675494 PMCID: PMC1817757 DOI: 10.1113/jphysiol.2006.108993] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Full expression of reflex cutaneous vasodilatation is dependent on nitric oxide (NO) and vasodilatation is attenuated in healthy older humans. NO bioavailability in aged skin may be decreased by an age-related upregulation of arginase, which reciprocally regulates the NO-synthase (NOS) substrate L-arginine (L-Arg). We hypothesized that increased arginase activity contributes to attenuated vasodilatation in aged skin by limiting L-Arg for NOS-mediated NO synthesis. Five microdialysis fibres were placed in forearm skin of 10 young (Y, 23 +/- 1 years) and 9 older (O, 68 +/- 1 years) human subjects, serving as control (C, Ringer solution), NOS-inhibited (10.0 mM NG-nitro-L-arginine), arginase-inhibited (5.0 mM (S)-(2-boronoethyl)-L-cysteine + 5.0 mM Nomega-hydroxy-nor-L-arginine), L-arg supplemented (L-Arg; 10.0 mM L-arginine) and combined arginase-inhibited + L-Arg sites. After 20 min thermoneutral baseline, cutaneous vasodilatation was induced by passive whole-body heating to increase oral temperature (Tor) by 1.0 degrees C. Red blood cell flux was measured by laser-Doppler flowmetry over each microdialysis site. Cutaneous vascular conductance was calculated (CVC = flux/mean arterial pressure) and normalized to maximal CVC (CVCmax, 28.0 mM sodium nitroprusside + local heating to 43 degrees C). Cutaneous vasodilatation during heating was attenuated in O (Y, 42 +/- 1, versus O, 30 +/- 1%CVCmax, P < 0.001) at control sites. NOS inhibition decreased vasodilatation in both age groups compared to C (Y, 22 +/- 2; O, 18 +/- 2%CVCmax; P < 0.001). Arginase inhibition, L-Arg supplementation, and arginase inhibition + L-Arg supplementation augmented vasodilatation in O (arginase-inhibited, 46 +/- 4; L-Arg, 44 +/- 4; arginase-inhibited + L-arg, 46 +/- 5%CVCmax; P < 0.001 versus C) but not in Y (arginase-inhibited, 46 +/- 4; L-Arg, 38 +/- 4; arginase-inhibited + L-Arg, 44 +/- 4%CVCmax; P > 0.05 versus C). Increasing L-Arg for NO synthesis by either arginase inhibition or direct L-Arg supplementation restores the age-related deficit in reflex cutaneous vasodilatation.
Collapse
Affiliation(s)
- Lacy A Holowatz
- Department of Kinesiology, Noll Laboratory, Pennsylvania State University, University Park, PA 16802, USA.
| | | | | |
Collapse
|
42
|
Busnel O, Carreaux F, Carboni B, Pethe S, Goff SVL, Mansuy D, Boucher JL. Synthesis and evaluation of new omega-borono-alpha-amino acids as rat liver arginase inhibitors. Bioorg Med Chem 2005; 13:2373-9. [PMID: 15755639 DOI: 10.1016/j.bmc.2005.01.053] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2004] [Revised: 01/20/2005] [Accepted: 01/26/2005] [Indexed: 10/25/2022]
Abstract
Recent studies have demonstrated that arginase plays important roles in pathologies such as asthma or erectile dysfunctions. We have synthesized new omega-borono-alpha-amino acids that are analogues of the previously known arginase inhibitors S-(2-boronoethyl)-l-cysteine (BEC) and 2-amino-6-boronohexanoic acid (ABH) and evaluated them as inhibitors of purified rat liver arginase (RLA). In addition to the distance between the B(OH)(2) and the alpha-amino acid functions, the position of the sulfur atom in the side chain also appears as a key determinant for the interaction with the active site of RLA. Furthermore, substitution of the alkyl side chain of BEC by methyl groups and conformational restriction of ABH by incorporation of its side chain in a phenyl ring led to inactive compounds. These results suggest that subtle interactions govern the affinity of inhibitors for the active site of RLA.
Collapse
Affiliation(s)
- Olivier Busnel
- Laboratoire de Synthèse et Electrosynthèse Organiques, Institut de Chimie, Université de Rennes 1, Campus de Beaulieu, 35042 Rennes Cedex, France
| | | | | | | | | | | | | |
Collapse
|
43
|
Abstract
The arginases catalyze the divalent cation dependent hydrolysis of L-arginine to produce L-ornithine and urea. Although traditionally considered in terms of its role as the final enzyme of the urea cycle, the enzyme is found in a variety of nonhepatic tissues. These findings suggest that the enzyme may have other functions in addition to its role in nitrogen metabolism. High-resolution crystal structures have been determined for recombinant rat liver (type I) arginase and for recombinant human kidney (type II) arginase, their variants, and complexes with products and inhibitors. Each identical subunit of the trimeric enzyme contains an active site that lies at the bottom of a 15 A deep cleft. The 2 essential Mn(II) ions are located at the bottom of this cleft, separated by approximately 3.3 A and bridged by oxygens derived from 2 aspartic acid residues and a solvent-derived hydroxide. This metal bridging hydroxide is proposed to be the nucleophile that attacks the guanidinium carbon of substrate arginine. On the basis of this proposed mechanism, boronic acid inhibitors of the enzyme have been synthesized and characterized kinetically and structurally. These inhibitors display slow-onset inhibition at the pH optimum of the enzyme, and are found as tetrahedral species at the active site, as determined by X-ray diffraction. The potent inhibition of arginases I and II by these compounds has not only delineated key enzyme-substrate interactions, but has also led to a greater understanding of the role of arginase in nonhepatic tissues.
Collapse
Affiliation(s)
- David E Ash
- Department of Biochemistry, Temple University School of Medicine, Philadelphia, PA 19140, USA.
| |
Collapse
|
44
|
Abstract
Nitric oxide (NO) is synthesized from arginine by NO synthase (NOS), and the availability of arginine is one of the rate-limiting factors in cellular NO production. Citrulline that is formed as a by-product of the NOS reaction can be recycled to arginine by successive actions of argininosuccinate synthetase (AS) and argininosuccinate lyase (AL), forming the citrulline-NO cycle. AS and sometimes AL have been shown to be coinduced with inducible NOS (iNOS) in various cell types including activated macrophages, microglia, vascular smooth muscle cells, glial cells, neuronal PC12 cells, retinal pigment epithelial cells, and pancreatic beta-cells. Coinduction of endothelial NOS (eNOS), AS, and AL are observed in human umbilical vein endothelial cells. In contrast, arginase can downregulate NO production by decreasing intracellular arginine concentrations. iNOS and arginase activities are regulated reciprocally in macrophages by cytokines, and this may guarantee the efficient production of NO. In contrast, iNOS and arginase isoforms (type I and/or II) are coinduced in immunostimulated macrophages, but not in PC12 cells and glial cells. These results indicate that NO production is modulated by the recycling and degradation of arginine. Arginase also plays an important role in regulation of polyamine and proline synthesis.
Collapse
Affiliation(s)
- Masataka Mori
- Department of Molecular Genetics, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
| | | |
Collapse
|
45
|
Xu W, Kaneko FT, Zheng S, Comhair SAA, Janocha AJ, Goggans T, Thunnissen FBJM, Farver C, Hazen SL, Jennings C, Dweik RA, Arroliga AC, Erzurum SC. Increased arginase II and decreased NO synthesis in endothelial cells of patients with pulmonary arterial hypertension. FASEB J 2004; 18:1746-8. [PMID: 15364894 DOI: 10.1096/fj.04-2317fje] [Citation(s) in RCA: 293] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Pulmonary arterial hypertension (PAH), a fatal disease of unknown etiology characterized by impaired regulation of pulmonary hemodynamics and vascular growth, is associated with low levels of pulmonary nitric oxide (NO). Based upon its critical role in mediating vasodilation and cell growth, decrease of NO has been implicated in the pathogenesis of PAH. We evaluated mechanisms for low NO and pulmonary hypertension, including NO synthases (NOS) and factors regulating NOS activity, i.e. the substrate arginine, arginase expression and activity, and endogenous inhibitors of NOS in patients with PAH and healthy controls. PAH lungs had normal NOS I-III expression, but substrate arginine levels were inversely related to pulmonary artery pressures. Activity of arginase, an enzyme that regulates NO biosynthesis through effects on arginine, was higher in PAH serum than in controls, with high-level arginase expression localized by immunostaining to pulmonary endothelial cells. Further, pulmonary artery endothelial cells derived from PAH lung had higher arginase II expression and produced lower NO than control cells in vitro. Thus, substrate availability affects NOS activity and vasodilation, implicating arginase II and alterations in arginine metabolic pathways in the pathophysiology of PAH.
Collapse
Affiliation(s)
- Weiling Xu
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Ricciardolo FLM, Sterk PJ, Gaston B, Folkerts G. Nitric oxide in health and disease of the respiratory system. Physiol Rev 2004; 84:731-65. [PMID: 15269335 DOI: 10.1152/physrev.00034.2003] [Citation(s) in RCA: 584] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
During the past decade a plethora of studies have unravelled the multiple roles of nitric oxide (NO) in airway physiology and pathophysiology. In the respiratory tract, NO is produced by a wide variety of cell types and is generated via oxidation of l-arginine that is catalyzed by the enzyme NO synthase (NOS). NOS exists in three distinct isoforms: neuronal NOS (nNOS), inducible NOS (iNOS), and endothelial NOS (eNOS). NO derived from the constitutive isoforms of NOS (nNOS and eNOS) and other NO-adduct molecules (nitrosothiols) have been shown to be modulators of bronchomotor tone. On the other hand, NO derived from iNOS seems to be a proinflammatory mediator with immunomodulatory effects. The concentration of this molecule in exhaled air is abnormal in activated states of different inflammatory airway diseases, and its monitoring is potentially a major advance in the management of, e.g., asthma. Finally, the production of NO under oxidative stress conditions secondarily generates strong oxidizing agents (reactive nitrogen species) that may modulate the development of chronic inflammatory airway diseases and/or amplify the inflammatory response. The fundamental mechanisms driving the altered NO bioactivity under pathological conditions still need to be fully clarified, because their regulation provides a novel target in the prevention and treatment of chronic inflammatory diseases of the airways.
Collapse
Affiliation(s)
- Fabio L M Ricciardolo
- Dept. of Pharmacology and Pathophysiology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, PO Box 80082, 3508 TB Utrecht, The Netherlands
| | | | | | | |
Collapse
|
47
|
Kämpfer H, Pfeilschifter J, Frank S. Expression and activity of arginase isoenzymes during normal and diabetes-impaired skin repair. J Invest Dermatol 2004; 121:1544-51. [PMID: 14675208 DOI: 10.1046/j.1523-1747.2003.12610.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Within the past years, an important role for nitric oxide (NO) in skin repair has been well defined. As NO is synthesized from L-arginine by NO synthases (NOS), the availability of L-arginine might be one rate-limiting factor of NO production at the wound site. Upon injury, arginase-1 and -2 mRNA, protein, and activity were strongly induced reaching a maximum between day 3 and day 7 postwounding. Immunohistochemistry colocalized both arginases and the inducible NOS (iNOS) at epithelial sites at the margins of the wound. Notably, diabetes-impaired skin repair in leptin-deficient mice (diabetes/diabetes, db/db; and obese/obese, ob/ob) was characterized by an abnormally elevated arginase activity in wound tissue in the absence of an expression of iNOS. Expression analyses demonstrated that arginase-1 contributed to increased arginase activities in impaired repair. Interestingly, an improved healing of chronic wound situations in leptin-supplemented ob/ob mice was strongly associated with an adjustment of the dysregulated expression of L-arginine-converting enzymes: an attenuated iNOS expression was upregulated early in repair and an augmented arginase-1 expression and activity was downregulated in the presence of markedly elevated numbers of macrophages during late repair. These data suggest a coordinated consumption of L-arginine by the NOS and arginase enzymatic pathways at the wound site as a prerequisite for a balanced NO (via iNOS) and polyamine (via arginases) synthesis that drives a normal skin repair.
Collapse
Affiliation(s)
- Heiko Kämpfer
- Pharmazentrum Frankfurt, Klinikum der Johann Wolfgang Goethe-Universität, Frankfurt am Main, Germany
| | | | | |
Collapse
|
48
|
Wink DA, Miranda KM, Katori T, Mancardi D, Thomas DD, Ridnour L, Espey MG, Feelisch M, Colton CA, Fukuto JM, Pagliaro P, Kass DA, Paolocci N. Orthogonal properties of the redox siblings nitroxyl and nitric oxide in the cardiovascular system: a novel redox paradigm. Am J Physiol Heart Circ Physiol 2003; 285:H2264-76. [PMID: 12855429 DOI: 10.1152/ajpheart.00531.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Endogenous formation of nitric oxide (NO) and related nitrogen oxides in the vascular system is critical to regulation of multiple physiological functions. An imbalance in the production or availability of these species can result in progression of disease. Nitrogen oxide research in the cardiovascular system has primarily focused on the effects of NO and higher oxidation products. However, nitroxyl (HNO), the one-electron-reduction product of NO, has recently been shown to have unique and potentially beneficial pharmacological properties. HNO and NO often induce discrete biological responses, providing an interesting redox system. This article discusses the emerging aspects of HNO chemistry and attempts to provide a framework for the distinct effects of NO and HNO in vivo.
Collapse
Affiliation(s)
- David A Wink
- Tumor Biology Section, Radiation Biology Branch, National Cancer Institute, National Institutes of Health, Bldg. 10, Rm. B3-B69, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Sandstrom P, Gasslander T, Sundqvist T, Franke J, Svanvik J. Depletion of serum L-arginine in patients with acute pancreatitis. Pancreas 2003; 27:261-6. [PMID: 14508133 DOI: 10.1097/00006676-200310000-00012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Acute pancreatitis may be initiated by interference with the pancreatic outflow to the duodenum. This flow is normally regulated by reflex relaxation of the sphincter of Oddi in which nitric oxide is an important mediator. AIM To test the hypothesis that acute pancreatitis involves a depletion in serum L-arginine resulting in impaired production of nitric oxide. METHODS We measured serum L-arginine and L-citrulline and urinary nitrite/nitrate concentrations 1 to 3 days after the onset of symptoms in 11 patients with gallstone pancreatitis, 10 patients with alcoholic pancreatitis, and 6 patients with idiopathic pancreatitis. We compared their results with those from control groups of 13 healthy blood donors, 9 patients fasting before hernia operations, 8 patients with acute cholecystitis, and 9 alcoholic subjects but no pancreatitis. Serum arginine and citrulline concentrations were measured with high performance liquid chromatography, and urinary nitrite/nitrate spectrophotometrically. RESULTS Patients with acute pancreatitis, of whatever cause, had lower serum L-arginine and L-citrulline concentrations than controls. Patients with gallstone and idiopathic pancreatitis also have reduced urinary concentrations of nitrite and nitrate but this was not seen in patients with alcoholic pancreatitis. CONCLUSIONS L-arginine and L-citrulline concentrations are depleted in the serum of patients with acute pancreatitis. Reduced urinary nitrite and nitrate in gallstone pancreatitis indicate that there is a defect formation of nitric oxide. This may cause a functional obstruction of the outflow of pancreatic juice to the duodenum and so may be involved in the pathophysiology of acute pancreatitis.
Collapse
Affiliation(s)
- Per Sandstrom
- Department of Biomedicine and Surgery, Faculty of Health Sciences, University Hospital, Linköping, Sweden
| | | | | | | | | |
Collapse
|
50
|
Berkowitz DE, White R, Li D, Minhas KM, Cernetich A, Kim S, Burke S, Shoukas AA, Nyhan D, Champion HC, Hare JM. Arginase reciprocally regulates nitric oxide synthase activity and contributes to endothelial dysfunction in aging blood vessels. Circulation 2003; 108:2000-6. [PMID: 14517171 DOI: 10.1161/01.cir.0000092948.04444.c7] [Citation(s) in RCA: 366] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Although abnormal L-arginine NO signaling contributes to endothelial dysfunction in the aging cardiovascular system, the biochemical mechanisms remain controversial. L-arginine, the NO synthase (NOS) precursor, is also a substrate for arginase. We tested the hypotheses that arginase reciprocally regulates NOS by modulating L-arginine bioavailability and that arginase is upregulated in aging vasculature, contributing to depressed endothelial function. METHODS AND RESULTS Inhibition of arginase with (S)-(2-boronoethyl)-L-cysteine, HCl (BEC) produced vasodilation in aortic rings from young (Y) adult rats (maximum effect, 46.4+/-9.4% at 10(-5) mol/L, P<0.01). Similar vasorelaxation was elicited with the additional arginase inhibitors N-hydroxy-nor-L-arginine (nor-NOHA) and difluoromethylornithine (DFMO). This effect required intact endothelium and was prevented by 1H-oxadiazole quinoxalin-1-one (P<0.05 and P<0.001, respectively), a soluble guanylyl cyclase inhibitor. DFMO-elicited vasodilation was greater in old (O) compared with Y rat aortic rings (60+/-6% versus 39+/-6%, P<0.05). In addition, BEC restored depressed L-arginine (10(-4) mol/L)-dependent vasorelaxant responses in O rings to those of Y. Arginase activity and expression were increased in O rings, whereas NOS activity and cyclic GMP levels were decreased. BEC and DFMO suppressed arginase activity and restored NOS activity and cyclic GMP levels in O vessels to those of Y. CONCLUSIONS These findings demonstrate that arginase modulates NOS activity, likely by regulating intracellular L-arginine availability. Arginase upregulation contributes to endothelial dysfunction of aging and may therefore be a therapeutic target.
Collapse
Affiliation(s)
- Dan E Berkowitz
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins Medical Institutions, Baltimore, Md, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|